1
|
Luo L, Hu Q, Yan R, Gao X, Zhang D, Yan Y, Liu Q, Mao S. Alpha‑Asarone Ameliorates Neuronal Injury After Ischemic Stroke and Hemorrhagic Transformation by Attenuating Blood-Brain Barrier Destruction, Promoting Neurogenesis, and Inhibiting Neuroinflammation. Mol Neurobiol 2025; 62:5252-5272. [PMID: 39531192 DOI: 10.1007/s12035-024-04596-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Recombinant tissue-type plasminogen activator (rt-PA), the primary drug for acute ischemic stroke (IS), has a narrow therapeutic window and carries a potential risk of hemorrhagic transformation (HT). Without rt-PA administration, patients may suffer permanent cerebral ischemia. Alpha-asarone (ASA), a natural compound derived from Acorus tatarinowii Schott, exhibits diverse neuropharmacological effects. This study aims to investigate whether ASA could improve outcomes in IS and be used to mitigate HT induced by rt-PA. We employed models of permanent middle cerebral artery occlusion (pMCAO) and photothrombotic cortical injury (PCI) to investigate both the therapeutic efficacy and underlying mechanisms of ASA during the acute and recovery periods following IS, respectively. Additionally, Sprague-Dawley rats were subjected to rt-PA treatment at 6-h post-PCI to mimic HT (rt-PA-HT). Our results revealed three key findings: (1) ASA demonstrated therapeutic effects in the acute phase of pMCAO rats by alleviating blood-brain barrier damage through inhibition of glial cell-mediated neuroinflammation; (2) administration of ASA 24 h after stroke ameliorated the neurological damage during the recovery phase in PCI mice by promoting neurogenesis via activation of the BDNF/ERK/CREB signaling pathway; (3) ASA attenuated rt-PA-HT injury by modulating the NLRP3/Caspase1/IL-1β and IL-18 pathways. Overall, our findings suggest that ASA mitigates neuronal injury following IS and HT, positioning it as a promising candidate for treating these conditions.
Collapse
Affiliation(s)
- Lijun Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Qinrui Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ruijie Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xiaofeng Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Di Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yi Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Qi Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Shengjun Mao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Yan XD, Fan RH, Wang Y, Duan XX, Wei X, Li LS, Yu Q. α-asarone activates mitophagy to relieve diabetic encephalopathy via inhibiting apoptosis and oxidative stress. Metab Brain Dis 2025; 40:126. [PMID: 39954135 DOI: 10.1007/s11011-025-01556-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Diabetic encephalopathy (DE) is a common complication of diabetes that may result in cognitive impairment. Currently, there is limited effective therapy for DE. Herein, we explored the beneficial effect of α-Asarone on DE and its potential mechanisms. DE was induced in Type 2 diabetes mellitus mice and high-glucose (HG)-exposed PC-12 cells. Cognitive function was evaluated by MWM test. Pathological changes in the brain tissues were observed by HE staining. Cell viability was detected by CCK-8. Apoptosis was assessed by Hoechst 33,342 staining, Annexin V/PI staining and TUNEL. Mitochondrial membrane potential was analyzed by JC-1 probe. ROS production was measured by DCFH-DA staining. Target protein levels were analyzed by Western blotting. Network pharmacology was used to elucidate the beneficial mechanisms of α-Asarone in DE. Our study showed that α-Asarone enhanced cell viability and suppressed apoptosis in HG-stimulated PC-12 cells. Furthermore, α-Asarone relieved HG-induced reduction in mitochondrial membrane potential and ROS overproduction. In addition, mitophagy was triggered by α-Asarone, which was responsible for the inhibitory effect of α-Asarone on apoptosis and oxidative stress. Consistently, the in vivo experiments showed that α-Asarone treatment relieved cognitive dysfunction, apoptosis, and oxidative stress of DE mice via mitophagy induction. However, inhibition of mitophagy by Mdivi-1 counteracted the beneficial action of α-Asarone. Mechanistically, network pharmacology analysis identified 10 key targets of α-Asarone. Molecular docking substantiated a strong affinity of α-Asarone with CASP3, EGFR, NFKB1, and ESR1 proteins. Taken together, α-Asarone protected against mitochondrial dysfunction, oxidative stress and apoptosis via activating mitophagy, thereby alleviating DE. Our findings suggest α-Asarone as a potential drug for DE.
Collapse
Affiliation(s)
- Xiao-Dan Yan
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, P.R. China
| | - Rong-Hua Fan
- Department of Sanitary Chemistry, School of Public Health, Shenyang Medical College, Shenyang, 110034, Liaoning Province, P.R. China
| | - Yu Wang
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, P.R. China
| | - Xiao-Xu Duan
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, Liaoning Province, P.R. China
| | - Xuan Wei
- Department of Medical and Health Industry, Shenyang Medical College, No. 146 Huanghe North Street, Shenyang, 110034, Liaoning Province, P.R. China
| | - Lin-Sen Li
- Graduate School, Shenyang Medical College, No. 146 Huanghe North Street, Shenyang, Xiao, 110034, Liaoning Province, P.R. China.
| | - Qing Yu
- Department of Medical and Health Industry, Shenyang Medical College, No. 146 Huanghe North Street, Shenyang, 110034, Liaoning Province, P.R. China.
| |
Collapse
|
3
|
Yan Y, Wu L, Wang L, Wang D, Huang M, Peng J, Huang Y. αAsarone alleviates neuronal injury by facilitating autophagy via miR-499-5p/PDCD4/ATG5 signaling pathway in ischemia stroke. Front Pharmacol 2025; 16:1504683. [PMID: 39950112 PMCID: PMC11822255 DOI: 10.3389/fphar.2025.1504683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/07/2025] [Indexed: 02/16/2025] Open
Abstract
INTRODUCTION αAsarone, an essential oil derived from Acorus gramineus Aiton, which has been successfully used to treat epilepsy in traditional chinese medicine, and has also been reported to confer neuroprotective effects on stroke. However, its mechanism of action remains poorly understood. METHODS The effects of αAsarone on autophagy were examined by WB, RT-qPCR, immunofluorescence colocalization, transmission electron microscope, and autophagic flux activity was measured by infecting HT22 cells with mRFP-GFP-LC3 adenovirus. And then, cells were transfected with both mimic-miR-499-5p and inhibit-miR-499-5p to investigate the role of miR-499-5p in regulating the effects of αAsarone on stroke. To further clarify the protective effect of αAsarone in vivo, TTC staining, neurological function score, H&E staining, Nissl staining, Laser speckle contrast imaging, transmission electron microscopy, immunofluorescence colocalization, WB and RT-qPCR were performed in the MCAO mice. RESULTS αAsarone was observed to inhibit the apoptosis of neuronal cells, and enhance autophagy. In addition, αAsarone promoted the expression of miR-499-5p. Targeting miR-499-5p can negatively regulate PDCD4 expression and the results from the dual-luciferase reporter assay demonstrate the direct targeting of PDCD4 by miR-499-5p. Promoting miR-499-5p can decrease the expression of PDCD4, increase ATG5, and enhance the protective effect of αAsarone on OGD/R injury while inhibiting miR-499-5p can weaken the effect of αAsarone. In vivo experiments further confirmed that αAsarone improved mice MCAO as evidenced by the amelioration of the neurological deficits and facilitated neuronal autophagy. Furthermore, we found that αAsarone reversed the effect of chloroquine, an autophagy inhibitor, and enhanced neuronal autophagy via miR-499-5p/PDCD4/ATG5 signaling pathway. DISCUSSION Our data suggest that αAsarone alleviates neuronal injury of stroke by facilitating neuronal autophagy through the miR-499-5p/PDCD4/ATG5 signaling pathway.
Collapse
Affiliation(s)
- Yonghuan Yan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Linfang Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Lu Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Dandan Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mengting Huang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jinyong Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yingying Huang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
- Institute for the Evaluation of the Efficacy and Safety of Chinese Medicines, Anhui Academy of Chinese Medicine, Hefei, China
| |
Collapse
|
4
|
Tian CY, Yang QR, Fan LX, Yang YM, Gao BW, Yang JB. Online identification of chemical constituents in Mongolian medicine Zhachong-13 pills by UHPLC-Q-exactive Orbitrap MS. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025; 27:47-61. [PMID: 39037411 DOI: 10.1080/10286020.2024.2379981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Zhachong-13 pills (ZC-13), as a traditional prescription of Mongolian medicine, are often used in the clinical practice of Mongolian hospitals for the treatment of stroke and rheumatic arthritis. In this experiment, UHPLC-Q-Exactive Orbitrap MS was used to explore the chemical composition of ZC-13. The results showed that 315 compounds were identified or inferred, including 56 alkaloids, 77 2-(2-phenylethyl)chromones, 61 flavonoids, 31 tannins, 8 coumarins, 16 lignans, 21 terpenoids, 5 amino acids, 19 organic acids, and 21 other components. In addition, the pharmacological activities related to anti-cerebral ischemia of these components were summarized. This result laid a foundation for further study on the pharmacodynamic material basis of ZC-13 and provided a scientific basis for the formulation of ZC-13 quality specifications.
Collapse
Affiliation(s)
- Cai-Yun Tian
- School of Basic Medicine and Forensic Medicine, Baotou Medical College, Baotou 014040, China
| | - Qing-Rui Yang
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Ling-Xuan Fan
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Yu-Mei Yang
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Bo-Wen Gao
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Jian-Bo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| |
Collapse
|
5
|
Ye Y, Xie X, Bi Y, Liu Q, Weng X, Qiu L, Zhao H, Hei S, Yang L, Wang C, Zhu W, Zeng T. Naoqing formula alleviates acute ischaemic stroke-induced ferroptosis via activating Nrf2/xCT/GPX4 pathway. Front Pharmacol 2024; 15:1525456. [PMID: 39741629 PMCID: PMC11686226 DOI: 10.3389/fphar.2024.1525456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 11/28/2024] [Indexed: 01/03/2025] Open
Abstract
Backgrounds Ferroptosis is a form of regulated cell death. The accumulation of iron in the brain is linked to trigger ferroptosis after an ischaemic stroke (IS). Naoqing formula (NQ) is a traditional Chinese medicine metabolites with the clinical function of activating blood circulation, which is applied to treat IS clinically in China. Methods Mice and SH-SY5Y cells were utilized to investigate the protective effects and the underlying mechanism of NQ against middle cerebral artery occlusion (MCAO) induced acute ischaemic stroke (AIS) and neuronal cellular ferroptosis caused by ferroptosis inducer Erastin in vitro and in vivo. Utilizing molecular biological techniques, transcriptomics, and proteomics analyses, the role of NQ in Nrf2 regulation and ferroptosis was evaluated through the pharmacologic inhibition of Nrf2. Results NQ attenuated AIS-induced neuronal damage and cerebral infarction by increasing cortical blood flow (CBF). Transcriptomics and proteomics analyses revealed that NQ might regulate lipid and iron metabolism through Nrf2 pathway. Additionally, NQ can protect AIS from ferroptosis by reducing oxidative stress and iron overload. Meanwhile, Nrf2, solute carrier family 7 member 11 (SLC7A11; also known as xCT) and glutathione peroxidase 4 (GPX4) were upregulated in NQ-treated AIS mice. Consistent with the results in vivo, NQ led to ferroptosis resistance upon exposure to a ferroptosis-inducing compound through activation of Nrf2/xCT/GPX4 pathway in vitro. Notably, in vivo inhibition of Nrf2 expression by ML385 aggravated the ferroptotic events and weakened the neuroprotective effect of NQ as well as subsequently reduced the expression of xCT and GPX4. Conclusion This study demonstrated that NQ protected against AIS via suppression of ferroptosis and oxidative stress, which were largely dependent on the upregulation of Nrf2 pathway.
Collapse
Affiliation(s)
- Yujun Ye
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- School of Combine Traditional Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
- Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuexin Xie
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- School of Combine Traditional Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
- Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yiming Bi
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qing Liu
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuliang Weng
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lingling Qiu
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - He Zhao
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shangyan Hei
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ling Yang
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chengyin Wang
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weifeng Zhu
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ting Zeng
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Huang Y, Li Y, Guan D, Pan Y, Yang C, Liu H, Chen C, Chen W, Liu J, Wan T, Zhuang L, Wang Q, Zhang Y. Acorus tatarinowii oils exert protective effects on microglia-mediated inflammatory injury via restoring gut microbiota composition in experimental stroke rats. Brain Res Bull 2024; 213:110990. [PMID: 38821245 DOI: 10.1016/j.brainresbull.2024.110990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Growing evidence has demonstrated that gut microbiota could be developed as a therapeutic target due to its contribution to microglia activation in the pathological process of ischemic stroke. Acorus tatarinowii oils (AT oils), which is considered as the active fraction of a traditional Chinese herbal medicine Acorus tatarinowii, exerts various bioactivities and prebiotic effects. However, it remains unclear that the effect of AT oils on inflammatory response after ischemic stroke and whether its underlying mechanism is associated to gut microbiota and the intestinal barrier. In the current study, we aim to investigate the anti-microglial neuroinflammation mechanism of AT oils in a middle cerebral artery occlusion model of ischemic stroke. The compositions of AT oils were identified by GC-MS. Our results demonstrated that AT oils could effectively relieve cerebral infarction, inhibit neuronal apoptosis, degrade the release of pro-inflammatory factors (TNF-α, IL-17, IL-6 and IFN-γ), and mediate the polarization of microglia. Moreover, AT oils restored the composition and the balance of gut microbiota in stroke rats, and reduced abundance of opportunistic genera including Verrucomicrobia, Akkermansia and Tenericutes, as well as increased beneficial bacteria abundance such as Tenericutes and Prevotella_copri. To investigate the role of gut microbiota on AT oils against ischemic stroke, we conducted the fecal microbiota transplantation (FMT) experiments with gut microbiota consumption, which suggested that the depletion of gut microbiota took away the protective effect of AT oils, confirming the importance of gut microbiota in the protective effect of AT oils on ischemic stroke. FMT experiments have demonstrated that AT oils preserved the gut permeability and blood-brain barrier, as well as mediated the microglial phenotype under the intervention of gut microbiota. In summary, AT oils could efficaciously moderate neuronal damage and intervene microglial phenotype by reversing gut microbiota disorder in ischemic stroke rats.
Collapse
Affiliation(s)
- Yueyue Huang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi 530022, China
| | - Yongyi Li
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Danni Guan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Yaru Pan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Chao Yang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Huina Liu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Chaoyan Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Weitao Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Jinman Liu
- Affiliated Jiangmen TCM Hospital, Ji'nan University, Jiangmen, Guangdong 529000, China
| | - Ting Wan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Lixing Zhuang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Qi Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China.
| | - Yifan Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, Guangdong 510405, China.
| |
Collapse
|
7
|
Guan X, Wu J, Geng J, Ji D, Wei D, Ling Y, Zhang Y, Jiang G, Pang T, Huang Z. A Novel Hybrid of Telmisartan and Borneol Ameliorates Neuroinflammation and White Matter Injury in Ischemic Stroke Through ATF3/CH25H Axis. Transl Stroke Res 2024; 15:195-218. [PMID: 36577854 DOI: 10.1007/s12975-022-01121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022]
Abstract
Cerebral ischemic stroke causes substantial white matter injury, which is further aggravated by neuroinflammation mediated by microglia/astrocytes. Given the anti-neuroinflammatory action of telmisartan and the enhancing blood-brain barrier (BBB) permeability potential of resuscitation-inducing aromatic herbs, 13 hybrids (3a-m) of telmisartan (or its simplified analogues) with resuscitation-inducing aromatic agents were designed, synthesized, and biologically evaluated. Among them, the optimal compound 3a (the ester hybrid of telmisartan and (+)-borneol) potently inhibited neuroinflammation mediated by microglia/astrocytes and ameliorated ischemic stroke. Particularly, 3a significantly conferred protection for white matter integrity after cerebral ischemic stroke via decreasing abnormally dephosphorylated neurofilament protein, upregulating myelin basic protein, and attenuating oligodendrocyte damage. Further RNA-sequencing data revealed that 3a upregulated expression of transcriptional regulator ATF3 to reduce the expression of CH25H, prevented proinflammatory state of lipid-droplet-accumulating microglia/astrocytes to limit excessive inflammation, and eventually protected neighboring oligodendrocytes to prevent white matter injury. Taken with the desirable pharmacokinetics behavior and improved brain distribution, 3a may be a feasible therapeutic agent for ischemic stroke and other neurological disorders with white matter injury.
Collapse
Affiliation(s)
- Xin Guan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Jianbing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Jiahui Geng
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Duorui Ji
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Dasha Wei
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Yong Ling
- School of Pharmacy, Nantong University, Nantong, 226001, People's Republic of China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Guojun Jiang
- Department of Pharmacy, Zhejiang Xiaoshan Hospital, Hangzhou, 311201, People's Republic of China
| | - Tao Pang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China.
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, People's Republic of China.
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
8
|
Lee JH, Choi BT, Shin HK. Effect of Combination Electroacupuncture and Tenuigenin on the Migration and Differentiation of Mesenchymal Stem Cells following Ischemic Stroke. J Pharmacopuncture 2023; 26:357-365. [PMID: 38162470 PMCID: PMC10739475 DOI: 10.3831/kpi.2023.26.4.357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/26/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
Objectives Since stroke is a serious health issue, novel therapeutic strategies are required. In a mouse model of ischemic stroke, this study analyzed the potential of electroacupuncture (EA) and tenuigenin (TE) to improve the efficacy of human mesenchymal stem cell (hMSC) transplantation. Methods Middle cerebral artery occlusion (MCAO) with reperfusion was used to generate ischemic stroke. Forty-eight male C57BL/6 mice were randomly divided into five groups control, MCAO-operated, MCAO-EA, MCAO-TE, or MCAO + EA + TE. Subsequently, hMSCs were transplanted into the ischemic region and EA, TE, or the combination was administered. Behavior assessments and immunohistochemistry were conducted to evaluate motor and cognitive recovery and hMSCs survival, migration, and differentiation. Results The combined treatment of EA and TE exhibited enhanced hMSCs survival, migration and differentiation into neural cell lineages while suppressing astrocyte formation. Immunohistochemistry demonstrated increased neurogenesis through hMSCs transplantation in the ischemic brain. Immediate behavioral improvements were not significantly different between groups, but there was a gradual recovery in motor and cognitive function over time. Conclusion These findings highlight the potential of EA and TE co-treatment as a therapeutic strategy for ischemic stroke, opening avenues for further research to optimize treatment protocols and elucidate underlying mechanisms.
Collapse
Affiliation(s)
- Jae Ho Lee
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy-Aging, Pusan National University, Yangsan, Republic of Korea
| | - Byung Tae Choi
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy-Aging, Pusan National University, Yangsan, Republic of Korea
| | - Hwa Kyoung Shin
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy-Aging, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
9
|
He X, Chen X, Yang Y, Liu Y, Xie Y. Acorus calamus var. angustatus Besser: Insight into current research on ethnopharmacological use, phytochemistry, pharmacology, toxicology, and pharmacokinetics. PHYTOCHEMISTRY 2023; 210:113626. [PMID: 36871902 DOI: 10.1016/j.phytochem.2023.113626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 05/09/2023]
Abstract
A. calamus var. angustatus Besser is an important traditional medicinal herb commonly used in China and other Asian countries. This study is the first systematic review of the literature to thoroughly analyze the ethnopharmacological application, phytochemistry, pharmacology, toxicology and pharmacokinetic properties of A. calamus var. angustatus Besser and provides a rationale for future research and prospects for application in clinical treatment. Information on relevant studies investigating A. calamus var. angustatus Besser was collected from SciFinder, the Web of Science, PubMed, CNKI, Elsevier, ResearchGate, ACS, Flora of China, and Baidu Scholar, etc. up to December 2022. In addition, information was also obtained from Pharmacopeias, books on Chinese herbal classics, local books, as well as PhD and MS dissertations. A. calamus var. angustatus Besser has played an important role in the herbal treatment of coma, convulsion, amnesia, and dementia for thousands of years. Studies investigating the chemical constituents of A. calamus var. angustatus Besser have isolated and identified 234 small-molecule compounds and a few polysaccharides. Among them, simple phenylpropanoids represented by asarone analogues and lignans are the two main active ingredients, which can be considered characteristic chemotaxonomic markers of this herb. In vitro and in vivo pharmacological studies indicated that crude extracts and active compounds from A. calamus var. angustatus Besser display a wide range of pharmacological activities, especially as treatment for Alzheimer's disease (AD), and anticonvulsant, antidepressant-like, anxiolytic-like, anti-fatigue, anti-Parkinson, neuroprotection, and brain protection properties, providing more evidence to explain the traditional medicinal uses and ethnopharmacology. The clinical therapeutic dose of A. calamus var. angustatus Besser does not present any toxic effects, but its main active ingredients α-asarone and β-asarone at excessive dose may lead to toxicity, and in particular, their respective epoxide metabolites may exert potential toxicity to the liver. This review provides a reference and further information for the future development and clinical application of A. calamus var. angustatus Besser.
Collapse
Affiliation(s)
- Xirui He
- College of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China.
| | - Xufei Chen
- Department of Anesthesiology, The General Hospital of the Western Theater Command, Chengdu, China
| | - Yan Yang
- College of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Yujie Liu
- College of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Yulu Xie
- College of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| |
Collapse
|
10
|
Feng Z, Gao Z, Kong R, Zhuang T, Liu J, Liu T, Zheng X, Bai Y, Yao R. Alpha-asaronol promoted oligodendrocyte precursor cell differentiation and improved myelination as an activator PPARγ. Biomed Pharmacother 2023; 163:114815. [PMID: 37146420 DOI: 10.1016/j.biopha.2023.114815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/20/2023] [Accepted: 04/30/2023] [Indexed: 05/07/2023] Open
Abstract
Preterm white matter injury (PWMI), characterized by oligodendrocyte precursor cell (OPC) differentiation disorder and dysmyelination, is a prevalent demyelinating disease of the central nervous system in premature infants, necessitating the development of mitigating strategies. Convincing evidence suggests that peroxisome proliferator-activated receptor γ (PPARγ) activation is a stimulative factor against the hindered process of oligodendrocyte (OL) differentiation. However, much remains unknown about its promotive mechanism. Our previous study indicated that alpha-asaronol (α-asaronol) could alleviate myelination disorder in a neonatal PWMI rat model, but the mechanism remained unclear. In this study, we demonstrated that α-asaronol attenuated cognitive deficits, repaired myelin damage, and stimulated OL differentiation in the corpus callosum of PWMI rats. Co-immunoprecipitation analysis confirmed that α-asaronol induced the binding of PPARγ with its coactivator peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), which in turn activated oligodendroglial PPARγ. This activation subsequently upregulated the expression of phosphatase and tensin homolog (PTEN) and pro-differentiation-associated genes of Cnp1 and Klk6 and downregulated the expression of Clk1. However, the benefits of α-asaronol were blocked by GW9662, an antagonist of PPARγ. Moreover, α-asaronol also promoted OPC differentiation under oxygen-glucose deprivation conditions. In conclusion, α-asaronol can promote OL differentiation and myelination and alleviate cognitive deficits in neonatal PWMI rats by activating PPARγ and modulating OL differentiation-associated gene expression. This study suggests that α-asaronol may be a potential therapeutic drug for myelination failure in PWMI.
Collapse
Affiliation(s)
- Zhaowei Feng
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China; Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zixuan Gao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Renyu Kong
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Tao Zhuang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jing Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ting Liu
- Nursing Department, Xuzhou Pharmaceutical Branch of Jiangsu Union Technical Institute, Xuzhou, Jiangsu Province, China
| | - Xiaohui Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China
| | - Yajun Bai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China.
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China.
| |
Collapse
|
11
|
Kim CJ, Kwak TY, Bae MH, Shin HK, Choi BT. Therapeutic Potential of Active Components from Acorus gramineus and Acorus tatarinowii in Neurological Disorders and Their Application in Korean Medicine. J Pharmacopuncture 2022; 25:326-343. [PMID: 36628348 PMCID: PMC9806153 DOI: 10.3831/kpi.2022.25.4.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 12/30/2022] Open
Abstract
Neurological disorders represent a substantial healthcare burden worldwide due to population aging. Acorus gramineus Solander (AG) and Acorus tatarinowii Schott (AT), whose major component is asarone, have been shown to be effective in neurological disorders. This review summarized current information from preclinical and clinical studies regarding the effects of extracts and active components of AG and AT (e.g., α-asarone and β-asarone) on neurological disorders and biomedical targets, as well as the mechanisms involved. Databases, including PubMed, Embase, and RISS, were searched using the following keywords: asarone, AG, AT, and neurological disorders, including Alzheimer's disease, Parkinson's disease, depression and anxiety, epilepsy, and stroke. Meta-analyses and reviews were excluded. A total of 873 studies were collected. A total of 89 studies were selected after eliminating studies that did not meet the inclusion criteria. Research on neurological disorders widely reported that extracts or active components of AG and AT showed therapeutic efficacy in treating neurological disorders. These components also possessed a wide array of neuroprotective effects, including reduction of pathogenic protein aggregates, antiapoptotic activity, modulation of autophagy, anti-inflammatory and antioxidant activities, regulation of neurotransmitters, activation of neurogenesis, and stimulation of neurotrophic factors. Most of the included studies were preclinical studies that used in vitro and in vivo models, and only a few clinical studies have been performed. Therefore, this review summarizes the current knowledge on AG and AT therapeutic effects as a basis for further clinical studies, and clinical trials are required before these findings can be applied to human neurological disorders.
Collapse
Affiliation(s)
- Cheol Ju Kim
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Tae Young Kwak
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Min Hyeok Bae
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hwa Kyoung Shin
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea,Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan, Republic of Korea,Corresponding Author Hwa Kyoung Shin, Department of Korean Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Republic of Korea, Tel: +82-51-510-8476, E-mail:, Byung Tae Choi, Department of Korean Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Republic of Korea, Tel: +82-51-510-8475, E-mail:
| | - Byung Tae Choi
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea,Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan, Republic of Korea,Corresponding Author Hwa Kyoung Shin, Department of Korean Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Republic of Korea, Tel: +82-51-510-8476, E-mail:, Byung Tae Choi, Department of Korean Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Republic of Korea, Tel: +82-51-510-8475, E-mail:
| |
Collapse
|
12
|
Bai D, Li X, Wang S, Zhang T, Wei Y, Wang Q, Dong W, Song J, Gao P, Li Y, Wang S, Dai L. Advances in extraction methods, chemical constituents, pharmacological activities, molecular targets and toxicology of volatile oil from Acorus calamus var. angustatus Besser. Front Pharmacol 2022; 13:1004529. [PMID: 36545308 PMCID: PMC9761896 DOI: 10.3389/fphar.2022.1004529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/10/2022] [Indexed: 12/04/2022] Open
Abstract
Acorus calamus var. angustatus Besser (ATT) is a traditional herb with a long medicinal history. The volatile oil of ATT (VOA) does possess many pharmacological activities. It can restore the vitality of the brain, nervous system and myocardial cells. It is used to treat various central system, cardiovascular and cerebrovascular diseases. It also showed antibacterial and antioxidant activity. Many studies have explored the benefits of VOA scientifically. This paper reviews the extraction methods, chemical components, pharmacological activities and toxicology of VOA. The molecular mechanism of VOA was elucidated. This paper will serve as a comprehensive resource for further carrying the VOA on improving its medicinal value and clinical use.
Collapse
Affiliation(s)
- Daoming Bai
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoyu Li
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shengguang Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tianyi Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yumin Wei
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingquan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weichao Dong
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Song
- Shandong Yuze Pharmaceutical Industry Technology Research Institute Co., Ltd, Dezhou, China
| | - Peng Gao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Long Dai, ; Shaoping Wang, ; Yanan Li,
| | - Shaoping Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China,*Correspondence: Long Dai, ; Shaoping Wang, ; Yanan Li,
| | - Long Dai
- School of Pharmacy, Binzhou Medical University, Yantai, China,*Correspondence: Long Dai, ; Shaoping Wang, ; Yanan Li,
| |
Collapse
|
13
|
Pak ME, Park YJ, Yang HJ, Hwang YH, Li W, Go Y. Samhwangsasim-tang attenuates neuronal apoptosis and cognitive decline through BDNF-mediated activation of tyrosin kinase B and p75-neurotrophin receptors. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153997. [PMID: 35279612 DOI: 10.1016/j.phymed.2022.153997] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Samhwangsasim-tang (SST) is a traditional medicine used to treat hypertension and arteriosclerosis. Additionally, due to the effects of its constituent herbs, SST is considered effective for memory-related disorders. PURPOSE We investigated the effects of SST on neuronal survival and memory in glutamate-induced hippocampal cells and in a mouse model of scopolamine-induced memory impairment. METHODS SST components were identified using 3D-ultra performance liquid chromatography (3D-UPLC). In vitro, we induced glutamate-induced excitotoxicity in HT22 cells after SST pretreatment. We used a cell counting kit-8 and cell cytotoxicity assay, flow cytometry, and western blotting to test the protective effects of SST on neuronal death. In vivo, C57BL/6J mice were administered with 150 and 300 mg/kg SST once daily for 7 days and then intraperitoneally injected with 1 mg/kg scopolamine for 7 days to induce cognitive impairment. We then measured cognitive behavior using a novel object recognition test (NORT) and passive avoidance test (PAT) and analyzed the histological and protein changes. RESULTS Our results showed that treatment with 50 and 100 μg/ml SST provided significant protection against glutamate-induced cell death. Flow cytometry and western blotting results suggested that 100 μg/ml SST treatment reduced oxidative stress and mitochondrial dysfunction. SST treatment also increased brain-derived neurotrophic factor (BDNF), its receptor, TrkB receptor, and cAMP-response element binding protein (CREB) activation while reducing the P75NTR and JNK signaling activation. Our in vivo results showed that SST administration improved cognitive impairment, similar to donepezil treatment (as a positive control), in NORT and PAT. SST and donepezil decreased neuronal cell death and apoptosis, and acetylcholine levels were increased in the scopolamine-treated hippocampus. Additionally, SST promoted CREB phosphorylation and BDNF maturation while reducing JNK and P75NTR activation; in contrast, donepezil did not alter levels of these proteins in the scopolamine-treated mouse hippocampus. CONCLUSION Our results suggest that SST has neuroprotective effects to attenuate neuronal cell death and oxidative stress through CREB/JNK signaling via BDNF activation. SST may regulate endogenous survival factors in the hippocampus, which may be a safe and potential clinical treatment for cognitive impairment in AD.
Collapse
Affiliation(s)
- Malk Eun Pak
- Korean medicine (KM)-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Yeo Jin Park
- Korean medicine (KM)-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea; Korean Convergence Medicine, University of Science and Technology, Daejeon 34054, Republic of Korea
| | - Hye Jin Yang
- Korean medicine (KM)-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Youn-Hwan Hwang
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Wei Li
- Korean medicine (KM)-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Younghoon Go
- Korean medicine (KM)-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea.
| |
Collapse
|
14
|
Ge Y, Zhen F, Liu Z, Feng Z, Wang G, Zhang C, Wang X, Sun Y, Zheng X, Bai Y, Yao R. Alpha-Asaronol Alleviates Dysmyelination by Enhancing Glutamate Transport Through the Activation of PPARγ-GLT-1 Signaling in Hypoxia-Ischemia Neonatal Rats. Front Pharmacol 2022; 13:766744. [PMID: 35401225 PMCID: PMC8984140 DOI: 10.3389/fphar.2022.766744] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/21/2022] [Indexed: 11/15/2022] Open
Abstract
Preterm white matter injury (PWMI) is the most common form of brain damage in premature infants caused by hypoxia-ischemia (HI), inflammation, or excitotoxicity. It is characterized by oligodendrocyte precursor cell (OPC) differentiation disorder and dysmyelination. Our previous study confirmed that alpha-asarone (α-asaronol), a major compound isolated from the Chinese medicinal herb Acorus gramineus by our lab, could alleviate neuronal overexcitation and improve the cognitive function of aged rats. In the present study, we investigated the effect and mechanism of α-asaronol on myelination in a rat model of PWMI induced by HI. Notably, α-asaronol promoted OPC differentiation and myelination in the corpus callosum of PWMI rats. Meanwhile, the concentration of glutamate was significantly decreased, and the levels of PPARγ and glutamate transporter 1 (GLT-1) were increased by α-asaronol treatment. In vitro, it was also confirmed that α-asaronol increased GLT-1 expression and recruitment of the PPARγ coactivator PCG-1a in astrocytes under oxygen and glucose deprivation (OGD) conditions. The PPARγ inhibitor GW9662 significantly reversed the effect of α-asaronol on GLT-1 expression and PCG-1a recruitment. Interestingly, the conditioned medium from α-asaronol-treated astrocytes decreased the number of OPCs and increased the number of mature oligodendrocytes. These results suggest that α-asaronol can promote OPC differentiation and relieve dysmyelination by regulating glutamate levels via astrocyte PPARγ-GLT-1 signaling. Although whether α-asaronol binds to PPARγ directly or indirectly is not investigated here, this study still indicates that α-asaronol may be a promising small molecular drug for the treatment of myelin-related diseases.
Collapse
Affiliation(s)
- Yuhang Ge
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China.,Department of Human Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Fei Zhen
- Hongze Huaian District People's Hospital, Hongze, China
| | - Ziqi Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Zhaowei Feng
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Gui Wang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Chu Zhang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Xingqi Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Ying Sun
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China
| | - Xiaohui Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China
| | - Yajun Bai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
15
|
Small molecule QF84139 ameliorates cardiac hypertrophy via activating the AMPK signaling pathway. Acta Pharmacol Sin 2022; 43:588-601. [PMID: 33967278 PMCID: PMC8888632 DOI: 10.1038/s41401-021-00678-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/02/2021] [Indexed: 02/06/2023]
Abstract
Cardiac hypertrophy is a common adaptive response to a variety of stimuli, but prolonged hypertrophy leads to heart failure. Hence, discovery of agents treating cardiac hypertrophy is urgently needed. In the present study, we investigated the effects of QF84139, a newly synthesized pyrazine derivative, on cardiac hypertrophy and the underlying mechanisms. In neonatal rat cardiomyocytes (NRCMs), pretreatment with QF84139 (1-10 μM) concentration-dependently inhibited phenylephrine-induced hypertrophic responses characterized by fetal genes reactivation, increased ANP protein level and enlarged cardiomyocytes. In adult male mice, administration of QF84139 (5-90 mg·kg-1·d-1, i.p., for 2 weeks) dose-dependently reversed transverse aortic constriction (TAC)-induced cardiac hypertrophy displayed by cardiomyocyte size, left ventricular mass, heart weights, and reactivation of fetal genes. We further revealed that QF84139 selectively activated the AMPK signaling pathway without affecting the phosphorylation of CaMKIIδ, ERK1/2, AKT, PKCε, and P38 kinases in phenylephrine-treated NRCMs and in the hearts of TAC-treated mice. In NRCMs, QF84139 did not show additive effects with metformin on the AMPK activation, whereas the anti-hypertrophic effect of QF84139 was abolished by an AMPK inhibitor Compound C or knockdown of AMPKα2. In AMPKα2-deficient mice, the anti-hypertrophic effect of QF84139 was also vanished. These results demonstrate that QF84139 attenuates the PE- and TAC-induced cardiac hypertrophy via activating the AMPK signaling. This structurally novel compound would be a promising lead compound for developing effective agents for the treatment of cardiac hypertrophy.
Collapse
|
16
|
Molecular Mechanisms and Therapeutic Potential of α- and β-Asarone in the Treatment of Neurological Disorders. Antioxidants (Basel) 2022; 11:antiox11020281. [PMID: 35204164 PMCID: PMC8868500 DOI: 10.3390/antiox11020281] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 12/03/2022] Open
Abstract
Neurological disorders are important causes of morbidity and mortality around the world. The increasing prevalence of neurological disorders, associated with an aging population, has intensified the societal burden associated with these diseases, for which no effective treatment strategies currently exist. Therefore, the identification and development of novel therapeutic approaches, able to halt or reverse neuronal loss by targeting the underlying causal factors that lead to neurodegeneration and neuronal cell death, are urgently necessary. Plants and other natural products have been explored as sources of safe, naturally occurring secondary metabolites with potential neuroprotective properties. The secondary metabolites α- and β-asarone can be found in high levels in the rhizomes of the medicinal plant Acorus calamus (L.). α- and β-asarone exhibit multiple pharmacological properties including antioxidant, anti-inflammatory, antiapoptotic, anticancer, and neuroprotective effects. This paper aims to provide an overview of the current research on the therapeutic potential of α- and β-asarone in the treatment of neurological disorders, particularly neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), as well as cerebral ischemic disease, and epilepsy. Current research indicates that α- and β-asarone exert neuroprotective effects by mitigating oxidative stress, abnormal protein accumulation, neuroinflammation, neurotrophic factor deficit, and promoting neuronal cell survival, as well as activating various neuroprotective signalling pathways. Although the beneficial effects exerted by α- and β-asarone have been demonstrated through in vitro and in vivo animal studies, additional research is required to translate laboratory results into safe and effective therapies for patients with AD, PD, and other neurological and neurodegenerative diseases.
Collapse
|
17
|
Calabrese EJ, Calabrese V, Dhawan G, Kapoor R, Giordano J. Hormesis and neural stem cells. Free Radic Biol Med 2022; 178:314-329. [PMID: 34871764 DOI: 10.1016/j.freeradbiomed.2021.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023]
Abstract
This paper provides a detailed identification and assessment of hormetic dose responses in neural stem cells (NSCs) as identified in a number of animal models and human tissues, with particular emphasis on cell proliferation and differentiation. Hormetic dose responses were commonly observed following administration of a number of agents, including dietary supplements [e.g., berberine, curcumin, (-)-epigallocatechin-3-gallate (EGCG), Ginkgo Biloba, resveratrol], pharmaceuticals (e.g., lithium, lovastatin, melatonin), endogenous ligands [e.g., hydrogen sulfide (H2S), magnesium, progesterone, taurine], environmental contaminants (e.g., arsenic, rotenone) and physical agents [e.g., hypoxia, ionizing radiation, electromagnetic radiation (EMF)]. These data indicate that numerous agents can induce hormetic dose responses to upregulate key functions of such as cell proliferation and differentiation in NSCs, and enhance resilience to inflammatory stresses. The paper assesses both putative mechanisms of hormetic responses in NSCs, and the potential therapeutic implications and application(s) of hormetic frameworks in clinical approaches to neurological injury and disease.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts; Amherst, MA, 01003, USA.
| | - Vittorio Calabrese
- Department of Biomedical & Biotechnological Sciences, School of Medicine, University of Catania, Via Santa Sofia, 97 - 95125, USA.
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD); University of Health Sciences, Amritsar, India.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - James Giordano
- Departments of Neurology and Biochemistry, Georgetown University Medical Center, Washington DC, 20007, USA.
| |
Collapse
|
18
|
Calabrese EJ. Hormesis and embryonic stem cells. Chem Biol Interact 2021; 352:109783. [PMID: 34932953 DOI: 10.1016/j.cbi.2021.109783] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 02/07/2023]
Abstract
This paper provides an identification and detailed assessment of hormetic dose responses of embryonic stem cells (ESCs) with particular emphasis on cell renewal (proliferation) and differentiation, underlying mechanistic foundations and potential therapeutic implications. Hormetic dose responses were commonly reported, being induced by a broad range of chemicals, including pharmaceuticals (e.g., atorvastatin, isoproterenol, lithium, nicotine, ouabain), dietary supplements (e.g., curcumin, multiple ginsenosides, resveratrol), endogenous agents (e.g., estrogen, hydrogen peroxide, melatonin), and physical stressor agents (e.g., hypoxia, ionizing radiation). ESC-hormetic dose responses are similar for other stem cell types (e.g., adipose-derived stem cells, apical papilla, bone marrow stem cells, dental pulp stem cells, endothelial stem cells, muscle stem cells, periodontal ligament stem cells, neural stem cells), indicating a high degree of generality for the hormetic-stem cells response. The widespread occurrence of hormetic dose responses shown by ESCs and other stem cells suggests that the hormetic dose response may represent a fundamental and highly conserved evolutionary strategy.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
19
|
Zong W, Gouda M, Cai E, Wang R, Xu W, Wu Y, Munekata PES, Lorenzo JM. The Antioxidant Phytochemical Schisandrin A Promotes Neural Cell Proliferation and Differentiation after Ischemic Brain Injury. Molecules 2021; 26:7466. [PMID: 34946548 PMCID: PMC8706049 DOI: 10.3390/molecules26247466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
Schisandrin A (SCH) is a natural bioactive phytonutrient that belongs to the lignan derivatives found in Schisandra chinensis fruit. This study aims to investigate the impact of SCH on promoting neural progenitor cell (NPC) regeneration for avoiding stroke ischemic injury. The promoting effect of SCH on NPCs was evaluated by photothrombotic model, immunofluorescence, cell line culture of NPCs, and Western blot assay. The results showed that neuron-specific class III beta-tubulin (Tuj1) was positive with Map2 positive nerve fibers in the ischemic area after using SCH. In addition, Nestin and SOX2 positive NPCs were significantly (p < 0.05) increased in the penumbra and core. Further analysis identified that SCH can regulate the expression level of cell division control protein 42 (Cdc42). In conclusion, our findings suggest that SCH enhanced NPCs proliferation and differentiation possible by Cdc42 to regulated cytoskeletal rearrangement and polarization of cells, which provides new hope for the late recovery of stroke.
Collapse
Affiliation(s)
- Wentian Zong
- Kunming Health Vocational College, Kunming 650607, China; (W.Z.); (W.X.)
| | - Mostafa Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Department of Nutrition & Food Science, National Research Centre, Giza 12622, Egypt
| | - Enli Cai
- College of Nursing, Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Ruofeng Wang
- College of health, Yunnan Technology and Business University, Kunming 651701, China;
| | - Weijie Xu
- Kunming Health Vocational College, Kunming 650607, China; (W.Z.); (W.X.)
| | - Yuming Wu
- College of Nursing, Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| |
Collapse
|
20
|
Sandhir R, Khurana M, Singhal NK. Potential benefits of phytochemicals from Azadirachta indica against neurological disorders. Neurochem Int 2021; 146:105023. [PMID: 33753160 DOI: 10.1016/j.neuint.2021.105023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/16/2022]
Abstract
Azadirachta indica or Neem has been extensively used in the Indian traditional medical system because of its broad range of medicinal properties. Neem contains many chemically diverse and structurally complex phytochemicals such as limonoids, flavonoids, phenols, catechins, gallic acid, polyphenols, nimbins. These phytochemicals possess vast array of therapeutic activities that include anti-feedant, anti-viral, anti-malarial, anti-bacterial, anti-cancer properties. In recent years, many phytochemicals from Neem have been shown to be beneficial against various neurological disorders like Alzheimer's and Parkinson's disease, mood disorders, ischemic-reperfusion injury. The neuroprotective effects of the phytochemicals from Neem are primarily mediated by their anti-oxidant, anti-inflammatory and anti-apoptotic activities along with their ability to modulate signaling pathways. However, extensive studies are still required to fully understand the molecular mechanisms involved in neuropotective effects of phytochemicals from Neem. This review is an attempt to cover the neuroprotective properties of various phytochemicals from Neem along with their mechanism of action so that the potential of the compounds could be realized to reduce the burden of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rajat Sandhir
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Chandigarh, 160014, India.
| | - Mehak Khurana
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Chandigarh, 160014, India
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute (NABI) Sector-81 (Knowledge City), PO Manauli, S.A.S. Nagar, Mohali, 140306, Punjab, India
| |
Collapse
|
21
|
Deletion of muscarinic acetylcholine receptor 3 in microglia impacts brain ischemic injury. Brain Behav Immun 2021; 91:89-104. [PMID: 32927021 DOI: 10.1016/j.bbi.2020.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 01/17/2023] Open
Abstract
Microglia are the immune cells of the brain and become activated during any type of brain injury. In the middle cerebral artery occlusion (MCAo) model, a mouse model for ischemic stroke, we have previously shown that microglia and invaded monocytes upregulate the expression of the muscarinic acetylcholine receptor 3 (M3R) in the ischemic lesion. Here we tested whether this upregulation has an impact on the pathogenesis of MCAo. We depleted the m3R receptor in microglia, but not in circulating monocytes by giving tamoxifen to CX3CR1-CreERT+/+M3Rflox/flox (M3RKOmi) animals 3 weeks prior to MCAo. We found that M3RKOmi male mice had bigger lesions, more pronounced motor deficits after one week and cognitive deficits after about one month compared to control males. The density of Iba1+ cells was lower in the lesions of M3RKO male mice in the early, but not in the late disease phase. In females, these differences were not significant. By giving tamoxifen 1 week prior to MCAo, we depleted m3R in microglia and in circulating monocytes (M3RKOmi/mo). Male M3RKOmi/mo did not differ in lesion size, but had a lower survival rate, showed motor deficits and a reduced accumulation of Iba1+ positive cells into the lesion site. In conclusion, our data suggest that the upregulation of m3R in microglia and monocytes in stroke has a beneficial effect on the clinical outcome in male mice.
Collapse
|
22
|
Lee YC, Kao ST, Cheng CY. Acorus tatarinowii Schott extract reduces cerebral edema caused by ischemia-reperfusion injury in rats: involvement in regulation of astrocytic NKCC1/AQP4 and JNK/iNOS-mediated signaling. BMC Complement Med Ther 2020; 20:374. [PMID: 33298024 PMCID: PMC7726880 DOI: 10.1186/s12906-020-03168-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Background This study aimed to evaluate the effects of the Acorus tatarinowii Schott [Shi Chang Pu (SCP)] extract administered at the start of 2 h of middle cerebral artery occlusion (MCAo), followed by 3 d of reperfusion, and to determine mechanisms involved in anti-edema effects in the penumbra of the cerebral cortex. Method Rats were intraperitoneally administered the SCP extract at a dose of 0.25 g/kg (SCP-0.25 g), 0.5 g/kg (SCP-0.5 g), or 1 g/kg (SCP-1 g) at the start of MCAo. Result SCP-0.5 g and SCP-1 g treatments effectively reduced the cerebral infarct size, ameliorated cerebral edema, reduced blood–brain barrier permeability, and restored neurological function. SCP-0.5 g and SCP-1 g treatments markedly downregulated the levels of glial fibrillary acidic protein, Na+-K+-2Cl− cotransporter type 1 (NKCC1), aquaporin 4 (AQP4), phospho-c-Jun N-terminal kinase (p-JNK)/JNK, inducible nitric oxide synthase (iNOS), 3-nitrotyrosine, intercellular adhesion molecule-1 (ICAM-1), matrix metalloproteinase-9 (MMP-9), vascular endothelial growth factor-A (VEGF-A), and zonula occluden-1 (ZO-1) and upregulated ZO-3 expression in the penumbra of the cerebral cortex 3 d after reperfusion. Conclusions SCP-0.5 g and SCP-1 g treatments exert neuroprotective effects against cerebral infarction and cerebral edema partially by mitigating astrocytic swelling and blood–brain barrier disruption. Moreover, the anti-cerebral edema effects of SCP extract treatments are possibly associated with the downregulation of astrocytic NKCC1/AQP4 and JNK/iNOS-mediated ICAM-1/MMP-9 signaling in the penumbra of the cerebral cortex 3 d after reperfusion.
Collapse
Affiliation(s)
- Yu-Chen Lee
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, 40402, Taiwan.,Department of Chinese Medicine, China Medical University Hospital 40447, Taichung, Taiwan.,Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung, 40402, Taiwan
| | - Shung-Te Kao
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Chin-Yi Cheng
- School of Post-baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan. .,Department of Chinese Medicine, Hui-Sheng Hospital 42056, Taichung, Taiwan.
| |
Collapse
|
23
|
Bicker J, Fortuna A, Alves G, Falcão A. Nose-to-brain Delivery of Natural Compounds for the Treatment of Central Nervous System Disorders. Curr Pharm Des 2020; 26:594-619. [PMID: 31939728 DOI: 10.2174/1381612826666200115101544] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Several natural compounds have demonstrated potential for the treatment of central nervous system disorders such as ischemic cerebrovascular disease, glioblastoma, neuropathic pain, neurodegenerative diseases, multiple sclerosis and migraine. This is due to their well-known antioxidant, anti-inflammatory, neuroprotective, anti-tumor, anti-ischemic and analgesic properties. Nevertheless, many of these molecules have poor aqueous solubility, low bioavailability and extensive gastrointestinal and/or hepatic first-pass metabolism, leading to a quick elimination as well as low serum and tissue concentrations. Thus, the intranasal route emerged as a viable alternative to oral or parenteral administration, by enabling a direct transport into the brain through the olfactory and trigeminal nerves. With this approach, the blood-brain barrier is circumvented and peripheral exposure is reduced, thereby minimizing possible adverse effects. OBJECTIVE Herein, brain-targeting strategies for nose-to-brain delivery of natural compounds, including flavonoids, cannabinoids, essential oils and terpenes, will be reviewed and discussed. Brain and plasma pharmacokinetics of these molecules will be analyzed and related to their physicochemical characteristics and formulation properties. CONCLUSION Natural compounds constitute relevant alternatives for the treatment of brain diseases but often require loading into nanocarrier systems to reach the central nervous system in sufficient concentrations. Future challenges lie in a deeper characterization of their therapeutic mechanisms and in the development of effective, safe and brain-targeted delivery systems for their intranasal administration.
Collapse
Affiliation(s)
- Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Polo das Ciencias da Saude, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.,CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Polo das Ciencias da Saude, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.,CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilha, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Polo das Ciencias da Saude, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.,CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| |
Collapse
|
24
|
Metabolism of carcinogenic alpha-asarone by human cytochrome P450 enzymes. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:213-223. [DOI: 10.1007/s00210-019-01724-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/28/2019] [Indexed: 01/23/2023]
|