1
|
Li Q, Huang J, Zhao Q, Li F. FXR as a pivotal role linking JNK and G0s2 mitigates triptolide-induced hepatotoxicity through the regulation of metabolic disorder of liver. Pharmacol Res 2025:107738. [PMID: 40288593 DOI: 10.1016/j.phrs.2025.107738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Triptolide (TP), as a principal bioactive compound derived from Tripterygium wilfordii Hook. f., exhibits significant anti-tumor, anti-inflammatory, and immunomodulatory properties. However, the serious adverse reactions and hepatotoxicity of TP limit its clinical application. Therefore, in this study, an intraperitoneal injection was employed to establish a TP-induced hepatotoxicity model, characterized by elevated levels of transaminases (AST and ALT) and metabolic disorders. The administration of the JNK inhibitor SP600125 effectively mitigated the elevated transaminases and inflammation induced by TP. The resistance of SP600125 to metabolic disturbances induced by TP was contingent upon Fxr, as demonstrated through the use of Fxr knockout mice. Supplementation of GW4064 restored the concentrations of bile acids, long-chain fatty acids, and carnitine disrupted by TP. Transcriptomic data suggested that G0s2 was one of the genes most severely disrupted by TP, and the ameliorative effects of SP600125 and GW4064 were accompanied by the upregulation of G0s2. The expression of G0s2 was disrupted by siRNA in vitro, thereby intensifying the cytotoxicity of TP. A comparative analysis of the impact of TP on the G0s2 gene in two mouse models revealed that a smaller reduction in wild-type mice compared to Fxr-/- mice, indicating that Fxr mitigates the inhibitory effect of TP on G0s2. The aberrant JNK/Fxr/G0s2 signaling plays a key role in TP-induced hepatotoxicity. Targeting Fxr might be a potential strategy for alleviating the liver toxicity of TP.
Collapse
Affiliation(s)
- Qinmei Li
- Department of Pharmacy and Laboratory of Hepato-intestinal Diseases and Metabolism, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianfeng Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Shanwei Institute for Food and Drug Control, Shanwei, Guangdong Province, 516622, China
| | - Qi Zhao
- Department of Pharmacy and Laboratory of Hepato-intestinal Diseases and Metabolism, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fei Li
- Department of Pharmacy and Laboratory of Hepato-intestinal Diseases and Metabolism, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Wang H, Ye Y, Xu J, Xu X, Zhang P, Suo Y, Zhang Y. The protective effect of tiger nut (Cyperus esculentus L.) oil on a male rat model of reproductive disorders induced by cigarette smoke. Food Chem Toxicol 2025; 197:115289. [PMID: 39892734 DOI: 10.1016/j.fct.2025.115289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Cigarette smoke contains many harmful components that can damage the blood-testis barrier, cause changes in testicular tissue structure, and directly or indirectly affect sperm production. Tiger nut (Cyperus esculentus L.) is an underground tuber of a perennial herbaceous plant, and its extract has been shown to have antioxidant properties and the potential to improve male reproductive function. In view of the above, this experiment was designed to investigate the fatty acid composition of tiger nut oil and its protective effect as a daily dietary supplement against cigarette smoke-induced reproductive damage in male rats. By establishing a rat reproductive toxicity model and administering different doses of tiger nut oil by gavage, the protective effect of tiger nut oil on reproductive damage in rats was evaluated. Daily status and signs of the rats were analyzed, serum levels of key hormones were measured, oxidative stress markers and testicular tissue sections were measured, and the results were statistically analysed using Principal Component Analysis. The experimental results indicate that daily consumption of tiger nut oil can improve the reproductive system function in male rats, stabilise related hormone levels and enhance antioxidant capacity.
Collapse
Affiliation(s)
- Haoyu Wang
- Key Laboratory of Forestry Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin, 150040, China.
| | - Yunshu Ye
- Key Laboratory of Forestry Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin, 150040, China.
| | - Jiayuan Xu
- Key Laboratory of Forestry Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin, 150040, China.
| | - Xinyu Xu
- Key Laboratory of Forestry Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin, 150040, China.
| | - Panpan Zhang
- Key Laboratory of Forestry Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin, 150040, China.
| | - Yizhen Suo
- Key Laboratory of Forestry Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin, 150040, China.
| | - Yuhong Zhang
- Key Laboratory of Forestry Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin, 150040, China.
| |
Collapse
|
3
|
Zhu B, Zhang Z, Xie Y, Huang M, Chen Y, Yang Y, Shi X, Han J, Yang L, Zhao M. Effects of environmental bisphenol S exposure on male rat reproductive health and gut-blood-testicular axis integrity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117646. [PMID: 39765121 DOI: 10.1016/j.ecoenv.2024.117646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025]
Abstract
In this study, male Sprague-Dawley (SD) rats were exposed to bisphenol S (BPS) at environmentally relevant concentrations to investigate its reproductive toxicity and evaluate its effects on the gut-blood-testicular axis. After 28 days of exposure to BPS (0.05 and 20 mg/kg), the results showed a reduction in weight gain and the induction of reproductive toxicity in male rats, including decreased sperm parameters, lower sperm viability, and increased abnormal sperm density and mortality. These observations were made by counting with a hemocytometer under the optical microscope. 16S rRNA and untargeted metabolomic elucidated potential impacts on the gut-blood-testicular axis: BPS impaired the physical barrier, evoked inflammation, and resulted in dysbiosis of the gut microbiota. Additionally, BPS altered serum metabolites, including phosphatidic acid and diacylglycerol, which are involved in Fc gamma R-mediated phagocytosis and linked to inflammation. Furthermore, histopathological analysis, western blot (WB), enzyme-linked immunosorbent assay (ELISA), and immunofluorescence results showed that exposure to BPS led to testicular damage, inflammation, activation of the p38 and ERK MAPK pathways, and disruption of the blood-testis barrier (BTB). Collectively, these findings indicate that BPS impair the intestinal health, disrupt gut microbiome, and ultimately lead to reproductive dysfunction through the gut-blood-testicular axis.
Collapse
Affiliation(s)
- Biran Zhu
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zequan Zhang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Ying Xie
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Min Huang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Yu Chen
- Hubei Shizhen Laboratory, Wuhan 430061, China; School of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yong Yang
- SpecAlly Life Technology Co., Ltd., Wuhan 430075, China
| | - Xiongjie Shi
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Min Zhao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China.
| |
Collapse
|
4
|
Zheng QY, Xiao LF, An TY, Zhang L, Long X, Wang Q, Wang XZ, Pan HM. IL20RA Is the Key Factor Contributing to the Stronger Antioxidant Capacity of Rongchang Pig Sertoli Cells. Antioxidants (Basel) 2024; 13:1545. [PMID: 39765872 PMCID: PMC11727484 DOI: 10.3390/antiox13121545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/15/2025] Open
Abstract
Variations in disease resistance among pig breeds have been extensively documented, with Sertoli cells (SCs) playing a pivotal role in spermatogenesis. Infections can induce oxidative stress, which can lead to damage to these cells. This study aimed to compare the levels of oxidative stress in SCs from Rongchang and Landrace pig breeds following LPS challenge. SCs were isolated, cultured, and stimulated with LPS to assess cell viability and markers of oxidative stress. Cell viability was evaluated along with oxidative stress markers such as reactive oxygen species (ROS), mitochondrial superoxide, malondialdehyde, and antioxidant enzymes. Mitochondrial function was assessed using JC-1 and Calcein AM probes. Transcriptomic analysis identified differentially expressed genes (DEGs), while ingenuity pathway analysis (IPA) explored enriched pathways. IL20RA, identified through transcriptomics, was validated using the siRNA knockdown technique. The results showed that Rongchang SCs exhibited lower levels of oxidative stress compared to Landrace SCs along with higher activity of antioxidant enzymes. IL20RA emerged as a key regulator since its knockdown affected mitochondrial superoxide production and catalase secretion. The findings suggest that Rongchang SCs possess superior antioxidant capacity, possibly due to the IL20RA-mediated protection of mitochondria, thereby providing insights into breed-specific resistance against oxidative stress and highlighting the role of IL20RA in maintaining stem cell function.
Collapse
Affiliation(s)
- Qi-Yue Zheng
- Chongqing Academy of Animal Science, Chongqing 402460, China
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Li-Fei Xiao
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Tian-Yi An
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Liang Zhang
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Xi Long
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Qing Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Xian-Zhong Wang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Hong-Mei Pan
- Chongqing Academy of Animal Science, Chongqing 402460, China
| |
Collapse
|
5
|
Zhao J, Cao M, Yi H, He G, Chen T, Liu L, Guo K, Cao Y, Li C, Zhou X, Zhang B, Wang H. Triptolide Causes Spermatogenic Disorders by Inducing Apoptosis in the Mitochondrial Pathway of Mouse Testicular Spermatocytes. TOXICS 2024; 12:896. [PMID: 39771111 PMCID: PMC11728831 DOI: 10.3390/toxics12120896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025]
Abstract
Triptolide (TP) is a diterpenoid compound extracted from the traditional Chinese medicinal herb Tripterygium wilfordii. It has antitumor and anti-inflammatory effects and stimulates immunity. However, its serious side effects, especially reproductive toxicity, limit its clinical application. This study employed a testicular injury model established by intraperitoneally injecting TP (0.2 mg/kg) in C57BL/6J male mice (age = 7-8 weeks) for 14 days. The control and TP mice's testicular tissues were subjected to transcriptome sequencing to assess potential testicular damage mechanisms. Based on the transcriptome sequencing results and relevant literature reports, further experiments were performed. In addition, to alleviate triptolide-induced testicular damage, we treated the mice with N-acetyl-L-cysteine (NAC). The acquired data revealed that compared with the control mice, the TP-treated mice's testes indicated severe damage. Transcriptome sequencing identified differentially expressed genes that showed enrichment in cell differentiation, apoptotic process, cell cycle, glutathione (GSH) metabolism, and the p53 signaling pathway. Furthermore, TUNEL assays and Western blot analysis showed that in the TP mice's testicular tissues, the spermatocytes had mitochondrial pathway apoptosis as well as abnormal mitochondrial morphology and structure. Triptolide induces oxidative stress in testicular tissue by enhancing pro-oxidative systems and inhibiting antioxidant systems. NAC reduced testicular damage and apoptosis by alleviating TP-induced oxidative stress. This study also employed a GC2 cell line for in-vitro analyses, and the results were consistent with the in vivo experiments. This study provides evidence for alleviating TP's adverse effects on the male reproductive system for better clinical application.
Collapse
Affiliation(s)
- Jiantao Zhao
- Department of Andrology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Maosheng Cao
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Haisheng Yi
- Department of Andrology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Guitian He
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Tong Chen
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lingyun Liu
- Department of Andrology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Kaimin Guo
- Department of Andrology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Yin Cao
- Department of Andrology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Boqi Zhang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Hongliang Wang
- Department of Andrology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| |
Collapse
|
6
|
Wang H, Yang F, Ye J, Dai X, Liao H, Xing C, Jiang Z, Peng C, Gao F, Cao H. Ginkgo biloba extract alleviates deltamethrin-induced testicular injury by upregulating SKP2 and inhibiting Beclin1-independent autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156245. [PMID: 39550920 DOI: 10.1016/j.phymed.2024.156245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 10/19/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Male infertility is a worldwide concern that is associated with a decline in sperm quality. Environmental pollutants such as deltamethrin (DM) have harmful effects on male reproductive organs. By maintaining intracellular redox homeostasis, ginkgo biloba extract (GBE) can alleviate male reproductive dysfunction. However, research on the mechanisms by which GBE alleviates reproductive toxicity induced by DM is limited. PURPOSE In this study, we investigated whether GBE can alleviate DM-induced testicular and Sertoli cell reproductive toxicity by modulating SKP2 and Beclin1, thus providing a theoretical basis for the development of novel therapeutic approaches. STUDY DESIGN We explored the role of GBE in mitigating DM-induced testicular damage, with a specific focus on the intricate involvement of ubiquitination and autophagy. METHODS An experimental model was constructed using ICR male mice and the TM4 cell line. Tissue, cellular, and sperm morphological changes were observed through methods such as Hematoxylin and Eosin (H&E) staining, Periodate-Schiff (PAS) staining, ultrastructural observation, immunohistochemistry, and immunofluorescence. Enzyme and hormone levels were measured, and gene and protein levels were detected using real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting techniques. RESULTS In vivo experiments showed that DM exposure led to decreased sex hormone levels, increased seminiferous tubule diameter and impaired spermatogenesis. Meanwhile, DM exposure was found to decrease ubiquitination levels, leading to mitochondrial damage and further escalation of mitochondrial autophagy. Furthermore, in the DM-induced cell model, the upregulation of Beclin1 expression was associated with the inhibition of the ubiquitin‒proteasome system (UPS) and SKP2, thereby exacerbating autophagy. However, GBE has demonstrated notable efficacy in alleviating the reproductive toxicity induced by DM. CONCLUSION Our findings highlighted that SKP2 is a key regulator of Beclin1-independent autophagy and that GBE exerts therapeutic effects by upregulating SKP2 and inhibiting Beclin1 activation, which ameliorates autophagy and reduces DM-induced testicular damage.
Collapse
Affiliation(s)
- Huating Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Junhua Ye
- Nanchang Institute of Technology Medical College, No. 901, Hero Avenue, Nanchang Economic Development Zone, Nanchang 330044, Jiangxi, PR China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Huan Liao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Zhou Jiang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Chengcheng Peng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Feiyan Gao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| |
Collapse
|
7
|
Luo Z, Yang L, Zhu T, Fan F, Wang X, Liu Y, Zhan H, Luo D, Guo J. Aucubin ameliorates atherosclerosis by modulating tryptophan metabolism and inhibiting endothelial-mesenchymal transitions via gut microbiota regulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156122. [PMID: 39396405 DOI: 10.1016/j.phymed.2024.156122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/27/2024] [Accepted: 07/13/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND The gut microbiota is believed to influence atherosclerosis (AS), and Aucubin (Au), a natural compound found in the traditional Chinese medicine Eucommia ulmoides Oliver, is being explored as a potential treatment for cardiovascular disease. Yet, the specific impact of Au on AS through the gut microbiota remains unclear. PURPOSE This study aimed to highlight the potential of Au in improving AS by influencing gut microbiota and investigating its potential mechanisms by which it and its metabolites of gut microbiota regulate lipid metabolism, inflammation and endothelial dysfunction. METHODS The impact of Au on AS in ApoE-/- mice was examined, followed by a fecal microbiota transplantation experiment to confirm the influence of Au on AS through gut microbiota. Subsequent analysis of fecal and serum samples using 16S rRNA gene sequencing and metabolomics revealed distinct features of gut microbiota and metabolites. Identified metabolites were then utilized in vivo experiments to investigate underlying mechanisms. RESULTS Au treatment effectively reduced dietary-induced dyslipidemia and endothelial dysfunction in a dose-dependent manner in atherosclerotic mice. It also improved vascular plaque accumulation and inflammation, increased aortic valve fibrous cap thickness, and decreased necrotic core and collagen fiber area. Subsequently, we observed a substantial increase in indole-3-acrylic acid (IAA), a microbe-derived metabolite, in cecal contents and serum, along with a significant rise in Lactobacillus abundance responsible for IAA production. Our findings demonstrated that IAA played a crucial role in alleviating AS. Furthermore, we discovered that IAA activated the Aryl hydrocarbon receptor (AhR) and suppressed the TGF-β/Smad pathway, potentially ameliorating endothelial-mesenchymal transitions in atherosclerotic mice. CONCLUSION These findings suggested that Au's anti-atherosclerotic effects were primarily due to elevated Lactobacillus-derived IAA, thereby potentially contributing to alleviating AS.
Collapse
Affiliation(s)
- Zhizhong Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Ling Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Tianxin Zhu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Faxin Fan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Xin Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Yuqing Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Huixia Zhan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Duosheng Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
8
|
Sobhy M, AbouZid SF, Kirollos FN, El-Shiekh RA, Abdel-Sattar E. Lamiide and Ipolamiide: A Comprehensive Review of Their Bioactive Properties and Therapeutic Potential. Chem Biodivers 2024; 21:e202401069. [PMID: 39146389 DOI: 10.1002/cbdv.202401069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
There is an increasing interest in using iridoids and secoiridoids as major targets for chemical synthesis and biosynthesis. Iridoids can be found in numerous species of Lamiaceae, Verbenaceae, Scrophulariaceae, and other families. Iridoids possess a chemical structure characterized by a cyclopentane ring with oxidative substituents, forming a six-membered ring. Various research groups have used these structures as valuable starting materials for regioselective and stereoselective synthesis. This approach has enormous potential for the production of bioactive alkaloids, prostaglandin analogues, and other bioactive natural compounds. Because there is currently no review on lamiide and ipolamiide, this review intends to pique researchers' interest in this vital topic of natural science for drug discovery from naturally occurring iridoids. Lamiide and ipolamiide have the potential to be useful tools in the pharmaceutical sector, enabling the use of these plant metabolites in a variety of medicinal compositions. Given that these molecules appear to be potential natural substances for treating human ailments, we get light on them as alternative therapeutic approaches using these compounds alone or in combination with other substances which will potentially lead to future (pre)-clinical investigations.
Collapse
Affiliation(s)
- Marina Sobhy
- Pharmacognosy Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Sameh F AbouZid
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Farid N Kirollos
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Riham A El-Shiekh
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Essam Abdel-Sattar
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
9
|
Liu T, Li Y, Hu N. Aucubin Alleviates Chronic Obstructive Pulmonary Disease by Activating Nrf2/HO-1 Signaling Pathway. Cell Biochem Biophys 2024; 82:2439-2454. [PMID: 38967902 DOI: 10.1007/s12013-024-01354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a common chronic respiratory disease with high death rates. Aucubin is an iridoid glycoside extracted from Eucommia ulmoides with antioxidative and anti-inflammatory properties in human diseases. This study aimed to investigate its specific function in mouse and cell models of COPD. METHODS The COPD mouse model was established by exposing mice to a long-term cigarette smoke (CS). The number of inflammatory cells and the contents of inflammatory factors tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and IL-8 in bronchoalveolar lavage fluid (BALF) of CS-exposed mice were measured. The levels of superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), and myeloperoxidase (MPO) in the lung tissues were estimated. Masson staining and hematoxylin-eosin (H&E) staining were utilized to evaluate pulmonary fibrosis and emphysema in CS-treated mice. Cell apoptosis in the lung tissues was estimated by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. Western blot was applied to quantify protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and apoptotic markers. COPD cell model was established by exposing mouse lung epithelial cells (MLE12) with cigarette smoke extract to further verify the properties of aucubin in vitro. RESULTS Aucubin reduced the number of inflammatory cells and decreased the contents of TNF-α, IL-6, and IL-8 in BALF of CS-treated mice. The oxidative stress, lung emphysema, fibrosis, and lung cell apoptosis induced by CS exposure were ameliorated by aucubin administration. Aucubin activated the Nrf2/HO-1 signaling pathway in vitro and in vivo. Pretreatment with ML385, a specific Nrf2 inhibitor, antagonized the protective effects of aucubin on inflammation, oxidative stress, fibrosis, and cell apoptosis in COPD. CONCLUSION Aucubin alleviates inflammation, oxidative stress, apoptosis, and pulmonary fibrosis in COPD mice and CSE-treated MLE12 cells by activating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Ting Liu
- Department of International Medical Center, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Yang Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Nan Hu
- Department of Rheumatology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
10
|
Li J, Chen D, Suo J, Li J, Zhang Y, Wang Y, Deng Z, Zhang Q, Ma B. Triptolide induced spermatogenesis dysfunction via ferroptosis activation by promoting K63-linked GPX4 polyubiquitination in spermatocytes. Chem Biol Interact 2024; 399:111130. [PMID: 38960301 DOI: 10.1016/j.cbi.2024.111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Triptolide (TP) is a major bioactive compound derived from Tripterygium wilfordii Hook. F. (TwHF) known for its medicinal properties, but it also exhibits potential toxic effects. It has been demonstrated to induce severe male reproductive toxicity, yet the precise mechanism behind this remains unclear, which limits its broad clinical application. This study aimed to investigate the mechanisms underlying testicular damage and spermatogenesis dysfunction induced by TP in mice, using both mouse models and the spermatocyte-derived cell line GC-2spd. In the present study, it was found that TP displayed significant testicular microstructure damaged and spermatogenesis defects including lower concentration and abnormal morphology by promoting ROS formation, MDA production and restraining GSH level, glutathione peroxidase 4 (GPX4) expression in vivo. Furthermore, Ferrostatin-1 (FER-1), a ferroptosis inhibitor, was found to significantly reduce the accumulation of lipid peroxidation, alleviate testicular microstructural damage, and enhance spermatogenic function in mice. Besides, notably decreased cell viability, collapsed mitochondrial membrane potential, and elevated DNA damage were observed in vitro. The above-mentioned phenomenon could be reversed by pre-treatment of FER-1, indicating that ferroptosis participated in the TP-mediated spermatogenesis dysfunction. Mechanistically, TP could enhance GPX4 ubiquitin degradation via triggering K63-linked polyubiquitination of GPX4, thereby stimulating ferroptosis in spermatocytes. Functionally, GPX4 deletion intensified ferroptosis and exacerbated DNA damage in GC-2 cells, while GPX4 overexpression mitigated ferroptosis induced by TP. Overall, these findings for the first time indicated a vital role of ferroptosis in TP induced-testicular injury and spermatogenic dysfunction through promoting GPX4 K63-linked polyubiquitination, which hopefully offers a potential therapeutic avenue for TP-related male reproductive damage. In addition, this study also provides a theoretical foundation for the improved clinical application of TP or TwHF in the future.
Collapse
Affiliation(s)
- Jiaqi Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Dezhi Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Jialiang Suo
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Jiaqi Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Yimu Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Yu Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Zhewen Deng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China.
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
11
|
Yang X, He L, Li X, Wang L, Bu T, Yun D, Lu X, Gao S, Huang Q, Li J, Zheng B, Yu J, Sun F. Triptolide exposure triggers testicular vacuolization injury by disrupting the Sertoli cell junction and cytoskeletal organization via the AKT/mTOR signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116502. [PMID: 38788563 DOI: 10.1016/j.ecoenv.2024.116502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Despite the known reproductive toxicity induced by triptolide (TP) exposure, the regulatory mechanism underlying testicular vacuolization injury caused by TP remains largely obscure. METHODS Male mice were subjected to TP at doses of 15, 30, and 60 μg/kg for 35 consecutive days. Primary Sertoli cells were isolated from 20-day-old rat testes and exposed to TP at concentrations of 0, 40, 80, 160, 320, and 640 nM. A Biotin tracer assay was conducted to assess the integrity of the blood-testis barrier (BTB). Transepithelial electrical resistance (TER) assays were employed to investigate BTB function in primary Sertoli cells. Histological structures of the testes and epididymides were stained with hematoxylin and eosin (H&E). The expression and localization of relevant proteins or pathways were assessed through Western blotting or immunofluorescence staining. RESULTS TP exposure led to dose-dependent testicular injuries, characterized by a decreased organ coefficient, reduced sperm concentration, and the formation of vacuolization damage. Furthermore, TP exposure disrupted BTB integrity by reducing the expression levels of tight junction (TJ) proteins in the testes without affecting basal ectoplasmic specialization (basal ES) proteins. Through the TER assay, we identified that a TP concentration of 160 nM was optimal for elucidating BTB function in primary Sertoli cells, correlating with reductions in TJ protein expression. Moreover, TP exposure induced changes in the distribution of the BTB and cytoskeleton-associated proteins in primary Sertoli cells. By activating the AKT/mTOR signaling pathway, TP exposure disturbed the balance between mTORC1 and mTORC2, ultimately compromising BTB integrity in Sertoli cells. CONCLUSION This investigation sheds light on the impacts of TP exposure on testes, elucidating the mechanism by which TP exposure leads to testicular vacuolization injury and offering valuable insights into comprehending the toxic effects of TP exposure on testes.
Collapse
Affiliation(s)
- Xiwen Yang
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Lei He
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xinyao Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Lingling Wang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Tiao Bu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Damin Yun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xinran Lu
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Sheng Gao
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Qiuru Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jiaxin Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou 215002, China.
| | - Jun Yu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| | - Fei Sun
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
12
|
Zheng S, Jiang L, Qiu L. The effects of fine particulate matter on the blood-testis barrier and its potential mechanisms. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:233-249. [PMID: 36863426 DOI: 10.1515/reveh-2022-0204] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/13/2022] [Indexed: 02/17/2024]
Abstract
With the rapid expansion of industrial scale, an increasing number of fine particulate matter (PM2.5) has bringing health concerns. Although exposure to PM2.5 has been clearly associated with male reproductive toxicity, the exact mechanisms are still unclear. Recent studies demonstrated that exposure to PM2.5 can disturb spermatogenesis through destroying the blood-testis barrier (BTB), consisting of different junction types, containing tight junctions (TJs), gap junctions (GJs), ectoplasmic specialization (ES) and desmosomes. The BTB is one of the tightest blood-tissue barriers among mammals, which isolating germ cells from hazardous substances and immune cell infiltration during spermatogenesis. Therefore, once the BTB is destroyed, hazardous substances and immune cells will enter seminiferous tubule and cause adversely reproductive effects. In addition, PM2.5 also has shown to cause cells and tissues injury via inducing autophagy, inflammation, sex hormones disorder, and oxidative stress. However, the exact mechanisms of the disruption of the BTB, induced by PM2.5, are still unclear. It is suggested that more research is required to identify the potential mechanisms. In this review, we aim to understand the adverse effects on the BTB after exposure to PM2.5 and explore its potential mechanisms, which provides novel insight into accounting for PM2.5-induced BTB injury.
Collapse
Affiliation(s)
- Shaokai Zheng
- School of Public Health, Nantong University, Nantong, P. R. China
| | - Lianlian Jiang
- School of Public Health, Nantong University, Nantong, P. R. China
| | - Lianglin Qiu
- School of Public Health, Nantong University, Nantong, P. R. China
| |
Collapse
|
13
|
Signorini C, Saso L, Ghareghomi S, Telkoparan-Akillilar P, Collodel G, Moretti E. Redox Homeostasis and Nrf2-Regulated Mechanisms Are Relevant to Male Infertility. Antioxidants (Basel) 2024; 13:193. [PMID: 38397791 PMCID: PMC10886271 DOI: 10.3390/antiox13020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/20/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Infertility represents a significant global health challenge, affecting more than 12% of couples worldwide, and most cases of infertility are caused by male factors. Several pathological pathways are implicated in male infertility. The main mechanisms involved are driven by the loss of reduction-oxidation (redox) homeostasis and the resulting oxidative damage as well as the chronic inflammatory process. Increased or severe oxidative stress leads to sperm plasma membrane and DNA oxidative damage, dysregulated RNA processing, and telomere destruction. The signaling pathways of these molecular events are also regulated by Nuclear factor-E2-related factor 2 (Nrf2). The causes of male infertility, the role of oxidative stress in male infertility and the Keap1-Nrf2 antioxidant pathway are reviewed. This review highlights the regulatory role of Nrf2 in the balance between oxidants and antioxidants as relevant mechanisms to male fertility. Nrf2 is involved in the regulation of spermatogenesis and sperm quality. Establishing a link between Nrf2 signaling pathways and the regulation of male fertility provides the basis for molecular modulation of inflammatory processes, reactive oxygen species generation, and the antioxidant molecular network, including the Nrf2-regulated antioxidant response, to improve male reproductive outcomes.
Collapse
Affiliation(s)
- Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.S.); (G.C.); (E.M.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| | - Somayyeh Ghareghomi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran;
| | | | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.S.); (G.C.); (E.M.)
| | - Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.S.); (G.C.); (E.M.)
| |
Collapse
|
14
|
Yang F, Lian Q, Zhang X, Sun F, Jia S, Zhao W. Aucubin provides protection against cerebral ischaemia-reperfusion injury by suppressing neuronal apoptosis, oxidative stress, and inflammation through the modulation of the AKT-GSK-3β-Nrf2 signal cascade. Toxicol Appl Pharmacol 2024; 483:116829. [PMID: 38246288 DOI: 10.1016/j.taap.2024.116829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/02/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Aucubin (AU) is a naturally occurring iridoid glycoside known to possess a wide range of pharmacological properties and exhibit a notable protective effect against various pathological conditions. Studies have shown that AU has neuroprotective properties in different neurological diseases. However, its potential protective effects against cerebral ischemia-reperfusion (CIR) injury have not been thoroughly investigated. This study aimed to investigate the impact of AU on CIR injury and explore the underlying mechanism. Cultured neurons treated with AU showed a significant reduction in apoptosis, oxidative stress, and inflammation caused by oxygen-glucose deprivation and reoxygenation (OGD/R). In a rat model of CIR, treatment with AU resulted in a significant decrease in cerebral infarct size and neurological deficits. AU treatment also reversed the increased apoptosis, oxidative stress, and inflammation in the brains of CIR rats. Furthermore, AU was found to enhance the activation of nuclear factor-erythroid 2-related factor 2 (Nrf2), accompanied by increased phosphorylation of serine/threonine-protein kinase AKT and glycogen synthase kinase-3 beta (GSK-3β). The activation of Nrf2 induced by AU was reversed when the AKT-GSK-3β cascade was blocked. Additionally, the neuroprotective effect of AU was significantly reduced when Nrf2 was pharmacologically suppressed. In conclusion, these findings suggest that AU exerts a neuroprotective effect on CIR injury, and this effect is mediated by the activation of Nrf2 through the AKT-GSK-3β axis. This work highlights the potential of AU as a drug candidate for the treatment of CIR injury.
Collapse
Affiliation(s)
- Fang Yang
- Department of Pharmacy, Xianyang Hospital of Yan'an University, Xianyang 712000, Shaanxi Province, China.
| | - Qiufang Lian
- Department of Cardiology, Xianyang Hospital of Yan'an University, Xianyang 712000, Shaanxi Province, China.
| | - Xin Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Feng Sun
- Department of Scientific Research, Xianyang Hospital of Yan'an University, Xianyang 712000, Shaanxi Province, China
| | - Shuaiyun Jia
- Department of Pharmacy, Xianyang Hospital of Yan'an University, Xianyang 712000, Shaanxi Province, China
| | - Wei Zhao
- Department of Cardiology, Xianyang Hospital of Yan'an University, Xianyang 712000, Shaanxi Province, China
| |
Collapse
|
15
|
Liao Y, Chen F, Tang H, Dessie W, Qin Z. Extraction and Purification of Aucubin from Eucommia ulmoides Seed Draff in Natural Deep Eutectic Solvents Using Macroporous Resins. ACS OMEGA 2024; 9:1723-1737. [PMID: 38222590 PMCID: PMC10785622 DOI: 10.1021/acsomega.3c08332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/16/2024]
Abstract
Aucubin (AU) is an active ingredient that exerts strong antioxidant and anti-inflammatory effects in the treatment of several diseases. In order to improve the efficiency of resource utilization of traditional biomass waste, Eucommia ulmoides seed-draff (EUSD) waste biomass was used as the raw material, and a series of deep eutectic solvents were selected to evaluate the extraction efficiency of aucubin from EUSD. A response surface experiment was designed based on a single-factor experiment to optimize the extract conditions. The results showed that the best conditions for aucubin extraction were an HBD-HBA ratio of 2.18, a liquid-solid ratio of 46.92 mL/g, a water percentage of 37.95%, a temperature of 321.03 K, and an extraction time of 59.55 min. The maximum amount of aucubin was 156.4 mg/g, which was consistent with the theoretical value (156.8 mg/g). Then, the performance of 12 resins for adsorption and desorption was contrasted. The results revealed that HPD950 resin exhibited the best performance, with an adsorption capacity of 95.2% and a desorption capacity of 94.3%. Additionally, the pseudo-second-order model provided the best match to the kinetics data, the Langmuir model provided the best fit to the isotherm data, and adsorption was a beneficial, spontaneous, exothermic, and physical process. In the recyclability test, the HPD950 resin had great potential and excellent sustainability in aucubin recovery. In the antioxidant activity study, the aucubin extract exerted a strong antioxidant ability with scavenging capabilities for four free radicals. Furthermore, the antifungal activity study found that the aucubin extract exhibited a good antifungal effect against 5 tested pathogens. The research results can provide a theoretical basis for the extraction of high-value components from waste biomass by deep eutectic solvent and a certain application value for the development and utilization of natural aucubin products.
Collapse
Affiliation(s)
- Yunhui Liao
- College
of Chemistry and Bioengineering, Hunan University
of Science and Engineering, Yongzhou 425199, China
- Hunan
Engineering Technology Research Center for Comprehensive Development
and Utilization of Biomass Resources, Yongzhou 425199, China
| | - Feng Chen
- College
of Chemistry and Bioengineering, Hunan University
of Science and Engineering, Yongzhou 425199, China
| | - Haishan Tang
- College
of Chemistry and Bioengineering, Hunan University
of Science and Engineering, Yongzhou 425199, China
- Hunan
Provincial Key Laboratory for Comprehensive Utilization of Dominant
Plant Resources in Southern Hunan, Yongzhou 425199, China
| | - Wubliker Dessie
- College
of Chemistry and Bioengineering, Hunan University
of Science and Engineering, Yongzhou 425199, China
- Hunan
Engineering Technology Research Center for Comprehensive Development
and Utilization of Biomass Resources, Yongzhou 425199, China
| | - Zuodong Qin
- College
of Chemistry and Bioengineering, Hunan University
of Science and Engineering, Yongzhou 425199, China
- Hunan
Engineering Technology Research Center for Comprehensive Development
and Utilization of Biomass Resources, Yongzhou 425199, China
| |
Collapse
|
16
|
Yang Y, Mei G, Yang L, Luo T, Wu R, Peng S, Peng Z, Cui J, Cheng Y. PCB126 impairs human sperm functions by affecting post-translational modifications and mitochondrial functions. CHEMOSPHERE 2024; 346:140532. [PMID: 37918541 DOI: 10.1016/j.chemosphere.2023.140532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Over the past few decades, there has been a consistent decline in semen quality across the globe, with environmental pollution being identified as the primary cause. Among the various contaminants present in the environment, persistent organic pollutants (POPs) have garnered significant attention due to their high toxicity, slow degradation, bio-accumulation, and long-range migration. PCBs, which include 210 congeners, are a crucial type of POPs that are known to have harmful effects on the environment and human health. Among the various PCB congeners, 3,3',4,4',5-pentachlorobiphenyl (PCB126) is a typical environmental endocrine-disrupting chemical that is widely distributed and has been associated with several health hazards. However, the impact and mechanism of PCB126 on human sperm function has not been fully elucidated. We aimed to investigate the effects of different concentrations of PCB126 (0.01, 0.1, 1, 10 μg/mL) on sperm motility, viability, hyperactivation, and acrosome reaction after incubation for different periods (1 and 2 h), delving deeper into the molecular mechanism of human sperm dysfunction caused by PCB126. First, we investigated the link between PCB126 treatment and the occurrence of protein modifications that are critical to sperm function regulation, such as tyrosine phosphorylation and lysine glutarylation. Second, we examined the potential impact of PCB126 on different parameters related to mitochondrial function, including reactive oxygen species, malondialdehyde levels, mitochondrial membrane potential, mitochondria respiration and adenosine triphosphate generation. Our findings indicate that exposure to environmental pollutants such as PCB126 in vitro may have a negative impact on human sperm functions by interfering with post-translational modifications and mitochondrial functions.
Collapse
Affiliation(s)
- Yebin Yang
- College of Chemistry and Biological Engineering, Yichun University, Yichun, China
| | - Guangquan Mei
- Jiangxi Provincial Key Laboratory of Natural Active Pharmaceutical Constituents, Department of Chemistry and Bioengineering, Yichun University, Yichun, China; Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, Yichun University, Yichun, China
| | - Liu Yang
- College of Chemistry and Biological Engineering, Yichun University, Yichun, China
| | - Tao Luo
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Runwen Wu
- Center for Translational Medicine, Department of Medicine, Yichun University, Yichun, China
| | - Shenglin Peng
- Yichun People's Hospital, Jiangxi Province, Yichun, China
| | - Zhen Peng
- Yichun People's Hospital, Jiangxi Province, Yichun, China
| | - Jiajun Cui
- Center for Translational Medicine, Department of Medicine, Yichun University, Yichun, China
| | - Yimin Cheng
- Jiangxi Provincial Key Laboratory of Natural Active Pharmaceutical Constituents, Department of Chemistry and Bioengineering, Yichun University, Yichun, China; Center for Translational Medicine, Department of Medicine, Yichun University, Yichun, China.
| |
Collapse
|
17
|
Kartini K, Irawan MA, Setiawan F, Jayani NIE. Characteristics, Isolation Methods, and Biological Properties of Aucubin. Molecules 2023; 28:4154. [PMID: 37241895 PMCID: PMC10222036 DOI: 10.3390/molecules28104154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/14/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Aucubin is an iridoid glycoside widely spread in the families Cornaceae, Garryaceae, Orobanchaceae, Globulariaceae, Eucommiaceae, Scrophulariaceae, Plantaginaceae, and Rubiaceae. This review is intended to provide data on the physicochemical characteristics, isolation methods, and biological activities of aucubin and its producing plants. Aucubin is unstable and can be deglycosylated into its aglycone, aucubigenin. Various chromatographic methods (column chromatography, vacuum liquid chromatography, medium pressure liquid chromatography, and high-performance liquid chromatography) have been used together to isolate aucubin, mainly with the stationary phase C-18 and the mobile phase water-methanol solution made in gradients. In vitro and in vivo studies reveal that aucubin has a wide range of activities, including anti-inflammatory, antioxidant, anxiolytic and antidepressant, antidiabetic, antifibrotic, antimicrobial, anticancer, antihyperlipidemic, gastroprotective, cardioprotective, hepatoprotective, retinoprotective, neuroprotective, osteoprotective, and renoprotective. Even though aucubin has been extensively investigated, further research in humans is urgently needed primarily to substantiate the clinical evidence. Moreover, extensive studies on its drug delivery systems will help maximize efficacy and minimize side effects.
Collapse
Affiliation(s)
- Kartini Kartini
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Surabaya, Surabaya 60293, Indonesia; (M.A.I.); (F.S.); (N.I.E.J.)
| | | | | | | |
Collapse
|
18
|
Tang LD, Wang JY, Zhang Y, Chen XY, Zhang L, Yuan Y. Iridoid from Eucommia ulmoides Oliv. Exerts Antiarthritis Effects by Inhibiting the JAK2/STAT3 Signaling Pathway In Vivo and In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:4167906. [PMID: 37123081 PMCID: PMC10132903 DOI: 10.1155/2023/4167906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/19/2023] [Accepted: 02/18/2023] [Indexed: 05/02/2023]
Abstract
The purpose of this study was to investigate the anti-inflammatory effects of EU-Idd both in vivo and in vitro. In vivo, we used the collagen-induced arthritis (CIA) rat model to investigate the efficacy of EU-Idd on rheumatoid arthritis. Hematoxylin-eosin staining and Safranin O-fast green staining were used to evaluate the pathological status of the ankle joints in CIA rats. Micro-CT scanning was used to investigate bone erosion of the ankle joints. In vitro, the effect of EU-Idd on Th17 cell differentiation was identified by flow cytometry. TRAP staining was used to detect osteoclast cells. HFLS-RA model cells, induced by tumor necrosis factor-α(TNF-α), were used to evaluate the anti-inflammatory effects of EU-Idd while the levels of related inflammatory cytokines and JAK2/STAT3 proteins were detected by RT-qPCR and western blotting. EU-Idd alleviated joint inflammation in CIA rats and exerted protective effects on the ankle joints. EU-Idd also prevented the differentiation of CD4+ T cells into Th17 cells, reduced the number of osteoclasts, and improved the expression levels of bone metabolism-related proteins including OPG and RANKL. Moreover, EU-Idd inhibited the invasion and migration of HFLS-RA cells and downregulated the expression of related inflammatory cytokine genes and the protein expression levels of p-JAK2 and p-STAT3, both in vivo and in vitro. EU-Idd exerts anti-inflammatory and osteoprotective effects by regulating the JAK2/STAT3 pathway in rheumatoid arthritis. These results are beneficial to excavate new pharmaceutical ingredients for rheumatoid arthritis from iridoid.
Collapse
Affiliation(s)
- Li-Dong Tang
- School of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong District, 201203 Shanghai, China
| | - Jian-Ying Wang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong District, Shanghai 201203, China
| | - Yan Zhang
- School of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong District, 201203 Shanghai, China
| | - Xiao-Yun Chen
- Shanghai Longhua Hospital Affiliated to Shanghai University of TCM, Rheumatoid Department, No. 725 South Wanpin Road, Xuhui District, Shanghai 200232, China
| | - Lei Zhang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong District, Shanghai 201203, China
| | - Ying Yuan
- School of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong District, 201203 Shanghai, China
| |
Collapse
|
19
|
Fu J, Liu X, Yin B, Shu P, Peng X. NECL2 regulates blood-testis barrier dynamics in mouse testes. Cell Tissue Res 2023:10.1007/s00441-023-03759-5. [PMID: 36872374 DOI: 10.1007/s00441-023-03759-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/08/2023] [Indexed: 03/07/2023]
Abstract
The adhesion protein nectin-like molecule 2 (NECL2) is involved in spermatogenesis and participates in the connections between Sertoli cells and germ cells. Necl2 deficiency leads to infertility in male mice. We found that NECL2 is relatively highly expressed on the cell membranes of preleptotene spermatocytes. It is known that preleptotene spermatocytes pass through the blood-testis barrier (BTB) from the base of the seminiferous tubules to the lumen to complete meiosis. We hypothesized that the NECL2 protein on the surfaces of preleptotene spermatocytes has an effect on the BTB when crossing the barrier. Our results showed that Necl2 deficiency caused the levels of proteins in the BTB to be abnormal, such as those of Claudin 3, claudin 11, and Connexin43. NECL2 interacted and colocalized with adhesion proteins forming the BTB, such as Connexin43, Occludin, and N-cadherin. NECL2 regulated BTB dynamics when preleptotene spermatocytes passed through the barrier, and Necl2 deficiency caused BTB damage. Necl2 deletion significantly affected the testicular transcriptome, especially the expression of spermatogenesis-related genes. These results suggest that before meiosis and spermatid development occur, BTB dynamics regulated by NECL2 are necessary for spermatogenesis.
Collapse
Affiliation(s)
- Jun Fu
- National Demonstration Center for Experimental Basic Medical Education, and State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Xiao Liu
- State Key Laboratory of Medical Molecular Biology, and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No. 5, Dongdan Santiao, Dongcheng District, Beijing, 100005, China
| | - Bin Yin
- State Key Laboratory of Medical Molecular Biology, and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No. 5, Dongdan Santiao, Dongcheng District, Beijing, 100005, China
| | - Pengcheng Shu
- State Key Laboratory of Medical Molecular Biology, and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No. 5, Dongdan Santiao, Dongcheng District, Beijing, 100005, China
| | - Xiaozhong Peng
- National Demonstration Center for Experimental Basic Medical Education, and State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China. .,State Key Laboratory of Medical Molecular Biology, and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No. 5, Dongdan Santiao, Dongcheng District, Beijing, 100005, China.
| |
Collapse
|
20
|
Jiang Y, Li Z, Ma Q, Dong W, Yao Q, Yu D. Aucubin protects mouse cochlear hair cells from cisplatin-induced ototoxicity via activation of the PI3K/AKT/STAT3 pathway. Biochem Pharmacol 2023; 209:115440. [PMID: 36720354 DOI: 10.1016/j.bcp.2023.115440] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Cisplatin is commonly used to treat cancers and is associated with a significant risk of irreversible sensorineural hearing loss. However, no effective preventive strategies are available for cisplatin-induced HL. Therefore, significant efforts have been made to discover new drugs protecting cochlear hair cells from cisplatin-induced damage. We found that a new phytochemical, aucubin, attenuated cisplatin-induced apoptosis, the production of reactive oxygen species, and mitochondrial dysfunction in House Ear Institute Organ of Corti 1 cells and cochlear hair cells. Moreover, aucubin attenuated cisplatin-induced sensorineural hearing loss and hair cells loss in vivo. Furthermore, RNA sequencing analysis revealed that the otoprotective effects of aucubin were mainly mediated by increased STAT3 phosphorylation via the PI3K/AKT pathway. Inhibition of the STAT3 signaling pathway with the inhibitor S3I-201 or siRNA disrupted the protective effects of aucubin on cisplatin-induced apoptosis. In conclusion, we identified an otoprotective effect of aucubin. Therefore, aucubin could be used to prevent cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Yumeng Jiang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| | - Zhuangzhuang Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| | - Qiang Ma
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| | - Wenqi Dong
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| | - Qingxiu Yao
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Dongzhen Yu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China.
| |
Collapse
|
21
|
Liu H, Huang Y, Huang X, Li M, Chen D, Geng Y, Ouyang P, Yang T, Dai J, Yang S, Luo W. Eucommia ulmoides Oliver enhances the antioxidant capacity and protects Micropterus salmoides from liver damage and immune function impairment caused by a high starch diet. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
22
|
Deng Y, Meng X, Ling C, Lu T, Chang H, Li L, Yang Y, Song G, Ding Y. Nanosized Titanium Dioxide Induced Apoptosis and Abnormal Expression of Blood-Testis Barrier Junction Proteins Through JNK Signaling Pathway in TM4 Cells. Biol Trace Elem Res 2022; 200:5172-5187. [PMID: 35013891 DOI: 10.1007/s12011-022-03099-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/02/2022] [Indexed: 12/13/2022]
Abstract
Nanosized titanium dioxide (nano-TiO2) has been widely used in consumer products. It can cross the blood-testis barrier (BTB), and it has adverse effects on the male reproductive system. However, the specific mechanism has not been fully elucidated. The purpose of this study was to understand the role of the JNK signaling pathway in the apoptosis and abnormal expression of BTB junction proteins induced by nano-TiO2 in TM4 cells. After different concentration of nano-TiO2 treatments, the cell viability, apoptosis, mitochondrial membrane potential (Δψm), BTB junction proteins (Claudin-11, ZO-1, β-catenin), apoptosis-related proteins (Bax, Bcl-2, cleaved caspase-9, cleaved caspase-3), and phosphorylated (p)-JNK protein were examined. The results showed that cell viability, apoptosis rates, Δψm, and apoptosis-related protein levels changed in a concentration-dependent manner. Cell viability decreased significantly from 100 μg/mL nano-TiO2 group. Apoptosis rates increased significantly from 150 μg/mL nano-TiO2 group, and Δψm decreased significantly from 150 μg/mL nano-TiO2 group. The protein levels of Bax, cleaved caspase-9, and cleaved caspase-3 increased significantly from 150 μg/mL nano-TiO2 group, and the protein level of Bcl-2 decreased significantly from 100 μg/mL nano-TiO2 group. The protein level of p-JNK increased significantly from 100 μg/mL nano-TiO2 group. Abnormal expression of ZO-1 and β-catenin started from 150 μg/mL nano-TiO2 group, and abnormal expression of Claudin-11 started from 100 μg/mL nano-TiO2 group. Cells were treated with JNK inhibitor SP100625 to determine whether the changes of the above indicators in the concentration of 150 μg/mL nano-TiO2 group can be reversed. We found that SP100625 at 20 μM significantly reversed these effects. These results highlighted that nano-TiO2 could activate the JNK signaling pathway to induce mitochondria-mediated apoptosis and abnormal expression of BTB junction proteins in TM4 cells.
Collapse
Affiliation(s)
- Yaxin Deng
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Xiaojia Meng
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Chunmei Ling
- The Third People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830091, Xinjiang, China
| | - Tianjiao Lu
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Hongmei Chang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Li Li
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Yaqian Yang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Guanling Song
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China.
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China.
| | - Yusong Ding
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China.
| |
Collapse
|
23
|
Wei J, Lu X, Bao X, Zhang C, Li J, Ren C, Zhu Z, Ma B, Zhang N, Jin X, Ma B. Aucubin supplementation alleviate diabetes induced-disruption of blood-testis barrier and testicular damage via stabilizing cell junction integrity. Eur J Pharmacol 2022; 938:175430. [PMID: 36460131 DOI: 10.1016/j.ejphar.2022.175430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Disruption of blood-testis barrier (BTB) was a crucial pathological feature of diabetes induced-testicular injury at early phase. Aucubin (AU), a main active component in Eucommiae Cortex, has drawn attention for its benefits against male reproductive system disease. The current study was aimed at investigating the protective role of AU and exploring the underlying mechanism in diabetic model. A murine model of type 2 diabetes mellitus (T2DM) was induced by high-fat diet (HFD) combined with streptozocin (STZ). Testicular weight index and morphology, sperm quality, integrity of BTB and protein levels were analyzed. The underlying mechanism of the protective effect of AU was further explored in Sertoli cells (SCs) cultured with high glucose (HG). Our results showed AU inhibited testicular structural destruction, restored disruption of BTB and improved abnormal spermatogenic function in diabetic mice. Consistent with in vivo results, HG induced decreased transcellular resistance and increased permeability in SCs monolayers, while AU exposure reverses this trend. Meanwhile, reduced expression of Zonula occludin-1(ZO-1) and Connexin43(Cx43) in testicular tissue diabetic mice and HG-induced SCs was prominently reversed via AU treatment. Mechanistic studies suggested a high affinity interaction between AU and c-Src protein was identified based on molecular docking, and the activation of c-Src was significantly inhibited in AU treatment. Furthermore, AU significantly increased the expression of Cx43 and ZO-1 proteins HG-induced SCs, which can be further enhanced in gene-silenced c-Src cells to some extent. Our results suggested that AU ameliorated disruption of BTB and spermatogenesis dysfunction in diabetic mice via inactivating c-Src to stabilize cell junction integrity.
Collapse
Affiliation(s)
- Jingxun Wei
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Xuanzhao Lu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Xiaowen Bao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Chi Zhang
- Nanjing Tech University School of Economics & Management. Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Jiaqi Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Chaoxing Ren
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Zhiming Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Beiting Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Nan Zhang
- School of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Xin Jin
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
24
|
Li Z, Liu C, Liu X, Wang N, Gao L, Bao X, Liu S, Xue P. Aucubin Impeded Preosteoclast Fusion and Enhanced CD31 hi EMCN hi Vessel Angiogenesis in Ovariectomized Mice. Stem Cells Int 2022; 2022:5226771. [PMID: 36406003 PMCID: PMC9668463 DOI: 10.1155/2022/5226771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/27/2022] [Indexed: 08/31/2023] Open
Abstract
Osteogenesis is tightly correlated with angiogenesis during the process of bone development, regeneration, and remodeling. In addition to providing nutrients and oxygen for bone tissue, blood vessels around bone tissue also secrete some factors to regulate bone formation. Type H vessels which were regulated by platelet-derived growth factor-BB (PDGF-BB) were confirmed to couple angiogenesis and osteogenesis. Recently, preosteoclasts have been identified as the most important source of PDGF-BB. Therefore, inhibiting osteoclast maturation, improving PDGF-BB secretion, stimulating type H angiogenesis, and subsequently accelerating bone regeneration may be potent treatments for bone loss disease. In the present study, aucubin, an iridoid glycoside extracted from Aucuba japonica and Eucommia ulmoides, was found to inhibit bone loss in ovariectomized mice. We further confirmed that aucubin could inhibit the fusion of tartrate-resistant acid phosphatase (TRAP)+ preosteoclasts into mature osteoclasts and indirectly increasing angiogenesis of type H vessel. The underlying mechanism is the aucubin-induced inhibition of MAPK/NF-κB signaling, which increases the preosteoclast number and subsequently promotes angiogenesis via PDGF-BB. These results prompted that aucubin could be an antiosteoporosis drug candidate, which needs further research.
Collapse
Affiliation(s)
- Ziyi Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang 050051, China
| | - Chang Liu
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang 050051, China
| | - Xiaoli Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology & Hebei Key Laboratory of Stomatology, Hebei Medical University, Shijiazhuang 050017, China
| | - Na Wang
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang 050051, China
| | - Liu Gao
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang 050051, China
| | - Xiaoxue Bao
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang 050051, China
| | - Sijing Liu
- Editorial Department of Hebei Medical University, Hebei Medical University, Shijiazhuang 050017, China
| | - Peng Xue
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang 050051, China
| |
Collapse
|
25
|
Exploring Nrf2 as a therapeutic target in testicular dysfunction. Cell Tissue Res 2022; 390:23-33. [PMID: 35788899 DOI: 10.1007/s00441-022-03664-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022]
Abstract
Testicular dysfunction, a major contributory factor to infertility, has received a lot of attention over the recent years. Several studies have linked abnormal sperm function and morphology with an enhanced generation of reactive oxygen species (ROS) and oxidative stress. The nuclear factor erythroid-derived 2 (Nrf2) is a transcriptional response to cellular stresses (intrinsic or extrinsic) that regulates the oxidative status, mitochondrial dysfunction, inflammation, and proteostasis. In this review, the therapeutic role of Nrf2 was explored. To do so, scientific data were retrieved from databases such as Elsevier, Wiley, Web of Science, Springer, PubMed, Taylor and Francis, and Google Scholar using search terms such as "Nrf2" and "testis," "sperm," "testicular function," and "testosterone." It has been noted that Nrf2 influences the physiology and pathology of testicular dysfunction, especially in the spermatogenic process, by regulating cellular resistance to oxidative stress, inflammation, and environmental toxicants. However, numerous compounds serve as activators and inhibitors of testicular Nrf2. Nrf2 activators might play a therapeutic role in the prevention and treatment of testicular dysfunction, while molecules that inhibit Nrf2 might induce dysfunction in testis components. Nrf2 activators protect cells against oxidative damage and activate Nrf2/KEAP1 signaling which promotes its movement to the nucleus, and increased Nrf2 function and expression, along with their downstream antioxidant gene. Nrf2 inhibitors facilitate oxidative stress via interfering with the Nrf2 signal pathway. The Nrf2 activation could serve as a promising therapeutic target for testicular dysfunction. This review explored the effect of Nrf2 on testicular function while highlighting potential activators and inhibitors of Nrf2.
Collapse
|
26
|
Simu SY, Alam MB, Kim SY. The Activation of Nrf2/HO-1 by 8-Epi-7-deoxyloganic Acid Attenuates Inflammatory Symptoms through the Suppression of the MAPK/NF-κB Signaling Cascade in In Vitro and In Vivo Models. Antioxidants (Basel) 2022; 11:antiox11091765. [PMID: 36139839 PMCID: PMC9495988 DOI: 10.3390/antiox11091765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 11/28/2022] Open
Abstract
In this study, we examined the ameliorative effects of 8-epi-7-deoxyloganic acid (DLA), an iridoid glycoside, on oxidative stress and inflammation in both LPS-stimulated macrophages and mice with carrageenan-induced inflammation. DLA decreased oxidative stress through the up-regulation of heme oxygenase-1 (HO-1) via the activation of nuclear factor erythroid 2-related factor 2 (Nrf2), leading to the suppression of reactive oxygen species (ROS) and nitric oxide generation (NO). In addition, DLA inhibited the activation of mitogen-activated protein kinases (MAPKs) and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, resulting in a decreased production of the proinflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) and -6 (IL-6), as well as of monocyte chemoattractant protein-1 (MCP-1). In addition, DLA effectively inhibited the generation of nitric oxide (NO) and prostaglandin E2 (PGE2) by inhibiting the expression of the upstream genes inducible nitric oxidase (iNOS) and cyclooxygenase-2 (COX-2). DLA demonstrated powerful anti-inflammatory and antioxidant properties and thus appears as an intriguing prospective therapeutic treatment.
Collapse
Affiliation(s)
- Shakina Yesmin Simu
- College of Pharmacy, Gachon University, No. 191, Hambakmoero, Incheon 21936, Korea
- Correspondence: ; Tel.: +82-102292-9232
| | - Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, No. 191, Hambakmoero, Incheon 21936, Korea
| |
Collapse
|
27
|
Liao Y, Chen F, Xu L, Dessie W, Li J, Qin Z. Study on extraction and antibacterial activity of aucubin from Eucommia ulmoides seed-draff waste biomass. Heliyon 2022; 8:e10765. [PMID: 36267368 PMCID: PMC9576858 DOI: 10.1016/j.heliyon.2022.e10765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/13/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Aucubin (AU) is an active ingredient exerting strong antioxidant and anti-inflammatory effects in treating several diseases. This study evaluated the extraction of AU from Eucommia ulmoides seed-draff (EUSD) waste biomass using a series of solvents (methanol, ethanol, i-propanol, n-propanol, n-butanol, n-pentanol and cyclohexane) assisted with microwave and ultrasound, and proposed the optimized method for extraction. Five factors were investigated by Box-Behnken design (BBD) and response surface methodology (RSM). The optimized extraction conditions were as follows: liquid-solid ratio of 46.37 mL/g, methanol percentage of 89.56%, ultrasonic (extraction) time of 59.95 min, microwave power of 306.73 W, and microwave (extraction) time of 18.93 s. To this end, the AU extraction reached the maximum value (149.1 mg/g), which was consistent with the theoretical value (149.3 mg/g). Furthermore, the kinetics of extraction process were investigated by mathematic modeling. The extraction process analysis was also explored by 1H nuclear magnetic resonance (1H-NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and COSMOtherm program. This study found out that methanol provided better extraction efficiency than the conventional solvents (water, ethanol, i-propanol, n-propanol, n-butanol, n-pentanol, cyclohexane) due to possible interactions by the formation of hydrogen bond between AU and methanol, and ultrasound and microwave could significantly enhance mass transfer, which exhibited higher extraction efficiency and lower energy consumptions (149.1 mg/g and 0.102 kW·h vs. 73.4 mg/g and 0.700 kW·h for Soxhlet extraction). In the antibacterial activity study, the AU extract exerted strong antibacterial ability against 4 tested pathogens, and the antibacterial effect followed the order of: Staphylococcus aureus (35.9 ± 1.32 mm) > Escherichia coli (30.7 ± 1.38 mm) > Bacillus subtilis (20.5 ± 1.36 mm) > Salmonella (15.9 ± 1.39 mm) with the AU concentration of 40 mg/mL. Therefore, the development of this study will help to deepen the further understanding of natural product extraction by methanol-based ultrasonic and microwave, and has certain application value for the development and utilization of natural iridoid glycosides product.
Collapse
Affiliation(s)
- Yunhui Liao
- Research Center of Biochemical Engineering Technology, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, Yongzhou 425199, China
| | - Feng Chen
- Research Center of Biochemical Engineering Technology, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Lujie Xu
- Research Center of Biochemical Engineering Technology, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Wubliker Dessie
- Research Center of Biochemical Engineering Technology, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, Yongzhou 425199, China
| | - Jiaxing Li
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Zuodong Qin
- Research Center of Biochemical Engineering Technology, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, Yongzhou 425199, China
- Corresponding author.
| |
Collapse
|
28
|
Shen Y, You Y, Zhu K, Fang C, Yu X, Chang D. Bibliometric and visual analysis of blood-testis barrier research. Front Pharmacol 2022; 13:969257. [PMID: 36071829 PMCID: PMC9441755 DOI: 10.3389/fphar.2022.969257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Extensive research on the blood-testis barrier has been undertaken in recent years. However, no systematic bibliometric study has been conducted on this subject. Our research aimed to identify the hotspots and frontiers of blood-testis barrier research and to serve as a guide for future scientific research and decision-making in the field.Methods: Studies on the blood-testis barrier were found in the Web of Science Core Collection. VOSviewer, CiteSpace, and Microsoft Excel were used to conduct the bibliometric and visual analyses.Results: We found 942 blood-testis barrier studies published in English between 1992 and 2022. The number of annual publications and citations increased significantly between 2011 and 2022, notably in the United States. China and the United States, the US Population Council, Endocrinology, and Cheng C. Yan were the most productive countries, institution, journal, and author, respectively. The study keywords indicated that blood-testis barrier research involves a variety of compositional features (tight junctions, cytoskeleton, adherens junctions), cell types (Sertoli cells, germ cells, Leydig cells, stem cells), reproductive toxicity (cadmium, nanoparticles, bisphenol-a), and relevant mechanisms (spermatogenesis, apoptosis, oxidative stress, dynamics, inflammation, immune privilege).Conclusion: The composition and molecular processes of the blood-testis barrier as well as the blood-testis barrier in male infertility patients are the primary research hotspots in this field. In addition, future research will likely focus on treatment and the development of novel medications that target signal pathways in oxidative stress and apoptosis to preserve the blood-testis barrier. Further studies must extend to clinical diagnosis and therapy.
Collapse
|
29
|
The Effect of a Combination of Eucommia ulmoides and Achyranthes japonica on Alleviation of Testosterone Deficiency in Aged Rat Models. Nutrients 2022; 14:nu14163341. [PMID: 36014851 PMCID: PMC9414994 DOI: 10.3390/nu14163341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022] Open
Abstract
With aging, men inevitably encounter irreversible changes, including progressive loss of testosterone and physical strength, and increased fat mass. To assess the alleviatory effects of EUAJ on andropause symptoms, including in vivo testosterone deficiency, we administered EUAJ for 6 weeks in 22-week-old Sprague-Dawley rats. Before EUAJ (3:1) (E. ulmoides:A. japonica = 3:1, KGC08EA) administration, testosterone decline in 22-week-old SD rats was confirmed compared to 7-week-old SD rats (NC group). After administration of EUAJ (3:1) at 20, 40, and 80 mg/kg for 6 weeks, testosterone, free testosterone, and mRNA expression levels (Cyp11a1 and Hsd3b1) were significantly increased at 40 mg/kg EUAJ (3:1), whereas mRNA expression levels of Cyp19a1 and Srd5a2 were significantly reduced at this concentration, compared to the control group. Swimming retention time was significantly increased at both 40 mg/kg and 80 mg/kg. In summary, EUAJ (3:1) enhanced testosterone production by increasing bioavailable testosterone, sex hormone-binding globulin (SHBG), and enzymes related to testosterone synthesis at 40 mg/kg. In addition, 80 mg/kg EUAJ (3:1) also increased physical and testicular functions.
Collapse
|
30
|
Iridoid glycoside Aucubin protects against nonylphenol-induced testicular damage in male rats via modulation of steroidogenic and apoptotic signaling. Sci Rep 2022; 12:13783. [PMID: 35962184 PMCID: PMC9374701 DOI: 10.1038/s41598-022-18148-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
Aucubin (AU) is one of the widespread compounds belonging to the group of iridoid glycosides, which possesses numerous beneficial properties. Nonylphenol (NP), is a synthetic environmental toxicant that has the potential to cause male infertility through excessive production of reactive oxygen species. In the current study, the remedial potential of Aucubin was assessed against NP-generated testicular damage in male rats. Animals were distributed into four groups and treated for 56 days in this study. Control-group (0.1% DMSO + food), NP group (100 µg/kg), NP + AU group (100 µg/kg + 5 mg/kg) and AU group (5 mg/kg). NP exposure significantly (p < 0.05) reduced the activity of antioxidant enzymes i.e., glutathione reductase, catalase (CAT), superoxide dismutase, glutathione peroxidase (GPx), and total protein content (TPC), whereas the level of reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS) was enhanced substantially (p < 0.05). Treatment with AU substantially (p < 0.05) recovered activities of antioxidant enzymes, TPC, ROS, and TBARS levels. Moreover, decrease in the levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), plasma testosterone, sperm count, motility, sperm membrane integrity, and the number of spermatocytes of different stages along with the level of steroidogenic enzymes i.e., 17β-hydroxysteroid dehydrogenase (17β-HSD), 3β-hydroxysteroid dehydrogenase (3β-HSD), and B-cell lymphoma 2 (Bcl-2) by NP administration were recovered to control values by AU treatment. However, AU mitigated the sperm abnormalities (head/midpiece/tail), the number of dead sperms, and proapoptotic proteins i.e., Bcl-2 associated X protein (Bax), caspase-9, and caspase-3 that were increased by NP. Besides, AU treatment recovered the NP-induced potential histopathological alterations in the testicular tissues such as the height of epithelium, seminiferous tubules diameter as well as the height of tunica propria. Overall, NP-induced toxicity was effectively recuperated by the AU administration. These results indicate that AU might be considered as a potential protective agent against testicular damage. The observed protection may be due to its antioxidant, anti-apoptotic, anti-inflammatory and androgenic potential.
Collapse
|
31
|
Huang H, Chang YH, Xu J, Ni HY, Zhao H, Zhai BW, Efferth T, Gu CB, Fu YJ. Aucubin as a natural potential anti-acute hepatitis candidate: Inhibitory potency and hepatoprotective mechanism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154170. [PMID: 35609387 DOI: 10.1016/j.phymed.2022.154170] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/17/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Hepatic inflammation can substantially impact the development of acute hepatitis. It is a pressing need to identify and exploit novel therapeutic targets as well as effective drug therapies against acute hepatitis. Aucubin (AU) is one of the main active components extracted from the leaves of Eucommia ulmoides and possesses significant anti-inflammatory and antioxidant activities. However, the protective effect and mechanism of AU on acute hepatitis have not been reported yet. PURPOSE This study aims to investigate the protective effect of AU on LPS-induced acute hepatitis and the mechanism of action. METHODS The limma package was used to analyze differentially expressed genes (DEGs) between LPS-induced acute hepatitis and normal groups based on Gene Expression Omnibus (GEO) microarray data. Network pharmacology predicted targets for AU therapy against acute hepatitis, and Gene Ontology (GO) enrichment analysis of the biological processes involved in these targets. The key pathways were analyzed by protein-protein interaction, KEGG (Kyoto Encyclopedia of Genes and Genomes), and GSEA (Gene Set Enrichment Analysis) enrichment. The important interaction targets between AU and key pathways were evaluated by molecular simulation. The in silico predicted mechanism was verified based on in vitro and in vivo experiments. RESULTS A total of 116 intersection targets between AU prediction targets and differentially expressed genes were identified. They were functionally involved in the imbalance of "inflammation-anti-inflammation" and "oxidation-antioxidation" systems in the process of LPS-induced cases. In vitro experiments revealed that AU reduced inflammation in LPS-induced HepG2 cells by reducing the inflammatory cytokines TNF-α, IL-6, as well as iNOS enzyme activity levels. In addition, LPS-induced oxidative stress can be alleviated by AU via adjusting the levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), Malone dialdehyde (MDA) and reactive oxygen species (ROS). Protein-protein interaction and GSEA results showed that AU might exert anti-inflammatory effects mainly through the STAT3/NF-κB signal pathway. Molecular dynamics simulation as well as in vivo tests further demonstrated AU restrained nuclear transfer of NF-κB (P65), probably through reducing phosphorylation of STAT3. In addition, AU appears to reduce oxidative stress by upregulating NRF2/HO-1. CONCLUSION We explored potential targets and signal pathways of AU in inhibiting acute hepatitis. AU exerted anti-inflammatory and antioxidant activities and may be a useful candidate drug for the treatment of acute hepatitis.
Collapse
Affiliation(s)
- Han Huang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Yuan-Hang Chang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Jian Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Hai-Yan Ni
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Heng Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Bo-Wen Zhai
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, 55128, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, 55128, Mainz, Germany
| | - Cheng-Bo Gu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Yu-Jie Fu
- The College of Forestry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
32
|
Phytomedicinal therapeutics for male infertility: critical insights and scientific updates. J Nat Med 2022; 76:546-573. [PMID: 35377028 DOI: 10.1007/s11418-022-01619-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
Abstract
Infertility is a significant cause of anxiety, depression, and social stigma among couples and families. In such cases, male reproductive factors contribute widely to the extent of 20-70%. Male infertility is a multifactorial disease with several complications contributing to its diagnosis. Although its management encompasses both modern and traditional medicine arenas, the first line of treatment, adopted by most males, focuses on the reasonably successful medicinal plant-based conventional therapies. Phyto-therapeutics, which relies on active ingredients from traditionally known herbs, influences sexual behavior and male fertility factors. The potency of these phyto-actives depends on their preparation methods and forms of consumption, including decoctions, extracts, semi-purified compounds, etc., as inferred from in vitro and in vivo (laboratory animal models and human) studies. The mechanisms of action therein involve the testosterone pathway for stimulation of spermatogenesis, reduction of oxidative stress, inhibition of inflammation, activation of signaling pathways in the testes [extracellular-regulated kinase (ERK)/protein kinase B(PKB)/transformation of growth factor-beta 1(TGF-β1)/nuclear factor kappa-light-chain-enhancer of activated B cells NF-kB signaling pathways] and mediation of sexual behavior. This review critically focuses on the medicinal plants and their potent actives, along with the biochemical and molecular mechanisms that modulate vital pathways associated with the successful management of male infertility. Such intrinsic knowledge will significantly further studies on medicinal plants that improve male reproductive health.
Collapse
|
33
|
Zhang F, Yan Y, Zhang J, Li L, Wang YW, Xia CY, Lian WW, Peng Y, Zheng J, He J, Xu JK, Zhang WK. Phytochemistry, synthesis, analytical methods, pharmacological activity, and pharmacokinetics of loganin: A comprehensive review. Phytother Res 2022; 36:2272-2299. [PMID: 35583806 DOI: 10.1002/ptr.7347] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/13/2021] [Accepted: 11/21/2021] [Indexed: 10/18/2022]
Abstract
Iridoid glycosides (IGs) are found in many medicinal and edible plants, such as Gardenia jasminoides, Cistanche tubulosa, Eucommia ulmoides, Rehmanniae Radix, Lonicera japonica, and Cornus officinalis. Loganin, an IG, is one of the main active ingredient of Cornus officinalis Sieb. et Zucc., which approved as a medicinal and edible plant in China. Loganin has been widely concerned due to its extensive pharmacological effects, including anti-diabetic, antiinflammatory, neuroprotective, and anti-tumor activities, etc. Studies have shown that these underlying mechanisms include anti-oxidation, antiinflammation and anti-apoptosis by regulating a variety of signaling pathways, such as STAT3/NF-κB, JAK/STAT3, TLR4/NF-κB, PI3K/Akt, MCP-1/CCR2, and RAGE/Nox4/p65 NF-κB signaling pathways. In order to better understand the research status of loganin and promote its application in human health, this paper systematically summarized the phytochemistry, analysis methods, synthesis, pharmacological properties and related mechanisms, and pharmacokinetics based on the research in the past decades.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, People's Republic of China.,Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Yu Yan
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Jia Zhang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Li Li
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Yu-Wei Wang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Cong-Yuan Xia
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Wen-Wen Lian
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, People's Republic of China
| | - Jun He
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Wei-Ku Zhang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, People's Republic of China
| |
Collapse
|
34
|
Zhu L, Guan Y, Li X, Xiong X, Liu J, Wang Z. BPA disrupts the SC barrier integrity by activating the cytokines/JNK signaling pathway in rare minnow Gobiocypris rarus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106124. [PMID: 35193009 DOI: 10.1016/j.aquatox.2022.106124] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 01/14/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Bisphenol-A (BPA) has been reported to disrupt blood-testis barrier (BTB) integrity in mammals. However, its effects on fish testis sertoli cell (SC) barrier and the underlying mechanisms have been largely unknown to date. To study the SC barrier toxicity induced by BPA, male rare minnows (Gobiocypris rarus) were exposed to 15 μg L - 1 BPA for 7, 14 and 21 d. Meanwhile, a 25 ng L-1 17α-ethynyl estradiol (EE2) group was set up as the positive control. Results showed that BPA induced immune response in the testes and decreased offspring hatching rate. The biotin tracer assay showed that BPA exposure destroyed the integrity of the testis SC barrier. In addition, BPA exposure decreased the expressions of occludin, ZO-1, CX43 and N-cadherin proteins. The transcripts of CX43 and occludin were significantly decreased and SP1 recruitment in each gene promoter was repressed after BPA exposure. Moreover, the cytokines (TNFα and IL-1β) were significantly increased while the JNK signal pathway was activated after BPA exposure. BPA also increased the matrix metalloproteinases 1 (MMP1) and MMP2 levels in the testes. In addition, estrogenic effect did not entirely explain the mechanism by which BPA disrupted the SC barrier in G. rarus testes. These results suggested that BPA disrupted the SC barrier integrity by inhibiting SP1 enrichments within CX43 and occludin 5' flanking regions through activated cytokines/JNK signaling pathway. MMPs were also involved in the disruption of SC barrier caused by BPA exposure.
Collapse
Affiliation(s)
- Long Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongjing Guan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuening Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaofan Xiong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jialin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
35
|
Wang Y, Li J, Gu J, He W, Ma B, Fan H. OUP accepted manuscript. J Pharm Pharmacol 2022; 74:985-995. [PMID: 35325199 DOI: 10.1093/jpp/rgac011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/09/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Yucheng Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jiaqi Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China
| | - Jingyu Gu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wei He
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China
| | - Hongqi Fan
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
36
|
Zhang X, Peng Z, Zheng H, Zhang C, Lin H, Qin X. The Potential Protective Effect and Possible Mechanism of Peptides from Oyster ( Crassostrea hongkongensis) Hydrolysate on Triptolide-Induced Testis Injury in Male Mice. Mar Drugs 2021; 19:566. [PMID: 34677464 PMCID: PMC8539321 DOI: 10.3390/md19100566] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Peptides from oyster hydrolysate (OPs) have a variety of biological activities. However, its protective effect and exact mechanism on testicular injury remain poorly understood. This study aimed to evaluate the protective effect of OPs on triptolide (TP)-induced testis damage and spermatogenesis dysfunction and investigate its underlying mechanism. In this work, the TP-induced testis injury model was created while OPs were gavaged in mice for 4 weeks. The results showed that OPs significantly improved the sperm count and motility of mice, and alleviated the seminiferous tubule injury. Further study showed that OPs decreased malonaldehyde (MDA) level and increased antioxidant enzyme (SOD and GPH-Px) activities, attenuating oxidative stress and thereby reducing the number of apoptotic cells in the testis. In addition, OPs improved the activities of enzymes (LDH, ALP and ACP) related to energy metabolism in the testis and restored the serum hormone level of mice to normal. Furthermore, OPs promoted the expression of Nrf2 protein, and then increased the expression of antioxidant enzyme regulatory protein (HO-1 and NQO1) in the testis. OPs inhibited JNK phosphorylation and Bcl-2/Bax-mediated apoptosis. In conclusion, OPs have a protective effect on testicular injury and spermatogenesis disorders caused by TP, suggesting the potential protection of OPs on male reproduction.
Collapse
Affiliation(s)
- Xueyan Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.Z.); (Z.P.); (H.Z.); (C.Z.); (H.L.)
| | - Zhilan Peng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.Z.); (Z.P.); (H.Z.); (C.Z.); (H.L.)
| | - Huina Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.Z.); (Z.P.); (H.Z.); (C.Z.); (H.L.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Chaohua Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.Z.); (Z.P.); (H.Z.); (C.Z.); (H.L.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Haisheng Lin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.Z.); (Z.P.); (H.Z.); (C.Z.); (H.L.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoming Qin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.Z.); (Z.P.); (H.Z.); (C.Z.); (H.L.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
37
|
Ren C, Zhou X, Bao X, Zhang J, Tang J, Zhu Z, Zhang N, Bai Y, Xi Y, Zhang Q, Ma B. Dioscorea zingiberensis ameliorates diabetic nephropathy by inhibiting NLRP3 inflammasome and curbing the expression of p66Shc in high-fat diet/streptozotocin-induced diabetic mice. J Pharm Pharmacol 2021; 73:1218-1229. [PMID: 34061184 DOI: 10.1093/jpp/rgab053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/01/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Diabetic nephropathy (DN) is a severe diabetic complication. Dioscorea zingiberensis (DZ) possesses excellent pharmacological properties with lower toxicity. The purpose of this study was to investigate the efficacy and mechanism of DZ in DN. METHODS DN was established by the high-fat diet combining intraperitoneal injection of streptozotocin in mice. The DZ (125 and 250 mg/kg/day) were intragastrical administered for 8 consecutive weeks. After treatment, blood, urine and kidney tissue were collected for biological detection, renal morphology, fibrosis and molecular mechanism research, respectively. KEY FINDINGS This study has shown that DZ significantly ameliorated kidney hypertrophy, renal structural damage and abnormal function of the kidney indicators (creatinine, urinary protein and blood urea nitrogen). Further molecular mechanism data suggested that the NLRP3/Cleaved-caspase-1 signal pathway was remarkably activated in DN, and DZ treatment reversed these changes, which indicated that it effectively attenuated inflammatory response caused by hyperglycaemia. In addition, DN inhibits hyperglycaemia-induced activation of oxidative stress by suppressing the expression of p66Shc proteins. CONCLUSIONS DZ could efficiently suppress oxidative stress and inflammatory responses to postpone the development of DN, and its mechanism might be related to inhibition of NLRP3 and p66Shc activities. Thus, DZ could be developed into a new therapeutic agent for DN.
Collapse
Affiliation(s)
- Chaoxing Ren
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Xiaowei Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Xiaowen Bao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Jie Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Jun Tang
- Jiangsu Huanghe Pharmaceutical Co., Ltd, Yancheng, People's Republic of China
| | - Zhiming Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Nan Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
- School of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Yu Bai
- Department of Biological Sciences, University of Toronto Scarborough, ON, Canada
| | - Youli Xi
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, People's Republic of China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| |
Collapse
|
38
|
Huang L, Lyu Q, Zheng W, Yang Q, Cao G. Traditional application and modern pharmacological research of Eucommia ulmoides Oliv. Chin Med 2021; 16:73. [PMID: 34362420 PMCID: PMC8349065 DOI: 10.1186/s13020-021-00482-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/29/2021] [Indexed: 12/18/2022] Open
Abstract
As a Traditional Chinese Medicine, Eucommia ulmoides Oliv. has been used for the treatment of various diseases since ancient times, involving lumbar pain, knee pain, osteoporosis, hepatoprotection, paralysis, intestinal haemorrhoids, vaginal bleeding, abortion, spermatorrhoea, foot fungus, anti-aging etc. With the developing discovery of E. ulmoides extracts and its active components in various pharmacological activities, E. ulmoides has gained more and more attention. Up to now, E. ulmoides has been revealed to show remarkable therapeutic effects on hypertension, hyperglycemia, diabetes, obesity, osteoporosis, Parkinson's disease, Alzheimer's disease, sexual dysfunction. E. ulmoides has also been reported to possess antioxidant, anti-inflammatory, neuroprotective, anti-fatigue, anti-aging, anti-cancer and immunoregulation activities etc. Along these lines, this review summarizes the traditional application and modern pharmacological research of E. ulmoides, providing novel insights of E. ulmoides in the treatment of various diseases.
Collapse
Affiliation(s)
- Lichuang Huang
- School of Pharmacy, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Qiang Lyu
- School of Pharmacy, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Wanying Zheng
- School of Pharmacy, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China.
| |
Collapse
|
39
|
Lu T, Ling C, Hu M, Meng X, Deng Y, An H, Li L, Hu Y, Wang H, Song G, Guo S. Effect of Nano-Titanium Dioxide on Blood-Testis Barrier and MAPK Signaling Pathway in Male Mice. Biol Trace Elem Res 2021; 199:2961-2971. [PMID: 32990870 DOI: 10.1007/s12011-020-02404-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/20/2020] [Indexed: 01/09/2023]
Abstract
Some studies have found that nano-sized titanium dioxide (nano-TiO2) has adverse effects on the male reproductive system. Blood-testis barrier (BTB), as one of the tightest blood-tissue restriction, is crucial to the male reproductive system. However, the potential effects on BTB and signaling pathway changes in testis tissue induced by nano-TiO2 remain poorly understood. Therefore, in this study, 60 Institute of Cancer Research mice were divided randomly into four groups (per group = 15). The mice of four groups were intragastrically administered with 0, 10, 50, and 100 mg/kg BW nano-TiO2 respectively for 30 days to analyze the changes of BTB structure, BTB-related proteins, and MAPK signal pathways. Besides, testosterone level, estradiol level, and sperm parameter (sperm count, sperm motility, and sperm malformation rate) changes were also studied in this research. The results indicated that nano-TiO2 could induce the BTB structural damage and accompanied by the BTB main protein (ZO-1, Claudin-11, and F-actin) elevation of irritability. Nano-TiO2 could also activate the MAPK signaling pathways (p38, JNK, and ERK) of mice testis tissue. The testosterone and estradiol levels in serum reduced. Besides when the mice were administered with nano-TiO2, we also found the sperm motility rate decreased, and sperm malformation increased. The above changes may be associated with BTB damage and the activation of MAPK signaling pathways, thereby causing male reproductive dysfunction.
Collapse
Affiliation(s)
- Tianjiao Lu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Chunmei Ling
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Mingjuan Hu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Xiaojia Meng
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Yaxin Deng
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Hongmei An
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Li Li
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Yunhua Hu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Haixia Wang
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Guanling Song
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832002, China.
| | - Shuxia Guo
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832002, China.
| |
Collapse
|
40
|
Zhu Y, Dong L, Wang J, Liu Q, Tong H, Li Y, Guan S. Semen Cuscutae-Fructus Lycii improves spermatogenic dysfunction by repairing the blood-testis barrier in rats according to in silico and in vitro methods. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114022. [PMID: 33741439 DOI: 10.1016/j.jep.2021.114022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 01/11/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Semen Cuscutae and Fructus Lycii (SC-FL) is a commonly used herbal pair for male infertility treatment. Studies have found that the mechanism of SC-FL treatment may be related to repairing the blood-testis barrier (BTB). The application of network pharmacology can be used to explore the correlation between medicines and diseases and predict the potential pharmacological mechanisms of SC-FL. AIM OF THE STUDY This study aimed to explore the specific effects and mechanisms of SC-FL in repairing the BTB and initially revealed the mechanism of Chinese medicine treating male infertility through network pharmacology and animal experiments. MATERIALS AND METHODS We searched databases using the network pharmacology method and performed mass spectrometry analysis. We analyzed and predicted the active ingredients, targets and key pathways of SC-FL in male infertility treatment. Then, we designed animal experiments to verify the results. Thirty-six Sprague-Dawley rats were randomly divided into the normal control group (NC group), spermatogenic dysfunction group (SD group) and SC-FL treatment group (SCFL group). Glucosides of Tripterygium wilfordii Hook. F (GTW) (40 mg/kg/d) was administered for 4 weeks to generate a spermatogenic dysfunction model. The rats in the SCFL group were given the SC-FL suspension (6 g/kg/d) daily. After 4 weeks of treatment, we detected the sperm quality of each group of rats and observed the cell morphology. Western blotting and qRT-PCR were used to detect the expression of BTB-related proteins in testicular tissues. RESULTS 213 chemical ingredients of SC and FL were retrieved from the TCMSP database, and 54 effective chemical ingredients were obtained. Mass spectrometry analysis showed the above results were credible. Then, we identified 44 potential targets for the treatment of male infertility, and we plotted a network diagram of the interaction network between the core targets and a diagram of herbal medicine-active ingredient-target-disease interactions. The target genes were enriched according to biological functions, and 22 biological processes, 49 cellular components, 1487 molecular functions, and 122 signaling pathways were obtained. The results of the animal experiments showed that the sperm concentration and motility of the SCFL group were significantly improved compared with those of the SD group. Compared with those in the SD group, the structure and morphology of the Sertoli cells and seminiferous tubules of rats in the SCFL group improved, and the number of spermatogenic cells increased significantly. Western blotting and qRT-PCR results showed that compared with that in the SD group, the expression of p38 MAPK decreased significantly, and the expression of c-Jun, Occludin, ZO-1 and connexin 43 increased significantly in the SCFL group. CONCLUSION We predicted that the active ingredients of SC-FL can treat male infertility by interacting with the core targets JUN, IL6, MAPK1, TP53, MYC, CCND1, AR, EGF, FOS, and MAPK8, and the possible mechanism is related to the MAPK signaling pathway. SC-FL can regulate the MAPK pathway and affect the expression of Occludin, ZO-1 and connexin 43 to repair damaged BTB and improve spermatogenic dysfunction induced by GTW, which may be one of the possible mechanisms.
Collapse
Affiliation(s)
- Yutian Zhu
- TCM Department, Peking University Third Hospital, Beijing, 100191, China.
| | - Lei Dong
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jingshang Wang
- TCM Department, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China.
| | - Qiuning Liu
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Hongxuan Tong
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yanfeng Li
- Urology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Siqi Guan
- TCM Department, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China.
| |
Collapse
|
41
|
Tao C, Fan Y, Niu R, Li Z, Qian H, Yu H, Xu Q, Xu Q, Lu C. Urinary polycyclic aromatic hydrocarbons and sex hormones in children and adolescents: Evidence from NHANES. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112215. [PMID: 33862438 DOI: 10.1016/j.ecoenv.2021.112215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Evidences showed that polycyclic aromatic hydrocarbons (PAHs) do harm to human body. However, the association between PAHs and sex hormones in children and adolescents remains unclear. OBJECTIVES The study aims to investigate the associations between PAHs and sex hormones in the general children and adolescent population. METHODS 967 participants aged 6-19 with complete data of PAHs exposure biomarkers, covariates and sex hormones [total testosterone (TT), estradiol (E2) and sex hormone binding globulin (SHBG)] were recruited from National Health and Nutrition Examination Survey (NHANES), 2013-2016. Free androgen index (FAI) was calculated with TT/SHBG. Multivariate linear regression models were performed in six subgroups (male children, male adolescents, male late adolescents, female children, female adolescents and female late adolescents) to estimate the associations between sex hormone alterations and PAHs exposure. RESULTS In male puberty adolescents, weighted multivariate linear regression indicated that negative trends for 2-Hydroxynaphthalene, 1-Hydroxyphenanthrene, 2&3-Hydroxyphenanthrene and E2 (2-Hydroxynaphthalene: β: -0.104, 95%CI: -0.180, -0.029, P < 0.01; 1-Hydroxyphenanthrene: β: -0.112, 95%CI: -0.206, -0.018, P = 0.019; 2&3-Hydroxyphenanthrene: β: -0.125, 95%CI: -0.232, -0.018, P = 0.022), while exposure to 2-Hydroxynaphthalene was related to TT reduction (β: -0.099, 95%CI: -0.177, -0.020, P = 0.014). Same pattern between 2&3-Hydroxyphenanthrene and E2 alteration (2&3-Hydroxyphenanthrene: β: -0.139, 95%CI: -0.236, -0.041, P < 0.01) was also observed in male late adolescents. In male children, we determined that 1-Hydroxyphenanthrene was negatively associated with SHBG (β: -0.121, 95%CI: -0.205, -0.037, P < 0.01), while the same patterns were observed in male puberty children. We did not observe any significant result in female subgroups. All these results above were determined to have q value < 0.05. CONCLUSION PAHs exposure was associated with the alterations of sex hormones in male adolescents and children. Considering the cross-sectional study design, further large-scale epidemiological study is necessary.
Collapse
Affiliation(s)
- Chengzhe Tao
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yun Fan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Rui Niu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhi Li
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hong Qian
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hao Yu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qiaoqiao Xu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qiujin Xu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
42
|
The role of different compounds on the integrity of blood-testis barrier: A concise review based on in vitro and in vivo studies. Gene 2021; 780:145531. [PMID: 33631249 DOI: 10.1016/j.gene.2021.145531] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
Sertoli cells are "nurturing cells'' in the seminiferous tubules of the testis which have essential roles in the development, proliferation and differentiation of germ cells. These cells also divide the seminiferous epithelium into a basal and an adluminal compartment and establish the blood-testis barrier (BTB). BTB shields haploid germ cells from recognition by the innate immune system. Moreover, after translocation of germ cells into the adluminal compartment their nutritional source is separated from the circulatory system being only supplied by the Sertoli cells. The integrity of BTB is influenced by several organic/ organometallic, hormonal and inflammatory substances. Moreover, several environmental contaminants such as BPA have hazardous effects on the integrity of BTB. In the current review, we summarize the results of studies that assessed the impact of these agents on the integrity of BTB. These studies have implications in understanding the molecular mechanism of male infertility and also in the male contraception.
Collapse
|
43
|
Kong Q, Deng H, Li C, Wang X, Shimoda Y, Tao S, Kato K, Zhang J, Yamanaka K, An Y. Sustained high expression of NRF2 and its target genes induces dysregulation of cellular proliferation and apoptosis is associated with arsenite-induced malignant transformation of human bronchial epithelial cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143840. [PMID: 33261869 DOI: 10.1016/j.scitotenv.2020.143840] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/14/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
In arsenic toxicity, activation of the erythroid 2-related factor 2 (NRF2) pathway is regarded as a driver of cancer development and progression; however, the mechanisms by which NRF2 gene expression regulates cell cycle progression and mediates pathways of cellular proliferation and apoptosis in arsenic-induced lung carcinogenesis are poorly understood. In this study, we explored the regulatory functions of NRF2 expression and its target genes in immortalized human bronchial epithelial (HBE) cells continuously exposed to 1.0 μM sodium arsenite over approximately 43 passages (22 weeks). The experimental treatment induced malignant transformation in HBE cells, characterized by increased cellular proliferation and soft agar clone formation, as well as cell migration, and accelerated cell cycle progression from G0/G1 to S phase with increased levels of cyclin E-CDK2 complex,decreased cellular apoptosis rate. Moreover, we observed a sustained increase in NRF2 protein levels and those of its target gene products (NQO1, BCL-2) with concurrently decreased expression of apoptosis-related proteins (BAX, Cleaved-caspase-3/Caspase-3 and CHOP) and increased expression of the anti-apoptotic protein MCL-1. Silencing NRF2 expression with small interfering RNA (siRNA) in arsenite-transformed (T-HBE) cells was shown to reverse the malignant phenotype. Further, siRNA silencing of NQO1 significantly decreased levels of the cyclin E-CDK2 complex, inhibiting G0/G1 to S phase cell cycle progression and transformation to the T-HBE phenotypes. This study demonstrated a novel role for the NRF2/NQO1 signaling pathway in mediating arsenite-induced cell transformation by increasing the expression of cyclin E-CDK2, and accelerating the cell cycle and cell proliferation. Arsenite promotes activation of the NRF2/BCL-2 signaling pathway inhibited CHOP increasing cellular resistance to apoptosis and further promoting malignant transformation.
Collapse
Affiliation(s)
- Qi Kong
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Hanyi Deng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Chunchun Li
- Changzhou Wujin District Center for Disease Control and Prevention, Changzhou 213164, Jiangsu, China
| | - Xiaojuan Wang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Yasuyo Shimoda
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba 274-8555, Japan
| | - Shasha Tao
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Koichi Kato
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba 274-8555, Japan
| | - Jie Zhang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China.
| | - Kenzo Yamanaka
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba 274-8555, Japan.
| | - Yan An
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
44
|
Huang W, Liu M, Xiao B, Zhang J, Song M, Li Y, Cao Z. Aflatoxin B 1 disrupts blood-testis barrier integrity by reducing junction protein and promoting apoptosis in mice testes. Food Chem Toxicol 2021; 148:111972. [PMID: 33421461 DOI: 10.1016/j.fct.2021.111972] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/11/2020] [Accepted: 12/31/2020] [Indexed: 01/08/2023]
Abstract
Aflatoxin B1 (AFB1) is an unavoidable food and environmental contaminant, which can lead to disorders in spermatogenesis and its mechanism remains unclear. The blood-testis barrier (BTB) is responsible for ensuring normal spermatogenesis in testes. Therefore, we hypothesized that disruption of the BTB was involved in AFB1-induced spermatogenesis disorders. To confirm our hypothesis, male Kunming mice were orally gavaged AFB1 (0, 0.375, 0.75, or 1.5 mg/kg) for 30 days. Primarily, we first proved that AFB1 disrupted the BTB integrity. Then, AFB1 decreased BTB-related junction protein expression and elevated Sertoli cell apoptosis, which were associated with oxidative stress. Additionally, AFB1 upregulated the p-p38 MAPK/p38 MAPK ratio. These results collectively indicated that AFB1 disrupted the BTB via reducing the expression of BTB-related junction protein and promoting apoptosis in mice testes, which were associated with the oxidative stress-mediated p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Wanyue Huang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Menglin Liu
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bonan Xiao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zheng Cao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
45
|
Garzón-Castaño SC, Jiménez-González FJ, Veloza LA, Sepúlveda-Arias JC. Activation of the Keap1-Nrf2 pathway by specioside and the n-butanol extract from the inner bark of Tabebuia rosea (Bertol) DC. F1000Res 2020; 9:1262. [PMID: 33214880 PMCID: PMC7653643 DOI: 10.12688/f1000research.26901.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/12/2020] [Indexed: 11/11/2023] Open
Abstract
Background: A large number of chemical compounds exert their antioxidant effects by activation of key transcriptional regulatory mechanisms, such as the transcription factor Nrf2. The aim of this study was to evaluate the activation of the Keap1-Nrf2 pathway by both the n-butanol extract obtained from the inner bark of Tabebuia rosea (Bertol) DC and specioside isolated from this extract. Methods: The antioxidant activity of the extract and specioside isolated from the inner bark of T. rosea were evaluated using the oxygen radical absorbance capacity (ORAC) and the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (DPPH) techniques, whereas their effects on the viability of HepG2 cells was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The effects of the compound and the extract on activating the Keap1-Nrf2 pathway were evaluated using a Nrf2 Transcription Factor Assay kit. Induction of the Nrf2-mediated antioxidant response genes HMOX-1 and NQO1 was evaluated by real-time PCR. The protective effects against H 2O 2-induced oxidative stress in HepG2 cells was determined as the percent protection using the MTT method. Results: Both the n-butanol extract and specioside exhibited activity at low concentrations without affecting cellular viability, since the cell viability was greater than 80% after 24 hours of exposure at each tested concentration. In addition, Nrf2 dissociated from Keap1 after treatment with the n-butanol extract at a concentration of 0.25 µg/mL after 4 hours of exposure. An increase in the Nrf2 level in the cytoplasm after 4 hours of exposure to 2 μM specioside was observed. Nrf2 levels stabilized in the nucleus 12 hours after stimulation with both specioside and the extract. After 6 hours of stimulation, both the extract and specioside induced the expression of HMOX-1 and NQO1. Conclusion: The n-butanol extract from the inner bark of T. rosea and specioside produced protective effects against H 2O 2-induced oxidative stress in HepG2 cells.
Collapse
Affiliation(s)
- Sandra Catalina Garzón-Castaño
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
- Grupo de Biomedicina, Facultad de Medicina, Fundación Universitaria Autónoma de las Américas, Pereira, Colombia
| | | | - Luz Angela Veloza
- Grupo Polifenoles, Facultad de Tecnologías, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Juan Carlos Sepúlveda-Arias
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| |
Collapse
|
46
|
Garzón-Castaño SC, Jiménez-González FJ, Veloza LA, Sepúlveda-Arias JC. Activation of the Keap1-Nrf2 pathway by specioside and the n-butanol extract from the inner bark of Tabebuia rosea (Bertol) DC. F1000Res 2020; 9:1262. [PMID: 33214880 PMCID: PMC7653643 DOI: 10.12688/f1000research.26901.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2020] [Indexed: 11/20/2022] Open
Abstract
Background: A large number of chemical compounds exert their antioxidant effects by activation of key transcriptional regulatory mechanisms, such as the transcription factor Nrf2. The aim of this study was to evaluate the activation of the Keap1-Nrf2 pathway by both the n-butanol extract obtained from the inner bark of Tabebuia rosea (Bertol) DC and specioside isolated from this extract. Methods: The antioxidant activity of the extract and specioside isolated from the inner bark of T. rosea were evaluated using the oxygen radical absorbance capacity (ORAC) and the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (DPPH) techniques, whereas their effects on the viability of HepG2 cells was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The effects of the compound and the extract on activating the Keap1-Nrf2 pathway were evaluated using a Nrf2 Transcription Factor Assay kit. Induction of the Nrf2-mediated antioxidant response genes HMOX-1 and NQO1 was evaluated by real-time PCR. The protective effects against H 2O 2-induced oxidative stress in HepG2 cells was determined as the percent protection using the MTT method. Results: Both the n-butanol extract and specioside exhibited activity at low concentrations without affecting cellular viability, since the cell viability was greater than 80% after 24 hours of exposure at each tested concentration. In addition, Nrf2 dissociated from Keap1 after treatment with the n-butanol extract at a concentration of 0.25 µg/mL after 4 hours of exposure. An increase in the Nrf2 level in the cytoplasm after 4 hours of exposure to 2 μM specioside was observed. Nrf2 levels stabilized in the nucleus 12 hours after stimulation with both specioside and the extract. After 6 hours of stimulation, both the extract and specioside induced the expression of HMOX-1 and NQO1. Conclusion: The n-butanol extract from the inner bark of T. rosea and specioside produced protective effects against H 2O 2-induced oxidative stress in HepG2 cells.
Collapse
Affiliation(s)
- Sandra Catalina Garzón-Castaño
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
- Grupo de Biomedicina, Facultad de Medicina, Fundación Universitaria Autónoma de las Américas, Pereira, Colombia
| | | | - Luz Angela Veloza
- Grupo Polifenoles, Facultad de Tecnologías, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Juan Carlos Sepúlveda-Arias
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| |
Collapse
|
47
|
Garzón-Castaño SC, Jiménez-González FJ, Veloza LA, Sepúlveda-Arias JC. Activation of the Keap1-Nrf2 pathway by specioside and the n-butanol extract from the inner bark of Tabebuia rosea (Bertol) DC. F1000Res 2020; 9:1262. [PMID: 33214880 PMCID: PMC7653643 DOI: 10.12688/f1000research.26901.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 11/11/2023] Open
Abstract
Background: A large number of chemical compounds exert their antioxidant effects by activation of key transcriptional regulatory mechanisms, such as the transcription factor Nrf2. The aim of this study was to evaluate the activation of the Keap1-Nrf2 pathway by both the n-butanol extract obtained from the inner bark of Tabebuia rosea (Bertol) DC and specioside isolated from this extract. Methods: The antioxidant activity of the extract and specioside isolated from the inner bark of T. rosea were evaluated using the oxygen radical absorbance capacity (ORAC) and the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (DPPH) techniques, whereas their effects on the viability of HepG2 cells was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The effects of the compound and the extract on activating the Keap1-Nrf2 pathway were evaluated using a Nrf2 Transcription Factor Assay kit. Induction of the Nrf2-mediated antioxidant response genes HMOX-1 and NQO1 was evaluated by real-time PCR. The protective effects against H 2O 2-induced oxidative stress in HepG2 cells was determined as the percent protection using the MTT method. Results: Both the n-butanol extract and specioside exhibited activity at low concentrations without affecting cellular viability, since the cell viability was greater than 80% after 24 hours of exposure at each tested concentration. In addition, Nrf2 dissociated from Keap1 after treatment with the n-butanol extract at a concentration of 0.25 µg/mL after 4 hours of exposure. An increase in the Nrf2 level in the cytoplasm after 4 hours of exposure to 2 μM specioside was observed. Nrf2 levels stabilized in the nucleus 12 hours after stimulation with both specioside and the extract. After 6 hours of stimulation, both the extract and specioside induced the expression of HMOX-1 and NQO1. Conclusion: The n-butanol extract from the inner bark of T. rosea and specioside produced protective effects against H 2O 2-induced oxidative stress in HepG2 cells.
Collapse
Affiliation(s)
- Sandra Catalina Garzón-Castaño
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
- Grupo de Biomedicina, Facultad de Medicina, Fundación Universitaria Autónoma de las Américas, Pereira, Colombia
| | | | - Luz Angela Veloza
- Grupo Polifenoles, Facultad de Tecnologías, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Juan Carlos Sepúlveda-Arias
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| |
Collapse
|
48
|
Zhang S, Feng Z, Gao W, Duan Y, Fan G, Geng X, Wu B, Li K, Liu K, Peng C. Aucubin Attenuates Liver Ischemia-Reperfusion Injury by Inhibiting the HMGB1/TLR-4/NF-κB Signaling Pathway, Oxidative Stress, and Apoptosis. Front Pharmacol 2020; 11:544124. [PMID: 33013386 PMCID: PMC7506056 DOI: 10.3389/fphar.2020.544124] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
Liver ischemia-reperfusion injury (IRI) is a common clinical event with high morbidity in patients undergoing complex liver surgery or having abdominal trauma. Inflammatory and oxidative stress responses are the main contributing factors in liver IRI. The iridoid glucoside aucubin (AU) has good anti-inflammatory and antioxidative effects; however, there are no relevant reports on the protective effect of glucosides on hepatic IRI. The purpose of this study was to determine whether AU pretreatment could prevent liver IRI and to explore the mechanism. Sprague–Dawley rats were randomly divided into five groups. The sham operation and IRI control groups were given intraperitoneal injections of normal saline, while the AU low-dose (AU-L) group, AU medium-dose (AU-M) group, and AU high-dose (AU-H) group were given intraperitoneal injections of AU at doses of 1, 5, and 10 mg/kg/day, respectively. After 10 d, liver IRI (70% liver ischemia for 1 h, reperfusion for 6 h) was surgically established in all groups except the sham group. Our results confirmed that liver injury was significantly aggravated after hepatic ischemia-reperfusion. AU alleviated the increase of transaminase and pathological changes induced by ischemia-reperfusion and improved liver damage. AU could also ameliorate the inflammatory and oxidative stress responses induced by ischemia-reperfusion and reduced expression of high mobility group protein (HMG)B1, receptor for advanced glycation end-products (RAGE), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and reactive oxygen species (ROS). Moreover, AU reduced ischemia-reperfusion-induced mitochondrial dysfunction and cells apoptosis, increased peroxisome proliferator-activated receptor γ coactivator (PGC)-1α and uncoupling (UCP)2 protein expression, and reduced caspase-3, cleaved caspase-3, and Cytochrome P450 proteins (CYP) expression. To determine expression levels of the Toll-like receptor (TLR)-4/nuclear factor-κB (NF-κB) pathway-related proteins in vitro and in vivo, we also measured TLR-4, myeloid differentiation factor88 (MyD88), NF-κB P65, p-P65, I-kappa-B-alpha (IκB-α), and p-IκB-α levels. The results showed that AU effectively inhibited activation of the TLR-4/NF-κB signaling pathway. In conclusion, we showed for the first time a hepatoprotective effect for AU in liver IRI, which acted by inhibiting the HMGB1/TLR-4/NF-κB signaling pathway, oxidative stress, and apoptosis. Pretreatment with AU may be a promising strategy for preventing liver IRI.
Collapse
Affiliation(s)
- Shilong Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zanjie Feng
- Department of Biochemistry and Molecular Biology, Zunyi Medical University, Zunyi, China
| | - Weidong Gao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuling Duan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Guoxin Fan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xin Geng
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Bo Wu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Kai Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Kangwei Liu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Cijun Peng
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
49
|
Song XY, Guo R, Qi XL, Han FY, Lin B, Huang XX, Yao GD, Song SJ. Terpenoids from stigma maydis (Zea mays L.) alleviate hydrogen peroxide-induced SH-SY5Y cell injury by activating Nrf2. Bioorg Chem 2020; 102:104131. [PMID: 32738569 DOI: 10.1016/j.bioorg.2020.104131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/13/2020] [Accepted: 07/18/2020] [Indexed: 12/20/2022]
Abstract
Five terpenoids (1-5), including three new ent-kaurane diterpenoids (1-3), one new ent-rosane type diterpenoid (4) and one known triterpenoid (5), were isolated from stigma maydis (Zea mays L.). The structures of the compounds were elucidated by comprehensive spectroscopic analyses. The relative configurations of stigmanes A-D (1-4) were determined by NOESY experiments. In addition, the relative configuration of stigmane D (4) was further established by NMR calculations. The absolute configurations of these compounds were identified by a comparison of experimental and calculated specific rotations. The neuroprotective effects of these compounds against H2O2-induced injury in human neuroblastoma SH-SY5Y cells were evaluated, and the results showed that among the compounds, 2 exhibited the most significant neuroprotection. Further study demonstrated that 2 could activate nuclear factor E2-related factor (Nrf2), downregulate apoptosis and reactive oxygen species (ROS) generation, and increase antioxidant enzyme activities in SH-SY5Y cells. However, the neuroprotective effect was reversed when Nrf2 was silenced. In conclusion, this study suggested that terpenoids from stigma maydis exerted neuroprotective effects through Nrf2 activation.
Collapse
Affiliation(s)
- Xiao-Yu Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Rui Guo
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiao-Li Qi
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Feng-Ying Han
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
50
|
Potočnjak I, Marinić J, Batičić L, Šimić L, Broznić D, Domitrović R. Aucubin administered by either oral or parenteral route protects against cisplatin-induced acute kidney injury in mice. Food Chem Toxicol 2020; 142:111472. [DOI: 10.1016/j.fct.2020.111472] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/18/2020] [Accepted: 05/28/2020] [Indexed: 01/02/2023]
|