1
|
Qu J, Xu X, Yang J, Zhang Q, Zhang Y, Xu L, Xu H, Li Q. Establishment of an efficacy-oriented quality grading framework for herbal medicines: Phyllanthus emblica as an example. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119632. [PMID: 40089198 DOI: 10.1016/j.jep.2025.119632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/27/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Quality control is a powerful method for ensuring the effectiveness and safety of herbal medicines. Phyllanthus emblica L. fruit (PE) has been extensively used in both Ayurvedic and traditional Chinese medicine. However, the current Indian and Chinese pharmacopeias set a minimum concentration threshold of gallic acid to identify qualified PE samples, without providing a clear framework to distinguish superior-quality PE samples. AIM OF THE STUDY To establish an efficacy-oriented quality grading framework for herbal medicines, using PE, a medicinal plant known for its hepatoprotective activity, as an example. METHODS First, a mouse model of alcohol-induced liver injury was developed to evaluate the hepatoprotective effects of PE. Second, a combined strategy of serum pharmacochemistry, network pharmacology, metabolomics and experimental validation was employed to identify key quality markers (Q-markers) linked to the hepatoprotective effects of PE. Finally, PE samples from different sources were collected to assess their hepatoprotective activities and Q-marker concentrations. A discriminant analysis model was then developed to classify PE samples into different quality grades by using Q-marker concentration as the predictive factor and hepatoprotective activity as the evaluation criterion. RESULTS PE significantly alleviated liver damage, as evidenced by a reduction in pathological abnormalities and serum aminotransferase levels. Six hepatoprotective Q-markers in PE were identified and verified, including gallic acid, methyl gallate, corilagin, chebulagic acid, ellagic acid and quercitrin. Significant variability in Q-marker concentrations and hepatoprotective effects was observed among different sources of PF samples, and a discriminant analysis model accurately classified PE samples into distinct quality grades. CONCLUSIONS This study successfully established an efficacy-oriented quality grading framework for PE, providing a methodological approach for the quality classification of herbal medicines.
Collapse
Affiliation(s)
- Jiameng Qu
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xuege Xu
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Junjie Yang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qian Zhang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yiwen Zhang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Li Xu
- College of Basic Medicine, Dali University, Dali, 671003, China
| | - Huarong Xu
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Qing Li
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
2
|
Xing R, Xue T, Li H, Zhou Y, Chen X, Hu S. Synthesis of multi-template imprinted mesoporous silica nanoparticles via micelle-based interface imprinting strategy for specific and efficient extraction of five cinnamic acid derivatives from traditional Chinese medicines. Talanta 2025; 294:128180. [PMID: 40262352 DOI: 10.1016/j.talanta.2025.128180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025]
Abstract
Cinnamic acid derivatives, a crucial group of active components in traditional Chinese medicines (TCMs), encompass chlorogenic acid, caffeic acid, 4-hydroxycinnamic acid, ferulic acid, and cinnamic acid. These compounds exhibit a wide array of pharmacological activities, such as free radical scavenging, antioxidation, antibacterial effects, and antitumor activity. However, traditional separation and detection methods often suffer from poor selectivity, low extraction efficiencies, and insufficient sensitivity, thus limiting their applicability in studying the complex and diverse active component groups in TCMs. Herein, we proposed a novel micelle-based interface imprinting strategy by integrating multi-template imprinting with mesoporous silica. Specifically, caffeic acid, serving as an epitope template for chlorogenic acid, along with 4-hydroxycinnamic acid, ferulic acid, and cinnamic acid, collectively constituted a multi-template system. Micelles were generated using a cationic surfactant cetyltrimethylammonium bromide, which confined the four template molecules to the micelle surface through electrostatic attraction. Aminopropyltriethoxysilane, 3-ureidopropyltriethoxysilane, and benzyltriethoxysilane were selected as functional monomers, while tetraethyl orthosilicate were selected as both a cross-linker and a silicon source for the synthesis of multi-template imprinted mesoporous silica nanoparticles (MTIMSNs). The MTIMSNs demonstrated high specificity and impressive adsorption capacity for chlorogenic acid, caffeic acid, 4-hydroxycinnamic acid, ferulic acid, and cinnamic acid, with maximum cross-reactivities of 8.8 %, 7.6 %, 6.8 %, 9.5 %, and 11.5 %, respectively, and corresponding adsorption capacities of 3.712, 4.114, 4.843, 3.517, and 2.814 mg/g, respectively. The MTIMSNs-based affinity extraction coupled with high performance liquid chromatography have been successfully applied to the determination of the five cinnamic acid derivatives in Taraxaci Herba.
Collapse
Affiliation(s)
- Rongrong Xing
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, China; Drug Quality Control Research Center, Shanxi Medical University, Taiyuan, 030001, China.
| | - Tingyu Xue
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, China; Drug Quality Control Research Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Huangjin Li
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, China; Drug Quality Control Research Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Yifei Zhou
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, China; Drug Quality Control Research Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Xuan Chen
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, China; Drug Quality Control Research Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Shuang Hu
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, China; Drug Quality Control Research Center, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
3
|
Wang L, Wu W, Li G, Chen H, Fan Y, Chen W, Zhou G, Li W. An Integrated Approach to Identify the Q-Markers of Banxia-Houpo Decoction Based on Nontargeted Multicomponent Profiling, Network Pharmacology, and Chemometrics. PHYTOCHEMICAL ANALYSIS : PCA 2025; 36:832-845. [PMID: 39497523 DOI: 10.1002/pca.3471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 04/12/2025]
Abstract
INTRODUCTION The inherent complexity of traditional Chinese medicine (TCM) poses significant challenges in directly correlating quality evaluation with clinical efficacy. Banxia-Houpo Decoction (BHD), a classical TCM formula, has demonstrated efficacy in treating globus hystericus. However, the intricate composition of BHD, which contains both volatile and non-volatile active components, complicates efforts to ensure its consistent quality and clinical effectiveness. OBJECTIVE The aim of this study was to introduce an integrated approach that combines non-targeted multicomponent analysis, network pharmacology, and multivariate chemometrics to identify quality markers for the effective quality control of BHD. MATERIALS AND METHODS First, a nontargeted high-definition MSE method based on ultraperformance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UHPLC-QTOF-MS) was developed for the comprehensive multi-component characterization of BHD. Next, the quality markers of nonvolatile compounds in BHD were identified through network pharmacology analysis. Subsequently, volatile organic compounds (VOCs) in BHD samples were analyzed via headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS). Finally, the orthogonal partial least squares discriminant analysis (OPLS-DA) model was applied to screen for potential markers. RESULTS Based on in-house library-driven automated peak annotation and comparison with 25 reference compounds, 128 components were identified for the first time. Additionally, honokiol, magnolol, magnoflorine, 6-gingerol, rosmarinic acid, and adenosine were preliminarily identified as potential quality markers for BHD through network pharmacology analysis. By employing two complementary techniques, HS-SPME-GC-MS and HS-GC-IMS, a total of 145 volatile compounds was identified in the BHD samples. Four potential differential VOCs in the BHD samples were further identified based on the variable importance in projection (VIP ≥ 1.5) using HS-GC-IMS combined with chemometric analysis. CONCLUSION In conclusion, this study not only contributes to establishing quality standards for BHD but also offers new insights into quality assessment and identification in the development of classical formulations enriched with volatile components.
Collapse
Affiliation(s)
- Long Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin, China
| | - Weigang Wu
- Jiuxin (Wuhan) Institute of Traditional Chinese Medicine Co. Ltd., Wuhan, China
| | - Guoxiang Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haiyang Chen
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yinyin Fan
- Jiuxin (Wuhan) Institute of Traditional Chinese Medicine Co. Ltd., Wuhan, China
| | - Wei Chen
- Shanghai Zhen Ren Tang Pharmaceutical Co. Ltd., Shanghai, China
| | - Guifang Zhou
- Shanghai Zhen Ren Tang Pharmaceutical Co. Ltd., Shanghai, China
| | - Wenlong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Chen S, Qi H, Zhu C, Zhao Y, Jiao B, Tan Y, Yang Y, Wang T, Hou Y, Dai B, Zhang D, Zhang H, Zhang J, Jiang X, Guo X, Qian X, Yuan C, Bai X, Chen J, Wang S, Cai Y, Zhong J, Li Y, Zhang Q, Jia Z, Wu C. Quality and composition control of complex TCM preparations through a novel "Herbs-in vivo Compounds-Targets-Pathways" network methodology: The case of Lianhuaqingwen capsules. Pharmacol Res 2025; 213:107650. [PMID: 39947450 DOI: 10.1016/j.phrs.2025.107650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Lianhuaqingwen (LHQW) capsules, a Chinese patent medicine composed of 13 herbal ingredients, are widely used for respiratory diseases. However, the complex composition of LHQW poses challenges in assessing its quality and consistency. In this study, a comprehensive network of LHQW was constructed by integrating Digital RNA with pertUrbation of Genes (DRUG)-seq, RNA sequencing, and pharmacodynamic data. This approach enables rapid and systematic screening of compounds in LHQW that exhibit high-exposure in vivo and significant activity potential, serving as potential quality control markers. Specifically, DRUG-seq was employed to evaluate gene expression alterations in peripheral blood mononuclear cells derived from healthy volunteers. Ultrahigh-performance liquid chromatography coupled with high-resolution mass spectrometry (UPLC-HRMS) identified 505 compounds in LHQW-treated rats. Additionally, absorption, distribution, metabolism, and excretion (ADME) profiles were plotted for 27 primary components of LHQW. Furthermore, an HPLC-MS/MS method quantified 46 compounds from LHQW, with 15 of them identified as potential quality markers with high exposure levels. These markers exhibited significant inhibitory effects on lipopolysaccharide (LPS)-induced pneumonia in mice, with mechanisms predicted by RNA-seq and verified by RT-qPCR. In summary, this study successfully constructed an "Herbs- in vivo Compounds-targets-pathways" network, offering novel insights into the mechanisms of LHQW and establishing a foundation for enhancing quality control measures.
Collapse
Affiliation(s)
- Simian Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361105, China
| | - Hui Qi
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, Hebei 050091, China; State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, Hebei 050035, China
| | - Chunyan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361105, China
| | - Yiheng Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Jiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuexin Yang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361105, China
| | - Tongxing Wang
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, Hebei 050091, China
| | - Yunlong Hou
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, Hebei 050091, China
| | - Binxin Dai
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361105, China
| | - Dandan Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361105, China
| | - Hairong Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361105, China
| | - Junyu Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361105, China
| | - Xiaojuan Jiang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361105, China
| | - Xiaodan Guo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361105, China
| | - Xiaoyu Qian
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361105, China
| | - Caixia Yuan
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361105, China
| | - Xue Bai
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361105, China
| | - Jiayun Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361105, China
| | - Suping Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361105, China
| | - Yu Cai
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361105, China
| | - Jiarou Zhong
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361105, China
| | - Yunqi Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianqian Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenhua Jia
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, Hebei 050091, China; State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, Hebei 050035, China; Affiliated Yiling Hospital of Hebei Medical University, Shijiazhuang, Hebei 050091, China.
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361105, China; Xiamen Key Laboratory for Clinical Efficacy and Evidence-Based Research of Traditional Chinese Medicine, Xiamen University, Xiamen 361105, China.
| |
Collapse
|
5
|
Wan C, Sun S, Han Y, Du Y, Li X, Zhang L, Yang Y, Hao J, Wu Y. Integrating lipid metabolomics, serum medicinal chemistry, network pharmacology and experimental validation to explore the mechanism of Sanmiao wan in the treatment of rheumatoid arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119295. [PMID: 39733801 DOI: 10.1016/j.jep.2024.119295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rheumatoid arthritis (RA) is a common autoimmune disease with a high clinical morbidity and leads to persistent chronic inflammation. Sanmiao wan is a classic formula for the treatment of RA, and the results of clinical and experimental studies have shown its therapeutic effect on RA. However, its mechanism of action remains unclear. AIM OF THE STUDY The aim of this study was to evaluate the effect of Sanmiao wan on RA rats and to further explore its protective mechanism. MATERIALS AND METHODS Research was conducted using RA models induced by Freund's adjuvant complete, and the degree of arthritis, bone destruction, histopathological and clinical chemical indexes of RA model rats were used to evaluate the animal model and the therapeutic effect of Sanmiao wan. A combination of lipid metabolomics, serum medicinal chemistry, network pharmacology, molecular docking and experimental validation was used to systematically elucidate the potential mechanism of action of Sanmiao wan in the treatment of RA. RESULT Pharmacodynamic results showed that Sanmiao reduced joint swelling and improved immunity, and the results of non-targeted lipid metabolomics showed a total of 6 lipid core markers, which were hypothesised to play a therapeutic role in RA by modulating the glycerophospholipid metabolism and sphingolipid metabolism pathways. Using serum medicinal chemistry, we identified 19 blood components and predicted the targets related to RA, and combined with network pharmacology, we screened a total of 59 components and disease-cross-cutting targets, and the enrichment analysis and network pharmacology and KEGG results indicated that the core targets were TNF, IL6, MMP3, and the key metabolic pathways were TNF signaling pathway, lipid and The key metabolic pathways are TNF signaling pathway, lipid and atherosclerosis, rheumatoid arthritis, IL-17 signaling pathway and sphingolipid signaling pathway, etc. It was verified by molecular docking and ELISA experiments that palmatine, cyasterone, atractylenolide I, atractylenolide III, wogonoside, wogonin, phellodendrine, and berberine in Sanmiao could reduce the activity of these targets, thereby inhibiting the expression of inflammatory factors TNF-α, IL6, IL17, RF, MMP3, STAT3. CONCLUSIONS Sanmiao has a good therapeutic effect on RA, and for the first time, it was found that its potential mechanism of action may be to treat RA by decreasing the activities of TNF, IL6, MMP3 and modulating glycerophospholipid metabolism and sphingolipid metabolism.It provides a solid basis for the clinical application of Sanmiao wan.
Collapse
Affiliation(s)
- Chunlei Wan
- Mudanjiang Normal University, Mudanjiang, 157011, China.
| | - Siyu Sun
- Mudanjiang Normal University, Mudanjiang, 157011, China
| | - Yuxing Han
- Mudanjiang Normal University, Mudanjiang, 157011, China
| | - Yuqing Du
- Mudanjiang Normal University, Mudanjiang, 157011, China
| | - Xueying Li
- Mudanjiang Normal University, Mudanjiang, 157011, China
| | - Lei Zhang
- Mudanjiang Normal University, Mudanjiang, 157011, China
| | - Yue Yang
- Mudanjiang Normal University, Mudanjiang, 157011, China
| | - Jingwei Hao
- Mudanjiang Normal University, Mudanjiang, 157011, China
| | - Yuqi Wu
- Mudanjiang Normal University, Mudanjiang, 157011, China
| |
Collapse
|
6
|
Wang X, Xie Y, Bayoude A, Zhang B, Yu B. Discovering the Q-marker of scutellaria baicalensis against viral pneumonia integrated chemical profile identification, pharmacokinetic, metabolomics and network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119232. [PMID: 39662860 DOI: 10.1016/j.jep.2024.119232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 12/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellaria baicalensis (SR), an ancient antiviral herbal medicine, is widely used in treating viral pneumonia and its active constituents, baicalin and baicalein, have been reported to have antiviral activity. AIM OF THE STUDY However, reports on Q-markers of SR for antiviral pneumonia are still scarce. This study aims to screen for Q-markers using a comprehensive strategy that integrates identification of chemical profiles, in vivo absorption, metabolic regulation and predicted target. MATERIALS AND METHODS First, the markers were screened by chemical profile identification and pharmacokinetics using HPLC-MS/MS. Then, the therapeutic effects and differential metabolites of SR on viral pneumonia rats were evaluated by HE staining, assessment of inflammation levels and metabolomics analysis. Finally, the mechanisms of action between Q-markers and metabolites were exploited based on network pharmacology. CONCLUSION A total of 139 compounds were identified in SR, of which 35 and 41 were found in rat plasma and urine, respectively. Pharmacokinetic screening identified baicalin, baicalein, wogonin, wogonoside and oroxylin A as potential markers of SR. Furthermore, SR significantly improved interstitial and alveolar oedema, hemorrhage and alveolar collapse after modelling, while reducing the expression of inflammatory factors. Metabolomics revealed that SR significantly regulated the expression of 37 metabolites, mainly involving phenylalanine, tyrosine and tryptophan biosynthesis pathways. Network pharmacology showed that these five biomarkers can regulate the expression of metabolites through the key target SRC, ESR1, HSP90AA1, EGFR, thereby exerting antiviral effects against pneumonia. The study results suggest that baicalin, baicalein, wogonin, wogonoside and oroxylin A serve as primary Q-markers of SR in the treatment of viral pneumonia.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yujun Xie
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Alamusi Bayoude
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Boli Zhang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Boyang Yu
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
7
|
Chen Q, Chen P, Bi C, Shen X, Guo L, Jiang Y, Liu Y, Wu Y, Li Y, Wu Z, Zhu X, Song P, Yang P, Zhang Y, Yang Z. Screening immunomodulatory Q-markers in Astragali Radix based on UHPLC-QTOF-MS analysis and spectrum-effect relationship. Biomed Chromatogr 2024; 38:e6015. [PMID: 39385660 DOI: 10.1002/bmc.6015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/06/2024] [Accepted: 07/18/2024] [Indexed: 10/12/2024]
Abstract
Astragali Radix (AR) is one of the famous traditional Chinese medicines (TCMs) for boosting immunity, whereas the quality markers (Q-markers) of AR have not been clearly researched. The immunomodulatory activities of the bioactive extractions and components were evaluated by NO inhibition rate; phagocytic index; IL-10, TNF-α, IL-1β, and IL-6 cytokines in RAW264.7 cells; and the relative proliferation rate of spleen cells. The total saponins (TS) and the grade 2 (Xiaoxuan, XX) of AR showed the strongest immunomodulatory activities. At the concentration of 40 μg/mL, the TS increased spleen cells proliferation by 48.0% and upregulated the level of IL-1β and IL-6. Cytokines in the XX-treated group were at least 1.6 times higher than the control group. A total of 190 common peaks were detected in AR by ultrahigh-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-QTOF-MS). The multivariate statistical analyses revealed that 41 compounds were positively correlated with immune responses, and bioactive compounds were verified by using RAW264.7 cell assay. Subsequently, the contents of six compounds in different commercial grades were determined, and the results showed the same trend in contents and activities. Finally, calycosin-7-O-β-D-glucoside, astragaloside IV, astragaloside II, astragaloside I, isomucronulatol-7-O-glucoside, and 9,10-dimethoxypterocarpan-3-O-glucoside were screened out as immunomodulatory Q-markers of AR.
Collapse
Affiliation(s)
- Qin Chen
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Ping Chen
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Chunmei Bi
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xue Shen
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Lirong Guo
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yihan Jiang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yanan Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yangyang Wu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yimeng Li
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhengrong Wu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xujiang Zhu
- Gansu Institute of Drug Control, Lanzhou, China
| | | | | | - Yawen Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhigang Yang
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, China
| |
Collapse
|
8
|
Zeng L, Yan X, Xu Y, Zheng L, Deng W, Li M, Li H, Wang Z. Comprehensive characterization of anthraquinones in Damnacanthus indicus using mass spectrometry molecular networking and metabolomics-based herb discrimination. RSC Adv 2024; 14:37911-37924. [PMID: 39610812 PMCID: PMC11603343 DOI: 10.1039/d4ra06732k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024] Open
Abstract
Damnacanthus indicus is a widely used folk medicine in China, renowned for its various bioactivities. The key active components, anthraquinones, have not been comprehensively profiled due to their complex chemical nature. Establishing a high-throughput strategy to systematically characterize these anthraquinones is essential. Additionally, the cultivation of D. indicus across various provinces results in significant quality differences in the harvested herbs. Thus, developing an effective strategy to distinguish herbs from different regions and identify characteristic chemical markers for quality evaluation and control is crucial. In this study, a strategy based on ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) was employed to systematically characterize the chemical composition of D. indicus. Mass spectrometry molecular networking was utilized to rapidly recognize and identify anthraquinones. Principal component analysis (PCA) was applied to cluster the herbs from different habitats, while partial least square discriminant analysis (PLS-DA) was used to screen for chemical markers distinguishing herb origins. The result showed that a total of 112 anthraquinones and 66 non-anthraquinone compounds were identified in D. indicus. The biosynthetic pathways of anthraquinones in this herb were proposed. PCA grouped 15 batches of herbs from different origins into three clusters, corresponding to the climate types of their habitats. PLS-DA identified 27 significant chemical markers that could robustly distinguish the geographical origins of the herbs. This study provides a valuable reference for the quality evaluation and control of D. indicus and offers a scientific basis for the pharmacological research and rational utilization of these medicinal resources.
Collapse
Affiliation(s)
- Lihua Zeng
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences Nanchang 330115 China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine Nanchang 330115 China
| | - Xing Yan
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences Nanchang 330115 China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine Nanchang 330115 China
| | - Ya Xu
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences Nanchang 330115 China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine Nanchang 330115 China
| | - Lulu Zheng
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences Nanchang 330115 China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine Nanchang 330115 China
| | - Wenwen Deng
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences Nanchang 330115 China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine Nanchang 330115 China
| | - Mengning Li
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences Nanchang 330115 China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine Nanchang 330115 China
| | - Hui Li
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences Nanchang 330115 China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine Nanchang 330115 China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Zhixin Wang
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences Nanchang 330115 China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine Nanchang 330115 China
| |
Collapse
|
9
|
Xu YH, Chen XY, Chen J. An integrated strategy for deciphering quality markers of Terminaliae Belliricae Fructus based on a three-dimensional characteristic model. J Chromatogr A 2024; 1737:465465. [PMID: 39471606 DOI: 10.1016/j.chroma.2024.465465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/27/2024] [Accepted: 10/20/2024] [Indexed: 11/01/2024]
Abstract
Terminalia bellirica (Gaertn.) Roxb. is an ethnomedicinal plant that has been utilized in Tibetan and traditional Chinese medicine (TCM). Nevertheless, its quality standard officially listed in the Chinese Pharmacopoeia does not include any content determination of the indicator components of Terminaliae Belliricae Fructus, which constrains the effective quality evaluation of medicinal material and related products. In this paper, a three-dimensional "content-pharmacokinetics-pharmacology" network strategy was developed to identify the quality markers (Q-markers) of Terminaliae Belliricae Fructus in terms of "measurability", "traceability" and "effectiveness". Chromatographic fingerprint analysis was performed to outline its chemical contour, and identify the differential components of 17 batches of Terminaliae Belliricae Fructus combined with multivariate statistics analysis and UPLC-QTOF-MS analysis. Serum pharmacochemistry analysis was implemented on rats, and 25 prototype components absorbed into the blood were identified. By network pharmacology analysis, a component-disease-target-pathway network was constructed, thus validating the effectiveness of the chemical components of Terminaliae Belliricae Fructus. Afterwards, the above screened candidate components were put into construction of three-dimensional "radar chart". According to the calculated regression area (RA) and coefficient of variation (CV) values, the potential Q-markers was determined, followed by "specificity" evaluation. Ultimately, ellagic acid (EA), chebulagic acid (CHA), gallic acid (GA), chebulinic acid (CA), corilagin (CO) and chebulanin (CH) were specified as the Q-markers of Terminaliae Belliricae Fructus. Owing to high content, good pharmacokinetic property, high pharmacological activities and specificity. The screened Q-markers could offer a scientific foundation for the quality control of Terminaliae Belliricae Fructus, and the proposed strategy is demonstrated to be reliable and feasible for deciphering Q-markers of TCM.
Collapse
Affiliation(s)
- Yi-Han Xu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Xin-Yue Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China.
| | - Juan Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
10
|
Xu Z, Yuan Y, Yuan Y, Ru L, Yuan Z, Xu Q, Li X. Safety assessment of Wuzhuyu decoction extract: acute and subacute oral toxicity studies in rats. Drug Chem Toxicol 2024; 47:889-896. [PMID: 38291651 DOI: 10.1080/01480545.2024.2309341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/06/2023] [Indexed: 02/01/2024]
Abstract
Wuzhuyu decoction (WZYD) is a well-known classic traditional Chinese medicine prescription and has been widely used to treat headache, nausea, vomiting, insomnia, etc. However, little published information is available about its safety. Our aim was to investigate the acute and subacute oral toxicity of WZYD extract in rats following the technical guidelines from China's National Medical Products Administration (NMPA) for single and repeated doses toxicity studies of drugs. Acute oral toxicity was assessed in rats via oral administration of WZYD extract at 4 g/kg three times within a day followed by a 14-day observation period. To evaluate the subacute toxicity, rats were orally administered with WZYD extract at doses of 0, 0.44, 1.33, and 4 g/kg for 28 days. The items examined included clinical signs, body weight, food consumption, hematological and biochemical parameters, bone marrow smear, organ index, and histopathology. After the rats were administered with 12 g/kg (3 × 4 g/kg) WZYD extract, no mortality and toxic effects were observed during the observation period. In the subacute toxicity study, WZYD extract did not cause any significant treatment-related abnormality in each examined item of rats, so the no observed adverse effect level (NOAEL) of WZYD extract for 28 days orally administered to rats is considered to be 4 g/kg, which is approximately 80-fold of its clinical proposed dosage.
Collapse
Affiliation(s)
- Zhiyong Xu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongtian Yuan
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yueming Yuan
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Ru
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zheng Yuan
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qin Xu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaobo Li
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
11
|
Deng L, Jin Y, Zheng X, Yang Y, Feng Y, Zhou H, Zeng Q. Pharmacological and toxicological characteristics of baicalin in preventing spontaneous abortion and recurrent pregnancy loss: A multi-level critical review. Heliyon 2024; 10:e38633. [PMID: 39640688 PMCID: PMC11619987 DOI: 10.1016/j.heliyon.2024.e38633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 12/07/2024] Open
Abstract
Relevance Spontaneous abortion (SAB) and recurrent pregnancy loss (RPL) occur alone or concurrently with increasing incidences recently. Scutellaria baicalensis Georgi (SBG) has been used to prevent pregnancy loss for thousands of years, which is recognized as a "pregnancy-stabilizing herb" in ancient China. Baicalin (BA) and its metabolite baicalein (BE) are the main bioactive flavonoids in the root of SBG. Methods In this study, we focused particularly on the metabolism, toxicology, and pharmacological effects of BA at the maternal-fetal interface based on the biological process prediction by network pharmacology. Focused on the systematic review of BA's regulatory mechanisms of immune homeostasis, cell proliferation and invasion, programmed cell death, inflammatory microenvironment, angiogenesis, oxidative stress and vascular remodeling at the maternal-fetal interface, it was found that BA exerts its biological effects to treat SAB and RPL through multiple perspectives and targets. We also critically elucidated the limitations of using BA from a clinical perspective. Results We explored the bioavailability, targeting and efficacy of BA from a new perspective (optimization of the BA delivery system, organoid studies based on BA, potential effects of BA on uterine flora and bioactive components). Finally, we propose a multimodal stereo sequencing study of biologically active components based on pathological dynamics incorporating single-cell RNA sequencing, spatially resolved transcriptomics, and single-cell multimodal omics to delve deeper into the fetal-preserving mechanism of BA and to promote the application of BA in clinical practice.
Collapse
Affiliation(s)
- Linwen Deng
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Yue Jin
- Combined Traditional Chinese Medicine and Western Medicine Clinics, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Xiaoyan Zheng
- College of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Yi Yang
- Combined Traditional Chinese Medicine and Western Medicine Clinics, Mianyang Central Hospital, Sichuan, China
| | - Yong Feng
- Combined Traditional Chinese Medicine and Western Medicine Clinics, Mianyang Central Hospital, Sichuan, China
| | - Hang Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Qian Zeng
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| |
Collapse
|
12
|
Xu YH, Chen J. Discovery of quality markers of Phyllanthus emblica by integrating chromatographic fingerprint, serum pharmacochemistry and network pharmacology. J Pharm Biomed Anal 2024; 249:116346. [PMID: 39018721 DOI: 10.1016/j.jpba.2024.116346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/14/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
Phyllanthus emblica (P. emblica) is a vital medicinal plant with both medical and edible values. In the quality standard of P. emblica listed by the Chinese Pharmacopoeia, gallic acid is used as the index component for the content determination. However, a large number of tannin components can be decomposed into gallic acid during its refluxing extraction process, thus affecting the accuracy and specificity of the content determination. Thus, the index component used for the quality control needs to be further determined. In this study, the quality markers of P. emblica was specified by integrating chromatographic fingerprint, serum pharmacochemistry and network pharmacology. The chromatographic fingerprint of 18 batches of P. emblica samples were established by ultra-high-performance liquid chromatography (UPLC), and 8 differential components causing quality fluctuation were identified by chemometric analysis and UPLC-Q-TOF/MS analysis. Afterwards, 14 prototype migration components absorbed into the blood after gavage administration to rats were identified by UPLC-Q-TOF/MS analysis. Subsequently, a network pharmacology approach was used to construct the component-target-disease-pathway network, resulting in the identification of 22 components responsible for efficacy of P. emblica. Finally, by integrating the above results, ellagic acid was screened out as one of the Q-markers and could be employed as a quantitative component of P. emblica to improve the quality standard. The strategy is also informative for discovering Q-markers of other TCMs.
Collapse
Affiliation(s)
- Yi-Han Xu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Juan Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
13
|
Ma W, Liu T, Ogaji OD, Li J, Du K, Chang Y. Recent advances in Scutellariae radix: A comprehensive review on ethnobotanical uses, processing, phytochemistry, pharmacological effects, quality control and influence factors of biosynthesis. Heliyon 2024; 10:e36146. [PMID: 39262990 PMCID: PMC11388511 DOI: 10.1016/j.heliyon.2024.e36146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024] Open
Abstract
Background Scutellariae radix (SR) is the dried root of Scutellaria baicalensis Georgi. It has a long history of ethnic medicinal use, traditionally recognized for its efficacy in clearing heat, drying dampness, eliminating fire, removing toxins , stopping bleeding and tranquilizing fetus to prevent miscarriage. Clinically, it is used to treat cold, fever, migraine, hand-foot-and-mouth diseases, liver cancer and inflammatory diseases. Purpose The review aims to provide a comprehensive reference on the ethnobotanical uses, processing, phytochemistry, pharmacological effect, quality control and influence factors of biosynthesis for a deeper understanding of SR. Results and conclusion A total of 210 isolated components have been reported in the literature, including flavonoids and their glycosides, phenylpropanoids, phenylethanoid glycosides, phenolic acids, volatile components, polysaccharides and others. The extract of SR and its main flavonoids such as baicalin, baicalein, wogonin, wogonoside, and scutellarin showed antioxidant, anti-inflammatory, anti-tumor, antiviral, hepatoprotective, and neuroprotective effects. However, further studies are required to elucidate its mechanisms of action and clinical applications. The pharmacodynamic evaluation based on traditional efficacy should be conducted. Although various analytical methods have been established for the quality control of SR, there are gaps in the research regarding efficacy-related quality markers and the development of quality control standards for its processed products. The regulatory mechanisms of flavonoids biosynthesis remain to be explored while the influence of environmental and transcription factors on the biosynthesis have been studied. In conclusion, SR is a promising herbal medicine with significant potential for future development.
Collapse
Affiliation(s)
- Wentao Ma
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tianyu Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Omachi Daniel Ogaji
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
14
|
Xue R, Zhang Q, Mei X, Wang B, Su L, Mao C, Guo ZJ, Gao B, Ji D, Lu T. Research on quality marker based on the processing from Aconiti lateralis radix praeparata to Heishunpian. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1443-1456. [PMID: 38797531 DOI: 10.1002/pca.3376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION Aconiti lateralis radix praeparata (ALRP), the sub root of Aconitum carmichaelii Debx., is a traditional Chinese medicine with good pharmacological effects. Heishunpian (HSP), prepared through the process of brine immersing, boiling, rinsing, dyeing, and steaming ALRP is one of the most widely used forms of decoction pieces in clinical practice. OBJECTIVES This study aims to investigate the mechanisms of component changes and transformations during the processing from ALRP to HSP, and to screen for their quality markers through UHPLC-QTOF-MS analysis. METHODS Samples from ALRP to HSP during processing were prepared and analyzed by UHPLC-QTOF-MS. By comparing the differences between before and after each processing step, the purpose of processing and the transformation of components during processing were studied. In addition, multiple batches of ALRP and HSP were determined, and potential quality markers were screened. RESULTS Through the analysis of ALRP and five key processing samples, 55 components were identified. Immersing in brine, rinsing, and dyeing were the main factors of component loss, and boiling caused a slight loss of components. Some components were enhanced during the steaming process. Combining the screened differences components between multiple ALRP and HSP, 10 components were considered as potential quality biomarkers. CONCLUSION This study found that the adjacent hydroxyl groups of the ester group may have a positive impact on the hydrolysis of the ester group, and 10 quality markers were preliminarily screened. It provides a reference for quality control and clinical application of ALRP and HSP.
Collapse
Affiliation(s)
- Rong Xue
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xi Mei
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bin Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lianlin Su
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunqin Mao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi Jun Guo
- Nanjing University of Chinese Medicine and China Resources Sanjiu Medical & Pharmaceutical Co. Ltd., Shenzhen Longhua, China
| | - Bo Gao
- Nanjing University of Chinese Medicine and China Resources Sanjiu Medical & Pharmaceutical Co. Ltd., Shenzhen Longhua, China
| | - De Ji
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tulin Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
15
|
Liu L, Fan W, Zhang H, Fan L, Mei Y, Wang Z, Li L, Yang L, Wang Z. A versatile economic strategy by HPLC-CAD for quantification of structurally diverse markers in quality control of Shengmai Formula from raw materials to preparations. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155625. [PMID: 38692077 DOI: 10.1016/j.phymed.2024.155625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Shengmai Formula (SMF), a classic formula in treating Qi-Yin deficiency, is composed of Ginseng Radix et Rhizoma Rubra (GRR), Ophiopogon Radix (OR), and Schisandra chinensis Fructus (SC), and has been developed into various dosage forms including Shengmai Yin Oral Liquid (SMY), Shengmai Capsules (SMC), and Shengmai Injection (SMI). The pharmacological effects of compound Chinese medicine are attributed to the integration of multiple components. Yet the quality criteria of SMF are limited to monitoring schisandrol A or ginsenosides Rg1 and Re, but none for OR. Since the complexity of raw materials and preparations, establishing a economical and unified method for SMF is challenging. It is urgent to simultaneously quantify multiple components with different structures using a universal method for quality control of SMF. Charged aerosol detector (CAD) overcame the above shortcomings owing to its characteristics of high responsiveness, nondiscrimination, and low cost. PURPOSE We aimed to establish a versatile analysis strategy using HPLC-CAD for simultaneously quantifying the structurally diverse markers in quality control of SMF from raw materials to preparations. METHOD By optimizing the column, mobile phase, column temperature, flow rate, and CAD parameters, a HPLC-CAD method that integrated multi-component characterization, authenticity identification, transfer information of raw materials and quantitative determination of Shengmai preparations was established. RESULTS In total 50 components from SMF were characterized (28 in GRR, 13 in SC, and 9 in OR). The differences in raw materials between species of SC and Schisandrae sphenantherae Fructus (SS), processing methods of Ginseng Radix (GR) and GRR, and locations of OR from Sichuan (ORS) and Zhejiang (ORZ) were compared. Fourteen components in 19 batches of SMY, SMC and SMI from different manufacturers were quantified, including 11 ginsenosides and 3 lignans. The multivariate statistical analysis results further suggested that Rb1, Rg1 and Ro were the main differences among Shengmai preparations. CONCLUSION The established versatile analysis strategy based on HPLC-CAD was proven sensitive, simple, convenient, overcoming the discriminatory effect of UV detector, revealing the composition and transfer information of SMF and applicable for authentication of the ingredient herbs and improving the quality of Shengmai preparations.
Collapse
Affiliation(s)
- Longchan Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenxiang Fan
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Haoyue Zhang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linhong Fan
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuqi Mei
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ziying Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
16
|
Yang L, Dai L, Qin W, Wang Y, Zhao J, Pan S, He D. Chemical constituent characterization and determination of Quisqualis fructus based on UPLC-Q-TOF-MS and HPLC combined with fingerprint and chemometric analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1418480. [PMID: 38988635 PMCID: PMC11234885 DOI: 10.3389/fpls.2024.1418480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/31/2024] [Indexed: 07/12/2024]
Abstract
Quisqualis fructus (QF) is a traditional Chinese medicine (TCM) that it has a long history in the therapeutic field of killing parasites, eliminating accumulation, and stopping diarrhea. However, the therapeutic material basis of QF is remaining ambiguous nowadays. The geographical origin differences of QF are also usually ignored in the process of medication. In this study, the alcohol-aqueous soluble constituents in QF from different origins were systematically characterized and accurately measured by ultra-high performance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and high-performance liquid chromatography (HPLC) respectively. Chemometric analysis was performed for origin differentiation and screening of potential quality marker (Q-marker). Finally, A total of 106 constituents were tentatively characterized in positive and negative ion modes, including 29 fatty acids, 26 organic acids, 11 amino acids and derivatives, 10 glycosides, 9 alkaloids and derivatives, and 21 other constituents. QF from different origins were effectively distinguished and 16 constituents were selected as the potential Q-markers subsequently. Four representative components (trigonelline, adenosine, ellagic acid, and 3,3'-di-O-methylellagic acid) in QF samples were simultaneously determined. HPLC fingerprint analysis indicated that the similarity between 16 batches of QF was in the range of 0.870-0.999. The above results provide some insights for the research on the pharmacodynamic constituents, quality control, and geographical discrimination of QF.
Collapse
Affiliation(s)
- Lin Yang
- Chongqing Pharmaceutical Preparation Engineering Technology Research Center, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Lei Dai
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Weihan Qin
- Medicinal Chemistry Institute of Traditional Chinese Medicine, Chongqing Academy of Chinese Material Medica, Chongqing, China
| | - Yiwu Wang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jianing Zhao
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Shuxiang Pan
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Dan He
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
Chen L, Huang D, Jiang L, Yang J, Shi X, Wang R, Li W. A review of botany, phytochemistry, pharmacology, and applications of the herb with the homology of medicine and food: Ligustrum lucidum W.T. Aiton. Front Pharmacol 2024; 15:1330732. [PMID: 38933667 PMCID: PMC11199554 DOI: 10.3389/fphar.2024.1330732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Ligustrum lucidum W.T. Aiton is an outstanding herb with the homology of medicine and food. Its ripe fruits are traditionally used as an important tonic for kidneys and liver in China. Ligustrum lucidum W.T. Aiton is rich in nutritional components and a variety of bioactive ingredients. A total of 206 compounds have been isolated and identified, they mainly include flavonoids, phenylpropanoids, iridoid glycosides, and triterpenoids. These compounds exert anti-osteoporosis, anti-tumor, liver protective, antioxidant, anti-inflammatory, and immunomodulatory effects. Ligustrum lucidum W.T. Aiton has been traditionally used to treat many complex diseases, including osteoporotic bone pain, rheumatic bone, cancer, related aging symptoms, and so on. In the 2020 Edition of Chinese Pharmacopoeia, there are more than 100 prescriptions containing L. lucidum W.T. Aiton. Among them, some classical preparations including Er Zhi Wan and Zhenqi fuzheng formula, are used in the treatment of various cancers with good therapeutic effects. Additionally, L. lucidum W.T. Aiton has also many excellent applications for functional food, ornamental plants, bioindicator of air pollution, algicidal agents, and feed additives. Ligustrum lucidum W.T. Aiton has rich plant resources. However, the application potential of it has not been fully exploited. We hope that this paper provides a theoretical basis for the high-value and high-connotation development of L. lucidum W.T. Aiton in the future.
Collapse
Affiliation(s)
- Liping Chen
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, China
| | - Dong Huang
- School of Medicine, Tibet University, Lhasa, China
| | - Lin Jiang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jihong Yang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xiaoyu Shi
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Rong Wang
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, China
| | - Wenbin Li
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, China
| |
Collapse
|
18
|
Lu Z, Yuan Y, Han Q, Wang Y, Liang Q. Lab-on-a-chip: an advanced technology for the modernization of traditional Chinese medicine. Chin Med 2024; 19:80. [PMID: 38853247 PMCID: PMC11163804 DOI: 10.1186/s13020-024-00956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024] Open
Abstract
Benefiting from the complex system composed of various constituents, medicament portions, species, and places of origin, traditional Chinese medicine (TCM) possesses numerous customizable and adaptable efficacies in clinical practice guided by its theories. However, these unique features are also present challenges in areas such as quality control, screening active ingredients, studying cell and organ pharmacology, and characterizing the compatibility between different Chinese medicines. Drawing inspiration from the holistic concept, an integrated strategy and pattern more aligned with TCM research emerges, necessitating the integration of novel technology into TCM modernization. The microfluidic chip serves as a powerful platform for integrating technologies in chemistry, biology, and biophysics. Microfluidics has given rise to innovative patterns like lab-on-a-chip and organoids-on-a-chip, effectively challenging the conventional research paradigms of TCM. This review provides a systematic summary of the nature and advanced utilization of microfluidic chips in TCM, focusing on quality control, active ingredient screening/separation, pharmaceutical analysis, and pharmacological/toxicological assays. Drawing on these remarkable references, the challenges, opportunities, and future trends of microfluidic chips in TCM are also comprehensively discussed, providing valuable insights into the development of TCM.
Collapse
Affiliation(s)
- Zenghui Lu
- Institute of Traditional Chinese Medicine-X, State Administration of Traditional Chinese Medicine Third-Level Laboratory of Traditional Chinese Medicine Chemistry, Modern Research Center for Traditional Chinese Medicine, Tsinghua University, Beijing, 100084, China
| | - Yue Yuan
- Beijing Key Laboratory of TCM Pharmacology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100730, China
| | - Qiang Han
- Institute of Traditional Chinese Medicine-X, State Administration of Traditional Chinese Medicine Third-Level Laboratory of Traditional Chinese Medicine Chemistry, Modern Research Center for Traditional Chinese Medicine, Tsinghua University, Beijing, 100084, China
| | - Yu Wang
- Institute of Traditional Chinese Medicine-X, State Administration of Traditional Chinese Medicine Third-Level Laboratory of Traditional Chinese Medicine Chemistry, Modern Research Center for Traditional Chinese Medicine, Tsinghua University, Beijing, 100084, China
| | - Qionglin Liang
- Institute of Traditional Chinese Medicine-X, State Administration of Traditional Chinese Medicine Third-Level Laboratory of Traditional Chinese Medicine Chemistry, Modern Research Center for Traditional Chinese Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
19
|
Liu Q, Liu L, Xie L, Zheng L, Xu Q, Li W, Liu X. Screening and evaluation of quality markers of Radix Cudramiae for liver disease based on an integrated strategy of in vivo pharmacokinetics and in vitro HPLC fingerprint. J Pharm Biomed Anal 2024; 242:116055. [PMID: 38412792 DOI: 10.1016/j.jpba.2024.116055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 02/29/2024]
Abstract
Radix Cudramiae, the dried root of Cudrania cochinchinensis (Lour.) Kudo et Masam., is a valuable ethnomedicine with outstanding antihepatitis activity. However, the lack of reports on quality markers (Q-markers) hindered its quality evaluation and standardization, as a result restricted its clinical application. This paper aimed to discover the Q-markers of Radix Cudramiae with a comprehensive strategy based on in vivo pharmacokinetics and in vitro HPLC fingerprint. A rapid and sensitive ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS/MS) analytical method was firstly developed and validated for simultaneous determination of six potential active ingredients (eriodictyol, dihydrokaempferol, dihydromorin, kaempferol, naringenin and morin) of Radix Cudramiae in rat plasma and tissues, which was successfully applied to the holistic comparison of pharmacokinetics and tissue distribution between normal and acute liver injury rats. On the other hand, a representative HPLC fingerprint of Radix Cudramiae was also established to elucidate the chemical profile for overall quality evaluation. Dihydrokaempferol-7-O-β-D-glucoside (the naturally existed chemical formation of dihydrokaempferol) and kaempferol screened out with high exposure levels in vivo and high resolution in HPLC fingerprint were finally selected as Q-markers of Radix Cudramiae. To the best of our knowledge, it was the first time for people to discover in vivo properties and pharmacokinetic parameters of components in Radix Cudramiae, as well as the first report on its representative HPLC fingerprint. Also, the integrated strategy could offer an effective way for TCMs Q-markers screening.
Collapse
Affiliation(s)
- Qing Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; Anyang Hospital of Traditional Chinese Medicine, Anyang, Henan, PR China
| | - Luyao Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Lintong Xie
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Linyu Zheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Qianwei Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Weidong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Xiao Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China.
| |
Collapse
|
20
|
Xia W, Wang Y, Yue J, Fu X. Insights into Q-markers of honey-fried licorice in treating spleen deficiency based on substance and energy metabolism regulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155498. [PMID: 38460491 DOI: 10.1016/j.phymed.2024.155498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Honey-fried Licorice (HFL) is a dosage form of Glycyrrhizae Radix et Rhizome processed with honey, which has been recorded to exhibit better efficacy in tonifying the spleen compared to the raw product. In contrast, different processing methods of Glycyrrhizae Radix et Rhizome exhibit different efficacies and applications, but their current quality control index components remain consistent. PURPOSE Based on the discovery and research strategy of traditional Chinese medicine decoction piece quality marker (Q-marker), this study aimed to conduct a multidimensional integration of constituents absorbed into the body and metabolomics based on the tonifying spleen and stomach effects of HFL to effectively identify the Q-marker of HFL. METHODS In this study, a spleen deficiency rat model was established using the "exhausted swimming + poor diet" method to investigate the pharmacodynamics of tonifying the spleen and stomach by HFL. The constituents absorbed into blood was conducted using UPLC-Q-TOF/MS, correlation analysis between metabolomics and constituents absorbed into blood recognized the Q-Marker of HFL. RESULTS The pharmacodynamic data demonstrated that HFL exhibited a significant regulatory effect on the disordered levels of PP, trypsin, chymase, PL, α-Glu, MTL, GAS, VIP, IL-2, IFN-γ, and IgA in the spleen deficiency model. Furthermore, HFL was found to improve the pathological changes in the spleen and intestine in the spleen deficiency model, highlighting its significant "tonifying spleen and stomach" effect. In the serum containing HFL, a total of 17 constituents were identified as being absorbed into the blood. Among these, 11 were prototypical components, while 6 were metabolites. Metabolomics data revealed that 9 differentially expressed metabolic markers were observed. Furthermore, the analysis of endogenous metabolic markers indicated that 10 components exhibited significant correlations with these biomarkers. CONCLUSION The effect of "tonifying spleen and stomach" of HFL is closely related to the regulation of the material and energy metabolism pathway. The Q-Marker of HFL is glycyrrhizic acid and 18β-glycyrrhetinic acid as the main control standards and liquiritin, isoliquiritin, liquiritin, isoliquiritin, isolicorice flavonol, licorice chalcone C and Formononetin were used as auxiliary standards.
Collapse
Affiliation(s)
- Wenxin Xia
- School of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Xingqing District, Yinchuan, Ningxia 751104, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Yushu Wang
- School of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Xingqing District, Yinchuan, Ningxia 751104, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Jiahui Yue
- School of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Xingqing District, Yinchuan, Ningxia 751104, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Xueyan Fu
- School of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Xingqing District, Yinchuan, Ningxia 751104, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of High Incidence in Ningxia Hui Autonomous Region, Yinchuan 750004, China.
| |
Collapse
|
21
|
Zhang Y, Yang Y, Ren J, Yan G, Yang L, Wu X, Kong L, Sun H, Han Y, Zhang X, Wang X. Chinmedomics strategy for elucidating the effects and effective constituents of Danggui Buxue Decoction in treating blood deficiency syndrome. Front Mol Biosci 2024; 11:1376345. [PMID: 38560521 PMCID: PMC10978583 DOI: 10.3389/fmolb.2024.1376345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Danggui Buxue Decoction (DBD) is a clinically proven, effective, classical traditional Chinese medicine (TCM) formula for treating blood deficiency syndrome (BDS). However, its effects and effective constituents in the treatment of BDS remain unclear, limiting precise clinical therapy and quality control. This study aimed to accurately evaluate the effects of DBD and identify its effective constituents and quality markers. Methods BDS was induced in rats by a combined injection of acetylphenylhydrazine and cyclophosphamide, and the efficacy of DBD against BDS was evaluated based on body weight, body temperature, energy metabolism, general status, visceral indices, histopathology, biochemical markers, and metabolomics. The effects of DBD on urinary and serum biomarkers of BDS were investigated, and the associated metabolic pathways were analyzed via metabolomics. Guided by Chinmedomics, the effective constituents and quality markers of DBD were identified by analyzing the dynamic links between metabolic biomarkers and effective constituents in vivo. Results DBD improved energy metabolism, restored peripheral blood and serum biochemical indices, and meliorated tissue damage in rats with BDS. Correlation analyses between biochemical indices and biomarkers showed that 15(S)-HPETE, LTB4, and taurine were core biomakers and that arachidonic acid, taurine, and hypotaurine metabolism were core metabolic pathways regulated by DBD. Calycosin-7-glucoside, coumarin, ferulic acid sulfate, cycloastragenol, (Z)-ligustilide + O, astragaloside IV, acetylastragaloside I, and linoleic acid were identified as effective constituents improving the hematopoietic function of the rats in the BDS model. Additionally, calycosin-7-glucoside, ferulic acid, ligustilide, and astragaloside IV were identified as quality markers of DBD. Conclusion The hematopoietic function of DBD was confirmed through analysis of energy metabolism, biochemical markers, histopathology, and metabolomics. Moreover, by elucidating effective constituents of DBD in BDS treatment, quality markers were confirmed using a Chinmedomics strategy. These results strengthen the quality management of DBD and will facilitate drug innovation.
Collapse
Affiliation(s)
- Ye Zhang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Yang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Junling Ren
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guangli Yan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiuhong Wu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ling Kong
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hui Sun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Han
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiwu Zhang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xijun Wang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
22
|
Wang M, Yin F, Kong L, Yang L, Sun H, Sun Y, Yan G, Han Y, Wang X. Chinmedomics: a potent tool for the evaluation of traditional Chinese medicine efficacy and identification of its active components. Chin Med 2024; 19:47. [PMID: 38481256 PMCID: PMC10935806 DOI: 10.1186/s13020-024-00917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/03/2024] [Indexed: 03/18/2024] Open
Abstract
As an important part of medical science, Traditional Chinese Medicine (TCM) attracts much public attention due to its multi-target and multi-pathway characteristics in treating diseases. However, the limitations of traditional research methods pose a dilemma for the evaluation of clinical efficacy, the discovery of active ingredients and the elucidation of the mechanism of action. Therefore, innovative approaches that are in line with the characteristics of TCM theory and clinical practice are urgently needed. Chinmendomics, a newly emerging strategy for evaluating the efficacy of TCM, is proposed. This strategy combines systems biology, serum pharmacochemistry of TCM and bioinformatics to evaluate the efficacy of TCM with a holistic view by accurately identifying syndrome biomarkers and monitoring their complex metabolic processes intervened by TCM, and finding the agents associated with the metabolic course of pharmacodynamic biomarkers by constructing a bioinformatics-based correlation network model to further reveal the interaction between agents and pharmacodynamic targets. In this article, we review the recent progress of Chinmedomics to promote its application in the modernisation and internationalisation of TCM.
Collapse
Affiliation(s)
- Mengmeng Wang
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Fengting Yin
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ling Kong
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Hui Sun
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
| | - Ye Sun
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Guangli Yan
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Xijun Wang
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
23
|
Chen L, Jiang L, Shi X, Yang J, Wang R, Li W. Constituents, pharmacological activities, pharmacokinetic studies, clinical applications, and safety profile on the classical prescription Kaixinsan. Front Pharmacol 2024; 15:1338024. [PMID: 38362144 PMCID: PMC10867185 DOI: 10.3389/fphar.2024.1338024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024] Open
Abstract
Kaixinsan (KXS) is a noteworthy classical prescription, which consists of four Chinese medicinal herbs, namely Polygalae Radix, Ginseng Radix et Rhizoma, Poria, and Acori Tatarinowii Rhizoma. KXS was initially documented in the Chinese ancient book Beiji Qianjin Yaofang written by Sun Simiao of the Tang Dynasty in 652 A.D. As a traditional Chinese medicine (TCM) prescription, it functions to nourish the heart and replenish Qi, calm the heart tranquilize the mind, and excrete dampness. Originally used to treat amnesia, it is now also effective in memory decline and applied to depression. Although there remains an abundance of literature investigating KXS from multiple aspects, few reviews summarize the features and research, which impedes better exploration and exploitation of KXS. This article intends to comprehensively analyze and summarize up-to-date information concerning the chemical constituents, pharmacology, pharmacokinetics, clinical applications, and safety of KXS based on the scientific literature, as well as to examine possible scientific gaps in current research and tackle issues in the next step. The chemical constituents of KXS primarily consist of saponins, xanthones, oligosaccharide esters, triterpenoids, volatile oils, and flavonoids. Of these, saponins are the predominant active ingredients, and increasing evidence has indicated that they exert therapeutic properties against mental disease. Pharmacokinetic research has illustrated that the crucial exposed substances in rat plasma after KXS administration are ginsenoside Re (GRe), ginsenoside Rb1 (GRb1), and polygalaxanthone III (POL). This article provides additional descriptions of the safety. In this review, current issues are highlighted to guide further comprehensive research of KXS and other classical prescriptions.
Collapse
Affiliation(s)
- Liping Chen
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, China
| | - Lin Jiang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xiaoyu Shi
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jihong Yang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Rong Wang
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, China
| | - Wenbin Li
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, China
| |
Collapse
|
24
|
Tian M, Nie L, Yin Y, Zhou H, Meng Z, Cao G, Zang H. Study on quality analysis of different species of Coptidis rhizome based on fingerprint-effect relationship. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:77-86. [PMID: 37621176 DOI: 10.1002/pca.3275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023]
Abstract
INTRODUCTION The quality evaluation of Coptidis rhizome (CR) is attributed to the origin and processing method, and this strategy of ignoring the bioactive components usually leads to biased quality analysis, which is difficult to indicate the clinical efficacy. OBJECTIVES In order to evaluate the quality level of different species of CR, we collected 20 batches of CR and investigated the fingerprint-effect relationship. METHODS High-performance liquid chromatography (HPLC) fingerprints of CR were established, and the fingerprint-effect relationship was explored using cluster analysis, principal component analysis, Pearson correlation analysis, grey relation analysis, and partial least squares regression. RESULTS We have identified a total of 10 common peaks (1-10) with similarity scores above 0.96. The study on the relationship between spectra and potency further showed that the contents of peaks 8, 9, and 10 are potential key components. And based on a previous study, a method of one measurement and multiple evaluations of CR was established to achieve the goal of simplifying the analytical process and reducing costs. CONCLUSION Through a combination of fingerprint analysis, antioxidant activity evaluation, fingerprint-efficacy relationship analysis, and simultaneous quantification of multiple components, a CR quality control index and method have been selected and established, which can also provide a more comprehensive quality evaluation for traditional Chinese medicine.
Collapse
Affiliation(s)
- Mengyin Tian
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong, China
| | - Lei Nie
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong, China
| | - Yaqing Yin
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong, China
| | - Haonan Zhou
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong, China
| | - Zhaoqing Meng
- Shandong Hongjitang Pharmaceutical Group Co. Ltd., Jinan, Shandong, China
| | - Guiyun Cao
- Shandong Hongjitang Pharmaceutical Group Co. Ltd., Jinan, Shandong, China
| | - Hengchang Zang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong, China
- National Glycoengineering Research Centre, Shandong University, Jinan, Shandong, China
| |
Collapse
|
25
|
Xu Y, Liu RR, Yu XJ, Liu XN, Zhang X, Jiang ZH, Cong ZF, Li QQ, Gao P. Quality markers of Dajianzhong decoction based on multicomponent qualitative and quantitative analysis combined with network pharmacology and chemometric analysis. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:146-162. [PMID: 37731278 DOI: 10.1002/pca.3281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/20/2023] [Accepted: 08/20/2023] [Indexed: 09/22/2023]
Abstract
INTRODUCTION Dajianzhong decoction (DJZD), a classic famous prescription, has a long history of medicinal application. Modern studies have demonstrated its clinical utility in the treatment of postoperative ileus (POI). But none of the current quality evaluation methods for this compound is associated with efficacy. OBJECTIVES This study aimed to identify the quality markers (Q-Markers) connected to the treatment of POI in DJZD. METHODOLOGY Ultra-performance liquid chromatography quadrupole Exactive Orbitrap mass spectrometry (UPLC-Q-Exactive Orbitrap-MS) was used to identify the main constituents in DJZD. Based on the qualitative results obtained by fingerprinting, chemical pattern recognition (CPR) was used to analyse the key components affecting the quality and finally to establish the network of the active ingredients in DJZD with POI. RESULTS A total of 64 chemical components were detected. After fingerprint analysis, 13 common peaks were identified. The fingerprint similarity of 15 batches of samples ranged from 0.860 to 1.000. CPR analysis was able to categorically classify 15 batches of DJZD into two groups. And gingerenone A, methyl-6-gingerdiol, 6-gingerol, and hydroxy-β-sanshool contributed to their grouping. Twelve common components interact with the therapeutic targets for treating POI. In addition, the mechanism of this prescription for treating POI may be related to the jurisdiction of the neurological system, the immunological system, and the inflammatory response. CONCLUSIONS This integrated approach can accurately assess and forecast the quality of DJZD, presume the Q-Markers of DJZD for POI, and lay the foundation for studying the theoretical underpinnings and exploring the mechanism of DJZD in the treatment of POI.
Collapse
Affiliation(s)
- Yang Xu
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
- National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, P. R. China
| | - Run-Run Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-Jun Yu
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Xiao-Nan Liu
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Xin Zhang
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Zhi-Hui Jiang
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Zhu-Feng Cong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, P. R. China
| | - Qin-Qing Li
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Taiyuan, P. R. China
| | - Peng Gao
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
- National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, P. R. China
| |
Collapse
|
26
|
Li J, Zhu N, Wang Y, Bao Y, Xu F, Liu F, Zhou X. Application of Metabolomics and Traditional Chinese Medicine for Type 2 Diabetes Mellitus Treatment. Diabetes Metab Syndr Obes 2023; 16:4269-4282. [PMID: 38164418 PMCID: PMC10758184 DOI: 10.2147/dmso.s441399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Diabetes is a major global public health problem with high incidence and case fatality rates. Traditional Chinese medicine (TCM) is used to help manage Type 2 Diabetes Mellitus (T2DM) and has steadily gained international acceptance. Despite being generally accepted in daily practice, the TCM methods and hypotheses for understanding diseases lack applicability in the current scientific characterization systems. To date, there is no systematic evaluation system for TCM in preventing and treating T2DM. Metabonomics is a powerful tool to predict the level of metabolites in vivo, reveal the potential mechanism, and diagnose the physiological state of patients in time to guide the follow-up intervention of T2DM. Notably, metabolomics is also effective in promoting TCM modernization and advancement in personalized medicine. This review provides updated knowledge on applying metabolomics to TCM syndrome differentiation, diagnosis, biomarker discovery, and treatment of T2DM by TCM. Its application in diabetic complications is discussed. The combination of multi-omics and microbiome to fully elucidate the use of TCM to treat T2DM is further envisioned.
Collapse
Affiliation(s)
- Jing Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Na Zhu
- Clinical Trial Research Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Central Hospital, Qingdao, People’s Republic of China
| | - Yaqiong Wang
- Clinical Trial Research Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Central Hospital, Qingdao, People’s Republic of China
| | - Yanlei Bao
- Department of Pharmacy, Liaoyuan People’s Hospital, Liaoyuan, People’s Republic of China
| | - Feng Xu
- Clinical Trial Research Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Central Hospital, Qingdao, People’s Republic of China
| | - Fengjuan Liu
- Clinical Trial Research Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Central Hospital, Qingdao, People’s Republic of China
| | - Xuefeng Zhou
- Clinical Trial Research Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Central Hospital, Qingdao, People’s Republic of China
| |
Collapse
|
27
|
Shan X, Yang X, Li D, Zhou L, Qin S, Li J, Tao W, Peng C, Wei J, Chu X, Wang H, Zhang C. Research on the quality markers of antioxidant activity of Kai-Xin-San based on the spectrum-effect relationship. Front Pharmacol 2023; 14:1270836. [PMID: 38205371 PMCID: PMC10777484 DOI: 10.3389/fphar.2023.1270836] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/30/2023] [Indexed: 01/12/2024] Open
Abstract
Background: Kai-Xin-San (KXS) is one of the classic famous traditional Chinese medicine prescriptions for amnesia, which has been applied for thousands of years. Modern pharmacological research has found that KXS has significant therapeutic efficacy on nervous system diseases, which is related to its antioxidant activity. However, the antioxidant material basis and quality markers (Q-makers) of KXS have not been studied. Objective: The objective of this study is to explore the Q-makers of antioxidant activity of KXS based on spectrum-effect relationship. Methods: Specifically, the metabolites in KXS extracts were identified by UPLC-Q-Exactive Orbitrap MS/MS. The fingerprint profile of KXS extracts were established by high-performance liquid chromatography (HPLC) and seven common peaks were identified. Meanwhile, 2, 2-diphenyl-1-picrylhydrazyl (DPPH) test was used to evaluate the free radical scavenging ability of KXS. The spectrum-effect relationship between its HPLC fingerprint and DPPH free radical scavenging activity was preliminarily examined by the Pearson correlation analysis, grey relation analysis (GRA), and orthogonal partial least squares discrimination analysis (OPLS-DA). Further, the antioxidant effect of KXS and its Q-makers were validated through human neuroblastoma (SH-SY5Y) cells experiment. Results: The results showed that 103 metabolites were identified from KXS, and the similarity values between HPLC fingerprint of twelve batches of KXS were greater than 0.900. At the same time, the results of Pearson correlation analysis showed that the peaks 8, 1, 14, 17, 18, 24, 16, 21, 15, 13, 6, 5, and 3 from KXS were positively correlated with the scavenging activity values of DPPH. Combined with the results of GRA and OPLS-DA, peaks 1, 3, 5 (Sibiricose A6), 6, 13 (Ginsenoside Rg1), 15, and 24 in the fingerprints were screen out as the potential Q-makers of KXS for antioxidant effect. Besides, the results of CCK-8 assay showed that KXS and its Q-makers remarkably reduced the oxidative damage of SH-SY5Y cells caused by H2O2. However, the antioxidant activity of KXS was decreased significantly after Q-makers were knocked out. Conclusion: In conclusion, the metabolites in KXS were successfully identified by UPLC-Q-Exactive Orbitrap MS/MS, and the Q-makers of KXS for antioxidant effect was analyzed based on the spectrum-effect relationship. These results are beneficial to clarify the antioxidant material basis of KXS and provide the quality control standards for new KXS products development.
Collapse
Affiliation(s)
- Xiaoxiao Shan
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xuan Yang
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Dawei Li
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Lele Zhou
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Shaogang Qin
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Hefei Food and Drug Inspection Center, Hefei, Anhui, China
| | - Junying Li
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Wenkang Tao
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Can Peng
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jinming Wei
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaoqin Chu
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Haixuan Wang
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Hefei Food and Drug Inspection Center, Hefei, Anhui, China
| | - Caiyun Zhang
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
28
|
Liu Q, Chen Y, Wang B, Chen Y, Li B, Guan S, Du K, Liu X, Yu Y, Liu J, Wang Z. Arginine Biosynthesis Pathway Found to Play a Key Role in the Neuroprotective Effect of Liu-Wei-Luo-Bi (LWLB) Granules in Diabetic db/db Mice with Peripheral Neuropathy Using an Untargeted Metabolomics Strategy. Diabetes Metab Syndr Obes 2023; 16:4065-4080. [PMID: 38106622 PMCID: PMC10723181 DOI: 10.2147/dmso.s423388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/01/2023] [Indexed: 12/19/2023] Open
Abstract
Aim Liu-Wei-Luo-Bi (LWLB) granules was a Chinese compound prescription for treating diabetic peripheral neuropathy (DPN). The aim of this study was to investigate the effect of LWLB granules on diabetic mice with peripheral neuropathy and to elucidate the potential mechanism based on an untargeted metabolomics approach. Methods One hundred forty db/db mice were randomly divided into seven groups: the Control group, DPN group, Mudan (MD) granules group, Epalrestat (Epa) group, and the LWLB low, medium, or high dose (LW-l, LW-m, or LW-h) group. After 12 weeks of treatment, body weight, blood glucose, mechanical pain threshold, motor conduction velocity (MCV), sensory conduction velocity (SCV), and Pathological Organization of the Sciatic and Caudal Nerves in mice were measured. Serum samples were collected for untargeted metabolomics analysis using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) and multivariate statistics. Disease-related pathways were screened out with function enrichment analyses of candidate biomarkers. Results LWLB granules can improve the peripheral neuropathy of type 2 diabetic mice with peripheral nerve conduction disorders, mainly through significantly improving the nerve conduction velocity (P < 0.05) and lowering the mechanical pain threshold (P < 0.05). A total of 43 metabolites were identified as potential biomarkers related to the therapeutic effect of LWLB granules. Fifty, 4, and 26; 23, 4, and 22; and 24, 1, and 16 biomarkers were discovered in the LW-l, LW-m, and LW-h groups at the 4th, 6th, and 12th weeks, respectively. Five, three, seven, five, and four metabolic pathways were found in MD, Epa, LW-l, LW-m, and LW-h groups, respectively. The arginine biosynthesis pathway is the overlapping pathway in LW-l, LW-m, and LW-h groups. Conclusion LWLB granules have an obvious neuroprotective effect on diabetic peripheral neuropathy, and the metabolism mechanism of LWLB is mainly related to the arginine biosynthesis pathway on diabetic db/db mice with peripheral neuropathy.
Collapse
Affiliation(s)
- Qiong Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Postdoctoral Research Station, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yafei Chen
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Bo Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yinying Chen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Bing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Shuang Guan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Kehe Du
- iPhase Pharma Services, Beijing, People’s Republic of China
| | - Xiaoyang Liu
- iPhase Pharma Services, Beijing, People’s Republic of China
| | - Yanan Yu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
29
|
Feng ZJ, Wang LS, Ma X, Li K, Li XY, Tang Y, Peng CJ. Catapol attenuates the aseptic inflammatory response to hepatic I/R injury in vivo and in vitro by inhibiting the HMGB1/TLR-4/NF-κB signaling pathway via the microRNA-410-3p. Mol Immunol 2023; 164:66-78. [PMID: 37979473 DOI: 10.1016/j.molimm.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/31/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND Hepatic ischemia-reperfusion (I/R) injury involves inflammatory necrosis of liver cells as a significant pathological mechanism. Catapol possesses anti-inflammatory activity that is extracted from the traditional Chinese medicine, Rehmannia glutinosa. METHODS The liver function and histopathology, Oxidative stress, and aseptic inflammatory responses were assessed in vivo, and the strongest dose group was selected. For mechanism, the expression of miR-410-3p, HMGB1, and TLR-4/NF-κB signaling pathways was detected. The dual luciferase assay can verify the targeting relationship between miR-410-3p and HMGB1. Knockdown of miR-410-3p in L02 cells is applied in interference experiments. RESULTS CAT pre-treatment significantly decreased the liver function markers alanine and aspartate aminotransferases and reduced the areas of hemorrhage and necrosis induced by hepatic I/R injury. Additionally, it reduced the aseptic inflammatory response and oxidative stress, with the strongest protective effect observed in the high-dose CAT group. Mechanistically, CAT downregulates HMGB1, inhibits TLR-4/NF-κB signaling pathway activation, and reduces inflammatory cytokines TNF-α, and IL-1β. In addition, the I/R-induced downregulation of microRNA-410-3p was inhibited by CAT pre-treatment in vivo and in vitro. HMGB1 was identified as a potential target of microRNA-410-3p using a dual-luciferase reporter assay. Knockdown of microRNA-410-3p abolished the inhibitory effect of CAT on HMGB1, p-NF-κB, and p-IκB-α protein expression. CONCLUSIONS Our study showed that CAT pre-treatment has a protective effect against hepatic I/R injury in rats. Specifically, CAT attenuates the aseptic inflammatory response to hepatic I/R injury in vivo and in vitro by inhibiting the HMGB1/TLR-4/NF-κB signaling pathway via the microRNA-410-3p.
Collapse
Affiliation(s)
- Zan Jie Feng
- Clinical Medical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Liu Song Wang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xuan Ma
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Kai Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xin Yao Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi Tang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ci Jun Peng
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
30
|
Dai M, Peng W, Lin L, Wu ZE, Zhang T, Zhao Q, Cheng Y, Lin Q, Zhang B, Liu A, Rao Q, Huang J, Zhao J, Gonzalez FJ, Li F. Celastrol as an intestinal FXR inhibitor triggers tripolide-induced intestinal bleeding: Underlying mechanism of gastrointestinal injury induced by Tripterygium wilfordii. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155054. [PMID: 37738906 DOI: 10.1016/j.phymed.2023.155054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Tripterygium wilfordii has been widely used for the treatment of rheumatoid arthritis, which is frequently accompanied by severe gastrointestinal damage. The molecular mechanism underlying the gastrointestinal injury of Tripterygium wilfordii are yet to be elucidated. METHODS Transmission electron microscopy, and pathological and biochemical analyses were applied to assess intestinal bleeding. Metabolic changes in the serum and intestine were determined by metabolomics. In vivo (time-dependent effect and dose-response) and in vitro (double luciferase reporter gene system, DRATs, molecular docking, HepG2 cells and small intestinal organoids) studies were used to identify the inhibitory role of celastrol on intestinal farnesoid X receptor (FXR) signaling. Fxr-knockout mice and FXR inhibitors and agonists were used to evaluate the role of FXR in the intestinal bleeding induced by Tripterygium wilfordii. RESULTS Co-treatment with triptolide + celastrol (from Tripterygium wilfordii) induced intestinal bleeding in mice. Metabolomic analysis indicated that celastrol suppressed intestinal FXR signaling, and further molecular studies revealed that celastrol was a novel intestinal FXR antagonist. In Fxr-knockout mice or the wild-type mice pre-treated with pharmacological inhibitors of FXR, triptolide alone could activate the duodenal JNK pathway and induce intestinal bleeding, which recapitulated the pathogenic features obtained by co-treatment with triptolide and celastrol. Lastly, intestinal bleeding induced by co-treatment with triptolide and celastrol could be effectively attenuated by the FXR or gut-restricted FXR agonist through downregulation of the duodenal JNK pathway. CONCLUSIONS The synergistic effect between triptolide and celastrol contributed to the gastrointestinal injury induced by Tripterygium wilfordii via dysregulation of the FXR-JNK axis, suggesting that celastrol should be included in the quality standards system for evaluation of Tripterygium wilfordii preparations. Determining the mechanism of the FXR-JNK axis in intestinal bleeding could aid in the identification of additional therapeutic targets for the treatment of gastrointestinal hemorrhage diseases. This study also provides a new standard for the quality assessment of Tripterygium wilfordii used in the treatment of gastrointestinal disorders.
Collapse
Affiliation(s)
- Manyun Dai
- Department of Integrated Traditional Chinese and Western Medicine, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; School of Public Health, Ningbo University Health Science Center, Ningbo 315211, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wan Peng
- Department of Integrated Traditional Chinese and Western Medicine, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lisha Lin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zhanxuan E Wu
- Department of Integrated Traditional Chinese and Western Medicine, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ting Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Qi Zhao
- Department of Integrated Traditional Chinese and Western Medicine, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Cheng
- Department of Integrated Traditional Chinese and Western Medicine, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiuxia Lin
- Department of Integrated Traditional Chinese and Western Medicine, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Binbin Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Aiming Liu
- School of Public Health, Ningbo University Health Science Center, Ningbo 315211, China
| | - Qianru Rao
- Department of Integrated Traditional Chinese and Western Medicine, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianfeng Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jinhua Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| | - Frank J Gonzalez
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Fei Li
- Department of Integrated Traditional Chinese and Western Medicine, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
31
|
Yang D, Zhu Z, Yao Q, Chen C, Chen F, Gu L, Jiang Y, Chen L, Zhang J, Wu J, Gao X, Wang J, Li G, Zhao Y. ccTCM: A quantitative component and compound platform for promoting the research of traditional Chinese medicine. Comput Struct Biotechnol J 2023; 21:5807-5817. [PMID: 38213899 PMCID: PMC10781882 DOI: 10.1016/j.csbj.2023.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/13/2024] Open
Abstract
Traditional Chinese medicine (TCM) databases play a vital role in bridging the gap between TCM and modern medicine, as well as in promoting the popularity of TCM. Elucidating the bioactive ingredients of Chinese medicinal materials is key to TCM modernization and new drug discovery. However, one drawback of current TCM databases is the lack of quantitative data on the constituents of Chinese medicinal materials. Herein, we present ccTCM, a web-based platform designed to provide a component and compound-content-based resource on TCM and analysis services for medical experts. In terms of design features, ccTCM combines resource distribution, similarity analysis, and molecular-mechanism analysis to accelerate the discovery of bioactive ingredients in TCM. ccTCM contains 273 Chinese medicinal materials commonly used in clinical settings, covering 29 functional classifications. By searching and comparing, we finally adopted 2043 studies, from which we collected the compounds contained in each TCM with content greater than 0.001 %, and a total of 1449 were extracted. Subsequently, we collected 40,767 compound-target pairs by integrating multiple databases. Taken together, ccTCM is a versatile platform that can be used by TCM scientists to perform scientific and clinical TCM studies based on quantified ingredients of Chinese medicinal materials. ccTCM is freely accessible at http://www.cctcm.org.cn.
Collapse
Affiliation(s)
- Dongqing Yang
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhu Zhu
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi Yao
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cuihua Chen
- Research and Innovation Center, College of Traditional Chinese Medicine·Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feiyan Chen
- Research and Innovation Center, College of Traditional Chinese Medicine·Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ling Gu
- Research and Innovation Center, College of Traditional Chinese Medicine·Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yucui Jiang
- Research and Innovation Center, College of Traditional Chinese Medicine·Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lin Chen
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jingyuan Zhang
- Department of Treatise on Febrile Diseases, School of Traditional Chinese Medicine & Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Juan Wu
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xingsu Gao
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Junqin Wang
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guochun Li
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yunan Zhao
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
32
|
Zhao S, Zhang Y, Lin J, Wang A, Wang Y, Zhang Y, Dong H, Tian Y, Zhang Z, Song R. Chemical index components and quality control of Traditional Chinese Medicine: "Never change a winning team"? -A case study of volatile oil from Bupleuri radix. J Pharm Biomed Anal 2023; 235:115618. [PMID: 37540997 DOI: 10.1016/j.jpba.2023.115618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/21/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
Chemical index components, especially those defined as quality control (QC) markers through spectrum-effect relationship approach, are commonly suggested and adopted as indicator for quality control of Traditional Chinese Medicines (TCMs). However, are chemical index components and quality control of TCMs "never change a winning team"? In this study, under the ponderation of the applicability of QC markers strategy, spectrum-effect relationship and OPLS-DA between GC×GC-MS fingerprint and inhibitory effect on the expression of extracellular secretory TNF-α of volatile oil from Bupleuri radix (BVO) was studied with the purpose of discovery of QC markers and establish a bioactive compounds-based QC method. 290 compounds of BVO were identified by GC×GC-MS. Besides, BVO had significant inhibitory effects on the expression of extracellular secretory TNF-α in a dose-dependent manner. The potency of different batches of BVOs could be distinguished with this bioassay-based method, which has been validated in terms of intermediate precision, repeatability, linearity, range and credibility tests. The QC markers of BVO were investigated by Spearman's correlation test and OPLS-DA. It is regrettable that there were no ideal QC markers of BVO could be found. In conclusion, quality control method relayed on chemical QC markers is not feasible for TCMs with complex composition but lack of ingredients that dominate in content, just like BVO. Alternatively, a bioassay-based method established in our study is suitable for quality control of BVO.
Collapse
Affiliation(s)
- Siqi Zhao
- Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, Nanjing 210009, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Yangyang Zhang
- Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, Nanjing 210009, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Jiachun Lin
- Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, Nanjing 210009, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Anhui Wang
- Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, Nanjing 210009, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Yali Wang
- Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, Nanjing 210009, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Yuting Zhang
- Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, Nanjing 210009, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Haijuan Dong
- The Public Laboratory Platform of China Pharmaceutical University, Nanjing 210009, China
| | - Yuan Tian
- Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, Nanjing 210009, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, Nanjing 210009, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
| | - Rui Song
- Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, Nanjing 210009, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
33
|
Kou B, Jiang Y, Chen Y, Yang J, Sun J, Yan Y, Weng L, Xiao C. A Study of Gentianae Radix et Rhizoma Class Differences Based on Chemical Composition and Core Efficacy. Molecules 2023; 28:7132. [PMID: 37894611 PMCID: PMC10609378 DOI: 10.3390/molecules28207132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Establishment of a method for evaluating Gentianae Radix et Rhizoma (GRR) classes based on chemical composition and core efficacy; (2) Methods: Liquid chromatography-mass spectrometry (LC-MS) was used to determine the chemical constituents of GRR-first class (GF) and GRR-second class (GS). The cell viability, liver function, oxidative stress enzyme activity, and inflammatory factor levels of GF and GS on H2O2-induced HepG2 cells were determined with CCK-8, ELISA, and biochemical methods, and the antioxidant activity of the two was evaluated using bioefficacy; ELISA, biochemical methods, real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) method, and Western blot (WB) were used to determine the liver function, oxidative stress enzyme activity, inflammatory factor levels, and expression of related genes and proteins in mice with acute liver injury (ALI) model induced with 0.3% CCl4 olive oil solution after gavage administration; (3) Results: GF and GS had the same types of components, but the cyclic enol ether terpenes such as morinlon goside c, loganin, gentiopicroside, and swertiamarin differed significantly between the two; the effect of GF on CCl4-induced acute hepatic injury in C57BL/6 mice was stronger compared to GS. It helped alleviate weight loss, increase hepatic and splenic indices, improve hepatic lobular structure and hepatocyte status, inhibit collagen deposition, enhance oxidative stress and anti-inflammatory-related genes and protein expression, and decrease apoptotic genes and proteins more significantly than GS; (4) Conclusions: In this study, we established a GRR class evaluation method combining chemical composition and core medicinal effects, which can rapidly determine the differential composition of GF and GS, detect the quality of GRR through antioxidant bioefficacy, and validate it with in vivo experiments, which provides references for the evaluation of the class of GRR and the rational use of medication in the clinic.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lili Weng
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (B.K.); (Y.J.); (Y.C.); (J.Y.); (J.S.); (Y.Y.)
| | - Chunping Xiao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (B.K.); (Y.J.); (Y.C.); (J.Y.); (J.S.); (Y.Y.)
| |
Collapse
|
34
|
Nong Y, Zhang C, Guo Y, Qin Y, Zhong X, Feng L, Pan Z, Deng L, Guo H, Su Z. Quality control for a traditional Chinese medicine, Millettia speciosa Champ, using ultra-high-performance liquid chromatography fingerprint, serum pharmacochemistry and network pharmacology. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5166-5180. [PMID: 37753596 DOI: 10.1039/d3ay01051a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Millettia speciosa (M. speciosa) Champ (MSC) is a healthy food type with medicinal and edible homology, which is now considered a clinically significant anti-rheumatoid arthritis medicine. However, there is currently no standardized or generally accepted research strategy by which we can assess M. speciosa. Thus, it is essential to develop novel theories, strategies and evaluation methods for the scientific quality control of M. speciosa. Herein, our use ultra-high-performance liquid chromatography (UPLC)-MS/MS analysis identified 12 common bioactive components absorbed into MSC serum. Next, network pharmacology analysis exhibited that 5 MSC components may be those active components in treating rheumatoid arthritis and may be considered potential quality markers. These 5 components were then quantified using a fast UPLC approach, based on the quality marker of measurability, showing that lenticin can be regarded as the MSC quality marker. The cumulative study findings, based on systematic assessment of chemical composition both in vivo and in vitro, and the potential efficacy of M. speciosa, provide a novel approach for M. speciosa quality control.
Collapse
Affiliation(s)
- Yunyuan Nong
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Chi Zhang
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Yue Guo
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China.
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Traditional Medical and Pharmaceutical Sciences, Nanning, Guangxi, 530022, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yuelian Qin
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Xinyu Zhong
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Linlin Feng
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Ziping Pan
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Lijun Deng
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Hongwei Guo
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China.
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China.
- Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization Engineering Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, Nanning, Guangxi, 530021, China
- Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, Guangxi Medical University, Nanning, Guangxi, 530021, China
| |
Collapse
|
35
|
Chen J, Li LF, Lin ZZ, Cheng XL, Wei F, Ma SC. A quality-comprehensive-evaluation-index-based model for evaluating traditional Chinese medicine quality. Chin Med 2023; 18:89. [PMID: 37501143 PMCID: PMC10375775 DOI: 10.1186/s13020-023-00782-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/09/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Evaluating traditional Chinese medicine (TCM) quality is a powerful method to ensure TCM safety. TCM quality evaluation methods primarily include characterization evaluations and separate physical, chemical, and biological evaluations; however, these approaches have limitations. Nevertheless, researchers have recently integrated evaluation methods, advancing the emergence of frontier research tools, such as TCM quality markers (Q-markers). These studies are largely based on biological activity, with weak correlations between the quality indices and quality. However, these TCM quality indices focus on the individual efficacies of single bioactive components and, therefore, do not accurately represent the TCM quality. Conventionally, provenance, place of origin, preparation, and processing are the key attributes influencing TCM quality. In this study, we identified TCM-attribute-based quality indices and developed a comprehensive multiweighted multi-index-based TCM quality composite evaluation index (QCEI) for grading TCM quality. METHODS The area of origin, number of growth years, and harvest season are considered key TCM quality attributes. In this study, licorice was the model TCM to investigate the quality indicators associated with key factors that are considered to influence TCM quality using multivariate statistical analysis, identify biological-evaluation-based pharmacological activity indicators by network pharmacology, establish real quality indicators, and develop a QCEI-based model for grading TCM quality using a machine learning model. Finally, to determine whether different licorice quality grades differently reduced the inflammatory response, TNF-α and IL-1β levels were measured in RAW 264.7 cells using ELISA analysis. RESULTS The 21 quality indices are suitable candidates for establishing a method for grading licorice quality. A computer model was established using SVM analysis to predict the TCM quality composite evaluation index (TCM QCEI). The tenfold cross validation accuracy was 90.26%. Licorice diameter; total flavonoid content; similarities of HPLC chromatogram fingerprints recorded at 250 and 330 nm; contents of liquiritin apioside, liquiritin, glycyrrhizic acid, and liquiritigenin; and pharmacological activity quality index were identified as the key indices for constructing the model for evaluating licorice quality and determining which model contribution rates were proportionally weighted in the model. The ELISA analysis results preliminarily suggest that the inflammatory responses were likely better reduced by premium-grade than by first-class licorice. CONCLUSIONS In the present study, traditional sensory characterization and modern standardized processes based on production process and pharmacological efficacy evaluation were integrated for use in the assessment of TCM quality. Multidimensional quality evaluation indices were integrated with a machine learning model to identify key quality indices and their corresponding weight coefficients, to establish a multiweighted multi-index and comprehensive quality index, and to construct a QCEI-based model for grading TCM quality. Our results could facilitate and guide the development of TCM quality control research.
Collapse
Affiliation(s)
- Jia Chen
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), No. 31, Huatuo Road, Daxing District, Beijing, 102629, China.
| | - Lin-Fu Li
- College of Pharmacy, Gannan Medical University, No. 1, Yixueyuan Road, Zhanggong District, Ganzhou, 341000, China
| | - Zhao-Zhou Lin
- Fengtai District, Beijing Tongrentang Technology Development Co., Ltd., No. 20, Nansanhuan Zhonglu Road, Beijing, 100075, China
| | - Xian-Long Cheng
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), No. 31, Huatuo Road, Daxing District, Beijing, 102629, China
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), No. 31, Huatuo Road, Daxing District, Beijing, 102629, China.
| | - Shuang-Cheng Ma
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), No. 31, Huatuo Road, Daxing District, Beijing, 102629, China.
| |
Collapse
|
36
|
Kim YJ, Kang KS. The Phytochemical Constituents of Medicinal Plants for the Treatment of Chronic Inflammation. Biomolecules 2023; 13:1162. [PMID: 37627227 PMCID: PMC10452651 DOI: 10.3390/biom13081162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
Prolonged exposure to inflammatory mediators can lead to tissue damage, fibrosis, angiogenesis, and altered cellular metabolism [...].
Collapse
Affiliation(s)
- Young-Joo Kim
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea;
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
37
|
Wang Q, Li H, You J, Yan B, Jin W, Shen M, Sheng Y, He B, Wang X, Meng X, Qin L. An integrated strategy of spectrum-effect relationship and near-infrared spectroscopy rapid evaluation based on back propagation neural network for quality control of Paeoniae Radix Alba. ANAL SCI 2023:10.1007/s44211-023-00334-4. [PMID: 37037970 DOI: 10.1007/s44211-023-00334-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/30/2023] [Indexed: 04/12/2023]
Abstract
The quantitative analysis of near-infrared spectroscopy in traditional Chinese medicine has still deficiencies in the selection of the measured indexes. Then Paeoniae Radix Alba is one of the famous "Eight Flavors of Zhejiang" herbs, however, it lacks the pharmacodynamic support, and cannot reflect the quality of Paeoniae Radix Alba accurately and reasonably. In this study, the spectrum-effect relationship of the anti-inflammatory activity of Paeoniae Radix Alba was established. Then based on the obtained bioactive component groups, the genetic algorithm, back propagation neural network, was combined with near-infrared spectroscopy to establish calibration models for the content of the bioactive components of Paeoniae Radix Alba. Finally, three bioactive components, paeoniflorin, 1,2,3,4,6-O-pentagalloylglucose, and benzoyl paeoniflorin, were successfully obtained. Their near-infrared spectroscopy content models were also established separately, and the validation sets results showed the coefficient of determination (R2 > 0.85), indicating that good calibration statistics were obtained for the prediction of key pharmacodynamic components. As a result, an integrated analytical method of spectrum-effect relationship combined with near-infrared spectroscopy and deep learning algorithm was first proposed to assess and control the quality of traditional Chinese medicine, which is the future development trend for the rapid inspection of traditional Chinese medicine.
Collapse
Affiliation(s)
- Qi Wang
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China
| | - Huaqiang Li
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China
| | - Jinling You
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China
| | - Binjun Yan
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China
| | - Weifeng Jin
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China
| | - Menglan Shen
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China
| | - Yunjie Sheng
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China
| | - Bingqian He
- Academy of Chinese Medical Science, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District310053, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xinrui Wang
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China
| | - Xiongyu Meng
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China.
| | - Luping Qin
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China.
| |
Collapse
|
38
|
Guo S, Qiu S, Cai Y, Wang Z, Yang Q, Tang S, Xie Y, Zhang A. Mass spectrometry-based metabolomics for discovering active ingredients and exploring action mechanism of herbal medicine. Front Chem 2023; 11:1142287. [PMID: 37065828 PMCID: PMC10102349 DOI: 10.3389/fchem.2023.1142287] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Natural products derived from herbal medicine are a fruitful source of lead compounds because of their structural diversity and potent bioactivities. However, despite the success of active compounds derived from herbal medicine in drug discovery, some approaches cannot effectively elucidate the overall effect and action mechanism due to their multi-component complexity. Fortunately, mass spectrometry-based metabolomics has been recognized as an effective strategy for revealing the effect and discovering active components, detailed molecular mechanisms, and multiple targets of natural products. Rapid identification of lead compounds and isolation of active components from natural products would facilitate new drug development. In this context, mass spectrometry-based metabolomics has established an integrated pharmacology framework for the discovery of bioactivity-correlated constituents, target identification, and the action mechanism of herbal medicine and natural products. High-throughput functional metabolomics techniques could be used to identify natural product structure, biological activity, efficacy mechanisms, and their mode of action on biological processes, assisting bioactive lead discovery, quality control, and accelerating discovery of novel drugs. These techniques are increasingly being developed in the era of big data and use scientific language to clarify the detailed action mechanism of herbal medicine. In this paper, the analytical characteristics and application fields of several commonly used mass spectrometers are introduced, and the application of mass spectrometry in the metabolomics of traditional Chinese medicines in recent years and its active components as well as mechanism of action are also discussed.
Collapse
Affiliation(s)
- Sifan Guo
- International Advanced Functional Omics Platform, Scientific Experiment Center and Hainan General Hospital, College of Chinese Medicine, Hainan Medical University, Haikou, China
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center and Hainan General Hospital, College of Chinese Medicine, Hainan Medical University, Haikou, China
- *Correspondence: Shi Qiu, ; Songqi Tang, ; Yiqiang Xie, ; Aihua Zhang,
| | - Ying Cai
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhibo Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiang Yang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center and Hainan General Hospital, College of Chinese Medicine, Hainan Medical University, Haikou, China
- *Correspondence: Shi Qiu, ; Songqi Tang, ; Yiqiang Xie, ; Aihua Zhang,
| | - Yiqiang Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center and Hainan General Hospital, College of Chinese Medicine, Hainan Medical University, Haikou, China
- *Correspondence: Shi Qiu, ; Songqi Tang, ; Yiqiang Xie, ; Aihua Zhang,
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center and Hainan General Hospital, College of Chinese Medicine, Hainan Medical University, Haikou, China
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Shi Qiu, ; Songqi Tang, ; Yiqiang Xie, ; Aihua Zhang,
| |
Collapse
|
39
|
Ji R, Garran TA, Luo Y, Cheng M, Ren M, Zhou X. Untargeted Metabolomic Analysis and Chemometrics to Identify Potential Marker Compounds for the Chemical Differentiation of Panax ginseng, P. quinquefolius, P. notoginseng, P. japonicus, and P. japonicus var. major. Molecules 2023; 28:molecules28062745. [PMID: 36985717 PMCID: PMC10052814 DOI: 10.3390/molecules28062745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The Panax L. genus is well-known for many positive physiological effects on humans, with major species including P. ginseng, P. quinquefolius, P. notoginseng, P. japonicus, and P. japonicus var. major, the first three of which are globally popular. The combination of UPLC-QTOF-MS and chemometrics were developed to profile "identification markers" enabling their differentiation. The establishment of reliable biomarkers that embody the intrinsic metabolites differentiating species within the same genus is a key in the modernization of traditional Chinese medicine. In this work, the metabolomic differences among these five species were shown, which is critical to ensure their appropriate use. Consequently, 49 compounds were characterized, including 38 identified robust biomarkers, which were mainly composed of saponins and contained small amounts of amino acids and fatty acids. VIP (projection variable importance) was used to identify these five kinds of ginseng. In conclusion, by illustrating the similarities and differences between the five species of ginseng with the use of an integrated strategy of combining UPLC-QTOF-MS and multivariate analysis, we provided a more efficient and more intelligent manner for explaining how the species differ and how their secondary metabolites affect this difference. The most important biomarkers that distinguished the five species included Notoginsenoside-R1, Majonoside R1, Vinaginsenoside R14, Ginsenoside-Rf, and Ginsenoside-Rd.
Collapse
Affiliation(s)
- Ruifeng Ji
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Thomas Avery Garran
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yilu Luo
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Meng Cheng
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mengyue Ren
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiuteng Zhou
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
40
|
Li W, Huo J, Berik E, Wu W, Hou J, Long H, Lei M, Li Z, Zhang Z, Wu W. Determination of the intermediates in glycolysis and tricarboxylic acid cycle with an improved derivatization strategy using gas chromatography-mass spectrometry in complex samples. J Chromatogr A 2023; 1692:463856. [PMID: 36803770 DOI: 10.1016/j.chroma.2023.463856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Traditional Chinese medicine (TCM) is recognized as a complex matrix, and improved analytical methods are crucial to extract the key indicators and depict the interaction and alteration of the complex matrix. Shenqi Fuzheng Injection (SQ), a water extract of Radix Codonopsis and Radix Astragali, has demonstrated preventative effects on myotube atrophy induced by chemotherapeutic agents. To achieve the improved analytical capability of complex biological samples, we established a highly reproducible, sensitive, specific, and robust gas chromatography-tandem mass spectrometry (GC-MS) method to detect glycolysis and tricarboxylic acid (TCA) cycle intermediates with optimized factors in the extraction and derivatization process. Our method detected fifteen metabolites and covered most intermediate metabolites in glycolysis and TCA cycles, including glucose, glucose-6-phosphate, fructose-6-phosphate, dihydroxyacetone phosphate, 3-diphosphoglycerate, phosphoenolpyruvate, pyruvate, lactate, citrate, cis-aconitate, isocitrate, α-ketoglutarate, succinate, fumarate, and malate. Through methodological verification of the method, it was found that the linear correlation coefficients of each compound in the method were greater than 0.98, all of which had lower limits of quantification, the recovery rate was 84.94-104.45%, and the accuracy was 77.72-104.92%. The intraday precision was 3.72-15.37%, the interday precision was 5.00-18.02%, and the stability was 7.85-15.51%. Therefore, the method has good linearity, accuracy, precision, and stability. The method was further applied to study the attenuating effects of the SQ in a chemotherapeutic agents-induced C2C12 myotube atrophy model to evaluate the changes in the tricarboxylic acid cycle and glycolytic products under the action by the complex systems of TCM and disease model. Our study provided an improved method to explore TCM's pharmacodynamic constituents and action mechanisms.
Collapse
Affiliation(s)
- Wei Li
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangyan Huo
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Entezar Berik
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Wenyong Wu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Jinjun Hou
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Huali Long
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Min Lei
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoxia Li
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
| | - Zijia Zhang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Wanying Wu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
41
|
He Y, Wu F, Tan Z, Zhang M, Li T, Zhang A, Miao J, Ou M, Long L, Sun H, Wang X. Quality Markers’ Discovery and Quality Evaluation of Jigucao Capsule Using UPLC-MS/MS Method. Molecules 2023; 28:molecules28062494. [PMID: 36985466 PMCID: PMC10058756 DOI: 10.3390/molecules28062494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
Jigucao capsules (JGCC) have the effects of soothing the liver and gallbladder and clearing heat and detoxification. It is a good medicine for treating acute and chronic hepatitis cholecystitis with damp heat of the liver and gallbladder. However, the existing quality standard of JGCC does not have content determination items, which is not conducive to quality control. In this study, serum pharmacochemistry technology and UNIFI data processing software were used to identify the blood prototype components and metabolites under the condition of the obvious drug effects of JGCC, and the referenced literature reports and the results from in vitro analysis of JGCC in the early stage revealed a total of 43 prototype blood components and 33 metabolites in JGCC. Quality markers (Q-markers) were discovered, such as abrine, trigonelline, hypaphorine and isoschaftoside. In addition, ultra-high-performance liquid chromatography–triple quadrupole mass spectrometry (UPLC-QQQ-MS) was used to determine the active ingredients in JGCC. The components of quantitative analysis have good correlation in the linear range with R2 ≥ 0.9993. The recovery rate is 93.15%~108.92% and the relative standard deviation (RSD) is less than 9.48%. The established UPLC-MS/MS quantitative analysis method has high sensitivity and accuracy, and can be used for the quality evaluation of JGCC.
Collapse
Affiliation(s)
- Yanmei He
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150036, China
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning 500023, China
| | - Fangfang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning 500023, China
| | - Zhien Tan
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning 500023, China
| | - Mengli Zhang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning 500023, China
| | - Taiping Li
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150036, China
| | - Aihua Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150036, China
| | - Jianhua Miao
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning 500023, China
| | - Min Ou
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning 500023, China
| | - Lihuo Long
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning 500023, China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150036, China
- Correspondence: (H.S.); (X.W.); Tel./Fax: +86-451-8211-0818 (X.W.)
| | - Xijun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150036, China
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning 500023, China
- Correspondence: (H.S.); (X.W.); Tel./Fax: +86-451-8211-0818 (X.W.)
| |
Collapse
|
42
|
Wang Y, Yang L, Zhang X, Sun Y, Sun H, Yan G, Zhao Q, Han Y, Wang X. Quality marker discovery of Danggui Jianzhong decoction for treating primary dysmenorrhoea based on chinmedomics strategy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154724. [PMID: 37087788 DOI: 10.1016/j.phymed.2023.154724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/31/2023] [Accepted: 02/20/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Danggui Jianzhong Decoction (DGJZD) has been proven as an effective classical prescription for clinically treating primary dysmenorrhoea (PD). However, the industrialisation development and drug innovation of DGJZD remain limited due to its undefined effective constituents and quality markers (Q-markers). PURPOSE Elucidating the Q-markers of DGJZD, which is related to clinical efficacy. METHODS In accordance with chinmedomics strategy, we evaluated the therapeutic efficacy of DGJZD on the basis of the metabolomic profile and biomarker of a PD rat model to further identify the constituents of DGJZD in vivo that originated from the formula under the acting condition of DGJZD. The potential effective constituents and Q-markers were identified by mining the dynamic relation between the constituents in vivo and the biomarkers. RESULTS Subsequently, 29 serum metabolites were characterized as biomarkers for PD, and DGJZD adjusted the levels of the primary biomarkers involved in arachidonic acid metabolism, glycerophospholipid metabolism, tryptophan metabolism as well as the synthesis of steroid hormones. Under the active condition of DGJZD, 20 prototype ingredients and 4 metabolites of DGJZD were found in vivo, five of which were mostly related with the efficacy of PD, namely, ferulic acid, zizyphusin, cinnamic acid, protocatechuic acid-3-glucoside, and azelaic acid. They were the potential pharmacodynamic constituents for treating PD, and they could be regarded as the Q-markers of DGJZD. CONCLUSION Taken together, the Q-markers of DGJZD identified in this research are credible and assist in solving problems related to quality control and drug innovation, accelerating industrialisation development. Besides, the efficacy, mechanism and active ingredients of DGJZD for the treatment of PD were innovatively elucidated for the first time on the basis of the chinmedomics strategy for uncovering the Q-markers of drugs from the system perspective.
Collapse
Affiliation(s)
- Ying Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Xiwu Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ye Sun
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China.
| | - Guangli Yan
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Qiqi Zhao
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ying Han
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xijun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao.
| |
Collapse
|
43
|
Study on quality control of Zuojin pill by HPLC fingerprint with quantitative analysis of multi-components by single marker method and antioxidant activity analysis. J Pharm Biomed Anal 2023; 225:115075. [PMID: 36603393 DOI: 10.1016/j.jpba.2022.115075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Current quality control methods for Zuojin Pill (ZJP) lack comprehensiveness and practicability. This study aimed to develop a comprehensive strategy for the quality evaluation of ZJP and the prediction of potential bioactive components in ZJP. First, an HPLC method with excellent separation of main components was developed and was used to establish the chromatographic fingerprint of ZJP. Similarities were calculated by comparing 28 batches of ZJPs with the reference fingerprint and the resulting similarity values were all greater than 0.976. The 28 samples were classified into different groups according to their origins by Hierarchical Cluster Analysis, Principal component analysis, and orthogonal partial least squares discriminant analysis. Based on the classification, eight quality markers (Q-Markers) affecting the quality of ZJP were discovered. Then, using berberine as an internal standard substance, quantitative analysis of multi-components by single marker method (QAMS) for the determination of eight Q-markers was developed. The results showed that there was no significant difference between QAMS and external standard method (P>0.05). Finally, using an off-line antioxidant system and partial least-squares model (PLS), the fingerprint-efficacy relationship of ZJP was constructed to explore and predict the bioactive components in ZJP. The present study strategy could be also applied to comprehensive quality study of other TCMs.
Collapse
|
44
|
Feng Y, Zhang P, Yang Y, Wang Z, Luo G, Yang W. Qualitative and quantitative method for quality control of Itea ilicifolia based on antioxidant Q-markers. Biomed Chromatogr 2023; 37:e5594. [PMID: 36735642 DOI: 10.1002/bmc.5594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/22/2022] [Accepted: 02/01/2023] [Indexed: 02/04/2023]
Abstract
Itea ilicifolia Oliv is a folk medicine with antioxidant potential. In this study, the fingerprints of 14 batches of I. ilicifolia were established by HPLC with 17 common peaks. The similarities evaluated by Similarity Evaluation System for Chromatographic Fingerprint of Chinese Materia (version 2012) were >0.89. Ten compounds were identified with definite structures by comparing the retention time and characteristic UV spectral pattern with those of reference substances. The antioxidant capacities of 14 batches of I. ilicifolia were evaluated based on O2 ·- , DPPH and ABTS·+ radical scavenging assays in combination with ferric reducing antioxidant power assay. Via multivariate statistical analyses of gray relation analysis, bivariate correlation analysis and partial least squares regression analysis, a study on the spectrum-effect relationship was then performed to screen eight peaks as the antioxidant Q-markers of I. ilicifolia. The contents of representative antioxidant Q-markers (isoorientin, orientin, vitexin, isovitexin and iteafuranal A) in samples were accurately determined to be 0.054-0.118%, 0.034-0.080%, 0.018-0.055%, 0.031-0.091% and 0.033-0.140%, respectively. The qualitative and quantitative analytical method based on Q-markers helps to control the antioxidant quality of I. ilicifolia, which will lay the foundation to promote the rational utilization of I. ilicifolia in curing diseases related to oxidative stress.
Collapse
Affiliation(s)
- Yunqian Feng
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Pan Zhang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yaxin Yang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhiwei Wang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Guoyong Luo
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wude Yang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
45
|
Du X, Lou N, Hu S, Xiao R, Chu C, Huang Q, Lu L, Li S, Yang J. Anti-Aging of the Nervous System and Related Neurodegenerative Diseases With Chinese Herbal Medicine. Am J Alzheimers Dis Other Demen 2023; 38:15333175231205445. [PMID: 37818604 PMCID: PMC10624054 DOI: 10.1177/15333175231205445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Human beings have always pursued a prolonged lifespan, while the aging of the nervous system is associated with a large variety of diseases. Pathological aging of the nervous system results in a series of neurodegenerative diseases and can cause disability and death in the elderly. Therefore, there is an urgent need for the prevention and treatment of nervous system aging. Chinese herbal medicines have a long history, featuring rich and safe ingredients, and have great potential for the development of anti-aging treatment. We searched the publications on PubMed with key words "anti-aging of the nervous system" and "Chinese herbal medicine" in recent 10 years, and found sixteen Chinese herbal medicines. Then by comparing their popularity of use as well as active components based on the research articles, five common Chinese herbal medicines namely Ginseng Radix, Lycii Fructus, Astragali Radix, Coptidis Rhizoma and Ginkgo Folium, were confirmed to be the most related to anti-nervous system aging and neural degenerative diseases. At the same time, the active ingredients, research models, action mechanisms and curative effects of these five common Chinese herbal medicines were reviewed. From the five common Chinese herbal medicines reviewed in this paper, many encouraging effects of Chinese herbal medicines on treating nervous system aging and related diseases were revealed and more potent herbs would be explored with the help of the proposed possible mechanisms.
Collapse
Affiliation(s)
- Xiaohui Du
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Nanbin Lou
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Sinan Hu
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Ruopeng Xiao
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Qiankai Huang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Lin Lu
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Shanshan Li
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Jing Yang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| |
Collapse
|
46
|
Wang Q, Chen G, Chen X, Liu Y, Qin Z, Lin P, Shang H, Ye M, He L, Yao Z. Development of a three-step-based novel strategy integrating DMPK with network pharmacology and bioactivity evaluation for the discovery of Q-markers of traditional Chinese medicine prescriptions: Danlou tablet as an example. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154511. [PMID: 36334388 DOI: 10.1016/j.phymed.2022.154511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/02/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Quality marker (Q-marker) serves an important role in promoting the standardization of the quality of traditional Chinese medicine (TCM) prescriptions. However, discovering comprehensive and representative Q-markers from TCM prescriptions composed of multiple components remains difficult. PURPOSE A three-step-based novel strategy integrating drug metabolism and pharmacokinetics (DMPK) with network pharmacology and bioactivity evaluation was proposed to discover the Q-markers and applied to a research example of Danlou tablet (DLT), a famous TCM prescription with remarkable and reliable clinical effects for coronary heart disease (CHD). METHODS Firstly, the metabolic profile in vivo of DLT was systemically characterized, and the pharmacokinetic (PK) properties of PK markers were then investigated. Secondly, an integrated network of "PK markers - CHD targets - pathways - therapeutic effects" was established to screen out the crucial PK markers of DLT against CHD. Thirdly, the crucial PK markers that could exhibit strong myocardial protection activity in the H9c2 cardiomyocyte model were selected as the candidate Q-markers of DLT. According to the proportion of their Cmax value in vivo, the candidate Q-markers were configured into a composition; the bioactivity was then evaluated to confirm their synergistic effect and justify their usage as Q-markers. RESULTS First of all, a total of 110 DLT-related xenobiotics (35 prototypes and 75 metabolites) were detected in bio-samples, and the pharmacokinetic properties of 13 PK markers of DLT were successfully characterized, revealing the quality transitivity and traceability from prescription to in vivo. Then, 6 crucial PK markers with three topological features (degree, betweenness, and closeness) greater than the average values in the pharmacology network were screened out as the key components of DLT against CHD. Furthermore, among these 6 crucial PK markers, 5 components (puerarin, alisol A, daidzein, paeoniflorin, and tanshinone IIA) with strong myocardial protection activity were chosen as the candidate Q-markers to constitute a new composition. The composition activated the expression of the PI3K/AKT pathway and exhibited strong myocardial protection activity, and the effective concentrations (nM level) of these components in the composition were significantly lower than their individually effective concentrations (μM level), indicating that there was a certain synergistic effect between them. Hence, the 5 components with multiple properties, including testability, quality transitivity and traceability from prescription to in vivo, effectiveness, and compatibility contribution, were defined as comprehensive and representative Q-markers of DLT. CONCLUSION This study not only presented a novel idea for the revelation of comprehensive and representative Q-markers in quality control research of TCM prescriptions, but also identified the reasonable Q-markers of DLT for the first time to improve the quality control level of DLT.
Collapse
Affiliation(s)
- Qi Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Guotao Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xintong Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yuehe Liu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zifei Qin
- Department of Pharmacology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Pei Lin
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Liangliang He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Zhihong Yao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
47
|
Cao B, Wang Z, Zhang J, Fu J, Zhang Z, Du J, Deng T, Pang J, Yang M, Han J. A biophoton method for identifying the quality states of fresh Chinese herbs. Front Pharmacol 2023; 14:1140117. [PMID: 37021045 PMCID: PMC10067714 DOI: 10.3389/fphar.2023.1140117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Introduction: The quality of Chinese herbs is the basis for ensuring their safety and efficacy. However, the quality evaluation system is imperfect. In particular, there is a lack of quality evaluation methods for fresh Chinese herbs during growth. The biophoton is a common phenomenon and provides complete information about the interior of the living system, which is consistent with the holistic concept of traditional Chinese medicine. Therefore, we aim to correlate the biophoton characteristics with the quality states to find the biophoton parameters that can characterize the quality states of fresh Chinese herbs. Methods: The biophoton characteristics of motherwort and safflower were measured and characterized by the counts per second (CPS) in the steady state and the initial intensity (I0) and coherent time (T) of delayed luminescence. The active ingredient content was measured by ultra-high-performance liquid chromatography (UPLC). The pigment content of motherwort leaves was measured by UV spectrophotometry. The t-test and correlation analysis were performed on the experimental results. Results: The CPS and I0 of motherwort and I0 of safflower showed a significant downward trend during the growth process, and their active ingredient content showed a trend that increased and then decreased. The CPS, I0, and the content of active ingredients and pigments in a healthy state were significantly higher than those in a poor state, while T showed the opposite results. The CPS and I0 were all significantly and positively correlated with the content of active ingredients and pigments, while the T of motherwort showed the opposite results. Conclusion: It is feasible to identify the quality states of fresh Chinese herbs by using their biophoton characteristics. Both CPS and I0 have better correlations with the quality states and can be considered characteristic parameters of the quality of fresh Chinese herbs.
Collapse
Affiliation(s)
- Baorui Cao
- Biomedical Sciences College and Shandong Medicinal Biotechnology Centre, First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Zhiying Wang
- Biomedical Sciences College and Shandong Medicinal Biotechnology Centre, First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Jiayi Zhang
- Biomedical Sciences College and Shandong Medicinal Biotechnology Centre, First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jialei Fu
- Shandong Academy of Chinese Medicine, Jinan, China
| | - Zhongwen Zhang
- Department of Endocrinology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jinxin Du
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Deng
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingxiang Pang
- Biomedical Sciences College and Shandong Medicinal Biotechnology Centre, First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Meina Yang
- Biomedical Sciences College and Shandong Medicinal Biotechnology Centre, First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Jinxiang Han, ; Meina Yang,
| | - Jinxiang Han
- Biomedical Sciences College and Shandong Medicinal Biotechnology Centre, First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Jinxiang Han, ; Meina Yang,
| |
Collapse
|
48
|
Supermolecules as a quality markers of herbal medicinal products. Heliyon 2022; 8:e12497. [PMID: 36568034 PMCID: PMC9767884 DOI: 10.1016/j.heliyon.2022.e12497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Herbal medicines have greatly contributed to human health worldwide for thousands of years. In particular, traditional Chinese medicine plays an essential role in the prevention and treatment of COVID-19. With the exponentially increasing use and global attention to herbal medicinal products (HMPs), efficacy and safety have become major public concerns in many countries. In general, the quantification and qualification of quality markers (Q-markers) is the most common way to solve this issue. In the last few decades, small molecules, including flavonoids, terpenes, phenylpropanoids, alkaloids, phenols, and glycosides have been extensively investigated as Q-markers for HMP quality control. With the development of biotechnology in the last decade, scientists have begun to explore HMPs macromolecules, including polysaccharides and DNA, for their establishment as Q-markers. In recent years, supermolecules with stronger biological activities have been found in HMPs. In this review, we summarize and discuss the current Q-markers for HMP quality control; in particular, the possibility of using supermolecules as Q-markers based on structure and activity was discussed.
Collapse
|
49
|
Wan X, Wu W, Zang Z, Li K, Naeem A, Zhu Y, Chen L, Zhong L, Zhu W, Guan Y. Investigation of the potential curative effects of Gui-Zhi-Jia-Ge-Gen decoction on wind-cold type of common cold using multidimensional analysis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115662. [PMID: 36031102 DOI: 10.1016/j.jep.2022.115662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gui-Zhi-Jia-Ge-Gen decoction (GJGD) is a classical Chinese medicine prescription that has been widely used in clinical practice for centuries. In recent times, TCM has received considerable attention for its potential efficacy in treating a wind-cold type of common cold. However, the effect of the Gui-Zhi-Jia-Ge-Gen decoction on the wind-cold type of common cold is still not fully understood, which presents challenges for both quality control, research and development. Furthermore, the identification of potential pharmacodynamic ingredients (PPIs) is important for developing quality control procedures for industrial and large-scale production. AIM OF THE STUDY The aim of this study was to investigate the potential curative effect of Gui-Zhi-Jia-Ge-Gen decoction on wind-type of common cold using multidimensional qualitative analysis that combined water-decoction spectrums, in vivo plasma spectrums, and molecular docking to identify key constituents of GJGD. MATERIALS AND METHODS Water-based GJGDs were formulated according to the clinical usage documented in ancient medical texts. Ultra-high-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UHPLC-Q-TOF-MS) was combined with computer-aided modeling screening to identify GJGD PPIs in rats following oral administration. Molecular docking experiments were carried out to predict the binding affinity of the PPIs to tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), and interleukin-1β (IL-1β). Finally, the active ingredients of GJGD were further validated through pharmacodynamic experiments by assessing their efficacy in treating a wind-cold type of common cold in rats. RESULTS A total of 61 compounds were identified in the GJGD, 8 of which were detected in rat blood samples, providing stronger evidence for PPIs. Molecular docking also confirmed that these 8 compounds had a better affinity for TNF-α, IL-6, and IL-1β. In animal studies, various doses of the GJGD groups and the positive control groups caused significant elevations (P < 0.05) in the levels of white blood cell count and lymphocyte ratio and caused a significant decrease (P < 0.05) in the monocyte ratio and neutrophilic granulocyte ratio compared to the model group. Organ indexes of the GJGD treated groups were higher than the model group (P < 0.05). Significant neutrophil infiltration, hemorrhage, compensatory vacuole, and interstitium proliferation were observed in the lung tissue of the model group. However, the lung tissues of the various dose groups that received GJGD showed a near normal appearance, except for slight thickening, interstitium proliferation, and compensatory vacuole in some areas. The GJGD was found to be effective against a cold-wind type of common cold, which is in accordance with molecular docking studies suggesting that GJGD may be effective against a cold-wind type of common cold. Finally, based on multidimensional analysis, 8 potential compounds in GJGD were identified as PPIs (puerarin, 3'-hydroxy puerarin, 3'- methoxy puerarin, daidzin, cinnamic acid, paeoniflorin, liquiritin, and glycyrrhizic acid). CONCLUSION The present study combined water decoction spectral analysis, molecular docking, and in vivo blood plasma spectrum analysis to develop a multidimensional qualitative approach for the development of GJGD and to assess its effectiveness in a wind type of common cold in Sprague Dawley rats. Meanwhile, 8 compounds in the GJGD were identified as PPIs in this study, which may be useful in developing quality standards for complex TCM prescriptions.
Collapse
Affiliation(s)
- Xinhao Wan
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Wenting Wu
- School of Pharmacy, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Zhenzhong Zang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Kang Li
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Yulu Zhu
- School of Pharmacy, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Lihua Chen
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Lingyun Zhong
- School of Pharmacy, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China.
| | - Yongmei Guan
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China.
| |
Collapse
|
50
|
Shen P, Jia Y, Shi S, Sun J, Han X. Analytical and biomedical applications of microfluidics in traditional Chinese medicine research. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|