1
|
Yuwen S, Zheng Q, Liao C, Wei L, Yang S, Li N. Therapeutic effects and mechanisms of alcohol extracts from Polygala fallax Hemsl on endometriosis in rats. Arch Biochem Biophys 2025; 768:110393. [PMID: 40090438 DOI: 10.1016/j.abb.2025.110393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025]
Abstract
Endometriosis is a chronic estrogen-dependent inflammatory disease that significantly affects women's health. Polygala fallax Hemsl. (PFH), a traditional Zhuang medicine, has been frequently used for gynecological disorders. This study investigated the therapeutic effects and mechanisms of the alcohol extract of Polygala fallax Hemsl. (ae-PFH) in a rat model of endometriosis, as well as its potential for combination therapy. SD rats were divided into seven groups: control, model, PFH, mifepristone, PFH combined with mifepristone, exosomes, and PFH combined with exosomes. After 21 days of treatment, body weight, organ coefficients, and histopathological changes in uterine and ovarian tissues were analyzed. UPLC-Q-Exactive Orbitrap-MS identified active components in ae-PFH and serum samples, followed by molecular docking with key disease target proteins. Serum levels of inflammatory cytokines and hormones were measured using ELISA, while protein and mRNA expression of key regulatory factors were assessed via Western blot and q-PCR. Ae-PFH reduced lesion size and suppressed inflammation, angiogenesis, and pain by inhibitied the PI3K/AKT pathway. Additionally, in combination therapy, ae-PFH significantly enhanced therapeutic effects of mifepristone or exosomes derived from umbilical cord mesenchymal stem cells. These findings indicated that ae-PFH presentd a promising medical method for the treatment of endometriosis, exhibiting innovative potentiality for combination therapy.
Collapse
Affiliation(s)
- Si Yuwen
- Guangxi International Zhuang Medical Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Qian Zheng
- Medical School of Chinese PLA, Beijing, China
| | - Chunhong Liao
- Guangxi International Zhuang Medical Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Lijuan Wei
- Guangxi Artificial Intelligence and Biomedical Information Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Sufang Yang
- Guangxi International Zhuang Medical Hospital, Guangxi University of Chinese Medicine, Nanning, China.
| | - Ning Li
- Guangxi International Zhuang Medical Hospital, Guangxi University of Chinese Medicine, Nanning, China.
| |
Collapse
|
2
|
Yang Y, Zhao L, Gao F, Wu G, Luo Y, An M. Modulation of renal fibrosis-related signaling pathways by traditional Chinese medicine: molecular mechanisms and experimental evidence. Int Urol Nephrol 2025:10.1007/s11255-025-04532-z. [PMID: 40293615 DOI: 10.1007/s11255-025-04532-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
Renal fibrosis (RF), characterized by excessive deposition of extracellular matrix leading to tissue damage and scar formation, represents a refractory disease and a pivotal pathological basis for the progression to end-stage renal disease. The pathogenesis of RF is intricate, prominently implicating multiple key signaling pathways, including adenosine monophosphate-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR), phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), transforming growth factor-β1/small mother against decapentaplegic (TGF-β1/Smad), toll-like receptor 4/nuclear factor kappa B (TLR4/NF-κB), wingless integrated/β-catenin (Wnt/β-catenin), hypoxia-inducible factor-1α (HIF-1α), Hedgehog, and mitogen-activated protein kinase (MAPK). The current Western medical practices primarily rely on supportive and replacement therapies, which are often costly and suboptimal in efficacy. In contrast, traditional Chinese medicine (TCM), with its inherent advantages of multi-target, multi-pathway, and multi-effect modulation, emerges as a promising new strategy for RF treatment. However, a systematic, comprehensive, and detailed summary of these advancements remains absent. Therefore, this review consolidates the recent research progress on TCM modulation of RF-related signaling pathways, aiming to provide a theoretical foundation for further investigations into RF and the development of TCM interventions.
Collapse
Affiliation(s)
- Yufei Yang
- Department of Pharmacy, Baotou Medical College, 31 Jianshe Road, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China
| | - Longshan Zhao
- Department of Pharmacy, Baotou Medical College, 31 Jianshe Road, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China
- Department of Pharmacy, Shenyang Pharmaceutical University, Benxi, 117004, China
| | - Fengli Gao
- Department of Pharmacy, Second Affiliated Hospital of Baotou Medical College, Baotou, 014030, China
| | - Guodong Wu
- Department of Pharmacy, Baotou Medical College, 31 Jianshe Road, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China
| | - Yiduo Luo
- Department of Pharmacy, Baotou Medical College, 31 Jianshe Road, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China
| | - Ming An
- Department of Pharmacy, Baotou Medical College, 31 Jianshe Road, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
3
|
Shih-Wei C, Chen B, Mao Y, Xu Q, Chen Y. Polygala fallax Hemsl. ameliorated high glucose-induced podocyte injury by modulating mitochondrial mPTP opening through the SIRT1/PGC-1α pathway. Arch Physiol Biochem 2025; 131:135-146. [PMID: 39221837 DOI: 10.1080/13813455.2024.2392298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to investigate the effects and molecular mechanism of PF on high glucose (HG)-induced podocyte injury. Results found that PF increased proliferation activity, decreased apoptosis, LDH, and caspase-3 levels, and increased nephrin and podocin expression in HG-induced cells. Similarly, PF improved HG-induced mitochondrial damage, decreased Ca2+ and ROS content, alleviated oxidative stress, inhibited mPTP opening, increased mitochondrial membrane potential, and decreased the expressions of Drp1, Bak, Bax, and Cytc in cytoplasm, increased the expressions of SIRT1, PGC-1α, HSP70, HK2, and Cytc in mitochondria of podocytes. The use of mPTP agonist/blocker and SIRT1 inhibitor confirmed that PF alleviates HG-induced podocyte injury by regulating mitochondrial mPTP opening through SIRT1/PGC-1α. In addition, PF affected HK2-VDAC1 protein binding to regulate mPTP opening via the SIRT1/PGC-1α pathway. In conclusion, PF-regulated HK2-VDAC1 protein binding affected mitochondrial mPTP opening and improved HG-induced podocyte injury through the SIRT1/PGC-1α pathway.
Collapse
Affiliation(s)
- Chao Shih-Wei
- Department of Traditional Chinese Medicine, Guilin Hospital of the Second Xiangya Hospital Central South University, Guilin, China
| | - Bo Chen
- Guangxi Key Laboratory of Basic Research in Sphingolipid Metabolism Related Disease, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, China
| | - Yanqing Mao
- Outpatient Department, Guilin Hospital of the Second Xiangya Hospital Central South University, Guilin, China
| | - Qin Xu
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Yige Chen
- Ministry of Science and Education, Guilin Hospital of the Second Xiangya Hospital Central, Guilin, China
| |
Collapse
|
4
|
Du L, Liu S, Lu Y, Ren D, Yu X, Hu Y, Yang T, Yang Q, Ming J, Zhang J, Yin X, Lu Q. GABP Promotes Mesangial Cell Proliferation and Renal Fibrosis Through GLI1 in Diabetic Nephropathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407462. [PMID: 39985381 PMCID: PMC12005803 DOI: 10.1002/advs.202407462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/22/2024] [Indexed: 02/24/2025]
Abstract
Abnormal proliferation of mesangial cells is a hallmark of diabetic nephropathy (DN). However, the cellular signaling mechanisms that regulate this proliferation remain poorly understood. In this study, it is demonstrated that GA-binding protein (GABP), a member of the ETS family of transcription factors composed of GABPα and GABPβ, plays a significant role in the development of renal fibrosis by modulating mesangial cell proliferation. Notably, the deficiency of GABP in mesangial cells inhibits hyperglycemia-induced proliferation and mitigates renal fibrosis in a murine model of type 2 diabetes mellitus (T2DM). RNA sequencing analysis identifies GLI Family Zinc Finger 1 (GLI1) as the principal downstream effector of GABP in diabetic mice, serving as a crucial regulator of the G1/S transition within the cell cycle. Subsequent investigations have demonstrated that GABP interacts with the GLI1 promoter, facilitating mesangial cell proliferation via GLI1-dependent pathways. This is evidenced by the fact that GLI1 knockdown abrogates the proliferation of mesangial cells with GABP overexpression. Consequently, GABP emerges as a pivotal regulator of renal fibrosis and represents a promising therapeutic target for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Lei Du
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityChina
| | - Sijie Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityChina
| | - Yinfei Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityChina
| | - Dongxue Ren
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityChina
| | - Xiujuan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityChina
| | - Yue Hu
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityChina
| | - Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityChina
| | - Qun Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityChina
| | - Jingxian Ming
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityChina
| | - Jiawei Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityChina
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityChina
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityChina
| |
Collapse
|
5
|
Lv R, Cao H, Zhong M, Wu J, Lin S, Li B, Chen D, Zhang Z, Zhang K, Gao Y. Polygala fallax Hemsl polysaccharides alleviated alcoholic fatty liver disease by modifying lipid metabolism via AMPK. Int J Biol Macromol 2024; 279:135565. [PMID: 39270893 DOI: 10.1016/j.ijbiomac.2024.135565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Alcoholic fatty liver disease (AFLD) is characterized by excessive lipid accumulation in the liver. This study aimed to investigate the protective effects and mechanisms of Polygala fallax Hemsl polysaccharides (PFPs) on AFLD. PFPs were purified and structurally characterized. An AFLD model was established in mice using alcohol and a high-fat diet. A significant reduction in hepatic steatosis was observed following PFPs treatment, evidenced by decreased fat deposition in liver tissues. Additionally, PFPs reduced various liver injury markers, increased levels of antioxidant enzymes, and improved significantly liver function. RNA sequencing revealed that PFPs improved lipid and CYP450 metabolic pathway abnormalities in AFLD mice. Furthermore, PFPs activated the AMPK pathway, reducing lipid accumulation and enhancing lipid metabolism. A HepG2 cell model treated with ethanol and oleic acid showed significant biochemical improvements with PFPs pretreatment, including reduced lipid accumulation and lower reactive oxygen species (ROS) levels. To further elucidate the AMPK and PFPs correlation in AFLD, an AMPK inhibitor (compound C) was used. In vitro and in vivo qRT-PCR and Western blot results confirmed that PFPs protected against AFLD by activating AMPK phosphorylation, regulating lipid synthesis, and inhibiting lipid accumulation. PFPs also modulated CYP2E1 and oxidative stress-related gene expression, affecting liver metabolism.
Collapse
Affiliation(s)
- Rui Lv
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Houkang Cao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Mingli Zhong
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Jianzhao Wu
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Shiyuan Lin
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Bo Li
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Dongyu Chen
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Zhiyuan Zhang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Kefeng Zhang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Diabetic Systems Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541100, China.
| | - Ya Gao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
6
|
Deng L, Shi C, Li R, Zhang Y, Wang X, Cai G, Hong Q, Chen X. The mechanisms underlying Chinese medicines to treat inflammation in diabetic kidney disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118424. [PMID: 38844252 DOI: 10.1016/j.jep.2024.118424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/03/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
ETHNIC PHARMACOLOGICAL RELEVANCE Diabetic kidney disease (DKD) is the main cause of end-stage renal disease (ESRD), which is a public health problem with a significant economic burden. Serious adverse effects, such as hypotension, hyperkalemia, and genitourinary infections, as well as increasing adverse cardiovascular events, limit the clinical application of available drugs. Plenty of randomized controlled trials(RCTs), meta-analysis(MAs) and systematic reviews(SRs) have demonstrated that many therapies that have been used for a long time in medical practice including Chinese patent medicines(CPMs), Chinese medicine prescriptions, and extracts are effective in alleviating DKD, but the mechanisms by which they work are still unknown. Currently, targeting inflammation is a central strategy in DKD drug development. In addition, many experimental studies have identified many Chinese medicine prescriptions, medicinal herbs and extracts that have the potential to alleviate DKD. And part of the mechanisms by which they work have been uncovered. AIM OF THIS REVIEW This review aims to summarize therapies that have been proven effective by RCTs, MAs and SRs, including CPMs, Chinese medicine prescriptions, and extracts. This review also focuses on the efficiency and potential targets of Chinese medicine prescriptions, medicinal herbs and extracts discovered in experimental studies in improving immune inflammation in DKD. METHODS We searched for relevant scientific articles in the following databases: PubMed, Google Scholar, and Web of Science. We summarized effective CPMs, Chinese medicine prescriptions, and extracts from RCTs, MAs and SRs. We elaborated the signaling pathways and molecular mechanisms by which Chinese medicine prescriptions, medicinal herbs and extracts alleviate inflammation in DKD according to different experimental studies. RESULTS After overviewing plenty of RCTs with the low hierarchy of evidence and MAs and SRs with strong heterogeneity, we still found that CPMs, Chinese medicine prescriptions, and extracts exerted promising protective effects against DKD. However, there is insufficient evidence to prove the safety of Chinese medicines. As for experimental studies, Experiments in vitro and in vivo jointly demonstrated the efficacy of Chinese medicines(Chinese medicine prescriptions, medicinal herbs and extracts) in DKD treatment. Chinese medicines were able to regulate signaling pathways to improve inflammation in DKD, such as toll-like receptors, NLRP3 inflammasome, Nrf2 signaling pathway, AMPK signaling pathway, MAPK signaling pathway, JAK-STAT, and AGE/RAGE. CONCLUSION Chinese medicines (Chinese medicine prescriptions, medicinal herbs and extracts) can improve inflammation in DKD. For drugs that are effective in RCTs, the underlying bioactive components or extracts should be identified and isolated. Attention should be given to their safety and pharmacokinetics. Acute, subacute, and subchronic toxicity studies should be designed to determine the magnitude and tolerability of side effects in humans or animals. For drugs that have been proven effective in experimental studies, RCTs should be designed to provide reliable evidence for clinical translation. In a word, Chinese medicines targeting immune inflammation in DKD are a promising direction.
Collapse
Affiliation(s)
- Lingchen Deng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Chunru Shi
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Run Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Yifan Zhang
- Medical School of Chinese PLA, Beijing, 100853, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Xiaochen Wang
- Medical School of Chinese PLA, Beijing, 100853, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China.
| | - Xiangmei Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China.
| |
Collapse
|
7
|
Guan G, Cao H, Tang Z, Zhang K, Zhong M, Lv R, Wan W, Guo F, Wang Y, Gao Y. Mechanistic studies on the alleviation of ANIT-induced cholestatic liver injury by Polygala fallax Hemsl. polysaccharides. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118108. [PMID: 38574780 DOI: 10.1016/j.jep.2024.118108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/09/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygala fallax Hemsl. is a traditional folk medicine commonly used by ethnic minorities in the Guangxi Zhuang Autonomous Region, and has a traditional application in the treatment of liver disease. Polygala fallax Hemsl. polysaccharides (PFPs) are of interest for their potential health benefits. AIM OF THIS STUDY This study explored the impact of PFPs on a mouse model of cholestatic liver injury (CLI) induced by alpha-naphthyl isothiocyanate (ANIT), as well as the potential mechanisms. MATERIALS AND METHODS A mouse CLI model was constructed using ANIT (80 mg/kg) and intervened with different doses of PFPs or ursodeoxycholic acid. Their serum biochemical indices, hepatic oxidative stress indices, and hepatic pathological characteristics were investigated. Then RNA sequencing was performed on liver tissues to identify differentially expressed genes and signaling pathways and to elucidate the mechanism of liver protection by PFPs. Finally, Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to verify the differentially expressed genes. RESULTS Data analyses showed that PFPs reduced the levels of liver function-related biochemical indices, such as ALT, AST, AKP, TBA, DBIL, and TBIL. PFPs up-regulated the activities of SOD and GSH, down-regulated the contents of MDA, inhibited the release of IL-1β, IL-6, and TNF-α, or promoted IL-10. Pathologic characterization of the liver revealed that PFPs reduced hepatocyte apoptosis or necrosis. The RNA sequencing indicated that the genes with differential expression were primarily enriched for the biosynthesis of primary bile acids, secretion or transportation of bile, the reactive oxygen species in chemical carcinogenesis, and the NF-kappa B signaling pathway. In addition, the results of qRT-PCR and Western blotting analysis were consistent with those of RNA sequencing analysis. CONCLUSIONS In summary, this study showed that PFPs improved intrahepatic cholestasis and alleviated liver damage through the modulation of primary bile acid production, Control of protein expression related to bile secretion or transportation, decrease in inflammatory reactions, and inhibition of oxidative pressure. As a result, PFPs might offer a hopeful ethnic dietary approach for managing intrahepatic cholestasis.
Collapse
Affiliation(s)
- Guoqiang Guan
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China; Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, China
| | - Houkang Cao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, China
| | - Zixuan Tang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, China
| | - Kefeng Zhang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, China
| | - Mingli Zhong
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, China
| | - Rui Lv
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, China
| | - Weimin Wan
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, China
| | - Fengyue Guo
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, China
| | - Yongwang Wang
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| | - Ya Gao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, China.
| |
Collapse
|
8
|
Tanhapour M, Nourbakhsh M, Panahi G, Golestani A. The role of Sirtuin 1 in regulation of fibrotic genes expression in pre-adipocytes. J Diabetes Metab Disord 2024; 23:1081-1091. [PMID: 38932833 PMCID: PMC11196476 DOI: 10.1007/s40200-024-01389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/13/2024] [Indexed: 06/28/2024]
Abstract
Purpose Considering inhibition of pre-adipocyte cells differentiation in adipose tissue fibrosis, we aimed to explore whether Sirt1 and Hif-1α in pre-adipocytes have a significant effect on fibrotic gene expression. Methods 3T3-L1 pre-adipocytes were transfected with SIRT1-specific siRNA, confirmed by real-time polymerase chain reaction (RT-PCR) and western blotting. Additionally, cells were treated with varying concentrations of resveratrol and sirtinol as the activator and inhibitor of Sirt1, respectively. Involvement of Hif-1α was evaluated by treatment with echinomycin. Subsequently, we assessed the gene and protein expressions related to fibrosis in the extracellular matrix of adipose tissue, including collagen VI (Col VI), lysyl oxidase (Lox), matrix metalloproteinase-2 (Mmp-2), Mmp-9, and osteopontin (Opn) in pre-adipocytes through RT-PCR and western blot. Results The current study demonstrated that Sirt1 knockdown and reduced enzyme activity significantly increased the expression of Col VI, Lox, Mmp-2, Mmp-9, and Opn genes in the treated 3T3-L1 cells compared to the control group. Interestingly, resveratrol significantly decreased the gene expression related to the fibrosis pathway. Inhibition of Hif-1α by echinomycin led to a significant reduction in Col VI, Mmp-2, and Mmp-9 gene expression in the treated group compared to the control. Conclusion This study highlights that down-regulation of Sirt1 might be a predisposing factor in the emergence of adipose tissue fibrosis by enhancing the expression of extracellular matrix (ECM) components. Activation of Sirt1, similar to suppressing of Hif-1α in pre-adipocytes may be a beneficial approach for attenuating fibrotic gene expression. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01389-4.
Collapse
Affiliation(s)
- Maryam Tanhapour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Nourbakhsh
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Golestani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Zhang H, Yao J, Xiao G, Xie J, Mao S, Sun C, Yao J, Yan J, Tu P. Discovery of drug targets based on traditional Chinese medicine microspheres (TCM-MPs) fishing strategy combined with bio-layer interferometry (BLI) technology. Anal Chim Acta 2024; 1305:342542. [PMID: 38677836 DOI: 10.1016/j.aca.2024.342542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 04/29/2024]
Abstract
Target discovery of natural products is a key step in the development of new drugs, and it is also a difficult speed-limiting step. In this study, a traditional Chinese medicine microspheres (TCM-MPs) target fishing strategy was developed to discover the key drug targets from complex system. The microspheres are composed of Fe3O4 magnetic nanolayer, oleic acid modified layer, the photoaffinity group (4- [3-(Trifluoromethyl)-3H-diazirin-3-yl] benzoic acid, TAD) layer and active small molecule layer from inside to outside. TAD produces highly reactive carbene under ultraviolet light, which can realize the self-assembly and fixation of drug active small molecules with non-selective properties. Here, taking Shenqi Jiangtang Granules (SJG) as an example, the constructed TCM-MPs was used to fish the related proteins of human glomerular mesangial cells (HMCs) lysate. 28 differential proteins were screened. According to the target analysis based on bioinformatics, GNAS was selected as the key target, which participated in insulin secretion and cAMP signaling pathway. To further verify the interaction effect of GNAS and small molecules, a reverse fishing technique was established based on bio-layer interferometry (BLI) coupled with UHPLC-Q/TOF-MS/MS. The results displayed that 26 small molecules may potentially interact with GNAS, and 7 of them were found to have strong binding activity. In vitro experiments for HMCs have shown that 7 active compounds can significantly activate the cAMP pathway by binding to GNAS. The developed TCM-MPs target fishing strategy combined with BLI reverse fishing technology to screen out key proteins that directly interact with active ingredients from complex target protein systems is significant for the discovery of drug targets for complex systems of TCM.
Collapse
Affiliation(s)
- Hui Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jiangyu Yao
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, China
| | - Guyu Xiao
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, China
| | - Jianhui Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, China
| | - Shuying Mao
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, China
| | - Chenghong Sun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Shandong, 276006, China
| | - Jingchun Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Shandong, 276006, China
| | - Jizhong Yan
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, China.
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
10
|
Quan Y, Su P, Shangguan C, Hao H, Yue L, Chen C. Bergenin ameliorates diabetic nephropathy in C57BL/6 J mice by TLR4/MyD88/NF-κB signalling pathway regulation. Toxicol Appl Pharmacol 2023; 475:116633. [PMID: 37482253 DOI: 10.1016/j.taap.2023.116633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Bergenin (BG) is a polyphenolic substance which has therapeutic potential in the treatment of diabetic nephropathy (DN), a common complication of type II diabetes. However, the mechanisms underlying these effects remain unclear. We studied the protective effects and mechanisms of BG in DN mice, focusing on the TLR4/MyD88/NF-κB signalling pathway. C57BL/6 J mice were used as experiments (n=60), and 10 animals were randomly selected as normal control. The DN model was developed by administering an intraperitoneal injection of streptozotocin (40 mg/kg BW for three days) and a high-fat diet (n=50). BG (20, 40, and 80 mg/kg BW, once a day) was administered orally for four weeks. After BG treatment, the food and water intake of DN mice decreased, blood glucose levels decreased, and insulin resistance reduced. As a result, serum LDL-C, TC, and TG levels decreased; HDL-C levels increased; SOD, CAT, and GSH-Px levels decreased; and MDA levels increased. BG administration reduced AST, ALT, BUN, and CRE levels and inflammatory factors (including TNF-α, MCP-1, IL-1β, and IL-6). Histopathology revealed a significant improvement in pathological damage to the liver, kidney, and spleen of mice treated with BG, and TLR4, MyD88, and NF-κB p65 were down-regulated at both mRNA and protein levels in the BG-treated group. Based on these results, BG therapeutic type II DN by hypoglycaemia, improving liver and kidney function, and anti-oxidative stress; reducing inflammation; and inhibiting the TLR4/MyD88/NF-κB signalling pathway. The results of this study suggest that BG can be used as an effective treatment for type II DN.
Collapse
Affiliation(s)
- Yiheng Quan
- Chinese-German Joint Laboratory for Natural Product Research/Shaanxi Province Key Laboratory of Bio-Resources/QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C./Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
| | - Pengchao Su
- Chinese-German Joint Laboratory for Natural Product Research/Shaanxi Province Key Laboratory of Bio-Resources/QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C./Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
| | - Chenhong Shangguan
- Chinese-German Joint Laboratory for Natural Product Research/Shaanxi Province Key Laboratory of Bio-Resources/QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C./Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
| | - Hao Hao
- Chinese-German Joint Laboratory for Natural Product Research/Shaanxi Province Key Laboratory of Bio-Resources/QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C./Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
| | - Lijuan Yue
- Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, China.
| | - Chen Chen
- Chinese-German Joint Laboratory for Natural Product Research/Shaanxi Province Key Laboratory of Bio-Resources/QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C./Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China.
| |
Collapse
|
11
|
Huang B, Lu Y, Ni Z, Liu J, He Y, An H, Ye F, Shen J, Lin M, Chen Y, Lin J. ANRIL promotes the regulation of colorectal cancer on lymphatic endothelial cells via VEGF-C and is the key target for Pien Tze Huang to inhibit cancer metastasis. Cancer Gene Ther 2023; 30:1260-1273. [PMID: 37286729 PMCID: PMC10501904 DOI: 10.1038/s41417-023-00635-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023]
Abstract
lncRNA ANRIL is an oncogene, however the role of ANRIL in the regulation of colorectal cancer on human lymphatic endothelial cells (HLECs) is remain elusive. Pien Tze Huang (PZH, PTH) a Tradition Chinese Medicine (TCM) as an adjunctive medication could inhibit the cancer metastasis, however the mechanism still uncovering. We used network pharmacology, subcutaneous and orthotopic transplanted colorectal tumors models to determine the effect of PZH on tumor metastasis. Differential expressions of ANRIL in colorectal cancer cells, and stimulating the regulation of cancer cells on HLECs by culturing HLECs with cancer cells' supernatants. Network pharmacology, transcriptomics, and rescue experiments were carried out to verify key targets of PZH. We found PZH interfered with 32.2% of disease genes and 76.7% of pathways, and inhibited the growth of colorectal tumors, liver metastasis, and the expression of ANRIL. The overexpression of ANRIL promoted the regulation of cancer cells on HLECs, leading to lymphangiogenesis, via upregulated VEGF-C secretion, and alleviated the effect of PZH on inhibiting the regulation of cancer cells on HLECs. Transcriptomic, network pharmacology and rescue experiments show that PI3K/AKT pathway is the most important pathway for PZH to affect tumor metastasis via ANRIL. In conclusion, PZH inhibits the regulation of colorectal cancer on HLECs to alleviate tumor lymphangiogenesis and metastasis by downregulating ANRIL dependent PI3K/AKT/VEGF-C pathway.
Collapse
Affiliation(s)
- Bin Huang
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, China
| | - Yao Lu
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
| | - Zhuona Ni
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, China
| | - Jinhong Liu
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
| | - Yanbin He
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, China
| | - Honglin An
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, China
| | - Feimin Ye
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
| | - Jiayu Shen
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
| | - Minghe Lin
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
| | - Yong Chen
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China
| | - Jiumao Lin
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China.
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, P.R. China.
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, China.
| |
Collapse
|
12
|
Guo M, Gao J, Jiang L, Dai Y. Astragalus Polysaccharide Ameliorates Renal Inflammatory Responses in a Diabetic Nephropathy by Suppressing the TLR4/NF-κB Pathway. Drug Des Devel Ther 2023; 17:2107-2118. [PMID: 37489175 PMCID: PMC10363349 DOI: 10.2147/dddt.s411211] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
Background Diabetic nephropathy (DN), as a chronic inflammatory complication of diabetes, is characterized by hyperglycemia, albuminuria and edema, which ultimately becomes the leading cause of end-stage renal disease (ESRD). Astragalus polysaccharide (APS), extracted from the Astragalus membranaceus, was widely used in the treatment of diabetes mellitus. However, the functional roles of APS ameliorate inflammatory responses in DN, which remain poorly understood. Therefore, the purpose of this study was to explore the molecular mechanism of APS on DN in vivo and vitro models. Methods We explored the beneficial effects of APS in streptozotocin (STZ)-induced DN rat model and high glucose (HG)-treated glomerular podocyte model. The fasting blood glucose (FBG) and ratio of kidney weight to body weight were measured after 4 weeks of APS treatment. The renal injury parameters containing serum creatinine (Scr), blood urea nitrogen (BUN) and 24 h urinary protein were evaluated. The renal pathological examination was observed by hematoxylin-eosin (HE) staining. The levels of IL-1β, IL-6 and MCP-1 were evaluated by ELISA assay. The proliferation of podocytes was determined using CCK-8 assay and flow cytometry. qRT-PCR and Western blot analysis were performed to determine the amounts of TLR4/NF-κB-related gene expression. Results Our results indicated that APS effectively decreased the levels of FBG, BUN, Scr and renal pathological damage when compared with STZ-induced DN model group. Additionally, APS significantly ameliorated renal injury by reducing inflammatory cytokines IL-1β, IL-6, MCP-1 expression and inhibiting the TLR4/NF-κB pathway activity in DN rats. Consistent with the results in vitro, the HG-induced inflammatory response and proliferation of glomerular podocytes were also alleviated through APS administration. Conclusion We found that APS ameliorated DN renal injury, and the mechanisms perhaps related to relieving inflammatory responses and attenuating the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Mingfei Guo
- Department of Scientific Research, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Public Health Clinical Center, Hefei, Anhui, People's Republic of China
| | - Jiarong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Lei Jiang
- Department of Pharmacy, Anhui No.2 Provincial People's Hospital, Hefei, Anhui, People's Republic of China
| | - Yaji Dai
- Department of Pharmacy, Anhui No.2 Provincial People's Hospital, Hefei, Anhui, People's Republic of China
| |
Collapse
|
13
|
Corremans R, Vervaet BA, Dams G, D'Haese PC, Verhulst A. Metformin and Canagliflozin Are Equally Renoprotective in Diabetic Kidney Disease but Have No Synergistic Effect. Int J Mol Sci 2023; 24:ijms24109043. [PMID: 37240387 DOI: 10.3390/ijms24109043] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic Kidney Disease (DKD) is a major microvascular complication for diabetic patients and is the most common cause of chronic kidney disease (CKD) and end-stage renal disease. Antidiabetic drugs, such as metformin and canagliflozin, have been shown to exert renoprotective effects. Additionally, quercetin recently showed promising results for the treatment of DKD. However, the molecular pathways through which these drugs exert their renoprotective effects remain partly unknown. The current study compares the renoprotective potential of metformin, canagliflozin, metformin + canagliflozin, and quercetin in a preclinical rat model of DKD. By combining streptozotocin (STZ) and nicotinamide (NAD) with daily oral N(ω)-Nitro-L-Arginine Methyl Ester (L-NAME) administration, DKD was induced in male Wistar Rats. After two weeks, rats were assigned to five treatment groups, receiving vehicle, metformin, canagliflozin, metformin + canagliflozin, or quercetin for a period of 12 weeks by daily oral gavage. Non-diabetic vehicle-treated control rats were also included in this study. All rats in which diabetes was induced developed hyperglycemia, hyperfiltration, proteinuria, hypertension, renal tubular injury and interstitial fibrosis, confirming DKD. Metformin and canagliflozin, alone or together, exerted similar renoprotective actions and similar reductions in tubular injury and collagen accumulation. Renoprotective actions of canagliflozin correlated with reduced hyperglycemia, while metformin was able to exert these effects even in the absence of proper glycemic control. Gene expression revealed that the renoprotective pathways may be traced back to the NF-κB pathway. No protective effect was seen with quercetin. In this experimental model of DKD, metformin and canagliflozin were able to protect the kidney against DKD progression, albeit in a non-synergistic way. These renoprotective effects may be attributable to the inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Raphaëlle Corremans
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Benjamin A Vervaet
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Geert Dams
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Patrick C D'Haese
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Anja Verhulst
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
14
|
Hsu YC, Chang CC, Hsieh CC, Shih YH, Chang HC, Lin CL. Therapeutic Potential of Extracts from Macaranga tanarius (MTE) in Diabetic Nephropathy. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030656. [PMID: 36771740 PMCID: PMC9920382 DOI: 10.3390/plants12030656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 05/30/2023]
Abstract
Diabetic nephropathy is a complication of diabetes that leads to end-stage kidney disease and is a major health burden worldwide. Prenylflavonoid compounds extracted from Macaranga tanarius (MTE) exhibit anti-inflammation, anti-oxidant, and anti-bacterial properties. However, the effects of these compounds on diabetic nephropathy remain unclear. The effects of MTE on diabetic nephropathy were investigated in vitro by using mouse renal mesangial cells and in vivo by using a db/db knockout mouse model. No overt alteration in proliferation was observed in mouse renal mesangial cells treated with 0-1 μg/mL MTE. Western blot analysis indicated that MTE dose-dependently attenuated the expression of fibronectin, α-smooth muscle actin, and collagen IV. Administration of MTE ameliorated renal albumin loss in db/db mice. Immunohistochemical staining revealed that MTE mitigated diabetes-induced fibronectin and collagen IV expression. Periodic acid-Schiff (PAS) and trichrome staining also showed that administration of MTE reduced the renal fibrosis phenomenon. MTE significantly ameliorated diabetes-induced nephropathy.
Collapse
Affiliation(s)
- Yung-Chien Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Cheng-Chih Chang
- Division of General Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Ching-Chuan Hsieh
- Division of General Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Ya-Hsueh Shih
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Hsiu-Ching Chang
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Chun-Liang Lin
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| |
Collapse
|
15
|
Xie Z, Xiao X. Novel biomarkers and therapeutic approaches for diabetic retinopathy and nephropathy: Recent progress and future perspectives. Front Endocrinol (Lausanne) 2022; 13:1065856. [PMID: 36506068 PMCID: PMC9732104 DOI: 10.3389/fendo.2022.1065856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
The global burden due to microvascular complications in patients with diabetes mellitus persists and even increases alarmingly, the intervention and management are now encountering many difficulties and challenges. This paper reviews the recent advancement and progress in novel biomarkers, artificial intelligence technology, therapeutic agents and approaches of diabetic retinopathy and nephropathy, providing more insights into the management of microvascular complications.
Collapse
|