1
|
Zhao D, Ge A, Yan C, Liu X, Yang K, Yan Y, Hao M, Chen J, Daga P, Dai CC, Li C, Cao H. T helper cell 17/regulatory T cell balance regulates ulcerative colitis and the therapeutic role of natural plant components: a review. Front Med (Lausanne) 2025; 11:1502849. [PMID: 40196424 PMCID: PMC11973383 DOI: 10.3389/fmed.2024.1502849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/23/2024] [Indexed: 04/09/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic relapsing inflammatory disease characterized by progressive mucosal damage. The incidence rate of UC is rising rapidly, which makes the burden of medical resources aggravated. In UC, due to various pathogenic factors such as mucosal immune system disorders, gene mutations and environmental factors disrupting the mucosal barrier function, the midgut pathogenic bacteria and exogenous antigens translocate into the lamina propria, thereby aggravating the inflammatory response and further damages the mucosal barrier. During the progression of UC, Th17 populations that cause inflammation generally increase, while Tregs that suppress Th17 activity decrease. Among them, Th17 mediates immune response, Treg mediates immunosuppression, and the coordinated balance of the two plays a key role in the inflammation and immune process of UC. Natural plant components can regulate biological processes such as immune inflammation from multiple levels of proinflammatory cytokines and signaling pathways. These characteristics have unique advantages and broad prospects in the treatment of UC. In immunomodulation, there is substantial clinical and experimental evidence for the modulatory role of natural plant products in restoring balance between Th17/Treg disturbances in UC. This review summarizes the previous studies on the regulation of Th17/Treg balance in UC by natural plant active ingredients, extracts, and traditional Chinese medicine prescriptions, and provides new evidence for the development and design of lead compounds and natural new drugs for the regulation of Th17/Treg balance in the future, and then provides ideas and evidence for future clinical intervention in the treatment of UC immune disorders and clinical trials.
Collapse
Affiliation(s)
- Da Zhao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Cong Yan
- Department of Urology, The Affiliated Children’s Hospital of Xiangya School of Medicine, Central South University (Hunan Children’s Hospital), Changsha, China
| | - Xingci Liu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Kailin Yang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
- Department of Psychology, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
- Tong Jiecheng Studio, Hunan University of Science and Technology, Xiangtan, China
| | - Yexing Yan
- Department of Psychology, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Moujia Hao
- Department of Psychology, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Junpeng Chen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Center for Cardiometabolic Science, Division of Environmental Medicine, Christina Lee Brown Envirome Insttitute, University of Louisville, Louisville, KY, United States
| | - Pawan Daga
- Department of Internal Medicine, University of Louisville, Louisville, KY, United States
| | - Charles C. Dai
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Maryland Baltimore, Baltimore, MD, United States
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, James Clark Hall, College Park, MD, United States
| | - Changping Li
- School of Mechanical Engineering and Automation, Fuyao University of Science and Technology, Fuzhou, China
| | - Hui Cao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Jin Y, Liu H, Wang Y, Zhang R, Wang Q, Wang Y, Cui H, Wang X, Bian Y. Pathogenesis and treatment of colitis-associated colorectal cancer: Insights from Traditional Chinese Medicine. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119096. [PMID: 39532222 DOI: 10.1016/j.jep.2024.119096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/11/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory Bowel Disease (IBD) is an inflammatory intestinal disease, and with prolonged illness duration, the annual risk of IBD progressing to colitis-associated colorectal cancer (CAC) gradually increases. In recent years, there has been a noticeable trend towards the application of traditional Chinese medicine (TCM) in the treatment of CAC. AIM OF THIS REVIEW This comprehensive review summarizes the pathogenesis of CAC and details the therapeutic benefits of TCM in treating CAC, including various TCM prescriptions and ingredients, establishing the theoretical foundation for the application of TCM in CAC treatment. METHODS We assessed literature published before March 24, 2024, from several databases, including Web of Science, PubMed, Scopus and Google Scholar. The keywords used include "traditional Chinese medicine", "traditional Chinese medicine prescriptions", "traditional Chinese medicine ingredients", "herbal medicine", "colitis-associated colorectal cancer", "inflammatory bowel disease", "colorectal cancer" and "colitis-cancer transformation". We conducted a comprehensive collection and collation of pertinent scientific articles from various databases, focusing on the efficacy of TCM in the prevention and treatment of "colitis-cancer transformation". RESULTS This paper provides a concise summary and thorough analysis of twenty-eight prescriptions and ingredients of TCM for the prevention and treatment of CAC, based on existing experimental and clinical research. There are positive signs that TCM can effectively prevent and treat the "colitis-cancer transformation" through repairing the intestinal mucosal barrier, correcting intestinal flora imbalance, and regulating intestinal immune responses. CONCLUSION TCM possesses comprehensive regulatory advantages that are multifaceted, multilevel, and multitarget. It has a definite curative effect in the prevention and treatment of CAC. It is essential to enhance the clinical efficacy of TCM in the prevention and treatment of CAC based on syndrome differentiation and treatment, with the assistance of modern medicine.
Collapse
Affiliation(s)
- Yutong Jin
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Haizhao Liu
- Department of Integrated Traditional Chinese and Western Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300192, China
| | - Yuhui Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ruixuan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qiaochu Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300073, China
| | - Yao Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Huantian Cui
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Xiangling Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
3
|
Tang X, He M, Ren Y, Ji M, Yan X, Zeng W, Lv Y, Li Y, He Y. Traditional Chinese Medicine formulas-based interventions on colorectal carcinoma prevention: The efficacies, mechanisms and advantages. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:119008. [PMID: 39471879 DOI: 10.1016/j.jep.2024.119008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/08/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Traditional Chinese Medicine Formulas (TCMFs) represent a distinctive medical approach to disease treatment and have been utilized in clinical practice for treating intestinal diseases for thousands of years. Recently, TCMFs have received increasing attention due to their advantages of high efficiency, safety, as well as low toxicity, providing promising strategies for preventing colorectal carcinoma (CRC). Nonetheless, the potential mechanism of TCMFs in preventing CRC has not been fully elucidated. AIM OF THE STUDY The literature from the past three years was reviewed to highlight the therapeutic effects and underlying mechanisms of TCMFs in preventing CRC. MATERIALS AND METHODS The keywords have been searched, including "traditional Chinese medicine formulas," "herb pairs," "Herbal plant-derived nanoparticles," et al. in "PubMed" and "China National Knowledge Infrastructure (CNKI)," and screened published articles related to the treatment of intestinal precancerous lesions. This review primarily examined the effectiveness and mechanisms of TCMFs in treating intestinal precancerous lesions, highlighting their significant potential in preventing CRC. RESULTS Gegen Qinlian decoction, Shaoyao decoction, Wu Wei Wan, etc., exert substantial therapeutic effects on intestinal precancerous lesions. These therapeutic effects are demonstrated by a reduction in disease activity index scores, suppression of intestinal inflammation, and preservation of body weight and intestinal function, all of which contribute to the effective prevention of CRC. Besides, the classic Chinese herbal pairs and the extracellular vesicle-like nanoparticles of herbaceous plants have demonstrated superior efficacy in the treatment of intestinal precancerous lesions. Mechanistically, protecting the epithelial barrier, regulating gut microbiota as well as related metabolism, modulating macrophage polarization, and maintaining immune balance contribute to the role of TCMFs in CRC prevention. CONCLUSIONS This review demonstrates the great potential and mechanism of TCMFs in CRC prevention and provides a scientific basis for their utilization in CRC prevention.
Collapse
Affiliation(s)
- Xiaojuan Tang
- School of biomedical sciences, Hunan University, Changsha, 410012, Hunan, China; Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China.
| | - Min He
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yuan Ren
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Meng Ji
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Xiaoqi Yan
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China
| | - Wen Zeng
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yuan Lv
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China
| | - Yongmin Li
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China
| | - Yongheng He
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China; Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
4
|
Tang L, Liu Y, Tao H, Feng W, Ren C, Shu Y, Luo R, Wang X. Combination of Youhua Kuijie Prescription and sulfasalazine can alleviate experimental colitis via IL-6/JAK2/STAT3 pathway. Front Pharmacol 2024; 15:1437503. [PMID: 39318778 PMCID: PMC11420560 DOI: 10.3389/fphar.2024.1437503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction Youhua Kuijie prescription (YHKJ) is a hospital preparation that is composed of nine kinds of herbs. Sulfasalazine (SASP) is widely used as a first-line clinical treatment for UC. Traditional Chinese medicine and Western medicine have their own advantages in the treatment of UC, and the mechanism of YHKJ combined with SASP in the treatment of UC needs to be investigated. Methods In this study, the therapeutic mechanism of YHKJ combined with SASP in the treatment of UC was predicted by network pharmacology and molecular docking. The chemical components and related targets of YHKJ were obtained from the TCMSP database. The chemical structure of SASP was obtained from the PubChem server, and related targets of SASP molecules were identified using the PharmMapper database. UC-related targets were obtained from the DisGeNET, GeneCards, OMIM, TTD, DrugBank and PharmGkb databases. Results In total, 197 shared targets were identified by constructing a Venn diagram. PPI network data obtained from the STRING database were imported into Cytoscape to visualize the "drug-disease" target network, and STAT3 was selected as the core target by topological analysis. Gene Ontology revealed the biological functions of target genes, and KEGG analysis revealed that the core target STAT3 was differentially expressed in Th17 cells and the JAK-STAT signaling pathway. Thus, the core target STAT3 was subjected to molecular docking with the top 10 components, including nine YHKJ components (quercetin, luteolin, ursolic acid, daidzein, kaempferol, wogonin, myricetin, formononetin, indirubin) and SASP (C18H14N4O5S). The molecular docking results showed that STAT3 had favorable binding with the nine YHKJ components and SASP; STAT3 had the strongest binding with ursolic acid (-10.26 kcal/mol), followed by SASP (-8.54 kcal/mol). Qualitative analysis of the chemical constituents of YHKJ by HPLC revealed that sitosterol, ursolic acid, myricetin, daidzein, quercetin, kaempferol and formononetin were the main components. Additional experiments verified that YHKJ combined with SASP inhibited activation of the IL-6/JAK2/STAT3 pathway and alleviated inflammation in UC model rats. Discussion Our results showed that seven chemical components in YHKJ cooperate with SASP to interfere with activation of the IL-6/JAK2/STAT3 pathway, thus playing a role in the treatment of UC.
Collapse
Affiliation(s)
- Lili Tang
- Liaoning University Of Traditional Chinese Medicine, Shenyang, China
| | - Yuedong Liu
- The Third Affiliated Hospital of Liaoning University Of Traditional Chinese Medicine, Shenyang, China
| | - Hongwu Tao
- The Second Affiliated Hospital of Liaoning University Of Traditional Chinese Medicine, Shenyang, China
| | - Wenzhe Feng
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xi'an, China
| | - Cong Ren
- Liaoning University Of Traditional Chinese Medicine, Shenyang, China
| | | | - Ruijuan Luo
- Kaifeng Traditional Chinese Medicine Hospital, Kaifeng, China
| | - Xiangyi Wang
- Liaoning University Of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
5
|
Zhao L, Zhao C, Miao Y, Lei S, Li Y, Gong J, Peng C. Theabrownin from Pu-erh Tea Improves DSS-Induced Colitis via Restoring Gut Homeostasis and Inhibiting TLR2&4 Signaling Pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155852. [PMID: 39029137 DOI: 10.1016/j.phymed.2024.155852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/07/2024] [Accepted: 06/27/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Theabrownin (TB) is a dark brown pigment from Pu-erh tea or other dark teas. It is formed by further oxidization of theaflavins and thearubigins, in combination with proteins, polysaccharides, and caffeine etc. TB is a characteristic ingredient and bioactive substance of Pu-erh tea. However, the effects of TB on ulcerative colitis (UC) remains unclear. PURPOSE This study aims to elucidate the mechanism of TB on UC in terms of recovery of intestinal homeostasis and regulation of toll-like receptor (TLR) 2&4 signaling pathway. METHODS The colitis models were established by administering 5% dextran sulfate sodium (DSS) to C57BL/6 mice for 5 days to evaluate the therapeutic and preventive effects of TB on UC. Mesalazine was used as a positive control. H&E staining, complete blood count, enzyme-linked immunosorbent assay, immunohistochemistry, flow cytometry, and 16S rRNA sequencing were employed to assess histological changes, blood cells analysis, content of cytokines, expression and distribution of mucin (MUC)2 and TLR2&4, differentiation of CD4+T cells in lamina propria, and changes in intestinal microbiota, respectively. Western blot was utilized to study the relative expression of tight junction proteins and the key proteins in TLR2&4-mediated MyD88-dependent MAPK, NF-κB, and AKT signaling pathways. RESULTS TB outstanding alleviated colitis, inhibited the release of pro-inflammatory cytokines, reduced white blood cells while increasing red blood cells, hemoglobin, and platelets. TB increased the expression of occludin, claudin-1 and MUC2, effectively restored intestinal barrier function. TB also suppressed differentiation of Th1 and Th17 cells in the colon's lamina propria, increased the fraction of Treg cells, and promoted the balance of Treg/Th17 to tilt towards Tregs. Moreover, TB increased the Firmicutes to Bacteroides (F/B) ratio, as well as the abundance of Akkermansia, Muribaculaceae, and Eubacterium_coprostanoligenes_group at the genus level. In addition, TB inhibited the activation of TLR2&4-mediated MAPK, NF-κB, and AKT signaling pathways in intestinal epithelial cells of DSS-induced mice. CONCLUSION TB acts in restoring intestinal homeostasis and anti-inflammatory in DSS-induced UC, and exhibiting a preventive effect after long-term use. In a word, TB is a promising beverage, health product and food additive for UC.
Collapse
Affiliation(s)
- Lei Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China; College of Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Chunyan Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yue Miao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China; Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650223, China
| | - Shuwen Lei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yujing Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jiashun Gong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China; Agro-products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650223, China.
| | - Chunxiu Peng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
6
|
Lv J, Fu Y, Ga Y, Han C, Fan Y, Wei Y, Hao S, Hao Z. Lianweng Granules Alleviate Intestinal Barrier Damage via the IL-6/STAT3/PI3K/AKT Signaling Pathway with Dampness-Heat Syndrome Diarrhea. Antioxidants (Basel) 2024; 13:661. [PMID: 38929100 PMCID: PMC11201218 DOI: 10.3390/antiox13060661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Dampness-heat syndrome diarrhea (DHSD) is a common clinical disease with a high prevalence but still has no satisfactory therapeutic medicine, so the search for a safe and effective drug candidate is ongoing. This study aims to explore the efficacy and mechanisms of Lianweng granules (LWG) in the treatment of DHSD and to identify the blood transport components of LWG. We assessed the efficacy of LWG in DHSD by various in vivo metrics such as body weight, disease activity index (DAI), histopathologic examination, intestinal barrier function, levels of inflammatory, apoptotic biomarkers, and oxidative stress. We identified the blood components of LWG using ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry (UHPLC-MS/MS), and the resolved key components were used to explore the relevant targets. We next predicted the potential mechanisms of LWG in treating DHSD using network pharmacology and molecular docking based on the relevant targets. Finally, the mechanisms were validated in vivo using RT-qPCR, Western blotting, ELISA, and immunofluorescence and evaluated in vitro using Cell Counting Kit-8 (CCK-8), small interfering RNA, cellular enthusiasm transfer assay (CETSA), and drug affinity response target stability (DARTS). Ninety-one pharmacodynamic components of LWG enter the bloodstream and exert possible therapeutic effects. In vivo, LWG treatment improved body weight, reduced colonic injury and DAI scores, lowered inflammation, oxidative stress, and apoptosis markers, and partially restored intestinal barrier function in DHSD mice. Guided by network pharmacology and molecular docking, it is suggested that LWG may exert therapeutic effects by inhibiting IL-6/STAT3/PI3K/AKT signaling. LWG significantly decreased the expression of IL-6, p-STAT3, p-PI3K, p-AKT, and other proteins. These findings were supported by in vitro experiments, where CETSA, DARTS, and siRNA evidenced LWG's targeting of STAT3. LWG targeted STAT3 to inhibit inflammation, oxidative stress, and apoptosis in the colon, thereby restoring the intestinal barrier function to some extent and exerting a therapeutic effect on DHSD.
Collapse
Affiliation(s)
- Jianyu Lv
- Innovation Centre of Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (J.L.); (Y.F.); (Y.G.); (C.H.); (Y.F.); (Y.W.)
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Yuchen Fu
- Innovation Centre of Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (J.L.); (Y.F.); (Y.G.); (C.H.); (Y.F.); (Y.W.)
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Yu Ga
- Innovation Centre of Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (J.L.); (Y.F.); (Y.G.); (C.H.); (Y.F.); (Y.W.)
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Chao Han
- Innovation Centre of Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (J.L.); (Y.F.); (Y.G.); (C.H.); (Y.F.); (Y.W.)
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Yimeng Fan
- Innovation Centre of Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (J.L.); (Y.F.); (Y.G.); (C.H.); (Y.F.); (Y.W.)
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Yuanyuan Wei
- Innovation Centre of Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (J.L.); (Y.F.); (Y.G.); (C.H.); (Y.F.); (Y.W.)
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Sijia Hao
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot 010059, China;
| | - Zhihui Hao
- Innovation Centre of Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (J.L.); (Y.F.); (Y.G.); (C.H.); (Y.F.); (Y.W.)
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| |
Collapse
|
7
|
Yang MJ, Zhang YN, Qiao Z, Xu RY, Chen SM, Hu P, Yu HL, Pan Y, Cao J. An investigation into the HIF-dependent intestinal barrier protective mechanism of Qingchang Wenzhong decoction in ulcerative colitis management. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117807. [PMID: 38280661 DOI: 10.1016/j.jep.2024.117807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is a chronic, non-specific inflammatory disease affecting the colon and rectum with an etiology that remains elusive. Traditional Chinese medicine (TCM) has been widely used on long-term UC treatment to better maintain the efficacy than traditional aminosalicylic acid or glucocorticosteroids and to ease financial burden of patients. Qingchang Wenzhong Decoction (QCWZD) is a modern TCM decoction with established clinical efficacy but the mechanism of its protection on intestinal barrier function remains unclear. AIM OF THE STUDY Current findings highlight that the activation of the hypoxia inducible factor (HIF) pathway can facilitate the repair of intestinal epithelium barrier. This study is to investigate the protective effects of QCWZD and its HIF-targeted ingredients on hypoxia-dependent intestinal barrier. METHODS The mice model of UC was induced by dextran sulfate sodium (DSS). Disease activity index (DAI) and histopathology scores and colon length were used to measure the severity of colitis. The DAO activity in serum and protein expression of tight junction (TJ) proteins were detected to explore the function of intestinal barrier. The protein levels of HIF-1α and its downstream gene heme oxygenase-1 (HO-1) were measured as well. HIF-targeted active ingredients in QCWZD were selected by network pharmacology and molecular docking. Protective effects of six constituents on HIF-related anti-oxidative and barrier protective pathway were evaluated by lipopolysaccharide (LPS)-induced HT29 and RAW264.7 cells, through the measurement of the production of ROS and mRNA level of pro-inflammatory cytokines. HIF-1α knockdown was carried out to explore the correlation of protection effects with HIF-related pathway of the active ingredients. RESULTS QCWZD effectively alleviated colitis induced by DSS and demonstrated a protective effect on intestinal barrier function by upregulating HIF-related pathways. Six specific ingredients in QCWZD, targeting HIF, successfully reduced the production of cellular ROS and proinflammatory cytokines in LPS-induced cells. It is noteworthy that the barrier protection provided by these molecules is intricately linked with the HIF-related pathway. CONCLUSIONS This study elucidates the HIF-related molecular mechanism of QCWZD in protecting the function of the epithelial barrier. Six compounds targeting the activation of the HIF-dependent pathway were demonstrated to unveil a novel therapeutic approach for managing UC.
Collapse
Affiliation(s)
- Meng-Juan Yang
- School of pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Yi-Nuo Zhang
- School of pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Zhi Qiao
- School of pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Rui-Ying Xu
- School of pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Si-Min Chen
- School of pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Po Hu
- School of pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Hong-Li Yu
- School of pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Yang Pan
- School of pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
| | - Jing Cao
- School of pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
| |
Collapse
|
8
|
Zhang Y, Li J, Han X, Jiang H, Wang J, Wang M, Zhang X, Zhang L, Hu J, Fu Z, Shi L. Qingchang Wenzhong Decoction ameliorates intestinal inflammation and intestinal barrier dysfunction in ulcerative colitis via the GC-C signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117503. [PMID: 38043755 DOI: 10.1016/j.jep.2023.117503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is an idiopathic, chronic inflammatory disorder of the colonic mucosa, accompanied with abdominal pain, and bloody diarrhea. Currently, clinical treatment options for UC are limited. Qingchang Wenzhong Decoction (QCWZD) is an effective prescription of traditional Chinese medicine for the treatment of UC. However, the mechanism of QCWZD in alleviating intestinal barrier dysfunction in UC has not been clearly explained. AIM OF THE STUDY To determine the mechanism whereby QCWZD promotes the recovery of intestinal barrier dysfunction in UC. MATERIALS AND METHODS A secondary analysis of colonic mucosa from UC patients acquired from a prior RCT clinical trial was performed. The effects of QCWZD on intestinal mucus and mechanical barriers in UC patients were evaluated using colon tissue paraffin-embedded sections from UC patients. The mechanism was further investigated by in vivo and in vitro experiments. UC mice were established in sterile water with 3.0% dextran sodium sulfate (DSS). Meanwhile, mice in the treatment group were dosed with QCWZD or mesalazine. In vitro, an intestinal barrier model was constructed using Caco-2 and HT29 cells in co-culture. GC-C plasmid was used to overexpress/knock down GC-C to clarify the target of QCWZD. HE, AB-PAS, ELISA, immunohistochemistry and immunofluorescence assays were used to assess the level of colonic inflammation and intestinal barrier integrity. Rt-qPCR, Western Blot were used to detect the expression of genes and proteins related to GC-C signaling pathway. Molecular docking was used to simulate the binding sites of major components of QCWZD to GC-C. RESULTS In UC patients, QCWZD increased mucus secretion, goblet cell number, and promoted MUC2 and ZO-1 expression. QCWZD accelerated the recovery of UC mice from DSS-induced inflammation, including weight gain, reduced disease activity index (DAI) scores, colon length recovery, and histological healing. QCWZD promoted mucus secretion and increased ZO-1 expression in in vivo and in vitro experiments, thereby repairing mucus mechanical barrier damage. The effects of QCWZD are mediated through regulation of the GC-C signaling pathway, which in turn affects CFTR phosphorylation and MUC2 expression to promote mucus secretion, while inhibiting the over-activation of MLCK and repairing tight junctions to maintain the integrity of the mechanical barrier. Molecular docking results demonstrate the binding of the main components of QCWZD to GC-C. CONCLUSION Our study demonstrated that QCWZD modulates the GC-C signaling pathway to promote remission of mucus-mechanical barrier damage in the UC. The clarification of the mechanism of QCWZD holds promise for the development of new therapies for UC.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Junxiang Li
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Han
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Hui Jiang
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Jiali Wang
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - MuYuan Wang
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Xiaosi Zhang
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Liming Zhang
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Juncong Hu
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - ZhiHao Fu
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Lei Shi
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
9
|
Zhu H, Mu S, Liu S, Cui Y, Ren J, Yang E, Wang L, Cui X, Ren A. Yiqi Jiedu Xiaoying Decoction Improves Experimental Autoimmune Thyroiditis in Rats by Regulating Th17/Treg Cell Balance. Endocr Metab Immune Disord Drug Targets 2024; 24:1186-1196. [PMID: 38317460 DOI: 10.2174/0118715303256311231122094516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Experimental autoimmune thyroiditis (EAT) is a widely used animal model to study the pathogenesis and treatment of autoimmune thyroid diseases. Yiqi Jiedu Xiaoying Decoction (YJXD) is a traditional Chinese medicine formula with potential immunomodulatory effects. In this study, we investigated the therapeutic effects of YJXD on EAT in rats and explored its underlying mechanisms. METHODS Female Wistar rats were induced to develop EAT by immunization with thyroglobulin (Tg) and taken sodium iodide water (0.05%) and then treated with YJXD or sodium selenite. HE staining was used to observe the pathological changes of thyroid tissue in EAT rats. Th17 and Treg cell frequencies were analyzed by flow cytometry, and the expression levels of Th17- and Treg-related cytokines and thyroid autoantibody were determined by enzyme-linked immunosorbent assay (ELISA). The expression of Th17- and Treg-related transcriptional factors was detected by real-time polymerase chain reaction (RT-PCR) and Immunohistochemistry (IHC). RESULTS Our results demonstrated that treatment with YJXD significantly attenuated the severity of EAT, as evidenced by reduced thyroid gland inflammatory infiltration and decreased serum thyroglobulin autoantibody levels. Importantly, YJXD treatment effectively modulated the Th17/Treg cell balance by suppressing Th17 cell differentiation and promoting Treg cell expansion. Moreover, YJXD was also found to regulate the expression levels of Th17- and Treg-related cytokines and transcriptional factors, further supporting its immunomodulatory effects in EAT. CONCLUSION YJXD exerted therapeutic effects on EAT by regulating the Th17/Treg cell balance, modulating the production of Th17- and Treg-related cytokines and the expression of transcriptional factors.
Collapse
MESH Headings
- Animals
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Female
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Thyroiditis, Autoimmune/immunology
- Thyroiditis, Autoimmune/drug therapy
- Thyroiditis, Autoimmune/metabolism
- Rats, Wistar
- Rats
- Disease Models, Animal
- Cytokines/metabolism
Collapse
Affiliation(s)
- Hui Zhu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 2500355, China
| | - Shumin Mu
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Shiyin Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 2500355, China
| | - Yang Cui
- Department of Traditional Chinese Medicine, Yantai Penglai People's Hospital, Yantai 265600, China
| | - Jianyu Ren
- Department of Traditional Chinese Medicine, People's Hospital of Dongying, Dongying 257091, China
| | - Enquan Yang
- Cardiovascular Department, Tangshan Nanhu Hospital, Tangshan 063000, China
| | - Lining Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 2500355, China
| | - Xiaoke Cui
- Department of Endocrinology, Xuchang Hospital of Traditional Chinese Medicine, Xuchang 461000, China
| | - Ailing Ren
- Department of Traditional Chinese Medicine, Dongying New District Hospital, Dongying 257029, China
| |
Collapse
|
10
|
Xu Q, Yao Y, Liu Y, Zhang J, Mao L. The mechanism of traditional medicine in alleviating ulcerative colitis: regulating intestinal barrier function. Front Pharmacol 2023; 14:1228969. [PMID: 37876728 PMCID: PMC10590899 DOI: 10.3389/fphar.2023.1228969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
Ulcerative colitis (UC) is an idiopathic inflammatory disease mainly affects the large bowel and the rectum. The pathogenesis of this disease has not been fully elucidated, while the disruption of the intestinal barrier function triggered by various stimulating factors related to the host genetics, immunity, gut microbiota, and environment has been considered to be major mechanisms that affect the development of UC. Given the limited effective therapies, the treatment of this disease is not ideal and its incidence and prevalence are increasing. Therefore, developing new therapies with high efficiency and efficacy is important for treating UC. Many recent studies disclosed that numerous herbal decoctions and natural compounds derived from traditional herbal medicine showed promising therapeutic activities in animal models of colitis and have gained increasing attention from scientists in the study of UC. Some of these decoctions and compounds can effectively alleviate colonic inflammation and relieve clinical symptoms in animal models of colitis via regulating intestinal barrier function. While no study is available to review the underlying mechanisms of these potential therapies in regulating the integrity and function of the intestinal barrier. This review aims to summarize the effects of various herbal decoctions or bioactive compounds on the severity of colonic inflammation via various mechanisms, mainly including regulating the production of tight junction proteins, mucins, the composition of gut microbiota and microbial-associated metabolites, the infiltration of inflammatory cells and mediators, and the oxidative stress in the gut. On this basis, we discussed the related regulators and the affected signaling pathways of the mentioned traditional medicine in modulating the disruption or restoration of the intestinal barrier, such as NF-κB/MAPK, PI3K, and HIF-1α signaling pathways. In addition, the possible limitations of current studies and a prospect for future investigation and development of new UC therapies are provided based on our knowledge and current understanding. This review may improve our understanding of the current progression in studies of traditional medicine-derived therapies in protecting the intestinal barrier function and their roles in alleviating animal models of UC. It may be beneficial to the work of researchers in both basic and translational studies of UC.
Collapse
Affiliation(s)
- Qiuyun Xu
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yuan Yao
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yongchao Liu
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Jie Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, China
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
11
|
Long XQ, Liu MZ, Liu ZH, Xia LZ, Lu SP, Xu XP, Wu MH. Bile acids and their receptors: Potential therapeutic targets in inflammatory bowel disease. World J Gastroenterol 2023; 29:4252-4270. [PMID: 37545642 PMCID: PMC10401658 DOI: 10.3748/wjg.v29.i27.4252] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/19/2023] [Accepted: 06/21/2023] [Indexed: 07/13/2023] Open
Abstract
Chronic and recurrent inflammatory disorders of the gastrointestinal tract caused by a complex interplay between genetics and intestinal dysbiosis are called inflammatory bowel disease. As a result of the interaction between the liver and the gut microbiota, bile acids are an atypical class of steroids produced in mammals and traditionally known for their function in food absorption. With the development of genomics and metabolomics, more and more data suggest that the pathophysiological mechanisms of inflammatory bowel disease are regulated by bile acids and their receptors. Bile acids operate as signalling molecules by activating a variety of bile acid receptors that impact intestinal flora, epithelial barrier function, and intestinal immunology. Inflammatory bowel disease can be treated in new ways by using these potential molecules. This paper mainly discusses the increasing function of bile acids and their receptors in inflammatory bowel disease and their prospective therapeutic applications. In addition, we explore bile acid metabolism and the interaction of bile acids and the gut microbiota.
Collapse
Affiliation(s)
- Xiong-Quan Long
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Ming-Zhu Liu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Zi-Hao Liu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Lv-Zhou Xia
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Shi-Peng Lu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Xiao-Ping Xu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Ming-Hao Wu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| |
Collapse
|
12
|
Wei X, Leng X, Li G, Wang R, Chi L, Sun D. Advances in research on the effectiveness and mechanism of Traditional Chinese Medicine formulas for colitis-associated colorectal cancer. Front Pharmacol 2023; 14:1120672. [PMID: 36909166 PMCID: PMC9995472 DOI: 10.3389/fphar.2023.1120672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Inflammatory bowel disease (IBD) can progress into colitis-associated colorectal cancer (CAC) through the inflammation-cancer sequence. Although the mechanism of carcinogenesis in IBD has not been fully elucidated, the existing research indicates that CAC may represent a fundamentally different pathogenesis pattern of colorectal cancer. At present, there is no proven safe and effective medication to prevent IBD cancer. In recent years, Chinese medicine extracts and Chinese medicine monomers have been the subject of numerous articles about the prevention and treatment of CAC, but their clinical application is still relatively limited. Traditional Chinese Medicine (TCM) formulas are widely applied in clinical practice. TCM formulas have demonstrated great potential in the prevention and treatment of CAC in recent years, although there is still a lack of review. Our work aimed to summarize the effects and potential mechanisms of TCM formulas for the prevention and treatment of CAC, point out the issues and limitations of the current research, and provide recommendations for the advancement of CAC research in the future. We discovered that TCM formulas regulated many malignant biological processes, such as inflammation-mediated oxidative stress, apoptosis, tumor microenvironment, and intestinal microecology imbalance in CAC, through a review of the articles published in databases such as PubMed, SCOPUS, Web of Science, Embase, and CNKI. Several major signal transduction pathways, including NF-κB, STAT3, Wnt/β-catenin, HIF-1α, and Nrf2, were engaged. TCM formula may be a promising treatment candidate to control the colitis-cancer transformation, however further high-quality research is required.
Collapse
Affiliation(s)
- Xiunan Wei
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohui Leng
- Weifang Traditional Chinese Hospital, Weifang, China
| | - Gongyi Li
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruting Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lili Chi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dajuan Sun
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|