1
|
Ruan C, Gao W, Wang G, Fan W, Zhang W, Tao S, Wu Z. Angelicone Ameliorates Ulcerative Colitis in Mice via Modulating Gut Microbiota. PLANTA MEDICA 2025. [PMID: 40127682 DOI: 10.1055/a-2565-6197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Ulcerative colitis (UC) is a persistent, periodically reoccurring inflammatory condition that impacts the gastrointestinal tract. Angelicone, a principal compound extracted from Angelica sinensis, may offer a potential alternative therapeutic approach for UC through the downregulation of inflammatory mediators. Nonetheless, the pharmacological impacts and molecular pathways of angelicone in UC management, particularly in relation to gut microbiota, remain unexplored. The current study scrutinized the modifications in gut microbiota in mice afflicted with UC, induced by 3% dextran sodium sulfate (DSS), utilizing 16S rRNA sequencing. The study demonstrated that angelicone substantially enhanced clinical indices, mitigated colonic damage, decreased cytokine levels, and reestablished the integrity of the intestinal epithelial barrier in UC mice. Furthermore, we discerned distinct bacterial genera that were responsive to angelicone treatment. Importantly, angelicone augmented the abundance of gut microbiota and partially reinstated the disrupted intestinal microbial composition, inclusive of the phyla Proteobacteria, Firmicutes, and Bacteroidetes. To summarize, our research offers novel perspectives into the intervention mechanisms of angelicone in the treatment of UC.
Collapse
Affiliation(s)
- Chengwei Ruan
- Department of Anal-Rectal, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Weiwei Gao
- Department of Anal-Rectal, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guoguo Wang
- Department of Nursing, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wenting Fan
- Department of Clinical Laboratory, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Weifeng Zhang
- Department of Anal-Rectal, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shuang Tao
- Department of Anal-Rectal, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zheng Wu
- Department of Anal-Rectal, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
2
|
Xu S, Wu Y, Wang Y, Li Y, He Y, Ren L, Zheng Y, Chen P, Zhao JA, Ye J, Meng F, Li T, Yu Y. Huanglian Ganjiang Decoction alleviates DSS-induced colitis through suppressing inflammation and protecting intestinal barrier: From the perspective of disassembling prescriptions. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119340. [PMID: 39788168 DOI: 10.1016/j.jep.2025.119340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/19/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huanglian Ganjiang decoction (HGD), which is composed of Chinese medicines with cold, warm, and astringent properties, has demonstrated significant therapeutic efficacy in ulcerative colitis (UC). However, the underlying mechanisms remain unclear, highlighting the need for a multi-faceted investigation. Disassembling prescriptions is a crucial approach for investigating compatibility mechanisms. Analyzing the interactions among Chinese herbs through this method can refine treatment focus and provide novel insights into TCM prescription compatibility research. Therefore, HGD was disassembled into three groups: Cold Medicine Removed (C-R), which warm medicine and astringent medicine are combined; Warm Medicine Removed (W-R), which cold medicine and astringent medicine are combined; and Astringent Medicine Removed (A-R), which cold medicine and warm medicine are combined. AIM OF THE STUDY To elucidate the therapeutic effects of HGD and its three disassembled prescriptions against UC and to uncover their compatibility mechanisms. MATERIALS AND METHODS The chemical composition of HGD and its disassembled prescriptions (HGDADPs) was qualitatively analyzed using UPLC-MS/MS. 3% dextran sulfate sodium (DSS) was used to induce a UC mouse model. The efficacy in treating UC was evaluated by body weight loss, disease activity index (DAI), colon length, spleen index, thymus index, and histopathological score. A compound-UC target network was established utilizing the network pharmacology. The underlying mechanisms were then investigated by assessing intestinal barrier function and inflammatory responses, as well as the APOC1/P38 MAPK and TLR4/NF-κB signaling pathways through qRT-PCR, Western blotting, and immunofluorescence. Subsequently, anisomycin, a P38 MAPK agonist, was used to confirm whether C-R protects the gut barrier via the APOC1/P38 MAPK pathway. Monophosphoryl lipid A (MPLA), a TLR4 agonist, was employed to investigate whether W-R mediates its anti-inflammatory effects via the TLR4/NF-κB signaling pathway. RESULTS HGDADPs improved colitis symptoms, increasing ZO-1, Occludin, Claudin-1, and E-cadherin levels while reducing blood cell counts and IL-6 and IL-1β levels. HGD was the most effective in reducing inflammation and repairing the intestinal barrier, with A-R showing similar effects. C-R excelled in repairing the barrier, while W-R was better at reducing inflammation. Network pharmacology indicated C-R inhibits the APOC1/P38 MAPK pathway, and W-R suppresses the TLR4/NF-κB pathway, aligning with Western blotting results. ANI and MPLA reversed the effects of C-R and W-R, respectively. CONCLUSION The mechanism by which HGDADPs treat colitis is demonstrated for the first time in our study. In HGD, cold medicine serves as the "Jun", primarily exerting anti-inflammatory effects; Warm medicine acts as the "Chen", mainly protecting the intestinal mucosal barrier; And astringent medicine functions as the "Zuo", playing a synergistic role in the treatment of colitis. In addition, the combination of cold and warm medicines (A-R) was the most crucial for HGD' s compatibility. The pairing of warm and astringent medicines (C-R) significantly contributed to the restoration of the gut barrier and the inhibition of the APOC1/P38 MAPK signaling pathway. Meanwhile, the combination of cold and astringent medicines (W-R) primarily contributed to alleviating inflammation and inhibiting the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Shihua Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yequn Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yi Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yanyang Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yuexian He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lingzhi Ren
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yizhou Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Peiqi Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ji' Ao Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jiaming Ye
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Fantong Meng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Tongming Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yang Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Zhang K, Luan G, Liu W, Shen F, Jiang M, Bai G. Ligustilide improves functional constipation by non-covalently activating TRPA1 in colon tissue. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119018. [PMID: 39489358 DOI: 10.1016/j.jep.2024.119018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angelica sinensis (Oliv.) Diels (AS), a medicinal plant renowned for its constipation-relieving properties, lacks comprehensive studies on its active pharmaceutical ingredients (APIs) and underlying mechanisms. In the gastrointestinal tract, TRP channels enhance colonic mucus secretion, expedite intestinal motility, and regulate gastrointestinal hormones; however, few reports have systematically established the relationship between TRPs and ligustilide (Lig), a key API of AS. AIM OF THE STUDY This study aimed to explore the pharmacodynamic properties of AS in alleviating functional constipation, assess the potential of Lig for activating TRPs, and elucidate its mechanism of action. METHODS The therapeutic efficacy of AS was assessed in a mouse model of loperamide hydrochloride-induced functional constipation. The APIs were screened via integrated activity-based UPLC profiling through periodic acid-Schiff (PAS) staining of the colon and immunofluorescence staining of HT-29 cells. The potential target was identified via target fishing and colocalization imaging via an alkynyl-modified Lig probe (AM-Lig). Molecular docking, microscale thermophoresis (MST), fluorescence quenching (FQ), and Fluo-4/Ca2+ influx assays were employed to reveal the interaction mode between Lig and the target protein. Finally, we assessed the efficacy of Lig in alleviating constipation in an animal model. RESULTS The efficacy of AS in improving functional constipation was demonstrated in a mouse constipation model, with Lig identified as the primary constituent responsible for inducing colon mucus secretion. Lig specifically targets TRPA1 in the colon, leading to calcium influx and subsequent mucus secretion, ultimately ameliorating functional constipation. Furthermore, a binding mode study revealed that Lig attaches to Thr684, located in the pre-S1 region, triggering TRPA1 channel activation. CONCLUSIONS Our findings demonstrate that Lig, the API in AS for constipation treatment, activates TRPA1 through non-covalent interactions, increasing mucus secretion and improving functional constipation. These findings advance our understanding of the therapeutic mechanism of AS and Lig on constipation and suggest a new approach for developing TRPA1 agonists.
Collapse
Affiliation(s)
- Kaixue Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, PR China
| | - Guoqing Luan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, PR China
| | - Wenjuan Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, PR China
| | - Fukui Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, PR China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, PR China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, PR China.
| |
Collapse
|
4
|
Feng X, Chen Y, Luo L, Fang Z, Ma S, Li Z, Huang J, Pan Y, Lv H, Gong S, Zheng X, Fan F, Chen P, Zhu J, Chu Q. Liubao insect tea polyphenols ameliorate DSS-induced experimental colitis by protecting intestinal barrier and regulating intestinal microbiota. Food Chem 2024; 467:142156. [PMID: 39632169 DOI: 10.1016/j.foodchem.2024.142156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/05/2024] [Accepted: 11/17/2024] [Indexed: 12/07/2024]
Abstract
Liubao insect tea (LIT) is a traditional tea produced from the excreta of Hydrillodes repugnalis that are fed with Liubao tea. In this study, LIT polyphenols (LITP) were extracted and identified, mainly consisting of brevifolin carboxylic acid, brevifolin, ellagic acid. The study aimed to explore the therapeutic potential of LITP in experimental colitis induced by dextran sulfate sodium in mice. LITP treatment effectively mitigated colitis symptoms, including body weight loss, diarrhoea and haematochezia, etc. Furthermore, LITP treatment significantly increased colon length, attenuated inflammatory cell infiltration and mucosal damage, safeguarded the integrity of the epithelial cell barrier, and reduced proinflammatory cytokines levels. Noteworthy alterations in the abundance of gut microbiota community were also observed, with increases in beneficial bacteria Akkermansia, Clostridia_UCG-014, and decreases in harmful bacteria Turicibacter and Erysipelatoclostridium. In conclusion, LITP exerted alleviative effects on colitis via fortifying intestinal barrier and modulating the intestinal microbiota.
Collapse
Affiliation(s)
- Xinyu Feng
- Tea Research Institute, Zhejiang University, Hangzhou, China; Department of Food Science, Zhejiang University, Hangzhou, China
| | - Yanwen Chen
- Tea Research Institute, Zhejiang University, Hangzhou, China; College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lina Luo
- Department of Food Science, Zhejiang University, Hangzhou, China
| | - Zhoutao Fang
- Zhejiang Minghuang Natural Products Development Co., Ltd., Hangzhou, China
| | - Shicheng Ma
- Wuzhou Liubao Tea Research Association, Wuzhou, China
| | | | - Jing Huang
- Tea Research Institute, Zhejiang University, Hangzhou, China; Institute of Landscape Architecture, Zhejiang University, Hangzhou, China
| | - Yani Pan
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Helin Lv
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Shuying Gong
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Xiaodong Zheng
- Department of Food Science, Zhejiang University, Hangzhou, China
| | - Fangyuan Fan
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Ping Chen
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jiajin Zhu
- Department of Food Science, Zhejiang University, Hangzhou, China.
| | - Qiang Chu
- Tea Research Institute, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Liu C, Wu Y, Wang Y, Yang F, Ren L, Wu H, Yu Y. Integrating 16 S rRNA gene sequencing and metabolomics analysis to reveal the mechanism of Angelica sinensis oil in alleviating ulcerative colitis in mice. J Pharm Biomed Anal 2024; 249:116367. [PMID: 39029356 DOI: 10.1016/j.jpba.2024.116367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/01/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Angelica sinensis (Oliv.) Diels (AS) is a commonly used herbal medicine and culinary spice known for its gastrointestinal protective properties. Angelica sinensis oil (AO) is the main bioactive component of AS. However, the therapeutic effects and mechanisms of AO on the gastrointestinal tract remain unclear. In this study, we aim to investigated the potential of AO in restoring gut microbiota disorder and metabolic disruptions associated with ulcerative colitis (UC). A systematic chemical characterization of AO was conducted using GC×GC-Q TOF-MS. A UC mouse model was established by freely drinking DSS to assess the efficacy of AO. Utilizing 16 S rRNA sequencing in combination with untargeted metabolomics analysis of serum, we identified alterations in gut microbiota, differential metabolites, and pathways influenced by AO in UC treatment, thereby elucidating the therapeutic mechanism of AO in UC management. Pharmacodynamic results indicated that AO effectively inhibited the content of inflammation mediators, such as Interleukin-1β, Interleukin-6 and tumor necrosis factor-α, and proserved colon tissue integrity in UC mice. Furthermore, AO significantly downregulated the abundance of pathogenic bacteria (Bacteroidetes, Proteobacteria, and Desulfobacteriaceae) while increasing the abundance of beneficial bacteria (Firmicutes, Blautia, Akkermansia, and Lachnospiraceae). Metabolomics analysis highlighted significant disruptions in endogenous metabolism in UC mice, with a notable restoration of SphK1 and S1P levels following AO administration. Besides, we discovered that AO regulated the balance of sphingolipid metabolism and protected the intestinal barrier, potentially through the SphK1/MAPK signaling pathway. Overall, this study indicated that AO effectively ameliorates the clinical manifestations of UC by synergistically regulating gut microbe and metabolite homeostasis. AO emerges as a potential functional and therapeutic ingredient for UC treatment.
Collapse
Affiliation(s)
- Chang Liu
- Guangdong Provincial Engineering Research Center for Quality and Safety of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, Guangdong 510070, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Yequn Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Yi Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Fang Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Lingzhi Ren
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Huiqin Wu
- Guangdong Provincial Engineering Research Center for Quality and Safety of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, Guangdong 510070, China.
| | - Yang Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China.
| |
Collapse
|
6
|
Fang S, Du S, Luo X, Qing X, Wang L, Ban Y, Song G, Yang Y, Wei W. The role of the S100A8/S100A9 in gastric tumor progression. Sci Rep 2024; 14:23574. [PMID: 39384957 PMCID: PMC11464527 DOI: 10.1038/s41598-024-74695-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
Gastric premalignant lesions can develop into cancer through multiple steps and inflammation plays a critical role. The aim of this study is to uncover the characteristics of macrophages and their gene expression in premalignant gastric lesions to identify novel biomarkers and potential targets for treatment. We used the computational algorithm CIBERSORT to estimate immune cell subsets present in gastric tissue. We applied WGCNA to identify inflammation-related modules and hub genes. Single-cell analysis was used to identify macrophage sub-clusters specific to pathology. In addition, the in-vitro experiment was performed to verify the mechanism of the key inflammatory factors in the growth of gastric cancer. WGCNA identified a module that was positively correlated with pathological changes and highly related to inflammation scores. Single-cell analysis revealed a macrophage subset, and we observed that S100A8 and S100A9 + macrophages made up a significantly higher proportion in early gastric cancer (EGC) tissues. Our functional enrichment analysis suggested that these macrophages may play a role in gastric tumorigenesis through the activation of the NFκB signaling pathway. In vitro experiments verified that S100A9 can promote the proliferation and migration of AGS cells through the TLR4-NFκB signaling pathway, and the S100A8/S100A9 inhibitor Paquinimod can inhibit their proliferation and migration. Our findings suggest that S100A8 and S100A9 + macrophages may activate the TLR4-NFκB signaling pathway to promote cell proliferation and migration leading to gastric tumor progression. Macrophages with high expression of S100A8/S100A9 are critical in the progression of gastric inflammation to cancer. Cytokine S100A9 can activate the TLR4-NFκB signaling pathway and promote the proliferation and migration of gastric adenocarcinoma cells.
Collapse
Affiliation(s)
- Shuangshuang Fang
- Department of Gastroenterology, Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sijing Du
- Department of Gastroenterology, Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoying Luo
- Department of Gastroenterology, Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangli Qing
- Department of Gastroenterology, Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- Department of Gastroenterology, Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanran Ban
- Department of Gastroenterology, Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Gengqing Song
- Department of Gastroenterology and Hepatology, MetroHealth Medical Center/Case Western Reserve University, 2500 Metrohealth Dr, Cleveland, OH, 44109, USA.
| | - Yang Yang
- Department of Gastroenterology, Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
- Chief Researcher of China Academy of Chinese Medical Sciences, No. 6, Central South Road, Wangjing, Chaoyang District, Beijing, China.
| | - Wei Wei
- Department of Gastroenterology, Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
- Chief Researcher of China Academy of Chinese Medical Sciences, No. 6, Central South Road, Wangjing, Chaoyang District, Beijing, China.
| |
Collapse
|
7
|
Liu R, Luo Y, Ma J, Zhang Q, Sheng Y, Li J, Li H, Zhao T. Traditional Chinese medicine for functional gastrointestinal disorders and inflammatory bowel disease: narrative review of the evidence and potential mechanisms involving the brain-gut axis. Front Pharmacol 2024; 15:1444922. [PMID: 39355776 PMCID: PMC11443704 DOI: 10.3389/fphar.2024.1444922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/23/2024] [Indexed: 10/03/2024] Open
Abstract
Functional gastrointestinal disorders (FGIDs) and inflammatory bowel disease (IBD) are common clinical disorders characterized by recurrent diarrhea and abdominal pain. Although their pathogenesis has not been fully clarified, disruptions in intestinal motility and immune function are widely accepted as contributing factors to both conditions, and the brain-gut axis plays a key role in these processes. Traditional Chinese Medicine (TCM) employs a holistic approach to treatment, considers spleen and stomach impairments and liver abnormality the main pathogenesis of these two diseases, and offers a unique therapeutic strategy that targets these interconnected pathways. Clinical evidence shows the great potential of TCM in treating FGIDs and IBD. This study presents a systematic description of the pathological mechanisms of FGIDs and IBD in the context of the brain-gut axis, discusses clinical and preclinical studies on TCM and acupuncture for the treatment of these diseases, and summarizes TCM targets and pathways for the treatment of FGIDs and IBD, integrating ancient wisdom with contemporary biomedical insights. The alleviating effects of TCM on FGID and IBD symptoms are mainly mediated through the modulation of intestinal immunity and inflammation, sensory transmission, neuroendocrine-immune network, and microbiota and their metabolism through brain-gut axis mechanisms. TCM may be a promising treatment option in controlling FGIDs and IBD; however, further high-quality research is required. This review provides a reference for an in-depth exploration of the interventional effects and mechanisms of TCM in FGIDs and IBD, underscoring TCM's potential to recalibrate the dysregulated brain-gut axis in FGIDs and IBD.
Collapse
Affiliation(s)
- RuiXuan Liu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - YunTian Luo
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - JinYing Ma
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qi Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yudong Sheng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiashan Li
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongjiao Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - TianYi Zhao
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
8
|
Gao Q, Zhang Q, Wang C, Geng X, Hua M, Li N, Dai Y, Zhang Y, Zhou Q. HS-GC-IMS Analysis of Volatile Organic Compounds in Six Spicy Spices and Their Effects on Ulcerative Colitis. Molecules 2024; 29:3764. [PMID: 39202844 PMCID: PMC11357326 DOI: 10.3390/molecules29163764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
The volatile organic compounds of six spices, including black pepper, dried ginger, cinnamon, fennel, clove, and zanthoxylum, were analyzed by gas chromatography-ion mobility spectrometry (HS-GC-IMS) combined with principal component analysis (PCA) and Euclidean distance. In further analyses, the effects of volatile oils in six spices on ulcerative colitis were assayed in a zebrafish model induced by 3-nitrobenzenesulfonic acid. A total of 120 kinds of volatile organic compounds were detected and 80 among them were identified, which included 10 common components and 3 to 24 characteristic components belonging to different spices. The major VOCs in six spices were estimated to be terpenes with the contents of 45.02%, 56.87%, 36.68%, 58.19%, 68.68%, and 30.62%, respectively. Meanwhile, the volatile components of fennel, dried ginger, black pepper, and cinnamon are quite similar, but differ from clove and zanthoxylum. The volatile oils in six spices presented efficient activity to improve ulcerative colitis which can decrease the number of neutrophils, restore the structure of intestinal epithelial and the morphology of the epithelial cells. Our study achieved rapid analysis of the volatile organic compounds and flavors in six spices and further revealed the potential health benefits of their volatile oils on ulcerative colitis, especially for clove and zanthoxylum. This study is expected to provide certain data support for the quality evaluation and the potential use in functional foods of six spices.
Collapse
Affiliation(s)
- Qi Gao
- Shandong Academy of Chinese Medicine, Jinan 250014, China; (Q.G.); (Q.Z.); (M.H.); (N.L.); (Y.D.); (Y.Z.)
- Shandong Modern Research and Development Engineering Center of Traditional Chinese Medicine Aromatherap, Jinan 250014, China
| | - Qiang Zhang
- Shandong Academy of Chinese Medicine, Jinan 250014, China; (Q.G.); (Q.Z.); (M.H.); (N.L.); (Y.D.); (Y.Z.)
- Shandong Modern Research and Development Engineering Center of Traditional Chinese Medicine Aromatherap, Jinan 250014, China
| | | | - Xue Geng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
- NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Shandong Institute for Food and Drug Control, Jinan 250101, China
| | - Min Hua
- Shandong Academy of Chinese Medicine, Jinan 250014, China; (Q.G.); (Q.Z.); (M.H.); (N.L.); (Y.D.); (Y.Z.)
- Shandong Modern Research and Development Engineering Center of Traditional Chinese Medicine Aromatherap, Jinan 250014, China
| | - Nianhong Li
- Shandong Academy of Chinese Medicine, Jinan 250014, China; (Q.G.); (Q.Z.); (M.H.); (N.L.); (Y.D.); (Y.Z.)
- Shandong Modern Research and Development Engineering Center of Traditional Chinese Medicine Aromatherap, Jinan 250014, China
| | - Yanpeng Dai
- Shandong Academy of Chinese Medicine, Jinan 250014, China; (Q.G.); (Q.Z.); (M.H.); (N.L.); (Y.D.); (Y.Z.)
- Shandong Modern Research and Development Engineering Center of Traditional Chinese Medicine Aromatherap, Jinan 250014, China
| | - Yan Zhang
- Shandong Academy of Chinese Medicine, Jinan 250014, China; (Q.G.); (Q.Z.); (M.H.); (N.L.); (Y.D.); (Y.Z.)
| | - Qian Zhou
- Shandong Academy of Chinese Medicine, Jinan 250014, China; (Q.G.); (Q.Z.); (M.H.); (N.L.); (Y.D.); (Y.Z.)
- Shandong Modern Research and Development Engineering Center of Traditional Chinese Medicine Aromatherap, Jinan 250014, China
| |
Collapse
|
9
|
Li T, Zhou X, Zhang Q, Miao Q, Woodman OL, Chen Y, Qin C. Formyl peptide receptor 1 mitigates colon inflammation and maintains mucosal homeostasis through the inhibition of CREB-C/EBPβ-S100a8 signaling. Mucosal Immunol 2024; 17:651-672. [PMID: 38614323 DOI: 10.1016/j.mucimm.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/07/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
Excessive inflammatory responses are the main characteristic of ulcerative colitis (UC). Activation of formyl peptide receptor 1 (FPR1) has been found to promote the proliferation and migration of epithelial cells, but its role and therapeutic potential in UC remain unclear. This study observed an increased expression of FPR1 in a mouse model of colitis. Interestingly, FPR1 deficiency exacerbated UC and increased the secretion of the proinflammatory mediator from immune cells (e.g. macrophages), S100a8, a member of the damage-associated molecular patterns. Notably, the administration of the FPR agonist Cmpd43 ameliorated colon injury in a preclinical mice model of UC, likely via inhibiting phosphorylation of cyclic adenosine monophosphate-response element-binding protein and expression of CCAAT/enhancer-binding protein β, which in turn suppressed the secretion of S100a8. In conclusion, these findings discovered a novel role of FPR1 in the development of colitis and will facilitate the development of FPR1-based pharmacotherapy to treat UC.
Collapse
Affiliation(s)
- Tingting Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaojun Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China; Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Shandong University, Jinan, China
| | - Qian Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qi Miao
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Owen L Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Yuguo Chen
- Department of Emergency Medicine, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Chengxue Qin
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; Department of Emergency Medicine, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Baker Heart and Diabetes Institute, Melbourne, Australia.
| |
Collapse
|
10
|
Li Y, Liu J, Shi X, Li S, Zhang H, Zhang L, Huang X, Liu S, Wang W, Tian L, Zhang T, Du Z. Casein-quaternary chitosan complexes induced the soft assembly of egg white peptide and curcumin for ulcerative colitis alleviation. Int J Biol Macromol 2024; 269:132107. [PMID: 38710246 DOI: 10.1016/j.ijbiomac.2024.132107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Soft assembly of peptide and curcumin (Cur) molecules enables functional integration by finding dynamic equilibrium states through non-covalent interactions. Herein, we developed two soft assembly systems, curcumin-egg white peptides (Cur-EWP) aggregations (AGs) and Cur-EWP-casein-quaternary chitosan (Cur-EWP-CA-QC) nanoparticles (NPs) to comparatively investigate their therapeutic effects on ulcerative colitis in mice and elucidate their underlying mechanism. Results revealed that Cur-EWP AGs, despite gastrointestinal tract instability, exhibited a propensity for swift accumulation within the colorectal region, enriching mucus-associated and short-chain fatty acid (SCAF)-producing bacteria, restoring the intestinal barrier damage. Whereas, Cur-EWP-CA-QC NPs, benefiting from their remarkable stability and exceptional mucosal adsorption properties, not only enhanced permeability of Cur and EWP in the small intestine to activate the immune response and boost tight junction protein expression but also, in their unabsorbed state, regulated the intestinal flora, exerting potent anti-inflammatory activity. Soft assembly of peptides and hydrophobic nutraceuticals could synergize biological activities to modulate chronic diseases.
Collapse
Affiliation(s)
- Yajuan Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Xiaoxia Shi
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Shanglin Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Hui Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Leiyi Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Xinyi Huang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Shuaiyan Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Weiyi Wang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Longjiang Tian
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| |
Collapse
|
11
|
He YX, Li YY, Wu YQ, Ren LZ, Wang Y, Wang YM, Yu Y. Huanglian Ganjiang decoction alleviates ulcerative colitis by restoring gut barrier via APOC1-JNK/P38 MAPK signal pathway based on proteomic analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116994. [PMID: 37541400 DOI: 10.1016/j.jep.2023.116994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is a kind of chronic intestinal inflammation accompanied with abdominal pain, diarrhea and hematochezia. Huanglian Ganjiang decoction (HGD) derived from "Beiji Qianjin Yao Fang" was used for UC patients clinically. However, the specific mechanism of HGD in treating UC remain unclear. AIM OF STUDY Our study devoted to demonstrating the therapeutic effect of HGD for colitis and clarifying the underlying mechanism. MATERIALS AND METHODS UPLC-MS was carried out to identify the ingredients of HGD. UC mice were induced by giving 3% dextran sulfate sodium (DSS) solution for one week and treated by HGD for another week. Body weight fluctuation, disease activity index (DAI), colon length and pathological change of colon tissues were observed to evaluate therapeutical effect of HGD. ELISA and qPCR were carried out to estimate the inflammatory state. Western blot, qPCR and immunofluorescence were used to access the expression of tight junction proteins. Tandem mass tag (TMT)-Based proteomics and network pharmacology was launched to screen and predict the potential targets and pathway regulated by HGD. RESULTS Based on the UPLC-MS/MS analysis, 100 components were identified in HGD. After 7-day treatment, HGD significantly alleviated colitis-associated symptoms including body weight loss, shorted colon, increase of DAI score, histopathologic lesions. HGD also reduced inflammatory cytokines IL-6 and IL-1β levels, increased the number of goblet cells and restored tight junction proteins Occludin, Claudin-1 in colon. Network pharmacology study predicted that tight junction and MAPK pathway might be affected by HGD in colitis mice. APOC1 was screened out as key target in HGD-treated mice using TMT-based proteomics study. Further Western blot results showed that HGD reduced expressions of APOC1, p-P38 and p-JNK. CONCLUSION HGD improves general symptoms of colitis mice at medium and high doses, which may be associated with restoring tight junction and intestinal barrier integrity and function through suppression of APOC1-JNK/P38 MAPK signal pathway.
Collapse
Affiliation(s)
- Yue-Xian He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China
| | - Yan-Yang Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China
| | - Ye-Qun Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China
| | - Ling-Zhi Ren
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China
| | - Yi Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China
| | - Yu-Mei Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China.
| | - Yang Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China.
| |
Collapse
|
12
|
Zhou Y, Wang D, Duan H, Zhou S, Guo J, Yan W. The Potential of Natural Oils to Improve Inflammatory Bowel Disease. Nutrients 2023; 15:nu15112606. [PMID: 37299569 DOI: 10.3390/nu15112606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory disorder that includes ulcerative colitis (UC) and Crohn's disease (CD), the exact cause of which is still unknown. Numerous studies have confirmed that diet is one of the major environmental factors associated with IBD, as it can regulate the gut microbiota and reduce inflammation and oxidative stress. Since the consumption of oil is essential in the diet, improving IBD through oil has potential. In this article, we first briefly reviewed the current treatment methods for IBD and introduce the role of natural oils in improving inflammatory diseases. We then focused on the recent discovery of the role of natural oils in the prevention and treatment of IBD and summarized their main mechanisms of action. The results showed that the anti-inflammatory activity of oils derived from different plants and animals has been validated in various experimental animal models. These oils are capable of improving the intestinal homeostasis in IBD animal models through multiple mechanisms, including modulation of the gut microbiota, protection of the intestinal barrier, reduction in colonic inflammation, improvement in oxidative stress levels in the intestine, and regulation of immune homeostasis. Therefore, dietary or topical use of natural oils may have potential therapeutic effects on IBD. However, currently, only a few clinical trials support the aforementioned conclusions. This review emphasized the positive effects of natural oils on IBD and encouraged more clinical trials to provide more reliable evidence on the improvement of human IBD by natural oils as functional substances.
Collapse
Affiliation(s)
- Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Hao Duan
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Shiqi Zhou
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Jinhong Guo
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| |
Collapse
|