1
|
Yang L, Huang H, Fan Y, Xu L, Jin X, Xiao B, Ma C, Fan H, Chai Z. Astragaloside IV ameliorates Parkinson's disease by inhibiting TLR4/NF-κB-dependent neuroinflammation. Int Immunopharmacol 2025; 160:114972. [PMID: 40449268 DOI: 10.1016/j.intimp.2025.114972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 05/26/2025] [Accepted: 05/26/2025] [Indexed: 06/03/2025]
Abstract
Astragaloside IV (AS-IV) is a bioactive compound derived from Radix Astragali, a traditional Chinese herb widely used as a dietary supplement to enhance immune function. Modern pharmacological studies have demonstrated that AS-IV exhibits anti-inflammatory and immunomodulatory properties. In this study, we investigated the effects of AS-IV on motor dysfunction, microglial polarization, and immune regulation mechanisms in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mouse model. Our results showed that AS-IV (40 mg/kg) significantly improved motor function in PD mice, as evidenced by reduced descent time in the pole test, increased hanging score in the hanging test, increased stride lengths, and reduced paw angle in the gait test. Furthermore, AS-IV administration attenuated the loss of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra pars compacta (SNpc), promoted microglial polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype, suppressed the levels of pro-inflammatory cytokines including interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNFα), enhanced the levels of anti-inflammatory cytokines including interleukin-4 (IL-4) and interleukin-10 (IL-10) in the SNpc of PD mice. Mechanistically, AS-IV significantly downregulated the expression and phosphorylation levels of TLR4/p38 (JNK)/NF-κB pathway-related proteins, including Toll-like receptor 4 (TLR4), Myeloid differentiation primary response protein 88 (MyD88), Apoptosis signal-regulating kinase 1 (ASK1), Mitogen-activated protein kinase 3/6 (MKK3/6), Phosphorylated-MKK3/6 (p-MKK3/6), Phosphorylated-mitogen-activated protein kinase 4/7 (p-MKK4/7), p38 mitogen-activated protein kinase (p38), Phosphorylated-p38 (p-p38), c-Jun N-terminal kinase (JNK), Phosphorylated-JNK (p-JNK), nuclear factor kappa-B (NF-κB), and Phosphorylated-NF-κB (p-NF-κB). To further validate the targeting effect of AS-IV, 1 mg/kg of LPS-EB Ultrapure was utilized as a specific TLR4 agonistwe to selectively activated the TLR4/NF-κB signaling pathway without triggering other inflammatory pathways, leading to elevated mRNA levels of TLR4, NF-κB, IL-1β, IL-6, TNFα and protein expression of TLR4, p-JNK, p-p38, p-NF-κB, IL-1β, IL-6, TNFα in the SNpc of PD mice. Importantly, AS-IV pretreatment can't counteract these LPS-EB Ultrapure-triggered effects, demonstrating its dependence on the TLR4/NF-κB signaling pathway. In conclusion, our findings indicate that AS-IV modulates microglial polarization and attenuates neuroinflammation by inhibiting the TLR4/NF-κB pathway, thereby ameliorating motor dysfunction and neuronal loss in PD mice.
Collapse
Affiliation(s)
- Lixia Yang
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, China; The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Haihua Huang
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, China; The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Yue Fan
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Lei Xu
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Xiaoming Jin
- Department of Anatomy and Cell Biology, Neurological Surgery, Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Baoguo Xiao
- Huashan Hospital, Fudan University, Shanghai 200025, China
| | - Cungen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Huijie Fan
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong 030619, China.
| | - Zhi Chai
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong 030619, China.
| |
Collapse
|
2
|
Liu W, Sun M, Zhang H, Wang WT, Song J, Wang MY, Wang CM, Sun HM. Targeting regulation of lipid metabolism with polysaccharide of traditional Chinese medicine for the treatment of non-alcoholic fatty liver disease: A review. Int J Biol Macromol 2025; 306:141660. [PMID: 40032085 DOI: 10.1016/j.ijbiomac.2025.141660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/04/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become one of the most common chronic diseases in the world, and the effective treatment of NAFLD has been listed as a key problem to be solved urgently in contemporary medicine. Polysaccharides in traditional Chinese medicine (TCM) have a wide range of pharmacological activities. A large number of preclinical studies have confirmed that TCM polysaccharides can interfere with the occurrence and development of NAFLD at multiple interrelated levels, such as improving lipid metabolism and insulin resistance, regulating oxidative stress, alleviating immune inflammatory response, and regulating intestinal microbiota, thus showing great potential as a new anti-NAFLD drug. This paper summarizes the prevention and treatment effect and mechanism of TCM polysaccharides on NAFLD, which provides a basis for the application of TCM polysaccharides in plant medicine and modern medicines, and provides a reference for promoting the development and utilization of TCM polysaccharide resources and the research and development of new drugs for NAFLD.
Collapse
Affiliation(s)
- Wei Liu
- College of Pharmacy, Beihua University, Jilin 132013, China.
| | - Meng Sun
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Hao Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wen-Ting Wang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jian Song
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Meng-Yang Wang
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Chun-Mei Wang
- College of Pharmacy, Beihua University, Jilin 132013, China.
| | - Hai-Ming Sun
- College of Pharmacy, Beihua University, Jilin 132013, China.
| |
Collapse
|
3
|
Wang H, Huang Z, Chen G, Li Y, Liu Y, Gu H, Cao Y. Astragaloside IV alleviated bone loss in mice with ovariectomy-induced osteoporosis via modulating gut microbiota and fecal metabolism. Front Pharmacol 2025; 16:1548491. [PMID: 40248089 PMCID: PMC12003300 DOI: 10.3389/fphar.2025.1548491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/12/2025] [Indexed: 04/19/2025] Open
Abstract
Background Astragaloside IV (AS-IV) is one of the most potent components of Astragalus. It has been reported to promote bone formation and inhibit osteoclastogenesis, suggesting its potential as a candidate for the prevention and treatment of postmenopausal osteoporosis (PMOP). The gut microbiota may play a crucial role in mediating the effects of AS-IV. Objective To investigate the impact of gut microbiota on the efficacy of AS-IV in treating PMOP. Methods Mice were randomly divided into three groups: Sham, ovariectomy (OVX), and AS-IV-treated OVX group (80 mg/kg). Bone loss was evaluated using Micro-CT and histopathology. Immunohistochemistry assessed specific bone markers. Inflammatory levels were measured by enzyme-linked immunosorbent assay (ELISA). Intestinal barrier function was examined via colonic histopathology and immunohistochemistry. Gut microbiota composition was analyzed by 16S rDNA sequencing, while metabolomic profiling identified key metabolites. Correlation analysis was performed to explore relationships between differential bacteria, key metabolites, and bone loss. Results AS-IV improved the femur microarchitecture and modulated bone turnover in OVX mice. AS-IV treatment strengthened the intestinal barrier function and decreased gut permeability. This compound reduced colonic oxidative stress and serum and bone marrow inflammatory cytokine production. 16S rDNA sequencing revealed that AS-IV modulated the gut microbiota composition, while metabolomic analysis showed its effects on pathways related to hormone biosynthesis, D-amino acid metabolism, and galactose metabolism. Conclusion This study provides new insights into the use of AS-IV for treating PMOP, highlighting the gut microbiota and its metabolites as key regulatory factors in AS-IV's therapeutic effects.
Collapse
Affiliation(s)
- Huichao Wang
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Orthopedic Institute of Henan Province, Luoyang, Henan, China
| | - Zhongyue Huang
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Guangnan Chen
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Yang Li
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Emergency Trauma Center, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Youwen Liu
- Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Orthopedic Institute of Henan Province, Luoyang, Henan, China
| | - Huijie Gu
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Yujing Cao
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Emergency Trauma Center, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Wang M, Li M, Jiang Y, Wang S, Yang X, Naseem A, Algradi AM, Hao Z, Guan W, Chen Q, Zhang L, Kuang H, Yang B, Liu Y. Saponins from Astragalus membranaceus (Fisch.) Bge Alleviated Neuronal Ferroptosis in Alzheimer's Disease by Regulating the NOX4/Nrf2 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7725-7740. [PMID: 40119801 DOI: 10.1021/acs.jafc.4c10497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease of the central nervous system caused by loss of neuronal or myelin function, accompanied by ferroptosis. Astragalus membranaceus (Fisch.) Bge. (A. membranaceus) is one of China's homologous lists of medicines and food, and its active component saponins have neuroprotective effects. This study examines the mechanism of saponins from A. membranaceus (AS) in treating AD. UPLC-Q-TOF-MS analyzed the composition of AS. Ferroptosis models were established to evaluate the anti-AD efficacy. As a result, AS treatment inhibited ferroptosis in SAMP8 mice by restoring iron homeostasis and lipid peroxidation (LPO) balance in the brain, thereby improving cognitive impairment and pathological damage. Mechanistically, AS treatment reduced Fe2+, MDA, and ROS levels and enhanced protein levels of SLC7A11, GPX4, FTH1, and FPN1. NADPH oxidase 4 (NOX4) overexpression revealed that AS treatment inhibited NOX4, thereby reducing NOX4 stability and regulating the NOX4/Nrf2 pathway in erastin-injured HT22 cells and significantly alleviating ferroptosis. Therefore, AS inhibited ferroptosis and improved AD by rebuilding iron homeostasis and LPO balance in the brain. AS has the potential to be a promising candidate medicine for AD.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Mengmeng Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Yikai Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Siyi Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Xu Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Anam Naseem
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Adnan Mohammed Algradi
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Zhichao Hao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Qingshan Chen
- Construction of traditional Chinese medicine biogenetics, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Lili Zhang
- Construction of traditional Chinese medicine biogenetics, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| |
Collapse
|
5
|
Zhao M, Wang Y, Li J, Wen Q, Liu Y, Zhao Y. Panaxadiol Attenuates Brain Damage by Inhibiting Ferroptosis in a Rat Model of Cerebral Hemorrhage. Drug Dev Res 2025; 86:e70079. [PMID: 40117294 DOI: 10.1002/ddr.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/12/2025] [Accepted: 03/08/2025] [Indexed: 03/23/2025]
Abstract
Intracerebral hemorrhage (ICH) is the most common subtype of hemorrhage stroke, with a high disability, morbidity and mortality rate globally. Panaxadiol (PD), a triterpenoid sapogenin monomer, is isolated from the roots of ginseng, which has shown a variety of biological properties, such as anti-inflammation, anti-cancer, and neuroprotection. However, its effect and mechanism on ICH were still unknown. Thirty-six rats were randomly divided into six group (n = 6), namely, sham, ICH, ICH + 5 mg/kg PD, ICH + 10 mg/kg PD, ICH + 20 mg/kg PD, and ICH + 10 mg/kg PD + 50 mg/kg vismodegib. Rats were treated with type IV collagenase to induce an in vivo model of ICH, and then intraperitoneally injected with PD (5, 10 and 20 mg/kg) and 50 mg/kg vismodegib (an inhibitor of hedgehog signal). The effect and potential mechanism of PD on ICH were explored by behavioral test, brain water content measurement, Evans blue detection, hematoxylin-eosin (HE) staining, iron level examination, Prussian blue staining, western blot and immunohistochemistry, respectively. An increase in the mNSS (13.17 ± 1.17), and a decrease in the rotarod latency (40.67 ± 9.31), modified Garcia score (9.83 ± 1.47), forelimb use times (3.33 ± 0.82), left forepaw placements (29.90 ± 4.38) and left turns (17.34 ± 3.55) in ICH rats were reversed with the PD treatment (6.83 ± 0.75, 113.5 ± 11.95, 17.50 ± 1.87, 8.17 ± 0.98, 63.56 ± 9.84, and 42.13 ± 4.52 respectively). PD treatment reduced the brain water content (73.13 ± 3.16 vs. 86.82 ± 4.74), the level of Evans blue (2.14 ± 0.25 vs. 4.03 ± 0.20) and cerebral hemorrhage in ICH rats. Also, PD injection decreased the iron level (0.06 ± 0.005 vs. 0.17 ± 0.02) and the expression of ACSL4 (0.56 ± 0.07 vs. 1.23 ± 0.16), with the increased expression of GPX4 (1.14 ± 0.08 vs. 0.21 ± 0.03) in ICH rats. Mechanically, PD treatment restored the decreased expression of SHH (0.96 ± 0.13 vs. 0.20 ± 0.03), GLI1 (0.89 ± 0.13 vs. 0.06 ± 0.007) and PTCH (0.75 ± 0.05 vs. 0.10 ± 0.01) in ICH rats. Inhibition of SHH signaling by vismodegib reversed the ameliorative effect of PD on ICH rats. PD improved brain damage by suppressing ferroptosis via the activation of the SHH/GLI signaling pathway, which could lay a theoretical foundation for the treatment of ICH.
Collapse
Affiliation(s)
- Min Zhao
- Center of Encephalopathy, Changchun University of Traditional Chinese Medicine Affiliated Third Clinical Hospital, Changchun, Jilin, China
| | - Yu Wang
- Center of Encephalopathy, The Third Clinical Hospital affiliated to Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Jing Li
- Center of Encephalopathy, Changchun University of Traditional Chinese Medicine Affiliated Third Clinical Hospital, Changchun, Jilin, China
| | - Quan Wen
- Center of Encephalopathy, Changchun University of Traditional Chinese Medicine Affiliated Third Clinical Hospital, Changchun, Jilin, China
| | - Yue Liu
- Center of Encephalopathy, Changchun University of Traditional Chinese Medicine Affiliated Third Clinical Hospital, Changchun, Jilin, China
| | - Yanan Zhao
- Center of Encephalopathy, Changchun University of Traditional Chinese Medicine Affiliated Third Clinical Hospital, Changchun, Jilin, China
| |
Collapse
|
6
|
Wu S, Zhou M, Zhou H, Han L, Liu H. Astragaloside IV- loaded biomimetic nanoparticles target IκBα to regulate neutrophil extracellular trap formation for sepsis therapy. J Nanobiotechnology 2025; 23:155. [PMID: 40022068 PMCID: PMC11869569 DOI: 10.1186/s12951-025-03260-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 02/20/2025] [Indexed: 03/03/2025] Open
Abstract
This study explored the novel mechanism of Astragaloside IV (As) in treating sepsis and its application through a biomimetic nano-delivery system (As@ZM). Sepsis, a condition of organ dysfunction caused by an abnormal host response to infection, poses a significant threat to global health due to its high mortality rate. Our findings revealed a new mechanism for As in treating sepsis, which involved the reduction of neutrophil extracellular traps (NETs) release, potentially related to As binding with IκBα to inhibit the activation of the NF-κB pathway. As treated neutrophils also improved the immune microenvironment by crosstalk with endothelial cells and lung epithelial cells. However, the stability and bioavailability of As limited its clinical application. To address this issue, we had developed a ZIF-8-based nano-delivery system that achieved targeted delivery through neutrophil membrane coating, significantly enhancing the therapeutic efficacy of As. The innovative design of As@ZM offered a new strategy for sepsis treatment, with the potential to improve clinical outcomes.
Collapse
Affiliation(s)
- Shujuan Wu
- Department of Anesthesiology, Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Mengqi Zhou
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Huimin Zhou
- Department of Anesthesiology, Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lu Han
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Huifan Liu
- Department of Anesthesiology, Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Cai X, Cai X, Xie Q, Xiao X, Li T, Zhou T, Sun H. NLRP3 inflammasome and gut microbiota-brain axis: a new perspective on white matter injury after intracerebral hemorrhage. Neural Regen Res 2025; 21:01300535-990000000-00684. [PMID: 39885662 PMCID: PMC12094575 DOI: 10.4103/nrr.nrr-d-24-00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/09/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025] Open
Abstract
ABSTRACT Intracerebral hemorrhage is the most dangerous subtype of stroke, characterized by high mortality and morbidity rates, and frequently leads to significant secondary white matter injury. In recent decades, studies have revealed that gut microbiota can communicate bidirectionally with the brain through the gut microbiota-brain axis. This axis indicates that gut microbiota is closely related to the development and prognosis of intracerebral hemorrhage and its associated secondary white matter injury. The NACHT, LRR, and pyrin domain-containing protein 3 (NLRP3) inflammasome plays a crucial role in this context. This review summarizes the dysbiosis of gut microbiota following intracerebral hemorrhage and explores the mechanisms by which this imbalance may promote the activation of the NLRP3 inflammasome. These mechanisms include metabolic pathways (involving short-chain fatty acids, lipopolysaccharides, lactic acid, bile acids, trimethylamine-N-oxide, and tryptophan), neural pathways (such as the vagus nerve and sympathetic nerve), and immune pathways (involving microglia and T cells). We then discuss the relationship between the activated NLRP3 inflammasome and secondary white matter injury after intracerebral hemorrhage. The activation of the NLRP3 inflammasome can exacerbate secondary white matter injury by disrupting the blood-brain barrier, inducing neuroinflammation, and interfering with nerve regeneration. Finally, we outline potential treatment strategies for intracerebral hemorrhage and its secondary white matter injury. Our review highlights the critical role of the gut microbiota-brain axis and the NLRP3 inflammasome in white matter injury following intracerebral hemorrhage, paving the way for exploring potential therapeutic approaches.
Collapse
Affiliation(s)
- Xiaoxi Cai
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xinhong Cai
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Quanhua Xie
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xueqi Xiao
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tong Li
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tian Zhou
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong–Hong Kong–Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong–Hong Kong–Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
8
|
Sun Y, Zhou D, Liu A, Zhou Y, Zhao Y, Yuan Y, Guo W, Li J. Liangxue Tongyu Prescription exerts neuroprotection by regulating the microbiota-gut-brain axis of rats with acute intracerebral hemorrhage. Brain Res Bull 2025; 220:111186. [PMID: 39746523 DOI: 10.1016/j.brainresbull.2024.111186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/21/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Liangxue Tongyu Prescription (LTP) is a classic herbal formula for treating acute intracerebral hemorrhage (AICH) in China. Previous studies have shown that LTP significantly ameliorates neurological impairments and gastrointestinal dysfunction in patients with AICH. However, the underlying molecular mechanism remains unclear. The aim of this study is to investigate whether LTP exerts its neuroprotective effect on AICH rats through the microbiota-gut-brain axis and explore its potential underlying mechanism. In the current study, AICH models were established by injecting autologous whole blood into the right caudate nucleus of rats. Behavioural and pathological evaluations demonstrated that LTP ameliorated neuronal and intestinal damage in AICH rats. Analysis via western blot, quantitative real-time PCR, immunohistochemistry (IHC) and tunel staining indicated that LTP upregulated the expression of brain-derived neurotrophic factor (BDNF) and nerve growth factor(NGF) and reduced neuronal cell apoptosis. Additionally, 16S rDNA sequencing revealed that LTP mitigated dysbiosis of intestinal microbiota in AICH rats. LTP increased the levels of noradrenaline (NA), dopamine (DA), glutamate (GLU) and modulated brain-gut peptides such as gastrin (GAS), motilin (MTL), ghrelin in AICH rats. Furthermore, LTP enhanced vagus nerve discharge. In summary, this research provides evidence suggesting that LTP's influence on AICH may involve modulation of the microbiota-gut-brain axis, offering a potential scientific rationale for its therapeutic efficacy in improving outcomes of AICH.
Collapse
Affiliation(s)
- Yingying Sun
- First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Dandan Zhou
- First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Anlan Liu
- First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yu Zhou
- First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yang Zhao
- First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yuan Yuan
- First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Weifeng Guo
- First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Jianxiang Li
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China.
| |
Collapse
|
9
|
Hao J, Hu R, Zhao J, Li Y, Li Q, Zhang X. Metabolomics combined with network pharmacology reveals the protective effect of astragaloside IV on alcoholic liver disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156032. [PMID: 39270570 DOI: 10.1016/j.phymed.2024.156032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/13/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Alcoholic liver disease (ALD) is a significant contributor to liver damage. However, the clinical options for the treatment of ALD are limited. Astragaloside IV (AST-IV) is a saponin isolated from Astragalus membranaceus (AM). This study aimed to explore the underlying mechanisms of action of AST-IV in ALD by integrating metabolomics and network pharmacology. METHODS Sprague-Dawley (SD) rats were used to establish a rat model of ALD. AST-IV and polyene phosphatidyl choline (PPC; a positive control drug) were administered to rats with ALD for 4 weeks. We measured the body weight, liver index, ALT, AST, TC, TG, inflammatory markers (IL-1β, IL-6, and TNF-α), and oxidative stress markers (SOD, MDA) and used H&E and ORO staining to evaluate the hepatoprotective effect of both AST-IV and PPC on ALD. Subsequently, we performed untargeted metabolomics to predict the influence of AST-IV on lipid metabolism in rats with ALD. We then used a network pharmacology approach to identify the core targets through which AST-IV corrected lipid metabolism disorders and validated these targets through molecular docking, qRT-PCR and western blot analyses. Finally, we calculated the relationships between ALD-related biochemical markers, differential liver metabolites, and core targets using Spearman's correlation analysis. RESULTS AST-IV improved pathological damage and reduced lipid accumulation in the hepatocytes of rats with ALD. Furthermore, AST-IV inhibited oxidative stress and inflammatory responses in rats with ALD. The metabolomic results showed that AST-IV corrected hepatic lipid metabolism disorders by targeting linoleic acid, necrosis, sphingolipid, and glycerophospholipid metabolism. The Network pharmacology analysis revealed that the core targets of AST-IV exerting the above effects were p-RIPK3, p-MLKL, CYP1A2, CYP2C19, PPARα, PCSK9. Spearman's correlation analysis showed a strong correlation between ALD-related serum biochemical indices, core targets, and liver differential metabolites. CONCLUSION AST-IV corrects the metabolic disorders of linoleic acid, sphingolipid, and glycerophospholipid, and alleviates necrosis in rats with ALD through the core targets p-RIPK3, p-MLKL, CYP1A2, CYP2C19, PPARα, and PCSK9. This study is the first to reveal the mechanism of ALD protection through AST-IV from the perspective of metabolomics and network pharmacology. Therefore, a novel target has been identified to exert protection against ALD. This study provides a reference for ALD treatment.
Collapse
Affiliation(s)
- Jinfang Hao
- School of Pharmaceutical Science, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Ruixian Hu
- School of Pharmaceutical Science, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan 030001, China; Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Jianming Zhao
- School of Pharmaceutical Science, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan 030001, China
| | - Yuanhong Li
- School of Pharmaceutical Science, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan 030001, China
| | - Qingshan Li
- School of Pharmaceutical Science, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese Medicine, Jinzhong 030619, China.
| | - Xiaoyan Zhang
- School of Pharmaceutical Science, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
10
|
Wen LP, Gao SW, Chen HX, Liu Q, Xiao GZ, Lin HC, He QL. Astragaloside IV Ameliorates Colonic Adenomatous Polyps Development by Orchestrating Gut Bifidobacterium and Serum Metabolome. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1527-1554. [PMID: 39164214 DOI: 10.1142/s0192415x24500605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Astragaloside IV (AS-IV), a natural triterpenoid isolated from Astragalus membranaceus, has been used traditionally in Chinese medicine. Previous studies have highlighted its benefits against carcinoma, but its interaction with the gut microbiota and effects on adenomatous polyps are not well understood. This present study investigates the effects of AS-IV on colonic adenomatous polyp (CAP) development in high-fat-diet (HFD) fed [Formula: see text] mice. [Formula: see text] mice were fed an HFD with or without AS-IV or Naringin for 8 weeks. The study assessed CAP proliferation and employed 16S DNA-sequencing and untargeted metabolomics to explore correlations between microbiome and metabolome in CAP development. AS-IV was more effective than Naringin in reducing CAP development, inhibiting colonic proinflammatory cytokines (IL-1β, IL-6, and TNF-α), tumor associated biomarkers (c-Myc, Cyclin D1), and Wnt/β-catenin pathway proteins (Wnt3a, β-catenin). AS-IV also inhibited the proliferative capabilities of human colon cancer cells (HT29, HCT116, and SW620). Multiomics analysis revealed AS-IV increased the abundance of beneficial genera such as Bifidobacterium pseudolongum and significantly modulated serum levels of certain metabolites including linoleate and 2-trans,6-trans-farnesal, which were significantly correlated with the number of CAP. Finally, the anti-adenoma efficacy of AS-IV alone was significantly suppressed post pseudoaseptic intervention in HFD-fed [Formula: see text] mice but could be reinstated following a combined with Bifidobacterium pseudolongum transplant. AS-IV attenuates CAP development in HFD-fed [Formula: see text] mice by regulating gut microbiota and metabolomics, impacting the Wnt3a/β-catenin signaling pathway. This suggests a potential new strategy for the prevention of colorectal cancer, emphasizing the role of gut microbiota in AS-IV's antitumor effects.
Collapse
Affiliation(s)
- Lu-Ping Wen
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- Department of Coloproctology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221005, P. R. China
| | - Shao-Wei Gao
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, P. R. China
| | - Hua-Xian Chen
- Department of General Surgery (Department of Coloproctology), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, P. R. China
| | - Qi Liu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, P. R. China
| | - Guo-Zhong Xiao
- Department of General Surgery (Department of Coloproctology), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, P. R. China
| | - Hong-Cheng Lin
- Department of General Surgery (Department of Coloproctology), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, P. R. China
| | - Qiu-Lan He
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, P. R. China
| |
Collapse
|
11
|
Wang Y, Yu Z, Cheng M, Hu E, Yan Q, Zheng F, Guo X, Zhang W, Li H, Li Z, Zhu W, Wu Y, Tang T, Li T. Buyang huanwu decoction promotes remyelination via miR-760-3p/GPR17 axis after intracerebral hemorrhage. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118126. [PMID: 38556140 DOI: 10.1016/j.jep.2024.118126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/02/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The repairment of myelin sheaths is crucial for mitigating neurological impairments of intracerebral hemorrhage (ICH). However, the current research on remyelination processes in ICH remains limited. A representative traditional Chinese medicine, Buyang Huanwu decoction (BYHWD), shows a promising therapeutic strategy for ICH treatment. AIM OF THE STUDY To investigate the pro-remyelination effects of BYHWD on ICH and explore the underlying mechanisms. MATERIALS AND METHODS The collagenase-induced mice ICH model was created for investigation. BYHWD's protective effects were assessed by behavioral tests and histological staining. Transmission electron microscopy was used for displaying the structure of myelin sheaths. The remyelination and oligodendrocyte differentiation were evaluated by the expressions of myelin proteolipid protein (PLP), myelin basic protein (MBP), MBP/TAU, Olig2/CC1, and PDGFRα/proliferating cell nuclear antigen (PCNA) through RT-qPCR and immunofluorescence. Transcriptomics integrated with disease database analysis and experiments in vivo and in vitro revealed the microRNA-related underlying mechanisms. RESULTS Here, we reported that BYHWD promoted the neurological function of ICH mice and improved remyelination by increasing PLP, MBP, and TAU, as well as restoring myelin structure. Besides, we showed that BYHWD promoted remyelination by boosting the differentiation of PDGFRα+ oligodendrocyte precursor cells into olig2+/CC1+ oligodendrocytes. Additionally, we demonstrated that the remyelination effects of BYHWD worked by inhibiting G protein-coupled receptor 17 (GPR17). miRNA sequencing integrated with miRNA database prediction screened potential miRNAs targeting GPR17. By applying immunofluorescence, RNA in situ hybridization and dual luciferase reporter gene assay, we confirmed that BYHWD suppressed GPR17 and improved remyelination by increasing miR-760-3p. CONCLUSIONS BYHWD improves remyelination and neurological function in ICH mice by targeting miR-760-3p to inhibit GPR17. This study may shed light on the orchestration of remyelination mechanisms after ICH, thus providing novel insights for developing innovative prescriptions with brain-protective properties.
Collapse
Affiliation(s)
- Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang, PR China
| | - Zhe Yu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Menghan Cheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - En Hu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang, PR China
| | - Qiuju Yan
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Fei Zheng
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Xiaohang Guo
- School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Haigang Li
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan, PR China
| | - Zhilin Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Wenxin Zhu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yao Wu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang, PR China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang, PR China.
| |
Collapse
|
12
|
Li J, Yang J, Xia Y, Wang J, Xia Y. Effects of Astragaloside IV on Hearing, Inflammatory Factors, and Intestinal Flora in Mice Exposed to Noise. Metabolites 2024; 14:122. [PMID: 38393014 PMCID: PMC10890247 DOI: 10.3390/metabo14020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Long-term exposure to noise can cause irreversible hearing loss. Considering that there is no effective drug treatment, it is important to seek preventive treatment for noise-induced hearing loss (NIHL). Although astragaloside IV (AS-IV) protects against NIHL by reducing serum inflammatory factors, there is scarce information on the regulation of inflammatory factors by AS-IV to prevent NIHL. We investigated the hearing thresholds and relationship between the serum levels of inflammatory cytokines and intestinal microbiota of c57bl/6j mice exposed to noise (103 dB SPL 4 h·d-1) for 7 days, treated with or without AS-IV. Our results revealed a lower hearing threshold and lower serum levels of TNF-α, TNF-γ, IL-6, IL-1β, and IFN-γ in the mice treated with AS-IV. Additionally, AS-IV increased the abundance levels of the phylum Firmicutes, class Bacillus, order Lactobacillus, and family Lactobacillus (p < 0.05), and decreased those of the phylum Bacteroidetes and order Bacteroidales (p < 0.05). Lactobacillus and Bacilli negatively correlated with TNF-α, TNF-γ, and IL-1β; Erysipelotrichaceae negatively correlated with INF-γ; and Clostridiales positively correlated with IL-1β. In conclusion, AS-IV reduces the elevation of hearing thresholds in mice, preventing hearing loss in mice exposed to noise, and under the intervention of AS-IV, changes in the levels of inflammatory factors correlate with intestinal flora. We suggest that AS-IV improves intestinal flora and reduces inflammation levels in c57bl/6j mice exposed to noise.
Collapse
Affiliation(s)
- Junyi Li
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jian Yang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Yun Xia
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Junyi Wang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Yuan Xia
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| |
Collapse
|