1
|
Lemche E, Hortobágyi T, Kiecker C, Turkheimer F. Neuropathological links between T2DM and LOAD: systematic review and meta-analysis. Physiol Rev 2025; 105:1429-1486. [PMID: 40062731 DOI: 10.1152/physrev.00040.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/01/2025] [Accepted: 02/22/2025] [Indexed: 04/16/2025] Open
Abstract
Recent decades have described parallel neuropathological mechanisms increasing the risk for developing late-onset Alzheimer's dementia (LOAD) in type 2 diabetes mellitus (T2DM); however, still little is known of the role of diabetic encephalopathy and brain atrophy in LOAD. The aim of this systematic review is to provide a comprehensive view on diabetic encephalopathy/cerebral atrophy, taking into account neuroimaging data, neuropathology, metabolic and endocrine mechanisms, amyloid formation, brain perfusion impairments, neuroimmunology, and inflammasome activation. Key switches were identified, to further meta-analyze genomic candidate loci and epigenetic modifications. For the qualitative meta-analysis of genomic bases extracted, human linkage studies were examined; for epigenetic mechanisms, data from both human and animal studies are described. For the systematic review of pathophysiological mechanisms, 1,259 publications were evaluated and 93 gene loci extracted for candidate risk linkages. Sixty-six publications were evaluated for genomic association and descriptions of epigenomic modifications. Overall accumulated results highlight the insulin signaling system, vascular markers, inflammation and inflammasome pathways, amylin interactions, and glycosylation mechanisms. The protocol was registered with PROSPERO (ID: CRD42023440535).
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Tibor Hortobágyi
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Clemens Kiecker
- Department for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Federico Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
2
|
Walker CS, Aitken JF, Vazhoor Amarsingh G, Zhang S, Cooper GJS. Amylin: emergent therapeutic opportunities in overweight, obesity and diabetes mellitus. Nat Rev Endocrinol 2025:10.1038/s41574-025-01125-9. [PMID: 40360789 DOI: 10.1038/s41574-025-01125-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
The identification of amylin as a glucoregulatory peptide hormone with roles in meal-ending satiation sparked a surge of experimental development, which culminated in the amylin mimetic drug pramlintide. Pramlintide was approved by the FDA in 2005 for the treatment of type 1 diabetes mellitus and insulin-requiring type 2 diabetes, and was also explored as a novel anti-obesity treatment. Despite this exciting potential, efforts to develop an amylin-based anti-obesity therapeutic stalled owing to challenges around dosage frequency, safety and formulation. Generally, anti-obesity therapies have displayed modest efficacy and mixed safety profiles, leaving a clear unmet clinical need that requires addressing. Advances in peptide chemistry have reinvigorated the amylin field by enabling the manufacture of effective new amylin-based molecules, resulting in therapeutics that are now on the cusp of approval. At present, there are growing concerns around GLP1 receptor agonist-based therapeutics, in particular their association with loss of lean body mass. Additionally, treatment of patients with overweight or obesity without associated comorbidities is increasingly common. The widespread pharmacotherapy of otherwise healthy populations with overweight or obesity with the goal of improving future health requires further regulatory and ethical consideration. This Review describes how amylin controls energy homeostasis and provides a current overview of amylin-based therapeutic development.
Collapse
Affiliation(s)
| | - Jacqueline F Aitken
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Shaoping Zhang
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Garth J S Cooper
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.
- Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, UK.
- School of Medical Sciences, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Byun S, Maric I, Börchers S, Sotzen MR, Olekanma D, Hayes MR, Skibicka KP. From the pancreas to the amygdala: New brain area critical for ingestive and motivated behavior control exerted by amylin. iScience 2025; 28:112040. [PMID: 40124523 PMCID: PMC11928841 DOI: 10.1016/j.isci.2025.112040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/13/2025] [Accepted: 02/13/2025] [Indexed: 03/25/2025] Open
Abstract
Amylin, a pancreatic peptide, has a well-established role in feeding behavior control. Amylin analogues are clinically utilized in patients with diabetes and are under investigation as potential anti-obesity pharmacotherapies. The neural circuits underlying actions of amylin on behavior are not well understood. While amylin was found to bind to the central amygdala (CeA) of rodents and primates and we found that all components of amylin receptors are present in the CeA, their potential role in physiology or behavior remains unknown. Here, we investigated the impact of this potential pancreas - CeA amylin-mediated communication - on ingestive and motivated behaviors. Activation of CeA amylin receptors resulted in a robust hypophagia, reduced food-motivated behavior, and altered macronutrient preference in male and female rats. Clinically used amylin analogue, pramlintide, reduced meal size and frequency by acting on the CeA. Disruption of CeA amylin signaling led to hyperphagia and body weight gain in a sex divergent manner. Importantly, CeA amylin signaling was required for appetite suppression induced by peripherally applied amylin, highlighting translational relevance of this brain site. Our data indicate the CeA is a critical neural substrate for amylin signaling.
Collapse
Affiliation(s)
- Suyeun Byun
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA, USA
| | - Ivana Maric
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA, USA
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Stina Börchers
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA, USA
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Morgan R. Sotzen
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA, USA
- Huck Institutes of Life Science, Pennsylvania State University, State College, PA, USA
| | - Doris Olekanma
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA, USA
- Huck Institutes of Life Science, Pennsylvania State University, State College, PA, USA
| | - Matthew R. Hayes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Karolina P. Skibicka
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA, USA
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Huck Institutes of Life Science, Pennsylvania State University, State College, PA, USA
| |
Collapse
|
4
|
Zhang C. Neural pathways of nausea and roles in energy balance. Curr Opin Neurobiol 2025; 90:102963. [PMID: 39765206 PMCID: PMC11839311 DOI: 10.1016/j.conb.2024.102963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/18/2025]
Abstract
Our internal sensory systems encode various gut-related sensations, such as hunger, feelings of fullness, and nausea. These internal feelings influence our eating behaviors and play a vital role in regulating energy balance. Among them, the neurological basis for nausea has been the least well characterized, which has hindered comprehension of the connection between these sensations. Single-cell sequencing, along with functional mapping, has brought clarity to the neural pathways of nausea involving the brainstem area postrema. In addition, the newly discovered nausea sensory signals have deepened our understanding of the area postrema in regulating feeding behaviors. Nausea has significant clinical implications, especially in developing drugs for weight loss and metabolism. This review summarizes recent research on the neural pathways of nausea, particularly highlighting their contribution to energy balance.
Collapse
Affiliation(s)
- Chuchu Zhang
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Hankir MK, Le Foll C. Central nervous system pathways targeted by amylin in the regulation of food intake. Biochimie 2025; 229:95-104. [PMID: 39426704 DOI: 10.1016/j.biochi.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Amylin is a peptide hormone co-released with insulin from pancreatic β-cells during a meal and primarily serves to promote satiation. While the caudal hindbrain was originally implicated as a major site of action in this regard, it is becoming increasingly clear that amylin recruits numerous central nervous system pathways to exert multifaceted effects on food intake. In this Review, we discuss the evidence derived from preclinical studies showing that amylin and the related peptide salmon calcitonin (sCT) directly or indirectly target genetically distinct neurons in the caudal hindbrain (nucleus tractus solitarius and area postrema), rostral hindbrain (lateral parabrachial nucleus), midbrain (lateral dorsal tegmentum and ventral tegmental area) and hypothalamus (arcuate nucleus and parasubthalamic nucleus) via activation of amylin and/or calcitonin receptors. Given that the stable amylin analogue cagrilintide is under clinical development for the treatment of obesity, it is important to determine whether this drug recruits overlapping or distinct central nervous system pathways to that of amylin and sCT with implications for minimising any aversive effects it potentially causes. Such insight will also be important to understand how amylin and sCT analogues synergize with other molecules as part of dual or triple agonist therapies for obesity, especially the glucagon-like peptide 1 receptor (GLP-1R) agonist semaglutide, which has been shown to synergistically lower body weight with cagrilintide (CagriSema) in clinical trials.
Collapse
Affiliation(s)
- Mohammed K Hankir
- Department of Veterinary Physiology, University of Zurich, Zurich, Switzerland; School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland.
| | - Christelle Le Foll
- Department of Veterinary Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Fukumitsu K, Yoshihara C, Huang AJ, McHugh TJ, Kuroda KO. In vivo recording from calcitonin receptor-expressing neurons in the medial preoptic area during affiliative social behaviors. Neurosci Res 2025:S0168-0102(25)00025-2. [PMID: 39894414 DOI: 10.1016/j.neures.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Social animals, including mice, are motivated to seek social contact and avoid being alone due to the benefit of the group living in survival and reproductive values. We have previously reported that pup exposure and co-housing with adult female mice can induce the expression of c-Fos in calcitonin receptor (Calcr) neurons located in the medial preoptic area (MPOA) of female mice. These neurons mediate maternal and social contact behaviors among adult virgin females. However, the correlation of the activity of MPOACalcr+ neurons with specific social behaviors remains unclear. In this study, we used in vivo fiber photometry to study MPOACalcr+ neuron activity during affiliative social behaviors. We found that MPOACalcr+ neurons are activated during proactive contact with adult female mice but not during passive contact, suggesting that motivation to seek social contacts is associated with the activation of these neurons. MPOACalcr+ neurons are not activated during contact with non-social objects, such as novel foods and nesting materials, supporting their specific involvement in social behavior. Furthermore, these neurons are more robustly activated during alloparental behaviors such as pup retrieval. Overall, this study demonstrates the involvement of MPOACalcr+ neurons in motivated social interactions with pups and peer females.
Collapse
Affiliation(s)
- Kansai Fukumitsu
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama 351-0198, Japan; Department of Physiology, Fujita Health University School of Medicine, Toyoake 470-1192, Japan.
| | - Chihiro Yoshihara
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama 351-0198, Japan; School of Life Science and Technology, Institute of Science Tokyo, Kanagawa 226-0026, Japan
| | - Arthur J Huang
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Kumi O Kuroda
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama 351-0198, Japan; School of Life Science and Technology, Institute of Science Tokyo, Kanagawa 226-0026, Japan
| |
Collapse
|
7
|
Nabi-Afjadi M, Ostadhadi S, Liaghat M, Pasupulla AP, Masoumi S, Aziziyan F, Zalpoor H, Abkhooie L, Tarhriz V. Revolutionizing type 1 diabetes management: Exploring oral insulin and adjunctive treatments. Biomed Pharmacother 2024; 176:116808. [PMID: 38805967 DOI: 10.1016/j.biopha.2024.116808] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune condition that affects millions of people worldwide. Insulin pumps or injections are the standard treatment options for this condition. This article provides a comprehensive overview of the several type 1 diabetes treatment options, focusing on oral insulin. The article is divided into parts that include immune-focused treatments, antigen vaccination, cell-directed interventions, cytokine-directed interventions, and non-immunomodulatory adjuvant therapy. Under the section on non-immunomodulatory adjunctive treatment, the benefits and drawbacks of medications such as metformin, amylin, sodium-glucose cotransporter inhibitors, glucagon-like peptide-1 receptor agonists (GLP-1 Ras), and verapamil are discussed. The article also discusses the advantages of oral insulin, including increased patient compliance and more dependable and regular blood sugar control. However, several variables, including the enzymatic and physical barriers of the digestive system, impair the administration of insulin via the mouth. Researchers have looked at a few ways to get over these challenges, such as changing the structure of the insulin molecule, improving absorption with the use of absorption enhancers or nanoparticles, and taking oral insulin together with other medications. Even with great advancements in the use of these treatment strategies, T1D still needs improvement in the therapeutic difficulties. Future studies in these areas should focus on creating tailored immunological treatments, looking into combination medications, and refining oral insulin formulations in an attempt to better control Type 1 Diabetes. The ultimate objective is to create accurate, customized strategies that will enhance glycemic management and the quality of life for individuals with the condition.
Collapse
Affiliation(s)
- Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Samane Ostadhadi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mahsa Liaghat
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Islamic Azad University, Kazerun Branch, Kazerun, Iran; Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Ajay Prakash Pasupulla
- Oral and Maxillofacial Pathology, School of Medicine, Colllege of health Sciences, Wachemo University, Hosanna, Ethiopia
| | - Sajjad Masoumi
- Department of Medical Biotechnology, National institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran; Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran; Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Abkhooie
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Vahideh Tarhriz
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
8
|
Lemche E, Killick R, Mitchell J, Caton PW, Choudhary P, Howard JK. Molecular mechanisms linking type 2 diabetes mellitus and late-onset Alzheimer's disease: A systematic review and qualitative meta-analysis. Neurobiol Dis 2024; 196:106485. [PMID: 38643861 DOI: 10.1016/j.nbd.2024.106485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/23/2024] Open
Abstract
Research evidence indicating common metabolic mechanisms through which type 2 diabetes mellitus (T2DM) increases risk of late-onset Alzheimer's dementia (LOAD) has accumulated over recent decades. The aim of this systematic review is to provide a comprehensive review of common mechanisms, which have hitherto been discussed in separate perspectives, and to assemble and evaluate candidate loci and epigenetic modifications contributing to polygenic risk linkages between T2DM and LOAD. For the systematic review on pathophysiological mechanisms, both human and animal studies up to December 2023 are included. For the qualitative meta-analysis of genomic bases, human association studies were examined; for epigenetic mechanisms, data from human studies and animal models were accepted. Papers describing pathophysiological studies were identified in databases, and further literature gathered from cited work. For genomic and epigenomic studies, literature mining was conducted by formalised search codes using Boolean operators in search engines, and augmented by GeneRif citations in Entrez Gene, and other sources (WikiGenes, etc.). For the systematic review of pathophysiological mechanisms, 923 publications were evaluated, and 138 gene loci extracted for testing candidate risk linkages. 3 57 publications were evaluated for genomic association and descriptions of epigenomic modifications. Overall accumulated results highlight insulin signalling, inflammation and inflammasome pathways, proteolysis, gluconeogenesis and glycolysis, glycosylation, lipoprotein metabolism and oxidation, cell cycle regulation or survival, autophagic-lysosomal pathways, and energy. Documented findings suggest interplay between brain insulin resistance, neuroinflammation, insult compensatory mechanisms, and peripheral metabolic dysregulation in T2DM and LOAD linkage. The results allow for more streamlined longitudinal studies of T2DM-LOAD risk linkages.
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry and Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom.
| | - Richard Killick
- Section of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom
| | - Jackie Mitchell
- Department of Basic and Clinical Neurosciences, Maurice Wohl CIinical Neurosciences Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - Paul W Caton
- Diabetes Research Group, School of Life Course Sciences, King's College London, Hodgkin Building, Guy's Campus, London SE1 1UL, United Kingdom
| | - Pratik Choudhary
- Diabetes Research Group, Weston Education Centre, King's College London, 10 Cutcombe Road, London SE5 9RJ, United Kingdom
| | - Jane K Howard
- School of Cardiovascular and Metabolic Medicine & Sciences, Hodgkin Building, Guy's Campus, King's College London, Great Maze Pond, London SE1 1UL, United Kingdom
| |
Collapse
|
9
|
Bhimani RV, Rzepecki L, Park J, Mietlicki-Baase EG. Ventral Tegmental Area Amylin Receptor Activation Differentially Modulates Mesolimbic Dopamine Signaling in Response to Fat versus Sugar. eNeuro 2024; 11:ENEURO.0133-24.2024. [PMID: 38806231 PMCID: PMC11164843 DOI: 10.1523/eneuro.0133-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 05/30/2024] Open
Abstract
Amylin, a pancreatic hormone that is cosecreted with insulin, has been highlighted as a potential treatment target for obesity. Amylin receptors are distributed widely throughout the brain and are coexpressed on mesolimbic dopamine neurons. Activation of amylin receptors is known to reduce food intake, but the neurochemical mechanisms behind this remain to be elucidated. Amylin receptor activation in the ventral tegmental area (VTA), a key dopaminergic nucleus in the mesolimbic reward system, has a potent ability to suppress intake of palatable fat and sugar solutions. Although previous work has demonstrated that VTA amylin receptor activation can dampen mesolimbic dopamine signaling elicited by random delivery of sucrose, whether this is also the case for fat remains unknown. Herein we tested the hypothesis that amylin receptor activation in the VTA of male rats would attenuate dopamine signaling in the nucleus accumbens core in response to random intraoral delivery of either fat or sugar solutions. Results show that fat solution produces a greater potentiation of accumbens dopamine than an isocaloric sucrose solution. Moreover, activation of VTA amylin receptors elicits a more robust suppression of accumbens dopamine signaling in response to fat solution than to sucrose. Taken together these results shed new light on the amylin system as a therapeutic target for obesity and emphasize the reinforcing nature of high-fat/high-sugar diets.
Collapse
Affiliation(s)
- Rohan V Bhimani
- Neuroscience Program, University at Buffalo, State University of New York, Buffalo, New York 14214-3005
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214-3005
| | - Lily Rzepecki
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214-3005
| | - Jinwoo Park
- Neuroscience Program, University at Buffalo, State University of New York, Buffalo, New York 14214-3005
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214-3005
- Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, New York 14214-3005
| | - Elizabeth G Mietlicki-Baase
- Neuroscience Program, University at Buffalo, State University of New York, Buffalo, New York 14214-3005
- Department of Exercise and Nutrition Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214-3005
- Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, New York 14214-3005
| |
Collapse
|
10
|
Kern KA, DiBrog AM, Kaur K, Przybysz JT, Mietlicki-Baase EG. Chronic pramlintide decreases feeding via a reduction in meal size in male rats. Peptides 2024; 176:171197. [PMID: 38493922 PMCID: PMC11323829 DOI: 10.1016/j.peptides.2024.171197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Amylin, a pancreatic hormone, is well-established to suppress feeding by enhancing satiation. Pramlintide, an amylin analog that is FDA-approved for the treatment of diabetes, has also been shown to produce hypophagia. However, the behavioral mechanisms underlying the ability of pramlintide to suppress feeding are unresolved. We hypothesized that systemic pramlintide administration in rats would reduce energy intake, specifically by reducing meal size. Male rats were given b.i.d. administration of intraperitoneal pramlintide or vehicle for 1 week, and chow intake, meal patterns, and body weight were monitored throughout the test period. Consistent with our hypothesis, pramlintide decreased chow intake mainly via suppression of meal size, with corresponding reductions in meal duration on several days. Fewer effects on meal number or feeding rate were detected. Pramlintide also reduced weight gain over the 1-week study. These results highlight that the behavioral mechanisms by which pramlintide produces hypophagia are similar to those driven by amylin itself, and provide important insight into the ability of this pharmacotherapy to promote negative energy balance over a period of chronic administration.
Collapse
Affiliation(s)
- Katherine A Kern
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Adrianne M DiBrog
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Kiran Kaur
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Johnathan T Przybysz
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Elizabeth G Mietlicki-Baase
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY 14214, USA; Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
11
|
Eržen S, Tonin G, Jurišić Eržen D, Klen J. Amylin, Another Important Neuroendocrine Hormone for the Treatment of Diabesity. Int J Mol Sci 2024; 25:1517. [PMID: 38338796 PMCID: PMC10855385 DOI: 10.3390/ijms25031517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Diabetes mellitus is a devastating chronic metabolic disease. Since the majority of type 2 diabetes mellitus patients are overweight or obese, a novel term-diabesity-has emerged. The gut-brain axis plays a critical function in maintaining glucose and energy homeostasis and involves a variety of peptides. Amylin is a neuroendocrine anorexigenic polypeptide hormone, which is co-secreted with insulin from β-cells of the pancreas in response to food consumption. Aside from its effect on glucose homeostasis, amylin inhibits homeostatic and hedonic feeding, induces satiety, and decreases body weight. In this narrative review, we summarized the current evidence and ongoing studies on the mechanism of action, clinical pharmacology, and applications of amylin and its analogs, pramlintide and cagrilintide, in the field of diabetology, endocrinology, and metabolism disorders, such as obesity.
Collapse
Affiliation(s)
- Stjepan Eržen
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Gašper Tonin
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Arts, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Dubravka Jurišić Eržen
- Department of Endocrinology and Diabetology, University Hospital Centre, 51000 Rijeka, Croatia
- Department of Internal Medicine, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Jasna Klen
- Division of Surgery, Department of Abdominal Surgery, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Zhang SY, Bruce K, Danaei Z, Li RJW, Barros DR, Kuah R, Lim YM, Mariani LH, Cherney DZ, Chiu JFM, Reich HN, Lam TKT. Metformin triggers a kidney GDF15-dependent area postrema axis to regulate food intake and body weight. Cell Metab 2023; 35:875-886.e5. [PMID: 37060902 DOI: 10.1016/j.cmet.2023.03.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/29/2022] [Accepted: 03/20/2023] [Indexed: 04/17/2023]
Abstract
Metformin, the most widely prescribed medication for obesity-associated type 2 diabetes (T2D), lowers plasma glucose levels, food intake, and body weight in rodents and humans, but the mechanistic site(s) of action remain elusive. Metformin increases plasma growth/differentiation factor 15 (GDF15) levels to regulate energy balance, while GDF15 administration activates GDNF family receptor α-like (GFRAL) that is highly expressed in the area postrema (AP) and the nucleus of the solitary tract (NTS) of the hindbrain to lower food intake and body weight. However, the tissue-specific contribution of plasma GDF15 levels after metformin treatment is still under debate. Here, we found that metformin increased plasma GDF15 levels in high-fat (HF) fed male rats through the upregulation of GDF15 synthesis in the kidney. Importantly, the kidney-specific knockdown of GDF15 expression as well as the AP-specific knockdown of GFRAL expression negated the ability of metformin to lower food intake and body weight gain. Taken together, we unveil the kidney as a target of metformin to regulate energy homeostasis through a kidney GDF15-dependent AP axis.
Collapse
Affiliation(s)
- Song-Yang Zhang
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G1L7, Canada
| | - Kyla Bruce
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Zahra Danaei
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Rosa J W Li
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Daniel R Barros
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Rachel Kuah
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Yu-Mi Lim
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G1L7, Canada; Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Laura H Mariani
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - David Z Cherney
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G1L7, Canada; Division of Nephrology, Department of Medicine, Toronto General Hospital, UHN, Toronto, ON M5G2C4, Canada; Department of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Jennifer F M Chiu
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Heather N Reich
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G1L7, Canada; Division of Nephrology, Department of Medicine, Toronto General Hospital, UHN, Toronto, ON M5G2C4, Canada; Department of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Tony K T Lam
- Toronto General Hospital Research Institute, UHN, Toronto, ON M5G1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S1A8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S1A8, Canada; Department of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G2C4, Canada.
| |
Collapse
|
13
|
Corrigan RR, Labrador L, Grizzanti J, Mey M, Piontkivska H, Casadesús G. Neuroprotective Mechanisms of Amylin Receptor Activation, Not Antagonism, in the APP/PS1 Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2023; 91:1495-1514. [PMID: 36641678 DOI: 10.3233/jad-221057] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Amylin, a pancreatic amyloid peptide involved in energy homeostasis, is increasingly studied in the context of Alzheimer's disease (AD) etiology. To date, conflicting pathogenic and neuroprotective roles for this peptide and its analogs for AD pathogenesis have been described. OBJECTIVE Whether the benefits of amylin are associated with peripheral improvement of metabolic tone/function or directly through the activation of central amylin receptors is also unknown and downstream signaling mechanisms of amylin receptors are major objectives of this study. METHODS To address these questions more directly we delivered the amylin analog pramlintide systemically (IP), at previously identified therapeutic doses, while centrally (ICV) inhibiting the receptor using an amylin receptor antagonist (AC187), at doses known to impact CNS function. RESULTS Here we show that pramlintide improved cognitive function independently of CNS receptor activation and provide transcriptomic data that highlights potential mechanisms. Furthermore, we show than inhibition of the amylin receptor increased amyloid-beta pathology in female APP/PS1 mice, an effect than was mitigated by peripheral delivery of pramlintide. Through transcriptomic analysis of pramlintide therapy in AD-modeled mice we found sexual dimorphic modulation of neuroprotective mechanisms: oxidative stress protection in females and membrane stability and reduced neuronal excitability markers in males. CONCLUSION These data suggest an uncoupling of functional and pathology-related events and highlighting a more complex receptor system and pharmacological relationship that must be carefully studied to clarify the role of amylin in CNS function and AD.
Collapse
Affiliation(s)
| | - Luis Labrador
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - John Grizzanti
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Megan Mey
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Gemma Casadesús
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
14
|
Khalifa J, Bourgault S, Gaudreault R. Interactions of Polyphenolic Gallotannins with Amyloidogenic Polypeptides Associated with Alzheimer's Disease: From Molecular Insights to Physiological Significance. Curr Alzheimer Res 2023; 20:603-617. [PMID: 38270140 DOI: 10.2174/0115672050277001231213073043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 01/26/2024]
Abstract
Polyphenols are natural compounds abundantly found in plants. They are known for their numerous benefits to human health, including antioxidant properties and anti-inflammatory activities. Interestingly, many studies have revealed that polyphenols can also modulate the formation of amyloid fibrils associated with disease states and can prevent the formation of cytotoxic oligomer species. In this review, we underline the numerous effects of four hydrolysable gallotannins (HGTs) with high conformational flexibility, low toxicity, and multi-targeticity, e.g., tannic acid, pentagalloyl glucose, corilagin, and 1,3,6-tri-O-galloyl-β-D-glucose, on the aggregation of amyloidogenic proteins associated with the Alzheimer's Disease (AD). These HGTs have demonstrated interesting abilities to reduce, at different levels, the formation of amyloid fibrils involved in AD, including those assembled from the amyloid β-peptide, the tubulin-associated unit, and the islet amyloid polypeptide. HGTs were also shown to disassemble pre-formed fibrils and to diminish cognitive decline in mice. Finally, this manuscript highlights the importance of further investigating these naturally occurring HGTs as promising scaffolds to design molecules that can interfere with the formation of proteotoxic oligomers and aggregates associated with AD pathogenesis.
Collapse
Affiliation(s)
- Jihane Khalifa
- Département de Chimie, Université du Québec à Montréal, 2101 Rue Jeanne-Mance, Montréal, QC, H2X 2J6, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Canada
- Quebec Centre for Advanced Materials (QCAM), 3420 University Street, Montréal, QC, H2X 3Y7, Canada
| | - Steve Bourgault
- Département de Chimie, Université du Québec à Montréal, 2101 Rue Jeanne-Mance, Montréal, QC, H2X 2J6, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Canada
| | - Roger Gaudreault
- Département de Chimie, Université du Québec à Montréal, 2101 Rue Jeanne-Mance, Montréal, QC, H2X 2J6, Canada
- Quebec Centre for Advanced Materials (QCAM), 3420 University Street, Montréal, QC, H2X 3Y7, Canada
| |
Collapse
|
15
|
Przybysz JT, DiBrog AM, Kern KA, Mukherjee A, Japa JE, Waite MH, Mietlicki-Baase EG. Macronutrient intake: Hormonal controls, pathological states, and methodological considerations. Appetite 2023; 180:106365. [PMID: 36347305 PMCID: PMC10563642 DOI: 10.1016/j.appet.2022.106365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
Abstract
A plethora of studies to date has examined the roles of feeding-related peptides in the control of food intake. However, the influence of these peptides on the intake of particular macronutrient constituents of food - carbohydrate, fat, and protein - has not been as extensively addressed in the literature. Here, the roles of several feeding-related peptides in controlling macronutrient intake are reviewed. Next, the relationship between macronutrient intake and diseases including diabetes mellitus, obesity, and eating disorders are examined. Finally, some key considerations in macronutrient intake research are discussed. We hope that this review will shed light onto this underappreciated topic in ingestive behavior research and will help to guide further scientific investigation in this area.
Collapse
Affiliation(s)
- Johnathan T Przybysz
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Adrianne M DiBrog
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Katherine A Kern
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Ashmita Mukherjee
- Psychology, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Jason E Japa
- Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Mariana H Waite
- Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Elizabeth G Mietlicki-Baase
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA; Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
16
|
Chen Y, Li Q, Li X, Liu H, Li P, Hai R, Guo Y, Wang S, Wang K, Du C. Amylin regulates testosterone levels via steroidogenesis-related enzymes in the central nervous system of male mice. Neuropeptides 2022; 96:102288. [PMID: 36279616 DOI: 10.1016/j.npep.2022.102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
Amylin is a peripheral satiation signal polypeptide co-secreted with insulin by pancreatic β-cells in response to nutrient ingestion. Amylin participates in the eating-inhibitory effect and regulates energy metabolism by acting on the central nervous system (CNS). However, the role of amylin in regulating the biosynthesis of steroid hormones, such as testosterone, through the hypothalamic-pituitary-gonadal axis (HPG) remains unexplored. However, only limited evidence is available on the involvement of amylin in steroid synthesis, we hypothesize that amylin regulates testosterone levels via steroidogenesis-related enzymes in the CNS. In this study, we elucidated the effect of intraperitoneal injection of amylin on the protein expression of steroidogenesis-related enzymes, including 3β-hydroxysteroid dehydrogenase (3β-HSD), cytochrome P450 17A1 (CYP17A1), and steroidogenic acute regulatory protein (StAR), and phospho-extracellular signal-regulated kinase (pERK). Additionally, the effect of amylin on testosterone levels in male mice was examined. Our results suggested that 3β-HSD and CYP17A1 neurons were widely expressed in the CNS of male mice, whereas StAR neurons were mainly expressed in the zona incerta (ZI) and locus coeruleus (LC) regions. Intraperitoneal injection of amylin significantly reduced (p < 0.01) the expression of 3β-HSD, CYP17A1, and StAR in ZI and other areas near the third ventricle (3 V) but increased (p < 0.01) pERK expression, brain testosterone levels, serum FSH, serum LH, and decreased (p < 0.01) serum testosterone levels in mice. In conclusion, amylin regulates testosterone levels via steroidogenesis-related enzymes in the central nervous system of male mice.
Collapse
Affiliation(s)
- Yujie Chen
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou 014109, China
| | - Qiang Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaojing Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Haodong Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Penghui Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Rihan Hai
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou 014109, China
| | - Yongqing Guo
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou 014109, China
| | - Siwei Wang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050000, China; Key Laboratory of Crop Cultivation Physiology and Green Production in Hebei Province, Shijiazhuang 050000, China
| | - Kun Wang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050000, China; Key Laboratory of Crop Cultivation Physiology and Green Production in Hebei Province, Shijiazhuang 050000, China
| | - Chenguang Du
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou 014109, China; College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
17
|
Mathiesen DS, Lund A, Holst JJ, Knop FK, Lutz TA, Bagger JI. THERAPY OF ENDOCRINE DISEASE: Amylin and calcitonin - physiology and pharmacology. Eur J Endocrinol 2022; 186:R93-R111. [PMID: 35353712 DOI: 10.1530/eje-21-1261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/30/2022] [Indexed: 11/08/2022]
Abstract
Type 2 diabetes is a common manifestation of metabolic dysfunction due to obesity and constitutes a major burden for modern health care systems, in concert with the alarming rise in obesity worldwide. In recent years, several successful pharmacotherapies improving glucose metabolism have emerged and some of these also promote weight loss, thus, ameliorating insulin resistance. However, the progressive nature of type 2 diabetes is not halted by these new anti-diabetic pharmacotherapies. Therefore, novel therapies promoting weight loss further and delaying diabetes progression are needed. Amylin, a beta cell hormone, has satiating properties and also delays gastric emptying and inhibits postprandial glucagon secretion with the net result of reducing postprandial glucose excursions. Amylin acts through the six amylin receptors, which share the core component with the calcitonin receptor. Calcitonin, derived from thyroid C cells, is best known for its role in humane calcium metabolism, where it inhibits osteoclasts and reduces circulating calcium. However, calcitonin, particularly of salmon origin, has also been shown to affect insulin sensitivity, reduce the gastric emptying rate and promote satiation. Preclinical trials with agents targeting the calcitonin receptor and the amylin receptors, show improvements in several parameters of glucose metabolism including insulin sensitivity and some of these agents are currently undergoing clinical trials. Here, we review the physiological and pharmacological effects of amylin and calcitonin and discuss the future potential of amylin and calcitonin-based treatments for patients with type 2 diabetes and obesity.
Collapse
Affiliation(s)
- David S Mathiesen
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
| | - Asger Lund
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
- Department of Medicine, Gentofte and Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
- Department of Medicine, Gentofte and Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
| | - Jonatan I Bagger
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
- Department of Medicine, Gentofte and Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| |
Collapse
|
18
|
Mediators of Amylin Action in Metabolic Control. J Clin Med 2022; 11:jcm11082207. [PMID: 35456307 PMCID: PMC9025724 DOI: 10.3390/jcm11082207] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
Amylin (also called islet amyloid polypeptide (IAPP)) is a pancreatic beta-cell hormone that is co-secreted with insulin in response to nutrient stimuli. The last 35 years of intensive research have shown that amylin exerts important physiological effects on metabolic control. Most importantly, amylin is a physiological control of meal-ending satiation, and it limits the rate of gastric emptying and reduces the secretion of pancreatic glucagon, in particular in postprandial states. The physiological effects of amylin and its analogs are mediated by direct brain activation, with the caudal hindbrain playing the most prominent role. The clarification of the structure of amylin receptors, consisting of the calcitonin core receptor plus receptor-activity modifying proteins, aided in the development of amylin analogs with a broad pharmacological profile. The general interest in amylin physiology and pharmacology was boosted by the finding that amylin is a sensitizer to the catabolic actions of leptin. Today, amylin derived analogs are considered to be among the most promising approaches for the pharmacotherapy against obesity. At least in conjunction with insulin, amylin analogs are also considered important treatment options in diabetic patients, so that new drugs may soon be added to the only currently approved compound pramlintide (Symlin®). This review provides a brief summary of the physiology of amylin’s mode of actions and its role in the control of the metabolism, in particular energy intake and glucose metabolism.
Collapse
|
19
|
Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The physiological control of eating: signals, neurons, and networks. Physiol Rev 2022; 102:689-813. [PMID: 34486393 PMCID: PMC8759974 DOI: 10.1152/physrev.00028.2020] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.
Collapse
Affiliation(s)
- Alan G Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Scott E Kanoski
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Graciela Sanchez-Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Eidgenössische Technische Hochschule-Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
20
|
Lutz TA. Creating the amylin story. Appetite 2022; 172:105965. [DOI: 10.1016/j.appet.2022.105965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 02/07/2023]
|
21
|
Neural signalling of gut mechanosensation in ingestive and digestive processes. Nat Rev Neurosci 2022; 23:135-156. [PMID: 34983992 DOI: 10.1038/s41583-021-00544-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/29/2022]
Abstract
Eating and drinking generate sequential mechanosensory signals along the digestive tract. These signals are communicated to the brain for the timely initiation and regulation of diverse ingestive and digestive processes - ranging from appetite control and tactile perception to gut motility, digestive fluid secretion and defecation - that are vital for the proper intake, breakdown and absorption of nutrients and water. Gut mechanosensation has been investigated for over a century as a common pillar of energy, fluid and gastrointestinal homeostasis, and recent discoveries of specific mechanoreceptors, contributing ion channels and the well-defined circuits underlying gut mechanosensation signalling and function have further expanded our understanding of ingestive and digestive processes at the molecular and cellular levels. In this Review, we discuss our current understanding of the generation of mechanosensory signals from the digestive periphery, the neural afferent pathways that relay these signals to the brain and the neural circuit mechanisms that control ingestive and digestive processes, focusing on the four major digestive tract parts: the oral and pharyngeal cavities, oesophagus, stomach and intestines. We also discuss the clinical implications of gut mechanosensation in ingestive and digestive disorders.
Collapse
|
22
|
Boccia L, Borner T, Ghidewon MY, Kulka P, Piffaretti C, Doebley SA, De Jonghe BC, Grill HJ, Lutz TA, Le Foll C. Hypophagia induced by salmon calcitonin, but not by amylin, is partially driven by malaise and is mediated by CGRP neurons. Mol Metab 2022; 58:101444. [PMID: 35091058 PMCID: PMC8873943 DOI: 10.1016/j.molmet.2022.101444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/07/2022] [Accepted: 01/19/2022] [Indexed: 11/29/2022] Open
Abstract
Objective The behavioral mechanisms and the neuronal pathways mediated by amylin and its long-acting analog sCT (salmon calcitonin) are not fully understood and it is unclear to what extent sCT and amylin engage overlapping or distinct neuronal subpopulations to reduce food intake. We here hypothesize that amylin and sCT recruit different neuronal population to mediate their anorectic effects. Methods Viral approaches were used to inhibit calcitonin gene-related peptide (CGRP) lateral parabrachial nucleus (LPBN) neurons and assess their role in amylin’s and sCT’s ability to decrease food intake in mice. In addition, to test the involvement of LPBN CGRP neuropeptidergic signaling in the mediation of amylin and sCT’s effects, a LPBN site-specific knockdown was performed in rats. To deeper investigate whether the greater anorectic effect of sCT compared to amylin is due do the recruitment of additional neuronal pathways related to malaise multiple and distinct animal models tested whether amylin and sCT induce conditioned avoidance, nausea, emesis, and conditioned affective taste aversion. Results Our results indicate that permanent or transient inhibition of CGRP neurons in LPBN blunts sCT-, but not amylin-induced anorexia and neuronal activation. Importantly, sCT but not amylin induces behaviors indicative of malaise including conditioned affective aversion, nausea, emesis, and conditioned avoidance; the latter mediated by CGRPLPBN neurons. Conclusions Together, the present study highlights that although amylin and sCT comparably decrease food intake, sCT is distinctive from amylin in the activation of anorectic neuronal pathways associated with malaise. CGRP neurons mediate the effect of the amylin agonist salmon calcitonin (sCT) on food intake. Amylin's hypophagic effect does not require CGRP neurons. sCT-induced anorexia but not amylin is associated with malaise.
Collapse
Affiliation(s)
- Lavinia Boccia
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich (UZH), 8057, Zurich, Switzerland
| | - Tito Borner
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, PA 19104, United States; Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Misgana Y Ghidewon
- Institute of Diabetes, Obesity and Metabolism and School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Patricia Kulka
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich (UZH), 8057, Zurich, Switzerland
| | - Chiara Piffaretti
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich (UZH), 8057, Zurich, Switzerland
| | - Sarah A Doebley
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, PA 19104, United States
| | - Bart C De Jonghe
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, PA 19104, United States; Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Harvey J Grill
- Institute of Diabetes, Obesity and Metabolism and School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich (UZH), 8057, Zurich, Switzerland
| | - Christelle Le Foll
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich (UZH), 8057, Zurich, Switzerland.
| |
Collapse
|
23
|
Corrigan RR, Piontkivska H, Casadesus G. Amylin Pharmacology in Alzheimer's Disease Pathogenesis and Treatment. Curr Neuropharmacol 2022; 20:1894-1907. [PMID: 34852745 PMCID: PMC9886804 DOI: 10.2174/1570159x19666211201093147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022] Open
Abstract
The metabolic peptide hormone amylin, in concert with other metabolic peptides like insulin and leptin, has an important role in metabolic homeostasis and has been intimately linked to Alzheimer's disease (AD). Interestingly, this pancreatic amyloid peptide is known to self-aggregate much like amyloid-beta and has been reported to be a source of pathogenesis in both Type II diabetes mellitus (T2DM) and Alzheimer's disease. The traditional "gain of toxic function" properties assigned to amyloid proteins are, however, contrasted by several reports highlighting neuroprotective effects of amylin and a recombinant analog, pramlintide, in the context of these two diseases. This suggests that pharmacological therapies aimed at modulating the amylin receptor may be therapeutically beneficial for AD development, as they already are for T2DMM. However, the nature of amylin receptor signaling is highly complex and not well studied in the context of CNS function. Therefore, to begin to address this pharmacological paradox in amylin research, the goal of this review is to summarize the current research on amylin signaling and CNS functions and critically address the paradoxical nature of this hormone's signaling in the context of AD pathogenesis.
Collapse
Affiliation(s)
| | | | - Gemma Casadesus
- Address correspondence to this author at the Department of Pharmacology and Therapeutics, University of Florida, PO Box 100495. Gainesville, FL32610 USA; Tel: 352-294-5346; E-mail:
| |
Collapse
|
24
|
Dehestani B, Stratford NR, le Roux CW. Amylin as a Future Obesity Treatment. J Obes Metab Syndr 2021; 30:320-325. [PMID: 34929674 PMCID: PMC8735818 DOI: 10.7570/jomes21071] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/14/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity is defined as abnormal or excessive fat accumulation that contributes to detrimental health impacts. One-third of the population suffers from obesity, and it is important to consider obesity as a chronic disease requiring chronic treatment. Amylin is co-secreted with insulin from β pancreatic cells upon nutrient delivery to the small intestine as a satiety signal, acts upon sub-cortical homeostatic and hedonic brain regions, slows gastric emptying, and suppresses post-prandial glucagon responses to meals. Therefore, new pharmacological amylin analogues can be used as potential anti-obesity medications in individuals who are overweight or obese. In this narrative review, we analyse the efficacy, potency, and safety of amylin analogues. The synthetic amylin analogue pramlintide is an approved treatment for diabetes mellitus which promotes better glycaemic control and small but significant weight loss. AM833 (cagrilintide), an investigational novel long-acting acylated amylin analogue, acts as a non-selective amylin receptor. This calcitonin G protein-coupled receptor agonist can serve as an attractive novel treatment for obesity, resulting in reduction of food intake and significant weight loss in a dose-dependent manner.
Collapse
Affiliation(s)
- Babak Dehestani
- Department of Metabolic Medicine, Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland
| | - Nicholas Rs Stratford
- Department of Metabolic Medicine, Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland
| | - Carel W le Roux
- Department of Metabolic Medicine, Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
25
|
Gamakharia S, Le Foll C, Rist W, Baader-Pagler T, Baljuls A, Lutz TA. The calcitonin receptor is the main mediator of LAAMA's body weight lowering effects in male mice. Eur J Pharmacol 2021; 908:174352. [PMID: 34274340 DOI: 10.1016/j.ejphar.2021.174352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 11/21/2022]
Abstract
The anorectic action of the pancreatic hormone amylin is mainly mediated through the area postrema (AP). Amylin activates AP neurons using a heterodimeric receptor (AMY) composed of the calcitonin receptor (CTR) and the receptor activity modifying protein (RAMP 1, 2 or 3). The aim of the following experiments is to test the effects of the long acting amylin analogue (LAAMA) in RAMP1/3 knock-out (KO) male mice and in neuronal CTR KO Nestin-CreCTR male mice. In vitro, LAAMA exerted an equipotent effect on CTR and AMYs that was maintained across species. Following one week of 45% high fat diet, WT, RAMP1/3 KO and Nestin-CreCTR mice were injected daily for one week with vehicle or LAAMA. LAAMA decreased body weight gain in WT and in RAMP1/3 KO mice suggesting that RAMP1/3 are not necessary for LAAMA-induced effects. However, LAAMA was not able to produce any body lowering and anorectic effects in Nestin-CreCTR mice. This was accompanied by the absence of any c-Fos signal in the AP opposite to WT control mice. Together, these results suggest that LAAMA's effects are mainly mediated through CTR rather than specific AMY. The study of LAAMA or any amylin receptor agonist in different receptor KO mouse models helps disentangle the underlying mechanisms used by these molecules.
Collapse
Affiliation(s)
- Salome Gamakharia
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland.
| | - Wolfgang Rist
- Boehringer-Ingelheim Pharma, 88400, Biberach, Germany
| | | | | | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| |
Collapse
|
26
|
Gjermeni E, Kirstein AS, Kolbig F, Kirchhof M, Bundalian L, Katzmann JL, Laufs U, Blüher M, Garten A, Le Duc D. Obesity-An Update on the Basic Pathophysiology and Review of Recent Therapeutic Advances. Biomolecules 2021; 11:1426. [PMID: 34680059 PMCID: PMC8533625 DOI: 10.3390/biom11101426] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity represents a major public health problem with a prevalence increasing at an alarming rate worldwide. Continuous intensive efforts to elucidate the complex pathophysiology and improve clinical management have led to a better understanding of biomolecules like gut hormones, antagonists of orexigenic signals, stimulants of fat utilization, and/or inhibitors of fat absorption. In this article, we will review the pathophysiology and pharmacotherapy of obesity including intersection points to the new generation of antidiabetic drugs. We provide insight into the effectiveness of currently approved anti-obesity drugs and other therapeutic avenues that can be explored.
Collapse
Affiliation(s)
- Erind Gjermeni
- Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, 04289 Leipzig, Germany;
- Department of Cardiology, Median Centre for Rehabilitation Schmannewitz, 04774 Dahlen, Germany;
| | - Anna S. Kirstein
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany; (A.S.K.); (F.K.); (A.G.)
| | - Florentien Kolbig
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany; (A.S.K.); (F.K.); (A.G.)
| | - Michael Kirchhof
- Department of Cardiology, Median Centre for Rehabilitation Schmannewitz, 04774 Dahlen, Germany;
| | - Linnaeus Bundalian
- Institute of Human Genetics, University Medical Center Leipzig, 04103 Leipzig, Germany;
| | - Julius L. Katzmann
- Klinik und Poliklinik für Kardiologie, University Clinic Leipzig, 04103 Leipzig, Germany; (J.L.K.); (U.L.)
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, University Clinic Leipzig, 04103 Leipzig, Germany; (J.L.K.); (U.L.)
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Antje Garten
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany; (A.S.K.); (F.K.); (A.G.)
| | - Diana Le Duc
- Institute of Human Genetics, University Medical Center Leipzig, 04103 Leipzig, Germany;
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany;
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| |
Collapse
|
27
|
Wang M, Xu S, Li Y, Tang N, Chen H, Zhang S, Liu Y, Wang J, Chen D, Zhang X, Li Z. Identification, tissue distribution, and anorexigenic effect of amylin in Siberian sturgeon (Acipenser baeri). Comp Biochem Physiol A Mol Integr Physiol 2021; 263:111079. [PMID: 34534676 DOI: 10.1016/j.cbpa.2021.111079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/12/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
Amylin is a 37-amino acid polypeptide that has been found to be involved in feeding regulation in some mammals, birds, and goldfish. We cloned amylin of Siberian sturgeon and detected its distribution pattern in 15 tissues. The expression levels in the periprandial period (pre-and post-feeding), the changes in the food intake, and the expression levels of related appetite factors after the intraperitoneal injection of amylin were detected. The expression of amylin was found to be the highest in the hypothalamus. Compared with 1 h pre-feeding, the expression levels of amylin in the hypothalamus and duodenum were increased significantly 1 h post-feeding. Compared with the control group (saline), intraperitoneal injection of 50 ng/g, 100 ng/g, and 200 ng/g of amylin significantly inhibited food intake at 1 h post injection, but not at 3 h and 6 h. The injection of 50 ng/g, 100 ng/g, and 200 ng/g amylin significantly inhibited the cumulative feed. After 1 h of 50 ng/g amylin injection, the levels of MC4R and somatostatin in the hypothalamus increased significantly, while the levels of amylin and NPY decreased significantly. The levels of CCK in the valvular intestine were increased significantly. Insulin in the duodenum was also increased significantly, but there was no significant change in ghrelin in the duodenum. These results show that amylin inhibits feeding in Siberian sturgeon by down-regulating the appetite-stimulating factor NPY and up-regulating the appetite-suppressing factors somatostatin, MC4R, CCK, and insulin. This study provides a theoretical basis for studying the feeding function and action mechanisms of amylin in Siberian sturgeon.
Collapse
Affiliation(s)
- Mei Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
| | - Shaoqi Xu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ya Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ni Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hu Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shupeng Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yanling Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jun Wang
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, Sichuan, China
| | - Defang Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xin Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
| | - Zhiqiong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
28
|
Stein LM, McGrath LE, Lhamo R, Koch-Laskowski K, Fortin SM, Skarbaliene J, Baader-Pagler T, Just R, Hayes MR, Mietlicki-Baase EG. The long-acting amylin/calcitonin receptor agonist ZP5461 suppresses food intake and body weight in male rats. Am J Physiol Regul Integr Comp Physiol 2021; 321:R250-R259. [PMID: 34259025 PMCID: PMC8409915 DOI: 10.1152/ajpregu.00337.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 01/18/2023]
Abstract
The peptide hormone amylin reduces food intake and body weight and is an attractive candidate target for novel pharmacotherapies to treat obesity. However, the short half-life of native amylin and amylin analogs like pramlintide limits these compounds' potential utility in promoting sustained negative energy balance. Here, we evaluate the ability of the novel long-acting amylin/calcitonin receptor agonist ZP5461 to reduce feeding and body weight in rats, and also test the role of calcitonin receptors (CTRs) in the dorsal vagal complex (DVC) of the hindbrain in the energy balance effects of chronic ZP5461 administration. Acute dose-response studies indicate that systemic ZP5461 (0.5-3 nmol/kg) robustly suppresses energy intake and body weight gain in chow- and high-fat diet (HFD)-fed rats. When HFD-fed rats received chronic systemic administration of ZP5461 (1-2 nmol/kg), the compound initially produced reductions in energy intake and weight gain but failed to produce sustained suppression of intake and body weight. Using virally mediated knockdown of DVC CTRs, the ability of chronic systemic ZP5461 to promote early reductions in intake and body weight gain was determined to be mediated in part by activation of DVC CTRs, implicating the DVC as a central site of action for ZP5461. Future studies should address other dosing regimens of ZP5461 to determine whether an alternative dose/frequency of administration would produce more sustained body weight suppression.
Collapse
Affiliation(s)
- Lauren M Stein
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lauren E McGrath
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rinzin Lhamo
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kieran Koch-Laskowski
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Samantha M Fortin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth G Mietlicki-Baase
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, New York
| |
Collapse
|
29
|
Kern KA, DiBrog AM, Przybysz JT, Mietlicki-Baase EG. Effects of pramlintide on energy intake and food preference in rats given a choice diet. Physiol Behav 2021; 240:113541. [PMID: 34332974 DOI: 10.1016/j.physbeh.2021.113541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
Amylin is a peptide hormone involved in the control of energy balance, making the amylin system a potential target for pharmacotherapies to treat obesity. Pramlintide, an amylin analogue, is an FDA-approved medication for the treatment of diabetes that also has food intake- and body weight-suppressive effects. However, it is unknown whether pramlintide may preferentially reduce intake of highly palatable, energy dense food, the overconsumption of which is thought to play a role in the etiology of obesity. Here, we investigate the effects of pramlintide on food intake and body weight in rats given a choice of chow and high fat diet (HFD). Systemic pramlintide injection in rats reduced HFD intake at 3h post-injection, with no effects at other times and no significant effects on chow intake, body weight, or percent preference for HFD. In a separate experiment, the effects of central injection of pramlintide on food intake and body weight were similarly evaluated. Intracerebroventricular pramlintide significantly reduced HFD intake throughout the 24h post-injection, with some suppressive effects on chow intake, and also decreased 24h body weight change. Again, no significant changes were observed in the proportion of calories obtained from HFD. The same intracerebroventricular doses of pramlintide did not induce pica, suggesting that pramlintide-mediated reductions in feeding are not due to nausea/malaise. Our results suggest that pramlintide reduces food intake in rats largely via reductions in intake of HFD versus chow, supporting the idea that the potent effects of pramlintide on palatable food intake may have utility in the treatment of obesity.
Collapse
Affiliation(s)
- Katherine A Kern
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Adrianne M DiBrog
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Johnathan T Przybysz
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Elizabeth G Mietlicki-Baase
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY 14214, USA; Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY 14214, USA.
| |
Collapse
|
30
|
Jeong JK, Dow SA, Young CN. Sensory Circumventricular Organs, Neuroendocrine Control, and Metabolic Regulation. Metabolites 2021; 11:metabo11080494. [PMID: 34436435 PMCID: PMC8402088 DOI: 10.3390/metabo11080494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/13/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
The central nervous system is critical in metabolic regulation, and accumulating evidence points to a distributed network of brain regions involved in energy homeostasis. This is accomplished, in part, by integrating peripheral and central metabolic information and subsequently modulating neuroendocrine outputs through the paraventricular and supraoptic nucleus of the hypothalamus. However, these hypothalamic nuclei are generally protected by a blood-brain-barrier limiting their ability to directly sense circulating metabolic signals—pointing to possible involvement of upstream brain nuclei. In this regard, sensory circumventricular organs (CVOs), brain sites traditionally recognized in thirst/fluid and cardiovascular regulation, are emerging as potential sites through which circulating metabolic substances influence neuroendocrine control. The sensory CVOs, including the subfornical organ, organum vasculosum of the lamina terminalis, and area postrema, are located outside the blood-brain-barrier, possess cellular machinery to sense the metabolic interior milieu, and establish complex neural networks to hypothalamic neuroendocrine nuclei. Here, evidence for a potential role of sensory CVO-hypothalamic neuroendocrine networks in energy homeostasis is presented.
Collapse
Affiliation(s)
| | | | - Colin N. Young
- Correspondence: ; Tel.: +1-202-994-9575; Fax: +1-202-994-287
| |
Collapse
|
31
|
Sonne N, Karsdal MA, Henriksen K. Mono and dual agonists of the amylin, calcitonin, and CGRP receptors and their potential in metabolic diseases. Mol Metab 2021; 46:101109. [PMID: 33166741 PMCID: PMC8085567 DOI: 10.1016/j.molmet.2020.101109] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Therapies for metabolic diseases are numerous, yet improving insulin sensitivity beyond that induced by weight loss remains challenging. Therefore, search continues for novel treatment candidates that can stimulate insulin sensitivity and increase weight loss efficacy in combination with current treatment options. Calcitonin gene-related peptide (CGRP) and amylin belong to the same peptide family and have been explored as treatments for metabolic diseases. However, their full potential remains controversial. SCOPE OF REVIEW In this article, we introduce this rather complex peptide family and its corresponding receptors. We discuss the physiology of the peptides with a focus on metabolism and insulin sensitivity. We also thoroughly review the pharmacological potential of amylin, calcitonin, CGRP, and peptide derivatives as treatments for metabolic diseases, emphasizing their ability to increase insulin sensitivity based on preclinical and clinical studies. MAJOR CONCLUSIONS Amylin receptor agonists and dual amylin and calcitonin receptor agonists are relevant treatment candidates, especially because they increase insulin sensitivity while also assisting weight loss, and their unique mode of action complements incretin-based therapies. However, CGRP and its derivatives seem to have only modest if any metabolic effects and are no longer of interest as therapies for metabolic diseases.
Collapse
Affiliation(s)
- Nina Sonne
- Nordic Bioscience Biomarkers and Research, Herlev, Denmark
| | - Morten A Karsdal
- Nordic Bioscience Biomarkers and Research, Herlev, Denmark; KeyBioscience AG, Stans, Switzerland
| | - Kim Henriksen
- Nordic Bioscience Biomarkers and Research, Herlev, Denmark; KeyBioscience AG, Stans, Switzerland.
| |
Collapse
|
32
|
Mathiesen DS, Lund A, Vilsbøll T, Knop FK, Bagger JI. Amylin and Calcitonin: Potential Therapeutic Strategies to Reduce Body Weight and Liver Fat. Front Endocrinol (Lausanne) 2021; 11:617400. [PMID: 33488526 PMCID: PMC7819850 DOI: 10.3389/fendo.2020.617400] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
The hormones amylin and calcitonin interact with receptors within the same family to exert their effects on the human organism. Calcitonin, derived from thyroid C cells, is known for its inhibitory effect on osteoclasts. Calcitonin of mammalian origin promotes insulin sensitivity, while the more potent calcitonin extracted from salmon additionally inhibits gastric emptying, promotes gallbladder relaxation, increases energy expenditure and induces satiety as well as weight loss. Amylin, derived from pancreatic beta cells, regulates plasma glucose by delaying gastric emptying after meal ingestion, and modulates glucagon secretion and central satiety signals in the brain. Thus, both hormones seem to have metabolic effects of relevance in the context of non-alcoholic fatty liver disease (NAFLD) and other metabolic diseases. In rats, studies with dual amylin and calcitonin receptor agonists have demonstrated robust body weight loss, improved glucose tolerance and a decreased deposition of fat in liver tissue beyond what is observed after a body weight loss. The translational aspects of these preclinical data currently remain unknown. Here, we describe the physiology, pathophysiology, and pharmacological effects of amylin and calcitonin and review preclinical and clinical findings alluding to the future potential of amylin and calcitonin-based drugs for the treatment of obesity and NAFLD.
Collapse
Affiliation(s)
- David S. Mathiesen
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
| | - Asger Lund
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K. Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonatan I. Bagger
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Kalafateli AL, Aranäs C, Jerlhag E. Activation of the amylin pathway modulates cocaine-induced activation of the mesolimbic dopamine system in male mice. Horm Behav 2021; 127:104885. [PMID: 33166561 DOI: 10.1016/j.yhbeh.2020.104885] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022]
Abstract
Besides food intake reduction, activation of the amylin pathway by salmon calcitonin (sCT), an amylin and calcitonin receptor agonist, inhibits alcohol-mediated behaviors in rodents. This involves brain areas processing reward, i.e. the laterodorsal (LDTg), ventral tegmental area (VTA) and nucleus accumbens (NAc). However, the effects of stimulation of the amylin pathway on behaviors caused by cocaine and the brain areas involved in these processes have not yet been investigated. We therefore explored in male mice, the effects of systemic administration of sCT on cocaine-induced locomotor stimulation, dopamine release in the NAc and cocaine reward, as well as reward-dependent memory of cocaine, in the conditioned place preference (CPP) paradigm. Moreover, the outcome of systemic sCT and cocaine co-administration for five days on locomotor activity was investigated. Lastly, the impact of sCT infusions into the LDTg, VTA, NAc shell or core on cocaine-evoked locomotor stimulation was explored. We found that sCT attenuated cocaine-induced locomotor stimulation and accumbal dopamine release, without altering cocaine's rewarding properties or reward-dependent memory retrieval in the CPP paradigm. Five days of cocaine administration caused locomotor stimulation in mice pre-treated with vehicle, but not with sCT. In mice infused with vehicle into the aforementioned reward-related areas, cocaine caused locomotor stimulation, a response that was not evident following sCT infusions. The current findings suggest a novel role for the amylinergic pathway as regulator of cocaine-evoked activation of the mesolimbic dopamine system, opening the way for the investigation of the amylin signalling in the modulation of other drugs of abuse.
Collapse
Affiliation(s)
- Aimilia Lydia Kalafateli
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Cajsa Aranäs
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
34
|
Boccia L, Gamakharia S, Coester B, Whiting L, Lutz TA, Le Foll C. Amylin brain circuitry. Peptides 2020; 132:170366. [PMID: 32634450 DOI: 10.1016/j.peptides.2020.170366] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022]
Abstract
Amylin is a peptide hormone that is mainly known to be produced by pancreatic β-cells in response to a meal but amylin is also produced by brain cells in discrete brain areas albeit in a lesser amount. Amylin receptor (AMY) is composed of the calcitonin core-receptor (CTR) and one of the 3 receptor activity modifying protein (RAMP), thus forming AMY1-3; RAMP enhances amylin binding properties to the CTR. However, amylin receptor agonist such as salmon calcitonin is able to bind CTR alone. Peripheral amylin's main binding site is located in the area postrema (AP) which then propagate the signal to the nucleus of the solitary tract and lateral parabrachial nucleus (LPBN) and it is then transmitted to the forebrain areas such as central amygdala and bed nucleus of the stria terminalis. Amylin's activation of these different brain areas mediates eating and other metabolic pathways controlling energy expenditure and glucose homeostasis. Peripheral amylin can also bind in the arcuate nucleus of the hypothalamus where it acts independently of the AP to activate POMC and NPY neurons. Amylin activation of NPY neurons has been shown to be transmitted to LPBN neurons to act on eating while amylin POMC signaling affects energy expenditure and locomotor activity. While a large amount of experiments have already been conducted, future studies will have to further investigate how amylin is taken up by forebrain areas and deepen our understanding of amylin action on peripheral metabolism.
Collapse
Affiliation(s)
- Lavinia Boccia
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Salome Gamakharia
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Bernd Coester
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Lynda Whiting
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland.
| |
Collapse
|
35
|
Kitagawa Y, Sasaki T, Suzumura R, Morishima A, Tatebayashi R, Assadullah, Ieda N, Morita Y, Matsuyama S, Inoue N, Uenoyama Y, Tsukamura H, Ohkura S. Facilitatory and inhibitory role of central amylin administration in the regulation of the gonadotropin-releasing hormone pulse generator activity in goats. Neurosci Lett 2020; 736:135276. [DOI: 10.1016/j.neulet.2020.135276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/30/2020] [Accepted: 07/22/2020] [Indexed: 11/26/2022]
|
36
|
Distributed amylin receptor signaling and its influence on motivated behavior. Physiol Behav 2020; 222:112958. [DOI: 10.1016/j.physbeh.2020.112958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/11/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022]
|
37
|
Foll CL, Lutz TA. Systemic and Central Amylin, Amylin Receptor Signaling, and Their Physiological and Pathophysiological Roles in Metabolism. Compr Physiol 2020; 10:811-837. [PMID: 32941692 DOI: 10.1002/cphy.c190034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This article in the Neural and Endocrine Section of Comprehensive Physiology discusses the physiology and pathophysiology of the pancreatic hormone amylin. Shortly after its discovery in 1986, amylin has been shown to reduce food intake as a satiation signal to limit meal size. Amylin also affects food reward, sensitizes the brain to the catabolic actions of leptin, and may also play a prominent role in the development of certain brain areas that are involved in metabolic control. Amylin may act at different sites in the brain in addition to the area postrema (AP) in the caudal hindbrain. In particular, the sensitizing effect of amylin on leptin action may depend on a direct interaction in the hypothalamus. The concept of central pathways mediating amylin action became more complex after the discovery that amylin is also synthesized in certain hypothalamic areas but the interaction between central and peripheral amylin signaling remains currently unexplored. Amylin may also play a dominant pathophysiological role that is associated with the aggregation of monomeric amylin into larger, cytotoxic molecular entities. This aggregation in certain species may contribute to the development of type 2 diabetes mellitus but also cardiovascular disease. Amylin receptor pharmacology is complex because several distinct amylin receptor subtypes have been described, because other neuropeptides [e.g., calcitonin gene-related peptide (CGRP)] can also bind to amylin receptors, and because some components of the functional amylin receptor are also used for other G-protein coupled receptor (GPCR) systems. © 2020 American Physiological Society. Compr Physiol 10:811-837, 2020.
Collapse
Affiliation(s)
- Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
38
|
Viral depletion of calcitonin receptors in the area postrema: A proof-of-concept study. Physiol Behav 2020; 223:112992. [PMID: 32497530 DOI: 10.1016/j.physbeh.2020.112992] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/06/2020] [Accepted: 05/27/2020] [Indexed: 01/12/2023]
Abstract
The area postrema (AP), located in the caudal hindbrain, is one of the primary binding sites for the endocrine satiation hormone amylin. Amylin is co-secreted with insulin from pancreatic ß-cells and binds to heterodimeric receptors that consist of a calcitonin core receptor (CTR) paired with receptor-activity modifying protein (RAMP) 1 or 3. In this study, we aim to validate a CTR-floxed (CTRfl/fl) mouse model for the functional and site-specific depletion of amylin/CTR signaling in the AP and the nucleus tractus solitarius (NTS). CTRfl/fl mice were injected in the NTS with adeno-associated virus (AAV) containing a green fluorescent protein tag (GFP) and Cre recombinase to create a locally restricted knockout of CTR in the caudal hindbrain. KO mice showed a lack of c-Fos expression, a marker for neuronal activation, in the AP, NTS and LPBN after amylin injection. The effect of amylin and salmon calcitonin (sCT), an amylin receptor agonist, on food intake was blunted in KO mice, confirming a functional reduction of amylin signaling in the hindbrain.
Collapse
|
39
|
Zakariassen HL, John LM, Lutz TA. Central control of energy balance by amylin and calcitonin receptor agonists and their potential for treatment of metabolic diseases. Basic Clin Pharmacol Toxicol 2020; 127:163-177. [PMID: 32363722 DOI: 10.1111/bcpt.13427] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
The prevalence of obesity and associated comorbidities such as type 2 diabetes and cardiovascular disease is increasing globally. Body-weight loss reduces the risk of morbidity and mortality in obese individuals, and thus, pharmacotherapies that induce weight loss can be of great value in improving the health and well-being of people living with obesity. Treatment with amylin and calcitonin receptor agonists reduces food intake and induces weight loss in several animal models, and a number of companies have started clinical testing for peptide analogues in the treatment of obesity and/or type 2 diabetes. Studies predominantly performed in rodent models show that amylin and the dual amylin/calcitonin receptor agonist salmon calcitonin achieve their metabolic effects by engaging areas in the brain associated with regulating homeostatic energy balance. In particular, signalling via neuronal circuits in the caudal hindbrain and the hypothalamus is implicated in mediating effects on food intake and energy expenditure. We review the current literature investigating the interaction of amylin/calcitonin receptor agonists with neurocircuits that induce the observed metabolic effects. Moreover, the status of drug development of amylin and calcitonin receptor agonists for the treatment of metabolic diseases is summarized.
Collapse
Affiliation(s)
- Hannah Louise Zakariassen
- Section of Experimental Animal Models, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.,Obesity Pharmacology, Novo Nordisk A/S, Måløv, Denmark
| | | | | |
Collapse
|
40
|
Larsen AT, Sonne N, Andreassen KV, Karsdal MA, Henriksen K. Dose Frequency Optimization of the Dual Amylin and Calcitonin Receptor Agonist KBP-088: Long-Lasting Improvement in Food Preference and Body Weight Loss. J Pharmacol Exp Ther 2020; 373:269-278. [PMID: 32071103 DOI: 10.1124/jpet.119.263400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/10/2020] [Indexed: 03/08/2025] Open
Abstract
Dual amylin and calcitonin receptor agonists (DACRAs) are novel candidates for treatment of type 2 diabetes and obesity because of their beneficial effects on body weight, blood glucose, insulin sensitivity, and food preference, at least short-term. DACRAs activate the receptors for a prolonged time period, resulting in metabolic effects superior to those of amylin. Because of the prolonged receptor activation, different dosing intervals and, hence, less frequent receptor activation might change the efficacy of DACRA treatment in terms of weight loss and food preference. In this study, we compared daily dosing to dosing every other day with the aim of understanding the optimal balance between efficacy and tolerability. Obese and lean male Sprague-Dawley rats were treated with the DACRA KBP-088, applying two different dosing intervals (1.5 nmol/kg once daily and 3 nmol/kg every other day) to assess the effect on body weight, food intake, glucose tolerance, and food preference when given the choice between chow (13% fat) and a high-fat diet (60% fat). Treatment with KBP-088 induced significant weight loss, reduction in adiposity, improvement in glucose control, and altered food preference toward food that is less calorie-dense. KBP-088 dosed every other day (3 nmol/kg) was superior to KBP-088 once daily (1.5 nmol/kg) in terms of weight loss and improvement of food preference. The beneficial effects were evident in both lean and obese rats. Hence, dosing KBP-088 every other day positively affects overall efficacy on metabolic parameters regardless of the lean/obese state, suggesting that less-frequent dosing with KBP-088 could be feasible. SIGNIFICANCE STATEMENT: Here, we show that food preference can be altered chronically toward choices that are less calorie-dense by pharmacological treatment. Further, pharmacological dosing regimens affect the efficacy differently, as dosing every other day improved body weight loss and alterations in food preference compared with daily dosing. This suggest that alterations of the dosing regimens could be feasible in the treatment of obesity.
Collapse
Affiliation(s)
- Anna Thorsø Larsen
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| | - Nina Sonne
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| | - Kim V Andreassen
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| | - Morten A Karsdal
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| | - Kim Henriksen
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| |
Collapse
|
41
|
Zachar G, Montagnese C, Fazekas EA, Kemecsei RG, Papp SM, Dóra F, Renner É, Csillag A, Pogány Á, Dobolyi A. Brain Distribution and Sexually Dimorphic Expression of Amylin in Different Reproductive Stages of the Zebra Finch ( Taeniopygia guttata) Suggest Roles of the Neuropeptide in Song Learning and Social Behaviour. Front Neurosci 2020; 13:1401. [PMID: 32009882 PMCID: PMC6971405 DOI: 10.3389/fnins.2019.01401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/12/2019] [Indexed: 11/24/2022] Open
Abstract
The expression of the recently identified neuropeptide, amylin, is restricted in rodents to the postpartum preoptic area and may play a role in the control of parental behaviours and food intake. These processes are substantially different between bird and rodent parents as birds do not lactate but often show biparental care of the offspring. To establish the presence and role of amylin in the bird brain, in the present study, we investigated the distribution of amylin in brains of adult male and female zebra finches in three different reproductive stages (i.e. paired without young, incubating eggs or provisioning nestlings) and in unpaired control birds living in same sex flocks. Amylin mRNA was identified in the hypothalamus of zebra finch by RT-PCR, which was also used to produce probes for in situ hybridisation. Subsequently, in situ hybridisation histochemistry was performed in brain sections, and the labelling signal was quantified and compared between the groups. Amylin showed a much wider brain distribution than that of rodents. A strong and, in some regions, sexually dimorphic label was found in the striatum and several brain regions of the social behavioural network in both males and females. Many regions responsible for the learning of birdsong also contained amylin-positive neurons, and some regions showed sex differences reflecting the fact that vocalisation is sexually dimorphic in the zebra finch: only males sing. Area X (Ar.X), a striatal song centre present only in males, was labelled in paired but not unpaired male. Ar.X, another song centre, the lateral part of the magnocellular nucleus of the anterior nidopallium (lMAN) also contained amylin and had higher amylin label in paired, as opposed to unpaired birds. The wider distribution of amylin in birds as compared to rodents suggests a more general role of amylin in social or other behaviours in avian species than in mammals. Alternatively, parental care in birds may be a more complex behavioural trait involving a wider set of brain regions. The sex differences in song centres, and the changes with reproductive status suggest a participation of amylin in social behaviours and related changes in the singing of males.
Collapse
Affiliation(s)
- Gergely Zachar
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Catherine Montagnese
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Emese A Fazekas
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University and the Hungarian Academy of Sciences, Budapest, Hungary.,Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - Róbert G Kemecsei
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Szilvia M Papp
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Fanni Dóra
- Human Brain Tissue Bank and Microdissection Laboratory, Semmelweis University, Budapest, Hungary
| | - Éva Renner
- Human Brain Tissue Bank and Microdissection Laboratory, Semmelweis University, Budapest, Hungary
| | - András Csillag
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Ákos Pogány
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - Arpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University and the Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
42
|
Almeida LS, Castro‐Lopes JM, Neto FL, Potes CS. Amylin, a peptide expressed by nociceptors, modulates chronic neuropathic pain. Eur J Pain 2019; 23:784-799. [DOI: 10.1002/ejp.1347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/05/2018] [Accepted: 11/27/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Lígia Sofia Almeida
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto Porto Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto Porto Portugal
- Departamento de Biomedicina – Unidade de Biologia Experimental, Faculdade de Medicina Universidade do Porto Porto Portugal
| | - José Manuel Castro‐Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto Porto Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto Porto Portugal
- Departamento de Biomedicina – Unidade de Biologia Experimental, Faculdade de Medicina Universidade do Porto Porto Portugal
| | - Fani Lourença Neto
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto Porto Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto Porto Portugal
- Departamento de Biomedicina – Unidade de Biologia Experimental, Faculdade de Medicina Universidade do Porto Porto Portugal
| | - Catarina Soares Potes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto Porto Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto Porto Portugal
- Departamento de Biomedicina – Unidade de Biologia Experimental, Faculdade de Medicina Universidade do Porto Porto Portugal
| |
Collapse
|
43
|
Jerlhag E. Gut-brain axis and addictive disorders: A review with focus on alcohol and drugs of abuse. Pharmacol Ther 2018; 196:1-14. [PMID: 30439457 DOI: 10.1016/j.pharmthera.2018.11.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Due to the limited efficacy of existing medications for addictive disorders including alcohol use disorder (AUD), the need for additional medications is substantial. Potential new medications for addiction can be identified through investigation of the neurochemical substrates mediating the ability of drugs of abuse such as alcohol to activate the mesolimbic dopamine system. Interestingly, recent studies implicate neuropeptides of the gut-brain axis as modulators of reward and addiction processes. The present review therefore summarizes the current studies investigating the ability of the gut-brain peptides ghrelin, glucagon-like peptide-1 (GLP-1), amylin and neuromedin U (NMU) to modulate alcohol- and drug-related behaviors in rodents and humans. Extensive literature demonstrates that ghrelin, the only known orexigenic neuropeptide to date, enhances reward as well as the intake of alcohol, and other drugs of abuse, while ghrelin receptor antagonism has the opposite effects. On the other hand, the anorexigenic peptides GLP-1, amylin and NMU independently inhibits reward from alcohol and drugs of abuse in rodents. Collectively, these rodent and human studies imply that central ghrelin, GLP-1, amylin and NMU signaling may contribute to addiction processes. Therefore, the need for randomized clinical trials investigating the effects of agents targeting these aforementioned systems on drug/alcohol use is substantial.
Collapse
Affiliation(s)
- Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
44
|
Duffy S, Lutz TA, Boyle CN. Rodent models of leptin receptor deficiency are less sensitive to amylin. Am J Physiol Regul Integr Comp Physiol 2018; 315:R856-R865. [DOI: 10.1152/ajpregu.00179.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pancreatic hormone amylin is released from beta cells following nutrient ingestion and contributes to the control of body weight and glucose homeostasis. Amylin reduces food intake by activating neurons in the area postrema (AP). Amylin was also shown to synergize with the adipokine leptin, with combination therapy producing greater weight loss and food intake reduction than either hormone alone. Although amylin and leptin were initially thought to interact downstream of the AP in the hypothalamus, recent findings show that the two hormones can act on the same AP neurons, suggesting a more direct relationship. The objective of this study was to determine whether amylin action depends on functional leptin signaling. We tested the ability of amylin to induce satiation and to activate its primary target neurons in the AP in two rodent models of LepR deficiency, the db/db mouse and the Zucker diabetic fatty (ZDF) rat. When compared with wild-type (WT) mice, db/db mice exhibited reduced amylin-induced satiation, reduced amylin-induced Fos in the AP, and a lower expression of calcitonin receptor (CTR) protein, the core component of all amylin receptors. ZDF rats also showed no reduction in food intake following amylin treatment; however, unlike the db/db mice, levels of amylin-induced Fos and CTR in the AP were no different than WT rats. Our results suggest that LepR expression is required for the full anorexic effect of amylin; however, the neuronal activation in the AP seems to depend on the type of LepR mutation.
Collapse
Affiliation(s)
- Sonya Duffy
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| | - Thomas A. Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
- Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Christina N. Boyle
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| |
Collapse
|
45
|
Kiriyama Y, Nochi H. Role and Cytotoxicity of Amylin and Protection of Pancreatic Islet β-Cells from Amylin Cytotoxicity. Cells 2018; 7:cells7080095. [PMID: 30082607 PMCID: PMC6115925 DOI: 10.3390/cells7080095] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/28/2018] [Accepted: 08/01/2018] [Indexed: 12/26/2022] Open
Abstract
Amylin, (or islet amyloid polypeptide; IAPP), a 37-amino acid peptide hormone, is released in response to nutrients, including glucose, lipids or amino acids. Amylin is co-stored and co-secreted with insulin by pancreatic islet β-cells. Amylin inhibits food intake, delays gastric emptying, and decreases blood glucose levels, leading to the reduction of body weight. Therefore, amylin as well as insulin play important roles in controlling the level of blood glucose. However, human amylin aggregates and human amylin oligomers cause membrane disruption, endoplasmic reticulum (ER) stress and mitochondrial damage. Since cytotoxicity of human amylin oligomers to pancreatic islet β-cells can lead to diabetes, the protection of pancreatic islet β cells from cytotoxic amylin is crucial. Human amylin oligomers also inhibit autophagy, although autophagy can function to remove amylin aggregates and damaged organelles. Small molecules, including β-sheet breaker peptides, chemical chaperones, and foldamers, inhibit and disaggregate amyloid formed by human amylin, suggesting the possible use of these small molecules in the treatment of diabetes. In this review, we summarize recent findings regarding the role and cytotoxicity of amylin and the protection of pancreatic islet β-cells from cytotoxicity of amylin.
Collapse
Affiliation(s)
- Yoshimitsu Kiriyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Kagawa, Sanuki 769-2193, Japan.
| | - Hiromi Nochi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Kagawa, Sanuki 769-2193, Japan.
| |
Collapse
|
46
|
Mietlicki-Baase EG. Amylin in Alzheimer's disease: Pathological peptide or potential treatment? Neuropharmacology 2018; 136:287-297. [PMID: 29233636 PMCID: PMC5994175 DOI: 10.1016/j.neuropharm.2017.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease for which we currently lack effective treatments or a cure. The pancreatic peptide hormone amylin has recently garnered interest as a potential pharmacological target for the treatment of AD. A number of studies have demonstrated that amylin and amylin analogs like the FDA-approved diabetes drug pramlintide can reduce amyloid burden in the brain and improve cognitive symptoms of AD. However, other data suggest that amylin may have pathological effects in AD due to its propensity to misfold and aggregate under certain conditions. Here, the literature supporting a beneficial versus harmful role of amylin in AD is reviewed. Additionally, several critical gaps in the literature are discussed, such as our limited understanding of the amylin system during aging and in disease states, as well as complexities of amylin receptor signaling and of changing pathophysiology during AD progression that might underlie the seemingly conflicting or contradictory results in the amylin/AD literature. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
Affiliation(s)
- Elizabeth G Mietlicki-Baase
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
47
|
Boyle CN, Lutz TA, Le Foll C. Amylin - Its role in the homeostatic and hedonic control of eating and recent developments of amylin analogs to treat obesity. Mol Metab 2017; 8:203-210. [PMID: 29203236 PMCID: PMC5985014 DOI: 10.1016/j.molmet.2017.11.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/13/2017] [Accepted: 11/17/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Amylin is a pancreatic β-cell hormone that produces effects in several different organ systems. One of its best-characterized effects is the reduction in eating and body weight seen in preclinical and clinical studies. Amylin activates specific receptors, a portion of which it shares with calcitonin gene-related peptide (CGRP). Amylin's role in the control of energy metabolism relates to its satiating effect, but recent data indicate that amylin may also affect hedonic aspects in the control of eating, including a reduction of the rewarding value of food. Recently, several amylin-based peptides have been characterized. Pramlintide (Symlin®) is currently the only one being used clinically to treat type 1 and type 2 diabetes. However other amylin analogs with improved pharmacokinetic properties are being considered as anti-obesity treatment strategies. Several other studies in obesity have shown that amylin agonists could also be useful for weight loss, especially in combination with other agents. SCOPE OF REVIEW This review will briefly summarize amylin physiology and pharmacology and then focus on amylin's role in food reward and the effects of amylin analogs in pre-clinical testing for anti-obesity drugs. CONCLUSION We propose here that the effects of amylin may be homeostatic and hedonic in nature.
Collapse
Affiliation(s)
- Christina Neuner Boyle
- Institute of Veterinary Physiology and Zurich Centre for Integrative Human Physiology, University of Zurich, Switzerland
| | - Thomas Alexander Lutz
- Institute of Veterinary Physiology and Zurich Centre for Integrative Human Physiology, University of Zurich, Switzerland.
| | - Christelle Le Foll
- Institute of Veterinary Physiology and Zurich Centre for Integrative Human Physiology, University of Zurich, Switzerland
| |
Collapse
|
48
|
Abstract
Understanding of the neural and physiological substrates of hunger and satiety has increased rapidly over the last three decades, and pharmacological targets have already been identified for the treatment of obesity that has moved from pre-clinical screening to therapies approved by regulatory authorities. Initially, this review describes the way in which physiological signals of energy availability interact with hedonic and rewarding properties of food to modulate the neural circuitry that supports eating behaviour. This is followed by a brief account of current and promising targets for drug development and a review of the wide range of preclinical paradigms that model important influences on human eating behaviour, and can be used to guide early stages of the drug development process.
Collapse
|
49
|
Mietlicki-Baase EG, McGrath LE, Koch-Laskowski K, Krawczyk J, Reiner DJ, Pham T, Nguyen CTN, Turner CA, Olivos DR, Wimmer ME, Schmidt HD, Hayes MR. Amylin receptor activation in the ventral tegmental area reduces motivated ingestive behavior. Neuropharmacology 2017; 123:67-79. [PMID: 28552704 DOI: 10.1016/j.neuropharm.2017.05.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/01/2017] [Accepted: 05/23/2017] [Indexed: 12/22/2022]
Abstract
Amylin is produced in the pancreas and the brain, and acts centrally to reduce feeding and body weight. Recent data show that amylin can act in the ventral tegmental area (VTA) to reduce palatable food intake and promote negative energy balance, but the behavioral mechanisms by which these effects occur are not fully understood. The ability of VTA amylin signaling to reduce intake of specific palatable macronutrients (fat or carbohydrate) was tested in rats in several paradigms, including one-bottle acceptance tests, two-bottle choice tests, and a free-choice diet. Data show that VTA amylin receptor activation with the amylin receptor agonist salmon calcitonin (sCT) preferentially and potently reduces intake of fat, with more variable suppression of sucrose intake. Intake of a non-nutritive sweetener is also decreased by intra-VTA administration of sCT. As several feeding-related signals that act in the mesolimbic system also impact motivated behaviors besides feeding, we tested the hypothesis that the suppressive effects of amylin signaling in the VTA extend to other motivationally relevant stimuli. Results show that intra-VTA sCT reduces water intake in response to central administration of the dipsogenic peptide angiotensin II, but has no effect on ad libitum water intake in the absence of food. Importantly, open field and social interaction studies show that VTA amylin signaling does not produce anxiety-like behaviors. Collectively, these findings reveal a novel ability of VTA amylin receptor activation to alter palatable macronutrient intake, and also demonstrate a broader role of VTA amylin signaling for the control of motivated ingestive behaviors beyond feeding.
Collapse
Affiliation(s)
- Elizabeth G Mietlicki-Baase
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Lauren E McGrath
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kieran Koch-Laskowski
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joanna Krawczyk
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David J Reiner
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tram Pham
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chan Tran N Nguyen
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher A Turner
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diana R Olivos
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mathieu E Wimmer
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Heath D Schmidt
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Hayes
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
50
|
Whiting L, McCutcheon JE, Boyle CN, Roitman MF, Lutz TA. The area postrema (AP) and the parabrachial nucleus (PBN) are important sites for salmon calcitonin (sCT) to decrease evoked phasic dopamine release in the nucleus accumbens (NAc). Physiol Behav 2017; 176:9-16. [PMID: 28342771 DOI: 10.1016/j.physbeh.2017.03.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 12/26/2022]
Abstract
The pancreatic hormone amylin and its agonist salmon calcitonin (sCT) act via the area postrema (AP) and the lateral parabrachial nucleus (PBN) to reduce food intake. Investigations of amylin and sCT signaling in the ventral tegmental area (VTA) and nucleus accumbens (NAc) suggest that the eating inhibitory effect of amylin is, in part, mediated through the mesolimbic 'reward' pathway. Indeed, administration of the sCT directly to the VTA decreased phasic dopamine release (DA) in the NAc. However, it is not known if peripheral amylin modulates the mesolimbic system directly or whether this occurs via the AP and PBN. To determine whether and how peripheral amylin or sCT affect mesolimbic reward circuitry we utilized fast scan cyclic voltammetry under anesthesia to measure phasic DA release in the NAc evoked by electrical stimulation of the VTA in intact, AP lesioned and bilaterally PBN lesioned rats. Amylin (50μg/kg i.p.) did not change phasic DA responses compared to saline control rats. However, sCT (50μg/kg i.p.) decreased evoked DA release to VTA-stimulation over 1h compared to saline treated control rats. Further investigations determined that AP and bilateral PBN lesions abolished the ability of sCT to suppress evoked phasic DA responses to VTA-stimulation. These findings implicate the AP and the PBN as important sites for peripheral sCT to decrease evoked DA release in the NAc and suggest that these nuclei may influence hedonic and motivational processes to modulate food intake.
Collapse
Affiliation(s)
- Lynda Whiting
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - James E McCutcheon
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, England
| | - Christina N Boyle
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Mitchell F Roitman
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Centre of Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|