1
|
Rodrigues GZP, Finkler M, Dos Santos TG, Kayser JM, Lima DDD, Burghausen JH, de Oliveira DL, Ziulkoski AL, Gehlen G. Chronic Exposure of Zebrafish to Iron and Aluminum: Evaluation of Reversal and Generational Transposition of Behavioral, Histopathological, and Genotoxic Changes. ENVIRONMENTAL TOXICOLOGY 2025; 40:583-597. [PMID: 39575842 DOI: 10.1002/tox.24443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 10/24/2024] [Accepted: 11/11/2024] [Indexed: 03/18/2025]
Abstract
This study aimed to report the effects of chronic exposure of zebrafish exposed to environmentally relevant concentrations of 0.5, 2.4, and 5.0 mg L-1 iron (Fe) and 0.2, 0.4, and 2.0 mg L-1 aluminum (Al). We also evaluated the reversal and generational transposition (F1) of possible histopathological, behavioral, and genotoxic changes in the species. Locomotion changes that may have been caused by the increase in the number of apoptotic cells and in the telencephalic mitochondrial activity were observed especially after the 30 days exposure to Al and persisted after recovery (30 days). We also observed histopathological changes, such as an increase in the number of intestinal goblet cells, even after the recovery period in these animals. Our results also showed that the Fe concentrations used were insufficient to cause genotoxicity, behavioral and intestinal epithelium changes. The adult offspring (F1) of animals exposed to Al showed changes in locomotion and in the amount of goblet cells, demonstrating that even in low concentrations this pollutant can harm subsequent generations in the aquatic biota. Animals demonstrate, in general, greater tolerance to Fe which may be related to the physiological demand of this metal by the body. Even so, all concentrations of both metals that caused some change in the species represent Brazilian environmental occurrences or Brazilian legislation. It highlights the need for updating the guidelines and constant monitoring of aquatic environments, since even in the face of a hypothetical decontamination of the environment, some changes could persist and affect different trophic levels.
Collapse
Affiliation(s)
- Gabriela Zimmermann Prado Rodrigues
- Post Graduation Program in Environmental Quality, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
- Biomedicine Course, CESUCA University Center, Cachoeirinha, Rio Grande do Sul, Brazil
| | - Mariana Finkler
- Post Graduation Program in Environmental Quality, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Thainá Garbino Dos Santos
- Post Graduation Program in Biological Sciences, Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Juliana Machado Kayser
- Master's Degree in Toxicology and Toxicological Analysis, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Diego Del Duca Lima
- Post Graduation Program in Biological Sciences, Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jorge Henrique Burghausen
- Post Graduation Program in Environmental Quality, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Diogo Losch de Oliveira
- Post Graduation Program in Biological Sciences, Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Luiza Ziulkoski
- Post Graduation Program in Environmental Quality, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Günther Gehlen
- Post Graduation Program in Environmental Quality, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
Borba JV, Resmim CM, Gonçalves FL, Silva RM, Pretzel CW, Moraes HS, Sauter MD, Rosemberg DB. Anxiety modulators elicit different behavioral outcomes in adult zebrafish: Emphasis on homebase-related parameters and spatio-temporal exploration. Pharmacol Biochem Behav 2025; 246:173914. [PMID: 39581386 DOI: 10.1016/j.pbb.2024.173914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Anxiety is an emotion that represents a crucial anticipatory reaction of aversive stimuli, with clinical relevance in cases of disproportional and severe occurrences. Although distinct animal models have contributed to elucidate anxiety-related mechanisms, the influence of anxiogenic and anxiolytic modulations on both locomotion and exploration-related parameters in the open field test (OFT) is not fully elucidated. Here, we aimed to assess the influence of anxiogenic and anxiolytic manipulations on the exploratory dynamics of adult zebrafish (Danio rerio) focusing on homebase-related behaviors. As anxiogenic manipulations, we used the morphine (1.5 mg/L) withdrawal protocol (MOR); 3.5 mL/L conspecific alarm substance (CAS) for 5 min; and 100 mg/L caffeine (CAF) for 15 min. To evoke anxiolytic-like responses, animals were acutely exposed to 0.5 % (v/v) ethanol (ETOH) for 1 h; 100 μg/L fluoxetine (FLU) for 15 min; and 0.006 mg/L clonazepam (CZP) for 10 min. Then, fish were individually exposed to the 30-min OFT trial, with posterior analysis of behavioral activity. While MOR induced hyperlocomotion and increased periphery occupancy, CAS and CAF groups showed higher immobility and increased latency to homebase formation, respectively. Conversely, ETOH and FLU reduced homebase occupancy, supporting anxiolytic-like behaviors, while CZP did not change zebrafish behavior in the OFT. Cluster analysis was used to reconfirm the remarkable similarities and discrepancies between treatments, thus contributing to characterize the distinct responses measured. Overall, our novel data show the relevance of homebase-related analysis as a sensitive tool to reflect affective-like states in zebrafish, providing innovative approaches to unravel the spatio-temporal dynamics of anxiety-like behaviors in vertebrates.
Collapse
Affiliation(s)
- João V Borba
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - Cássio M Resmim
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Falco L Gonçalves
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Rossano M Silva
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Camilla W Pretzel
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Hevelyn S Moraes
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Milena D Sauter
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
3
|
Al-Soufi L, Arana ÁJ, Facal F, Flórez G, Vázquez FL, Arrojo M, Sánchez L, Costas J. Identification of gene co-expression modules from zebrafish brain data: Applications in psychiatry illustrated through alcohol-related traits. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111136. [PMID: 39237023 DOI: 10.1016/j.pnpbp.2024.111136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Cumulative evidence suggests that zebrafish is a useful model in psychiatric research. Weighted Gene Co-expression Network Analysis (WGCNA) enables the reduction of genome-wide expression data to modules of highly co-expressed genes, which are hypothesized to interact within molecular networks. In this study, we first applied WGCNA to zebrafish brain expression data across different experimental conditions. Then, we characterized the different co-expression modules by gene-set enrichment analysis and hub gene-phenotype association. Finally, we analyzed association of polygenic risk scores (PRSs) based on genes of some interesting co-expression modules with alcohol dependence in 524 patients and 729 controls from Galicia, using competitive tests. Our approach revealed 34 co-expression modules in the zebrafish brain, with some showing enrichment in human synaptic genes, brain tissues, or brain developmental stages. Moreover, certain co-expression modules were enriched in psychiatry-related GWAS and comprised hub genes associated with psychiatry-related traits in both human GWAS and zebrafish models. Expression patterns of some co-expression modules were associated with the tested experimental conditions, mainly with substance withdrawal and cold stress. Notably, a PRS based on genes from co-expression modules exclusively associated with substance withdrawal in zebrafish showed a stronger association with human alcohol dependence than PRSs based on randomly selected brain-expressed genes. In conclusion, our analysis led to the identification of co-expressed gene modules that may model human brain gene networks involved in psychiatry-related traits. Specifically, we detected a cluster of co-expressed genes whose expression was exclusively associated with substance withdrawal in zebrafish, which significantly contributed to alcohol dependence susceptibility in humans.
Collapse
Affiliation(s)
- Laila Al-Soufi
- Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Psychiatric Genetics Group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain; Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Álvaro J Arana
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Fernando Facal
- Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Psychiatric Genetics Group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain; Servizo de Psiquiatría, Complexo Hospitalario Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain
| | - Gerardo Flórez
- Addictive Treatment Unit, Ourense University Hospital, Ourense, Galicia, Spain; Centre for Biomedical Research in the Mental Health Network (CIBERSAM), Oviedo, Spain
| | - Fernando L Vázquez
- Department of Clinical Psychology and Psychobiology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Arrojo
- Servizo de Psiquiatría, Complexo Hospitalario Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Javier Costas
- Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Psychiatric Genetics Group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain; Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain.
| |
Collapse
|
4
|
Schenk S, Horsfield JA, Dwoskin L, Johnson SL. Methamphetamine effects in zebrafish (Danio rerio) depend on behavioral endpoint, dose and test session duration. Pharmacol Biochem Behav 2024; 240:173777. [PMID: 38670467 DOI: 10.1016/j.pbb.2024.173777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Research using zebrafish (Danio rerio) has begun to provide novel information in many fields, including the behavioral pharmacology of drug use and misuse. There have been limited studies on the effects of methamphetamine in adult zebrafish and the parameters of exposure (dose, test session length) have not been well-documented. Behavior following drug exposure is generally measured during relatively short sessions (6-10 min is common) in a novel tank environment. Many procedural variables (isolation, netting, novel tank) elicit anxiety-like behavior that is most apparent during the initial portion of a test session. This anxiety-like behavior might mask the initial effects of methamphetamine. During longer test sessions, these anxiety-like responses would be expected to habituate and drug effects should become more apparent. To test this idea, we measured several locomotor activity responses for 50-min following a range of methamphetamine doses (0.1-3.0 mg/L via immersion in methamphetamine solution). Methamphetamine failed to alter swimming velocity, distance travelled, or freezing time. In contrast, methamphetamine produced a dose-dependent decrease in time spent in the bottom of the tank, an increase in the number of visits to the top of the tank, and an increase in the number of transitions along the sides of the tank. The effects of methamphetamine were apparent 10-20 min following exposure and generally persisted throughout the session. These findings indicate that longer test sessions are required to measure methamphetamine-induced changes in behavior in zebrafish, as has been shown in other laboratory animals. The results also suggest that anxiety-like responses associated with various procedural aspects (netting, isolation, novel test apparatus) likely interfere with the ability to observe many behavioral effects of methamphetamine in zebrafish. Based on the current results, habituation to testing procedures to reduce anxiety-like behaviors is recommended in determining the effects of methamphetamine in zebrafish.
Collapse
Affiliation(s)
- Susan Schenk
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | - Linda Dwoskin
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Sheri L Johnson
- Department of Zoology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
5
|
Mastin N, Durell L, Brooks BW, Hering AS. Advancing statistical treatment of photolocomotor behavioral response study data. PLoS One 2024; 19:e0300636. [PMID: 38771799 PMCID: PMC11108188 DOI: 10.1371/journal.pone.0300636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/02/2024] [Indexed: 05/23/2024] Open
Abstract
Fish photolocomotor behavioral response (PBR) studies have become increasingly prevalent in pharmacological and toxicological research to assess the environmental impact of various chemicals. There is a need for a standard, reliable statistical method to analyze PBR data. The most common method currently used, univariate analysis of variance (ANOVA), does not account for temporal dependence in observations and leads to incomplete or unreliable conclusions. Repeated measures ANOVA, another commonly used method, has drawbacks in its interpretability for PBR study data. Because each observation is collected continuously over time, we instead consider each observation to be a function and apply functional ANOVA (FANOVA) to PBR data. Using the functional approach not only accounts for temporal dependency but also retains the full structure of the data and allows for straightforward interpretation in any subregion of the domain. Unlike the traditional univariate and repeated measures ANOVA, the FANOVA that we propose is nonparametric, requiring minimal assumptions. We demonstrate the disadvantages of univariate and repeated measures ANOVA using simulated data and show how they are overcome by applying FANOVA. We then apply one-way FANOVA to zebrafish data from a PBR study and discuss how those results can be reproduced for future PBR studies.
Collapse
Affiliation(s)
- Natalie Mastin
- Department of Statistical Science, Baylor University, Waco, TX, United States of America
| | - Luke Durell
- Department of Statistical Science, Baylor University, Waco, TX, United States of America
| | - Bryan W. Brooks
- Department of Environmental Science, Baylor University, Waco, TX, United States of America
- Institute of Biomedical Studies, Baylor University, Waco, TX, United States of America
| | - Amanda S. Hering
- Department of Statistical Science, Baylor University, Waco, TX, United States of America
| |
Collapse
|
6
|
Falfushynska H, Rychter P, Boshtova A, Faidiuk Y, Kasianchuk N, Rzymski P. Illicit Drugs in Surface Waters: How to Get Fish off the Addictive Hook. Pharmaceuticals (Basel) 2024; 17:537. [PMID: 38675497 PMCID: PMC11054822 DOI: 10.3390/ph17040537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
The United Nations World Drug Report published in 2022 alarmed that the global market of illicit drugs is steadily expanding in space and scale. Substances of abuse are usually perceived in the light of threats to human health and public security, while the environmental aspects of their use and subsequent emissions usually remain less explored. However, as with other human activities, drug production, trade, and consumption of drugs may leave their environmental mark. Therefore, this paper aims to review the occurrence of illicit drugs in surface waters and their bioaccumulation and toxicity in fish. Illicit drugs of different groups, i.e., psychostimulants (methamphetamines/amphetamines, cocaine, and its metabolite benzoylecgonine) and depressants (opioids: morphine, heroin, methadone, fentanyl), can reach the aquatic environment through wastewater discharge as they are often not entirely removed during wastewater treatment processes, resulting in their subsequent circulation in nanomolar concentrations, potentially affecting aquatic biota, including fish. Exposure to such xenobiotics can induce oxidative stress and dysfunction to mitochondrial and lysosomal function, distort locomotion activity by regulating the dopaminergic and glutamatergic systems, increase the predation risk, instigate neurological disorders, disbalance neurotransmission, and produce histopathological alterations in the brain and liver tissues, similar to those described in mammals. Hence, this drugs-related multidimensional harm to fish should be thoroughly investigated in line with environmental protection policies before it is too late. At the same time, selected fish species (e.g., Danio rerio, zebrafish) can be employed as models to study toxic and binge-like effects of psychoactive, illicit compounds.
Collapse
Affiliation(s)
- Halina Falfushynska
- Faculty of Economics, Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Piotr Rychter
- Faculty of Science & Technology, Jan Dlugosz University in Częstochowa, Armii Krajowej 13/15, 42200 Czestochowa, Poland;
| | | | - Yuliia Faidiuk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53114 Wrocław, Poland;
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 2 Prospekt Hlushkov, 03022 Kyiv, Ukraine
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154 Zabolotny Str., 03143 Kyiv, Ukraine
| | - Nadiia Kasianchuk
- Faculty of Biology, Adam Mickiewicz University, 61712 Poznań, Poland;
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60806 Poznań, Poland;
| |
Collapse
|
7
|
Pinheiro J, Pinheiro E, de Deus GR, Saito G, Luz WL, Assad N, da Cunha Palheta MR, de Jesus Oliveira Batista E, Morais S, Passos A, Oliveira KRHM, Herculano AM. Brain oxidative stress mediates anxiety-like behavior induced by indomethacin in zebrafish: protective effect of alpha-tocopherol. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1715-1725. [PMID: 37721555 PMCID: PMC10858826 DOI: 10.1007/s00210-023-02661-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/01/2023] [Indexed: 09/19/2023]
Abstract
RATIONALE Indomethacin (INDO) is a widely utilized non-steroidal anti-inflammatory drug (NSAID) with recognized effect on the central nervous system. Although previous reports demonstrate that prolonged treatment with indomethacin can lead to behavioral alterations such as anxiety disorder, the biochemical effect exerted by this drug on the brain are not fully understood. OBJECTIVES The aim of present study was to evaluate if anxiety-like behavior elicited by indomethacin is mediated by brains oxidative stress as well as if alpha-tocopherol, a potent antioxidant, is able to prevent the behavioral and biochemical alterations induced by indomethacin treatment. METHODS Zebrafish were utilized as experimental model and subdivided into control, INDO 1 mg/Kg, INDO 2 mg/Kg, INDO 3 g/Kg, α-TP 2 mg/Kg, α-TP 2 mg/Kg + INDO 1 mg/Kg and α-TP + INDO 2 mg/Kg groups. Vertical distributions elicited by novelty and brain oxidative stress were utilized to determinate behavioral and biochemical alterations elicited by indomethacin treatment, respectively. RESULTS Our results showed that treatment with indomethacin 3 mg/kg induces animal death. No changes in animal survival were observed in animals treated with lower doses of indomethacin. Indomethacin induced significant anxiogenic-like behavior as well as intense oxidative stress in zebrafish brain. Treatment with alpha-tocopherol was able to prevent anxiety-like behavior and brain oxidative stress induced by indomethacin. CONCLUSIONS Data presented in current study demonstrated for the first time that indomethacin induces anxiety-like behavior mediated by brain oxidative stress in zebrafish as well as that pre-treatment with alpha-tocopherol is able to prevent these collateral effects.
Collapse
Affiliation(s)
- Jessica Pinheiro
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Emerson Pinheiro
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Gustavo Ramalho de Deus
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Geovanna Saito
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Waldo Lucas Luz
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Nadyme Assad
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Melk Roberto da Cunha Palheta
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Evander de Jesus Oliveira Batista
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Protozoology, Tropical Medicine Center, Federal University of Pará, Belém, Brazil
| | - Suellen Morais
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Adelaide Passos
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | - Anderson Manoel Herculano
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.
| |
Collapse
|
8
|
Clevenger T, Paz J, Stafford A, Amos D, Hayes AW. An Evaluation of Zebrafish, an Emerging Model Analyzing the Effects of Toxicants on Cognitive and Neuromuscular Function. Int J Toxicol 2024; 43:46-62. [PMID: 37903286 DOI: 10.1177/10915818231207966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
An emerging alternative to conventional animal models in toxicology research is the zebrafish. Their accelerated development, regenerative capacity, transparent physical appearance, ability to be genetically manipulated, and ease of housing and care make them feasible and efficient experimental models. Nonetheless, their most esteemed asset is their 70% (+) genetic similarity with the human genome, which allows the model to be used in a variety of clinically relevant studies. With these attributes, we propose the zebrafish is an excellent model for analyzing cognitive and neuromuscular responses when exposed to toxicants. Neurocognition can be readily analyzed using visual discrimination, memory and learning, and social behavior testing. Neuromuscular function can be analyzed using techniques such as the startle response, assessment of activity level, and evaluation of critical swimming speed. Furthermore, selectively mutated zebrafish is another novel application of this species in behavioral and pharmacological studies, which can be exploited in toxicological studies. There is a critical need in biomedical research to discover ethical and cost-effective methods to develop new products, including drugs. Through mutagenesis, zebrafish models have become key in meeting this need by advancing the field in numerous areas of biomedical research.
Collapse
Affiliation(s)
| | - Jakob Paz
- Florida College, Temple Terrace, FL, USA
| | | | | | - A Wallace Hayes
- College of Public Health, University of South Florida, Temple Terrace, FL, USA
| |
Collapse
|
9
|
Pintos S, Lucon-Xiccato T, Vera LM, Bertolucci C. Daily rhythms in the behavioural stress response of the zebrafish Danio rerio. Physiol Behav 2023; 268:114241. [PMID: 37201692 DOI: 10.1016/j.physbeh.2023.114241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
In nature, animals are exposed to stressors that occur with different likelihood throughout the day, such as risk of predation and human disturbance. Hence, the stress response is expected to vary plastically to adaptively match these challenges. Several studies have supported this hypothesis in a wide range of vertebrate species, including some teleost fish, mostly through evidence of circadian variation in physiology. However, in teleost fish, circadian variation in behavioural stress responses is less understood. Here, we investigated the daily rhythm of stress response at the behavioural level in the zebrafish Danio rerio. We exposed individuals and shoals to an open field test every 4 h over a 24 h cycle, recording three behavioural indicators of stress and anxiety levels in novel environments (thigmotaxis, activity and freezing). Thigmotaxis and activity significantly varied throughout the day with a similar pattern, in line with a stronger stress response in the night phase. The same was suggested by analysis of freezing in shoals, but not in individual fish, in which variation appeared mostly driven by a single peak in the light phase. In a control experiment, we observed a set of subjects after familiarisation with the open-field apparatus. This experiment indicated that activity and freezing might present a daily rhythmicity that is unrelated to environmental novelty, and thus to stress responses. However, the thigmotaxis was constant through the day in the control condition, suggesting that the daily variation of this indicator is mostly attributable to the stress response. Overall, this research indicates that behavioural stress response of zebrafish does follow a daily rhythm, although this may be masked using behavioural indicators other than thigmotaxis. This rhythmicity can be relevant to improve welfare in aquaculture and reliability of behavioural research in fish models.
Collapse
Affiliation(s)
- Santiago Pintos
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| | - Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Luisa María Vera
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
10
|
Zabegalov KN, Costa F, Viktorova YA, Maslov GO, Kolesnikova TO, Gerasimova EV, Grinevich VP, Budygin EA, Kalueff AV. Behavioral profile of adult zebrafish acutely exposed to a selective dopamine uptake inhibitor, GBR 12909. J Psychopharmacol 2023:2698811231166463. [PMID: 37125702 DOI: 10.1177/02698811231166463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND The dopamine transporter (DAT) is the main regulator of dopamine concentration in the extrasynaptic space. The pharmacological inhibition of the DAT results in a wide spectrum of behavioral manifestations, which have been identified so far in a limited number of species, mostly in rodents. AIM Here, we used another well-recognized model organism, the zebrafish (Danio rerio), to explore the behavioral effects of GBR 12909, a highly-affine selective DAT blocker. METHODS We evaluated zebrafish locomotion, novelty-related exploration, spatial cognition, and social phenotypes in the novel tank, habituation and shoaling tests, following acute 20-min water immersion in GBR 12909. RESULTS Our findings show hypolocomotion, anxiety-like state, and impaired spatial cognition in fish acutely treated with GBR 12909. This behavioral profile generally parallels that of the DAT knockout rodents and zebrafish, and it overlaps with behavioral effects of other DAT-inhibiting drugs of abuse, such as cocaine and D-amphetamine. CONCLUSION Collectively, our data support the utility of zebrafish in translational studies on DAT targeting neuropharmacology and strongly implicate DAT aberration as an important mechanisms involved in neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Konstantin N Zabegalov
- Department of Neurobiology, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | - Fabiano Costa
- Department of Neurobiology, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | - Yuliya A Viktorova
- Department of Neurobiology, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | - Gleb O Maslov
- Department of Neurobiology, Sirius University of Science and Technology, Sirius Federal Territory, Russia
- Ural Federal University, Yekaterinburg, Sverdlovsk Region, Russia
| | - Tatiana O Kolesnikova
- Department of Neurobiology, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | - Elena V Gerasimova
- Department of Neurobiology, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | - Vladimir P Grinevich
- Department of Neurobiology, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | - Evgeny A Budygin
- Department of Neurobiology, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | - Allan V Kalueff
- Department of Neurobiology, Sirius University of Science and Technology, Sirius Federal Territory, Russia
- Ural Federal University, Yekaterinburg, Sverdlovsk Region, Russia
| |
Collapse
|
11
|
de Farias Araujo G, Medeiros RJ, Maciel-Magalhães M, Correia FV, Saggioro EM. Zebrafish (Danio rerio) as a model to assess the effects of cocaine as a drug of abuse and its environmental implications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28459-28479. [PMID: 36689115 DOI: 10.1007/s11356-023-25402-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Cocaine (COC) use concerns are on the increase for both authorities and civil society. Despite this, it is important to investigate COC effects or those of its main metabolite, belzoylecgonine (BE), in consolidated aquatic model organisms, such as the zebrafish (Danio rerio). This (mini) review consists in an assessment regarding toxicological studies carried out employing zebrafish (embryos, larvae or adults) exposed to COC and/or BE indexed at the SCOPUS and Web of Science databases. Ten different endpoints were analyzed in both embryos and larvae, whereas only four were analyzed in adults. Of the 23 studies, only five investigated COC and/or BE effects following an environmental approach when exposing zebrafish, while most (18 studies) analyzed COC effects under a drug of abuse approach. Cocaine exposure was noted as altering the expression of several genes, such as those linked to COC transport proteins, dopamine receptors, SP substance production, the tachykinin system, and the tyrosine hydroxylase enzyme. BE exposure resulted in more oxidative and proteomic effects than COC in embryos. Cocaine abstinence resulted in hyperactivity associated with stereotypy in adult fish, in addition to reduced responses to visual stimuli to red light and neuronal development pattern alterations. Cocaine was noted as accumulating in zebrafish eyes, possibly due to melanin binding, and causing dose-response cardiac effects in both embryos and adults. Despite the different effects addressed by our survey, we emphasize the lack of COC and BE exposure assessments in zebrafish employing an environmental point of view.
Collapse
Affiliation(s)
- Gabriel de Farias Araujo
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
| | - Renata Jurema Medeiros
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, Brasil
| | - Magno Maciel-Magalhães
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, Brasil
| | - Fábio Veríssimo Correia
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
- Departamento de Ciências Naturais, Universidade Federal Do Estado Do Rio de Janeiro, Av. Pasteur, 458, Urca, 22290-250, Rio de Janeiro, Brasil
| | - Enrico Mendes Saggioro
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil.
- Laboratório de Avaliação E Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-360, Brazil.
| |
Collapse
|
12
|
Mrinalini R, Tamilanban T, Naveen Kumar V, Manasa K. Zebrafish - The Neurobehavioural Model in Trend. Neuroscience 2022; 520:95-118. [PMID: 36549602 DOI: 10.1016/j.neuroscience.2022.12.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Zebrafish (Danio rerio) is currently in vogue as a prevalently used experimental model for studies concerning neurobehavioural disorders and associated fields. Since the 1960s, this model has succeeded in breaking most barriers faced in the hunt for an experimental model. From its appearance to its high parity with human beings genetically, this model renders itself as an advantageous experimental lab animal. Neurobehavioural disorders have always posed an arduous task in terms of their detection as well as in determining their exact etiology. They are still, in most cases, diseases of interest for inventing or discovering novel pharmacological interventions. Thus, the need for a harbinger experimental model for studying neurobehaviours is escalating. Ensuring the same model is used for studying several neuro-studies conserves the results from inter-species variations. For this, we need a model that satisfies all the pre-requisite conditions to be made the final choice of model for neurobehavioural studies. This review recapitulates the progress of zebrafish as an experimental model with its most up-to-the-minute advances in the area. Various tests, assays, and responses employed using zebrafish in screening neuroactive drugs have been tabulated effectively. The tools, techniques, protocols, and apparatuses that bolster zebrafish studies are discussed. The probable research that can be done using zebrafish has also been briefly outlined. The various breeding and maintenance methods employed, along with the information on various strains available and most commonly used, are also elaborated upon, supplementing Zebrafish's use in neuroscience.
Collapse
Affiliation(s)
- R Mrinalini
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, India - 603203
| | - T Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, India - 603203
| | - V Naveen Kumar
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, India - 603203.
| | - K Manasa
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, India - 603203
| |
Collapse
|
13
|
Xu YX, Zhang SH, Zhang SZ, Yang MY, Zhao X, Sun MZ, Feng XZ. Exposure of zebrafish embryos to sodium propionate disrupts circadian behavior and glucose metabolism-related development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113791. [PMID: 35753272 DOI: 10.1016/j.ecoenv.2022.113791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Sodium propionate is widely used as a preservative in food. The widespread use of preservatives is known to cause both environmental and public health problems. This study aimed to investigate the effects of sodium propionate on the developmental behavior and glucose metabolism of zebrafish. Our results showed that sodium propionate had no significant effect on the embryonic morphological development of zebrafish embryos but changed the head eye area. Then we found sodium propionate disturbed the thigmotaxis behavior, impaired neural development. Moreover, changes in clock gene expression disrupted the circadian rhythm of zebrafish. Circadian genes regulated insulin sensitivity and secretion in various tissues. Then our results showed that the disorder of circadian rhythm in zebrafish affected glucose metabolism and insulin resistance, which damaged the development of retina. Therefore, the safety of propionate should be further evaluated.
Collapse
Affiliation(s)
- Yi-Xin Xu
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Shu-Hui Zhang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Shao-Zhi Zhang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Meng-Ying Yang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Xin Zhao
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin 300071, China
| | - Ming-Zhu Sun
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin 300071, China.
| | - Xi-Zeng Feng
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China.
| |
Collapse
|
14
|
Yi C, Yang L, Yi R, Yu H, Zhang J, Nawaz MI. Degradation of the nonylphenol aqueous solution by strong ionization discharge: evaluation of degradation mechanism and the water toxicity of zebrafish. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:227-243. [PMID: 35906905 DOI: 10.2166/wst.2022.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nonylphenol (NP) is a typical environmental endogenous disrupter with low concentration and high toxicity. This paper describes the mechanism of NP degradation in solution by strong ionization dielectric barrier discharge (SIDBD). Furthermore, the degradation performance of NP by SIDBD was tested by changing the equipment voltage, the initial concentration of NP in aqueous solution, pH, and inorganic ions. Degradation pathways of NP were detected using a high-performance liquid chromatography-mass spectrometer. The biological effects of NP degradation were assessed by detecting indicators of embryonic development in zebrafish (survival rate, fetal movement, heartbeat, the body length, behavior, deformity) and adult fish (sex differentiation, weight, ovarian testes pathological section analysis). The results showed when the input O2 was 5 L/min and the voltage was 3.2 kV, the degradation efficiency of NP can reach 99.0% after 60 min of experiment. Equipment voltage, initial concentration of NP in solution, pH, inorganic ions and other factors can influence the degradation efficiency of NP by DBD. At the higher concentration of NP, the greater influence on embryonic development in zebrafish was noticed. Although the effects of NP on zebrafish sex differentiation were not obvious, it showed significant male weight inhibition and decrease in sperm number.
Collapse
Affiliation(s)
- Chengwu Yi
- School of Environmental and Safety Engineering, Jiangsu University, Jiangsu, Zhenjiang 212013, China E-mail:
| | - Liu Yang
- School of Environmental and Safety Engineering, Jiangsu University, Jiangsu, Zhenjiang 212013, China E-mail:
| | - Rongjie Yi
- School of Environmental and Safety Engineering, Jiangsu University, Jiangsu, Zhenjiang 212013, China E-mail:
| | - Haijun Yu
- School of Environmental and Safety Engineering, Jiangsu University, Jiangsu, Zhenjiang 212013, China E-mail:
| | - Jianan Zhang
- School of Environmental and Safety Engineering, Jiangsu University, Jiangsu, Zhenjiang 212013, China E-mail:
| | - Muhammad Imran Nawaz
- Department of Environmental Engineering, University of Engineering and Technology, Taxila 47080, Pakistan
| |
Collapse
|
15
|
Effects of linagliptin on morphine dependence in larval zebrafish ( Danio rerio). CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2022. [DOI: 10.2478/cipms-2022-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Drug addiction is a chronic, recurrent disease of the central nervous system that leads to the development of comorbidities and premature death. Despite extensive scientific research concerning addiction, no effective method of addiction pharmacotherapy has been known so far. Glucagon-like peptide 1 has been suggested to play a role in the rewarding effect of addictive drugs. Linagliptin is a selective dipeptidyl peptidase-4 inhibitor that suppresses the rapid degradation of endogenous glucagon-like peptide-1. In clinical practice, it is used as an antidiabetic drug, but recent studies have confirmed its role in the activity of the central nervous system. This pilot study was conducted to ascertain whether linagliptin might influence morphine dependence – a locomotor activity test was carried out to assess the intensity of morphine withdrawal symptom. The obtained results clearly confirmed that linagliptin (0.01 and 0.1 mM) reduced the locomotor activity in morphine-dependent larval zebrafish. The undertaken experiments clearly indicates that linagliptin is involved in the addictive effects of morphine, thus, further studies on higher organisms should be carried out.
Collapse
|
16
|
Maphanga VB, Skalicka-Wozniak K, Budzynska B, Skiba A, Chen W, Agoni C, Enslin GM, Viljoen AM. Mesembryanthemum tortuosum L. alkaloids modify anxiety-like behaviour in a zebrafish model. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115068. [PMID: 35134486 DOI: 10.1016/j.jep.2022.115068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mesembryanthemum tortuosum L. (previously known as Sceletium tortuosum (L.) N.E. Br.) is indigenous to South Africa and traditionally used to alleviate anxiety, stress and depression. Mesembrine and its alkaloid analogues such as mesembrenone, mesembrenol and mesembranol have been identified as the key compounds responsible for the reported effects on the central nervous system. AIM OF THE STUDY To investigate M. tortuosum alkaloids for possible anxiolytic-like effects in the 5-dpf in vivo zebrafish model by assessing thigmotaxis and locomotor activity. MATERIALS AND METHODS Locomotor activity and reverse-thigmotaxis, recognised anxiety-related behaviours in 5-days post fertilization zebrafish larvae, were analysed under simulated stressful conditions of alternating light-dark challenges. Cheminformatics screening and molecular docking were also performed to rationalize the inhibitory activity of the alkaloids on the serotonin reuptake transporter, the accepted primary mechanism of action of selective serotonin reuptake inhibitors. Mesembrine has been reported to have inhibitory effects on serotonin reuptake, with consequential anti-depressant and anxiolytic effects. RESULTS All four alkaloids assessed decreased the anxiety-related behaviour of zebrafish larvae exposed to the light-dark challenge. Significant increases in the percentage of time spent in the central arena during the dark phase were also observed when larvae were exposed to the pure alkaloids (mesembrenone, mesembrenol, mesembrine and mesembrenol) compared to the control. However, mesembrenone and mesembranol demonstrated a greater anxiolytic-like effect than the other alkaloids. In addition to favourable pharmacokinetic and physicochemical properties revealed via in silico predictions, high-affinity interactions characterized the binding of the alkaloids with the serotonin transporter. CONCLUSIONS M. tortuosum alkaloids demonstrated an anxiolytic-like effect in zebrafish larvae providing evidence for its traditional and modern day use as an anxiolytic.
Collapse
Affiliation(s)
- Veronica B Maphanga
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Krystyna Skalicka-Wozniak
- Department of Natural Products Chemistry, Medical University of Lublin, 1 Chodzki Street, 20-093, Lublin, Poland
| | - Barbara Budzynska
- Behavioral Studies Laboratory, Department of Medicinal Chemistry, Medical University of Lublin, 4A Chodzki Street, 20-093, Lublin, Poland
| | - Andriana Skiba
- Department of Natural Products Chemistry, Medical University of Lublin, 1 Chodzki Street, 20-093, Lublin, Poland
| | - Weiyang Chen
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Clement Agoni
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Gill M Enslin
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Alvaro M Viljoen
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; SAMRC Herbal Drugs Research Unit, Tshwane University of Technology, Pretoria, 0001, South Africa.
| |
Collapse
|
17
|
The development of behavioral sensitization induced by a single morphine exposure in adult zebrafish (Danio rerio). Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110456. [PMID: 34662694 DOI: 10.1016/j.pnpbp.2021.110456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Accumulating evidence suggest that behavioral sensitization is involved in the process of drug addiction. Zebrafish are sensitive to a variety of addictive drugs and are thus suitable for the study of behavioral sensitization. However, in contrast to mature rodent models of behavioral sensitization, how this phenomenon manifests in aquatic organisms, especially zebrafish, is largely unknown. In this study, we developed a morphine-induced behavioral sensitization adult zebrafish model and performed a preliminary investigation of the underlying mechanisms. METHODS Behavioral sensitization was established in zebrafish by observing their behavior after treatment and challenge with morphine. The effect of morphine was evaluated by a behavioral locomotor test. Different doses of morphine and withdrawal times were used to evaluate the establishment of the behavioral sensitization model. RESULTS Hyperlocomotion was induced after administration of morphine in adult zebrafish. After withdrawing the drug for a period, challenge with low-dose morphine evoked behavioral sensitization in zebrafish acutely pre-treated with morphine. Low-dose morphine failed to induce behavioral sensitization in zebrafish if the withdrawal time was less than 5 days or more than 7 days. Morphine induced behavioral sensitization in zebrafish may involve dopaminergic, glutamatergic and opioid systems. CONCLUSION A single low-dose of morphine could induce behavioral sensitization in zebrafish acutely pre-treated with morphine, and this phenomenon was highly correlated with drug dose and withdrawal time. These findings suggest that zebrafish is a suitable model for the study of behavioral sensitization.
Collapse
|
18
|
Cueto-Escobedo J, German-Ponciano LJ, Guillén-Ruiz G, Soria-Fregozo C, Herrera-Huerta EV. Zebrafish as a Useful Tool in the Research of Natural Products With Potential Anxiolytic Effects. Front Behav Neurosci 2022; 15:795285. [PMID: 35095438 PMCID: PMC8789748 DOI: 10.3389/fnbeh.2021.795285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Zebrafish (Danio rerio) is a popular and valuable species used in many different biomedical research areas. The complex behavior that fish exhibit in response to different stimuli allows researchers to explore the biological and pharmacological basis of affective and mood disorders. In this sense, anxiety is commonly studied in preclinical research with animal models in rodents. During the last decade, those models have been successfully adapted to zebrafish. Stressful stimuli, such as novel environments, chemical substances, light conditions, and predator images, can trigger defensive behaviors considered indicators of an anxiety-like state. In the first stage, models were adapted and validated with different stressors and anxiolytic drugs with promising results and are now successfully used to generate scientific knowledge. In that sense, zebrafish allows several routes of administration and other methodological advantages to explore the anxiolytic effects of natural products in behavioral tests as novel tank, light-dark chamber, and black/white maze, among others. The present work will review the main findings on preclinical research using adult zebrafish to explore anxiolytics effects of natural products as plant secondary metabolites such as flavonoids, alkaloids and terpenes or standardized extracts of plants, among others. Scientific literature confirms the utility of zebrafish tests to explore anxiety-like states and anxiolytic-like effects of plant secondary metabolites, which represent a useful and ethical tool in the first stages of behavioral.
Collapse
Affiliation(s)
- Jonathan Cueto-Escobedo
- Departamento de Investigación Clínica y Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | | | - Gabriel Guillén-Ruiz
- Investigador por México, Consejo Nacional de Ciencia y Tecnología (CONACyT) – Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| | - Cesar Soria-Fregozo
- Laboratorio Ciencias Biomédicas/Área Histología y Psicobiología, Departamento de Ciencias de la Tierra y de la Vida, Centro Universitario de Los Lagos, Universidad de Guadalajara, Lagos de Moreno, Mexico
| | | |
Collapse
|
19
|
Ponzoni L, Melzi G, Marabini L, Martini A, Petrillo G, Teh MT, Torres-Perez JV, Morara S, Gotti C, Braida D, Brennan CH, Sala M. Conservation of mechanisms regulating emotional-like responses on spontaneous nicotine withdrawal in zebrafish and mammals. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110334. [PMID: 33905756 PMCID: PMC8380689 DOI: 10.1016/j.pnpbp.2021.110334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Nicotine withdrawal syndrome is a major clinical problem. Animal models with sufficient predictive validity to support translation of pre-clinical findings to clinical research are lacking. AIMS We evaluated the behavioural and neurochemical alterations in zebrafish induced by short- and long-term nicotine withdrawal. METHODS Zebrafish were exposed to 1 mg/L nicotine for 2 weeks. Dependence was determined using behavioural analysis following mecamylamine-induced withdrawal, and brain nicotinic receptor binding studies. Separate groups of nicotine-exposed and control fish were assessed for anxiety-like behaviours, anhedonia and memory deficits following 2-60 days spontaneous withdrawal. Gene expression analysis using whole brain samples from nicotine-treated and control fish was performed at 7 and 60 days after the last drug exposure. Tyrosine hydroxylase (TH) immunoreactivity in pretectum was also analysed. RESULTS Mecamylamine-precipitated withdrawal nicotine-exposed fish showed increased anxiety-like behaviour as evidenced by increased freezing and decreased exploration. 3H-Epibatidine labeled heteromeric nicotinic acethylcholine receptors (nAChR) significantly increased after 2 weeks of nicotine exposure while 125I-αBungarotoxin labeled homomeric nAChR remained unchanged. Spontaneous nicotine withdrawal elicited anxiety-like behaviour (increased bottom dwelling), reduced motivation in terms of no preference for the enriched side in a place preference test starting from Day 7 after withdrawal and a progressive decrease of memory attention (lowering discrimination index). Behavioural differences were associated with brain gene expression changes: nicotine withdrawn animals showed decreased expression of chrna 4 and chrna7 after 60 days, and of htr2a from 7 to 60 days.The expression of c-Fos was significantly increased at 7 days. Finally, Tyrosine hydroxylase (TH) immunoreactivity increased in dorsal parvocellular pretectal nucleus, but not in periventricular nucleus of posterior tuberculum nor in optic tectum, at 60 days after withdrawal. CONCLUSIONS Our findings show that nicotine withdrawal induced anxiety-like behaviour, cognitive alterations, gene expression changes and increase in pretectal TH expression, similar to those observed in humans and rodent models.
Collapse
Affiliation(s)
| | - Gloria Melzi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Laura Marabini
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | | | | | - Muy-Teck Teh
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, England, UK
| | - Jose V Torres-Perez
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | | | | | - Daniela Braida
- Department of Medical Biotechnology and Translational Medicine
| | - Caroline H Brennan
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | | |
Collapse
|
20
|
Pintos S, Cavallino L, Yañez AV, Pandolfi M, Pozzi AG. Effects of intraspecific chemical cues on the behaviour of the bloodfin tetra Aphyocharax anisitsi (Ostariophysi: Characidae). Behav Processes 2021; 193:104533. [PMID: 34687799 DOI: 10.1016/j.beproc.2021.104533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 09/21/2021] [Accepted: 10/16/2021] [Indexed: 10/20/2022]
Abstract
Chemical communication can induce a multitude of behaviours when detected by fish olfactory systems, from parental care, predation and alarm signalling, to foraging, schooling, reproduction, and migration. Chemical cues provide information that visual traits cannot and fish can respond to chemical cues without any additional sensory cue. In this way, pheromones play an essential role in the fitness of fishes. Given that Aphyocharax anisitsi inhabits environments characterized by cloudy and highly vegetated waters, it is interesting to evaluate the olfactory contribution in their communication. Here, we investigated the relevance of chemical cues in the types of behaviours triggered in A anisitsi by two experimental contexts: 1) non-social and olfactory context (conspecific-chemical cues), and 2) social context (conspecific female or male presence). Non-social context experiments suggest that males of A. anisitsi respond to both male and female-chemical cues even in the absence of other sensory inputs. The high olfactory sensitivity of characids in general and of A. anisitsi, in particular, could facilitate vital functions, such as foraging and conspecific recognition in habitats that impose severe restrictions on the visual system.
Collapse
Affiliation(s)
- Santiago Pintos
- Laboratorio de Neuroendocrinología y Comportamiento en Peces y Anfibios, Departamento de Biodiversidad y Biología experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Luciano Cavallino
- Laboratorio de Neuroendocrinología y Comportamiento en Peces y Anfibios, Departamento de Biodiversidad y Biología experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina; Instituto de Biodiversidad y Biología Experimental y Aplicada-CONICET, Buenos Aires, Argentina
| | - Agustina Vidal Yañez
- Laboratorio de Neuroendocrinología y Comportamiento en Peces y Anfibios, Departamento de Biodiversidad y Biología experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Matias Pandolfi
- Laboratorio de Neuroendocrinología y Comportamiento en Peces y Anfibios, Departamento de Biodiversidad y Biología experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina; Instituto de Biodiversidad y Biología Experimental y Aplicada-CONICET, Buenos Aires, Argentina
| | - Andrea G Pozzi
- Laboratorio de Neuroendocrinología y Comportamiento en Peces y Anfibios, Departamento de Biodiversidad y Biología experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina; Instituto de Biodiversidad y Biología Experimental y Aplicada-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
21
|
Szaszkiewicz J, Leigh S, Hamilton TJ. Robust behavioural effects in response to acute, but not repeated, terpene administration in Zebrafish (Danio rerio). Sci Rep 2021; 11:19214. [PMID: 34584156 PMCID: PMC8478887 DOI: 10.1038/s41598-021-98768-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/13/2021] [Indexed: 11/15/2022] Open
Abstract
Terpenes are fragrant aromatic compounds produced by a variety of plants, most notably cannabis and hops. With increasing legalization of cannabis there is a need to better understand the behavioural effects of terpenes and ultimately their therapeutic value. Our study investigated the dose-dependent impact of three terpenes (limonene 0.25, 0.5, 0.75%; β-myrcene 0.001, 0.01, 0.1%; and 0.0001, 0.001, 0.00125% linalool) on zebrafish (Danio rerio) behaviour when exposed both acutely and repeatedly over a 7-day period. Anxiety-like behaviour, boldness, and locomotion were assessed using the open field test and the novel object approach test. In the acute dosing experiment, limonene and β-myrcene exposed groups demonstrated a significant decrease in locomotion, a decrease in anxiety-like behaviour, and an increase in boldness, while linalool treatment groups demonstrated only minor alterations in locomotion. Moreover, repeated exposure to limonene (0.39%) or β-myrcene (0.0083%) for a seven day period did not result in any significant behavioural effects. In conclusion, our study provides support for an anxiolytic and sedative effect in zebrafish in response to acute limonene and β-myrcene exposure that is no longer present after one week of repeated exposure.
Collapse
Affiliation(s)
- Joshua Szaszkiewicz
- Department of Psychology, MacEwan University, 6-366, 10700 - 104 Ave. NW, Edmonton, AB, T5J 4S2, Canada
| | - Shannon Leigh
- Department of Psychology, MacEwan University, 6-366, 10700 - 104 Ave. NW, Edmonton, AB, T5J 4S2, Canada
| | - Trevor J Hamilton
- Department of Psychology, MacEwan University, 6-366, 10700 - 104 Ave. NW, Edmonton, AB, T5J 4S2, Canada. .,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
22
|
Fitzgerald JA, Könemann S, Krümpelmann L, Županič A, Vom Berg C. Approaches to Test the Neurotoxicity of Environmental Contaminants in the Zebrafish Model: From Behavior to Molecular Mechanisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:989-1006. [PMID: 33270929 DOI: 10.1002/etc.4951] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/15/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
The occurrence of neuroactive chemicals in the aquatic environment is on the rise and poses a potential threat to aquatic biota of currently unpredictable outcome. In particular, subtle changes caused by these chemicals to an organism's sensation or behavior are difficult to tackle with current test systems that focus on rodents or with in vitro test systems that omit whole-animal responses. In recent years, the zebrafish (Danio rerio) has become a popular model organism for toxicological studies and testing strategies, such as the standardized use of zebrafish early life stages in the Organisation for Economic Co-operation and Development's guideline 236. In terms of neurotoxicity, the zebrafish provides a powerful model to investigate changes to the nervous system from several different angles, offering the ability to tackle the mechanisms of action of chemicals in detail. The mechanistic understanding gained through the analysis of this model species provides a good basic knowledge of how neuroactive chemicals might interact with a teleost nervous system. Such information can help infer potential effects occurring to other species exposed to neuroactive chemicals in their aquatic environment and predicting potential risks of a chemical for the aquatic ecosystem. In the present article, we highlight approaches ranging from behavioral to structural, functional, and molecular analysis of the larval zebrafish nervous system, providing a holistic view of potential neurotoxic outcomes. Environ Toxicol Chem 2021;40:989-1006. © 2020 SETAC.
Collapse
Affiliation(s)
- Jennifer A Fitzgerald
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Sarah Könemann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- EPF Lausanne, School of Architecture, Civil and Environmental Engineering, Lausanne, Switzerland
| | - Laura Krümpelmann
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Anže Županič
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- National Institute of Biology, Ljubljana, Slovenia
| | - Colette Vom Berg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| |
Collapse
|
23
|
Bühler A, Carl M. Zebrafish Tools for Deciphering Habenular Network-Linked Mental Disorders. Biomolecules 2021; 11:biom11020324. [PMID: 33672636 PMCID: PMC7924194 DOI: 10.3390/biom11020324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Everything that we think, feel or do depends on the function of neural networks in the brain. These are highly complex structures made of cells (neurons) and their interconnections (axons), which develop dependent on precisely coordinated interactions of genes. Any gene mutation can result in unwanted alterations in neural network formation and concomitant brain disorders. The habenula neural network is one of these important circuits, which has been linked to autism, schizophrenia, depression and bipolar disorder. Studies using the zebrafish have uncovered genes involved in the development of this network. Intriguingly, some of these genes have also been identified as risk genes of human brain disorders highlighting the power of this animal model to link risk genes and the affected network to human disease. But can we use the advantages of this model to identify new targets and compounds with ameliorating effects on brain dysfunction? In this review, we summarise the current knowledge on techniques to manipulate the habenula neural network to study the consequences on behavior. Moreover, we give an overview of existing behavioral test to mimic aspects of mental disorders and critically discuss the applicability of the zebrafish model in this field of research. Abstract The prevalence of patients suffering from mental disorders is substantially increasing in recent years and represents a major burden to society. The underlying causes and neuronal circuits affected are complex and difficult to unravel. Frequent disorders such as depression, schizophrenia, autism, and bipolar disorder share links to the habenular neural circuit. This conserved neurotransmitter system relays cognitive information between different brain areas steering behaviors ranging from fear and anxiety to reward, sleep, and social behaviors. Advances in the field using the zebrafish model organism have uncovered major genetic mechanisms underlying the formation of the habenular neural circuit. Some of the identified genes involved in regulating Wnt/beta-catenin signaling have previously been suggested as risk genes of human mental disorders. Hence, these studies on habenular genetics contribute to a better understanding of brain diseases. We are here summarizing how the gained knowledge on the mechanisms underlying habenular neural circuit development can be used to introduce defined manipulations into the system to study the functional behavioral consequences. We further give an overview of existing behavior assays to address phenotypes related to mental disorders and critically discuss the power but also the limits of the zebrafish model for identifying suitable targets to develop therapies.
Collapse
Affiliation(s)
- Anja Bühler
- Correspondence: (A.B.); (M.C.); Tel.: +39-0461-282745 (A.B.); +39-0461-283931 (M.C.)
| | - Matthias Carl
- Correspondence: (A.B.); (M.C.); Tel.: +39-0461-282745 (A.B.); +39-0461-283931 (M.C.)
| |
Collapse
|
24
|
García-González J, de Quadros B, Havelange W, Brock AJ, Brennan CH. Behavioral Effects of Developmental Exposure to JWH-018 in Wild-Type and Disrupted in Schizophrenia 1 ( disc1) Mutant Zebrafish. Biomolecules 2021; 11:biom11020319. [PMID: 33669793 PMCID: PMC7922669 DOI: 10.3390/biom11020319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 11/17/2022] Open
Abstract
Synthetic cannabinoids can cause acute adverse psychological effects, but the potential impact when exposure happens before birth is unknown. Use of synthetic cannabinoids during pregnancy may affect fetal brain development, and such effects could be moderated by the genetic makeup of an individual. Disrupted in schizophrenia 1 (DISC1) is a gene with important roles in neurodevelopment that has been associated with psychiatric disorders in pedigree analyses. Using zebrafish as a model, we investigated (1) the behavioral impact of developmental exposure to 3 μM 1-pentyl-3-(1-naphthoyl)-indole (JWH-018; a common psychoactive synthetic cannabinoid) and (2) whether disc1 moderates the effects of JWH-018. As altered anxiety responses are seen in several psychiatric disorders, we focused on zebrafish anxiety-like behavior. Zebrafish embryos were exposed to JWH-018 from one to six days post-fertilization. Anxiety-like behavior was assessed using forced light/dark and acoustic startle assays in larvae and novel tank diving in adults. Compared to controls, both acutely and developmentally exposed zebrafish larvae had impaired locomotion during the forced light/dark test, but anxiety levels and response to startle stimuli were unaltered. Adult zebrafish developmentally exposed to JWH-018 spent less time on the bottom of the tank, suggesting decreased anxiety. Loss-of-function in disc1 increased anxiety-like behavior in the tank diving assay but did not alter sensitivity to JWH-018. Results suggest developmental exposure to JWH-018 has a long-term behavioral impact in zebrafish, which is not moderated by disc1.
Collapse
Affiliation(s)
- Judit García-González
- School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK; (J.G.-G.); (B.d.Q.); (W.H.)
| | - Bruno de Quadros
- School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK; (J.G.-G.); (B.d.Q.); (W.H.)
| | - William Havelange
- School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK; (J.G.-G.); (B.d.Q.); (W.H.)
| | | | - Caroline H. Brennan
- School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK; (J.G.-G.); (B.d.Q.); (W.H.)
- Correspondence:
| |
Collapse
|
25
|
Tackie-Yarboi E, Wisner A, Horton A, Chau TQT, Reigle J, Funk AJ, McCullumsmith RE, Hall FS, Williams FE, Schiefer IT. Combining Neurobehavioral Analysis and In Vivo Photoaffinity Labeling to Understand Protein Targets of Methamphetamine in Casper Zebrafish. ACS Chem Neurosci 2020; 11:2761-2773. [PMID: 32786314 DOI: 10.1021/acschemneuro.0c00416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Photoaffinity labeling (PAL) remains one of the most widely utilized methods of determining protein targets of drugs. Although useful, the scope of this technique has been limited to in vitro applications because of the inability of UV light to penetrate whole organisms. Herein, pigment-free Casper zebrafish were employed to allow in vivo PAL. A methamphetamine-related phenethylamine PAL probe, designated here as 2, demonstrated dose-dependent effects on behavior similar to methamphetamine and permitted concentration-dependent labeling of protein binding partners. Click chemistry was used to analyze binding partners via fluoroimaging. Conjugation to a biotin permitted streptavidin pull-down and proteomic analysis to define direct binding partners of the methamphetamine probe. Bioinformatic analysis revealed the probe was chiefly bound to proteins involved in phagocytosis and mitochondrial function. Future applications of this experimental paradigm combining examination of drug-protein binding interactions alongside neurobehavioral readouts via in vivo PAL will significantly enhance our understanding of drug targets, mechanism(s) of action, and toxicity/lethality.
Collapse
Affiliation(s)
- Ethel Tackie-Yarboi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - Alexander Wisner
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - Austin Horton
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - Tue Q. T. Chau
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - James Reigle
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, United States
| | - Adam J. Funk
- Department of Neurosciences, College of Medicine, University of Toledo, Toledo, Ohio 43606, United States
| | - Robert E. McCullumsmith
- Department of Neurosciences, College of Medicine, University of Toledo, Toledo, Ohio 43606, United States
- Neurosciences Institute, Promedica, Toledo, Ohio 43606, United States
| | - Frank S. Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - Frederick E. Williams
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - Isaac T. Schiefer
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
- Center for Drug Design and Development, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
26
|
Li T, Li F, Lin J, Zhang Y, Zhang Q, Sun Y, Chen X, Xu M, Wang X, Li Q. Deletion of c16orf45 in zebrafish results in a low fertilization rate and increased thigmotaxis. Dev Psychobiol 2020; 62:1003-1010. [PMID: 32421859 DOI: 10.1002/dev.21984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/28/2020] [Accepted: 04/13/2020] [Indexed: 11/06/2022]
Abstract
c16orf45 is located at 16p13.11, an important locus related to neurodevelopmental diseases. Clinical studies have demonstrated that c16orf45 is associated with various neurodevelopmental diseases. To further elucidate the effect of c16orf45 on neural development, we constructed a zebrafish model with a stably inherited c16orf45 deletion via CRISPR/Cas9 technology. We found that deletion of c16orf45 significantly reduced the zebrafish fertilization rate, and both females and males showed reduced fertility. Meanwhile, the homozygous c16orf45 knockout zebrafish showed a developmental delay at 24 hr postfertilization (hpf). However, morphological changes were not apparent after 2 days postfertilization (dpf). Notably, the results of behavioral experiments revealed increased thigmotaxis in c16orf45- / - zebrafish at 2 months. In conclusion, these findings demonstrate that c16orf45 plays an important role in nervous system and reproductive system.
Collapse
Affiliation(s)
- Tingting Li
- Translational Medical Center for Developmental and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Fei Li
- Translational Medical Center for Developmental and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Jia Lin
- Translational Medical Center for Developmental and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Yinglan Zhang
- Translational Medical Center for Developmental and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Qi Zhang
- Translational Medical Center for Developmental and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Yanhe Sun
- Translational Medical Center for Developmental and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Xudong Chen
- Translational Medical Center for Developmental and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Mingqing Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Wang
- Cancer Metabolism Laboratory, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qiang Li
- Translational Medical Center for Developmental and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
27
|
Zhao Z, Li G, Xiao Q, Jiang HR, Tchivelekete GM, Shu X, Liu H. Quantification of the influence of drugs on zebrafish larvae swimming kinematics and energetics. PeerJ 2020; 8:e8374. [PMID: 31938582 PMCID: PMC6954687 DOI: 10.7717/peerj.8374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/09/2019] [Indexed: 11/20/2022] Open
Abstract
The use of zebrafish larvae has aroused wide interest in the medical field for its potential role in the development of new therapies. The larvae grow extremely quickly and the embryos are nearly transparent which allows easy examination of its internal structures using fluorescent imaging techniques. Medical treatment of zebrafish larvae can directly influence its swimming behaviours. These behaviour changes are related to functional changes of central nervous system and transformations of the zebrafish body such as muscle mechanical power and force variation, which cannot be measured directly by pure experiment observation. To quantify the influence of drugs on zebrafish larvae swimming behaviours and energetics, we have developed a novel methodology to exploit intravital changes based on observed zebrafish locomotion. Specifically, by using an in-house MATLAB code to process the recorded live zebrafish swimming video, the kinematic locomotion equation of a 3D zebrafish larvae was obtained, and a customised Computational Fluid Dynamics tool was used to solve the fluid flow around the fish model which was geometrically the same as experimentally tested zebrafish. The developed methodology was firstly verified against experiment, and further applied to quantify the fish internal body force, torque and power consumption associated with a group of normal zebrafish larvae vs. those immersed in acetic acid and two neuroactive drugs. As indicated by our results, zebrafish larvae immersed in 0.01% acetic acid display approximately 30% higher hydrodynamic power and 10% higher cost of transport than control group. In addition, 500 μM diphenylhydantoin significantly decreases the locomotion activity for approximately 50% lower hydrodynamic power, whereas 100 mg/L yohimbine has not caused any significant influences on 5 dpf zebrafish larvae locomotion. The approach has potential to evaluate the influence of drugs on the aquatic animal’s behaviour changes and thus support the development of new analgesic and neuroactive drugs.
Collapse
Affiliation(s)
- Zhenkai Zhao
- Department of Naval Architecture, Ocean, and Marine Engineering, University of Strathclyde, Glasgow, UK
| | - Gen Li
- Department of Mathematical Science and Advanced Technology, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama-City, Japan
| | - Qing Xiao
- Department of Naval Architecture, Ocean, and Marine Engineering, University of Strathclyde, Glasgow, UK
| | - Hui-Rong Jiang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | - Xinhua Shu
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Hao Liu
- Graduate School of Engineering, Chiba University, Chiba, Japan
| |
Collapse
|
28
|
Abreu MS, Maximino C, Banha F, Anastácio PM, Demin KA, Kalueff AV, Soares MC. Emotional behavior in aquatic organisms? Lessons from crayfish and zebrafish. J Neurosci Res 2019; 98:764-779. [DOI: 10.1002/jnr.24550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/24/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Murilo S. Abreu
- Bioscience Institute University of Passo Fundo (UPF) Passo Fundo Brazil
- The International Zebrafish Neuroscience Research Consortium (ZNRC) Slidell LA USA
| | - Caio Maximino
- The International Zebrafish Neuroscience Research Consortium (ZNRC) Slidell LA USA
- Institute of Health and Biological Studies Federal University of Southern and Southeastern Pará, Unidade III Marabá Brazil
| | - Filipe Banha
- Department of Landscape, Environment and Planning MARE – Marine and Environmental Sciences Centre University of Évora Évora Portugal
| | - Pedro M. Anastácio
- Department of Landscape, Environment and Planning MARE – Marine and Environmental Sciences Centre University of Évora Évora Portugal
| | - Konstantin A. Demin
- Institute of Experimental Medicine Almazov National Medical Research Center Ministry of Healthcare of Russian Federation St. Petersburg Russia
- Institute of Translational Biomedicine St. Petersburg State University St. Petersburg Russia
| | - Allan V. Kalueff
- School of Pharmacy Southwest University Chongqing China
- Ural Federal University Ekaterinburg Russia
| | - Marta C. Soares
- CIBIO, Research Centre in Biodiversity and Genetic Resources University of Porto Porto Portugal
| |
Collapse
|
29
|
Acute Exposure to Permethrin Modulates Behavioral Functions, Redox, and Bioenergetics Parameters and Induces DNA Damage and Cell Death in Larval Zebrafish. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9149203. [PMID: 31827707 PMCID: PMC6885249 DOI: 10.1155/2019/9149203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/11/2019] [Accepted: 08/31/2019] [Indexed: 12/15/2022]
Abstract
Permethrin (PM) is a synthetic pyrethroid insecticide widely used as domestic repellent. Damage effects to nontarget organisms have been reported, particularly in the early stages of development. Studies indicate redox unbalance as secondary PM effect. Therefore, our goal was to investigate the acute PM effects on larval zebrafish. Larvae (6 days postfertilization) were exposed to PM (25–600 μg/L) during 24 hours, and 50% lethal concentration was estimated. For subsequent assays, the sublethal PM concentrations of 25 and 50 μg/L were used. PM increased anxiety-like behaviors according to the Novel Tank and Light-Dark tests. At the molecular level, PM induced increased ROS, which may be related to the increased lipid peroxidation, DNA damage, and apoptosis detected in PM-exposed organisms. In parallel, upregulation of the antioxidant system was detected after PM exposure, with increased superoxide dismutase, glutathione S-transferase and glutathione reductase activities, and thiol levels. The increased of Nrf2 target genes and the activation of an electrophile response element-driven reporter Tg(EPRE:LUC-EGFP) suggest that the Nrf2 pathway can mediate a fast response to PM, leading to antioxidant amplification. By using high-resolution respirometry, we found that exposure to PM decreased the oxygen consumption in all respiratory stages, disrupting the oxidative phosphorylation and inhibiting the electron transfer system, leading to decrease in bioenergetics capacity. In addition, PM led to increases of residual oxygen consumption and changes in substrate control ratio. Glucose metabolism seems to be affected by PM, with increased lactate dehydrogenase and decreased citrate synthase activities. Taken together, our results demonstrated the adverse effects of acute sublethal PM concentrations during larval development in zebrafish, causing apparent mitochondrial dysfunction, indicating a potential mechanism to redox unbalance and oxidative stress, which may be linked to the detected cell death and alterations in normal behavior patterns caused by acute PM exposure.
Collapse
|
30
|
Souders CL, Davis RH, Qing H, Liang X, Febo M, Martyniuk CJ. The psychoactive cathinone derivative pyrovalerone alters locomotor activity and decreases dopamine receptor expression in zebrafish (Danio rerio). Brain Behav 2019; 9:e01420. [PMID: 31625691 PMCID: PMC6851804 DOI: 10.1002/brb3.1420] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/27/2019] [Accepted: 09/06/2019] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Pyrovalerone (4-methyl-β-keto-prolintane) is a synthetic cathinone (beta-keto-amphetamine) derivative. Cathinones are a concern as drugs of abuse, as related street drugs such as methylenedioxypyrovalerone have garnered significant attention. The primary mechanism of action of cathinones is to inhibit reuptake transporters (dopamine and norepinephrine) in reward centers of the central nervous system. METHODS We measured bioenergetic, behavioral, and molecular responses to pyrovalerone (nM-µM) in zebrafish to evaluate its potential for neurotoxicity and neurological impairment. RESULTS Pyrovalerone did not induce any mortality in zebrafish larvae over a 3- and 24-hr period; however, seizures were prevalent at the highest dose tested (100 µM). Oxidative phosphorylation was not affected in the embryos, and there was no change in superoxide dismutase 1 expression. Following a 3-hr treatment to pyrovalerone (1-100 µM), larval zebrafish (6d) showed a dose-dependent decrease (70%-90%) in total distance moved in a visual motor response (VMR) test. We interrogated potential mechanisms related to the hypoactivity, focusing on the expression of dopamine-related transcripts as cathinones can modulate the dopamine system. Pyrovalerone decreased the expression levels of dopamine receptor D1 (~60%) in larval zebrafish but did not affect the expression of tyrosine hydroxylase, dopamine active transporter, or any other dopamine receptor subunit examined, suggesting that pyrovalerone may regulate the expression of dopamine receptors in a specific manner. DISCUSSION Further studies using zebrafish are expected to reveal new insight into molecular mechanisms and behavioral responses to cathinone derivates, and zebrafish may be a useful model for understanding the relationship between the dopamine system and bath salts.
Collapse
Affiliation(s)
- Christopher Laurence Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Robert H Davis
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Hua Qing
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Marcelo Febo
- Department of Psychiatry, Evelyn F. and William L. McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
31
|
Burbano-L DA, Porfiri M. Data-driven modeling of zebrafish behavioral response to acute caffeine administration. J Theor Biol 2019; 485:110054. [PMID: 31634449 DOI: 10.1016/j.jtbi.2019.110054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022]
Abstract
Over the last thirty years, we have witnessed a dramatic rise in the use of zebrafish in preclinical research. Every year, more than 5000 technical papers are published about zebrafish, many of them seeking to explain the underpinnings of anxiety through animal testing. In-silico experiments could significantly contribute to zebrafish research and welfare, by offering new means to support the 3Rs principles of replacement, reduction, and refinement. Here, we propose a data-driven modeling framework to predict the anxiety-related behavioral response of zebrafish to acute caffeine administration. The modeling framework unfolds along a two-time-scale dichotomy to capture freezing behavior along a slow temporal scale and burst-and-coast locomotion at a fast time-scale. Anchored in the theory of Markov chains and stochastic differential equations, we demonstrate a parsimonious, yet robust, modeling framework to accurately simulate experimental observations of zebrafish treated at different caffeine concentrations. Our results complement recent modeling efforts, laying the foundations for conducting in-silico experiments in zebrafish behavioral pharmacology.
Collapse
Affiliation(s)
- Daniel A Burbano-L
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, New York, USA
| | - Maurizio Porfiri
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, New York, USA; Department of Biomedical Engineering and Department of Civil and Urban Engineering, Tandon School of Engineering, New York University, New York, USA.
| |
Collapse
|
32
|
Santos BRD, Santos RCD, Dias CAGDM, Maximino C, Gouveia A. White Environment Can Be Used as an Aversive Stimulus in Zebrafish Inhibitory Avoidance Learning. Zebrafish 2019; 16:443-450. [DOI: 10.1089/zeb.2019.1743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Bruno Rodrigues dos Santos
- Laboratório de Neurociência e Comportamento, Núcleo de Teoria e Pesquisa do Comportamento, Universidade Federal do Pará, Belém, Pará, Brazil
- Faculdade de Psicologia, Instituto de Filosofia e Ciências Humanas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Raissa Cruz dos Santos
- Laboratório de Neurociência e Comportamento, Núcleo de Teoria e Pesquisa do Comportamento, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Claudio Alberto Gellis de Mattos Dias
- Laboratório de Neurociência e Comportamento, Núcleo de Teoria e Pesquisa do Comportamento, Universidade Federal do Pará, Belém, Pará, Brazil
- Laboratório de Neurociência e Comportamento 2, Instituto Federal do Amapá, Macapá/AP, Brazil
| | - Caio Maximino
- Núcleo de Estudos em Psicologia Experimental, Instituto de Estudo em Saúde e Biológicas, Universidade do Sul e Sudeste do Pará, Marabá, Pará, Brazil
| | - Amauri Gouveia
- Laboratório de Neurociência e Comportamento, Núcleo de Teoria e Pesquisa do Comportamento, Universidade Federal do Pará, Belém, Pará, Brazil
| |
Collapse
|
33
|
Sensitization-dependent nicotine place preference in the adult zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:457-469. [PMID: 30826460 DOI: 10.1016/j.pnpbp.2019.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 12/21/2022]
Abstract
Sensitization of motor activity is a behavioural test to evaluate the effects of psychostimulants. Conditioned place preference (CPP) is an associative learning procedure to examine the rewarding properties of drugs. We aimed to assess whether motor sensitization to drugs of abuse can make zebrafish more vulnerable to establishing drug-induced CPP. We first evaluated sensitization of locomotor activity of zebrafish to repeated administrations of nicotine and cocaine during 5 days and after 5 days of withdrawal. After withdrawal, when zebrafish were re-exposed to the same dose of nicotine or cocaine locomotor activity was increased by 103% and 166%, respectively. Different groups of zebrafish were sensitized to nicotine or cocaine and trained on a nicotine-CPP task the day after withdrawal. The nicotine dose selected for sensitization was not effective for developing CPP in naïve zebrafish whereas it elicited CPP in zebrafish that were previously sensitized to nicotine or cocaine. Levels of nicotinic acetylcholine receptor β2, α6 and α7 subunit, Pitx3, and tyrosine hydroxylase 1 (TH1) mRNAs were increased in the brain of nicotine- and cocaine-sensitized zebrafish. Nicotine-CPP performed with drug-sensitized zebrafish provoked further enhancements in the expression of α6 and α7 subunit, Pitx3, and TH1 mRNAs suggesting that the expression of these molecules in the reward pathway is involved in both processes. Our findings indicate that repeated exposures to low doses of drugs of abuse can increase subject's sensitivity to the rewarding properties of the same or different drugs. This further suggests that casual drug intake increases the probability of becoming addict.
Collapse
|
34
|
Demin KA, Lakstygal AM, Alekseeva PA, Sysoev M, de Abreu MS, Alpyshov ET, Serikuly N, Wang D, Wang M, Tang Z, Yan D, Strekalova TV, Volgin AD, Amstislavskaya TG, Wang J, Song C, Kalueff AV. The role of intraspecies variation in fish neurobehavioral and neuropharmacological phenotypes in aquatic models. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:44-55. [PMID: 30822702 DOI: 10.1016/j.aquatox.2019.02.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Intraspecies variation is common in both clinical and animal research of various brain disorders. Relatively well-studied in mammals, intraspecies variation in aquatic fish models and its role in their behavioral and pharmacological responses remain poorly understood. Like humans and mammals, fishes show high variance of behavioral and drug-evoked responses, modulated both genetically and environmentally. The zebrafish (Danio rerio) has emerged as a particularly useful model organism tool to access neurobehavioral and drug-evoked responses. Here, we discuss recent findings and the role of the intraspecies variance in neurobehavioral, pharmacological and toxicological studies utilizing zebrafish and other fish models. We also critically evaluate common sources of intraspecies variation and outline potential strategies to improve data reproducibility and translatability.
Collapse
Affiliation(s)
- Konstantin A Demin
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Anton M Lakstygal
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Russian Research Centre of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Polina A Alekseeva
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Maxim Sysoev
- Granov Russian Research Centre of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Murilo S de Abreu
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Bioscience Institute, University of Passo Fundo, Passo Fundo, RS, Brazil
| | | | - Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing, China
| | - DongMei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - MengYao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - ZhiChong Tang
- School of Pharmacy, Southwest University, Chongqing, China
| | - DongNi Yan
- School of Pharmacy, Southwest University, Chongqing, China
| | - Tatyana V Strekalova
- Department of Neuroscience, Maastricht University, Maastricht, Netherlands; Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Andrey D Volgin
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | | | - JiaJia Wang
- Research Institute of Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Cai Song
- Research Institute of Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Ural Federal University, Ekaterinburg, Russia; ZENEREI Research Center, Slidell, LA, USA; Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Granov Russian Research Centre of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.
| |
Collapse
|
35
|
Bao W, Volgin AD, Alpyshov ET, Friend AJ, Strekalova TV, de Abreu MS, Collins C, Amstislavskaya TG, Demin KA, Kalueff AV. Opioid Neurobiology, Neurogenetics and Neuropharmacology in Zebrafish. Neuroscience 2019; 404:218-232. [PMID: 30710667 DOI: 10.1016/j.neuroscience.2019.01.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 01/28/2023]
Abstract
Despite the high prevalence of medicinal use and abuse of opioids, their neurobiology and mechanisms of action are not fully understood. Experimental (animal) models are critical for improving our understanding of opioid effects in vivo. As zebrafish (Danio rerio) are increasingly utilized as a powerful model organism in neuroscience research, mounting evidence suggests these fish as a useful tool to study opioid neurobiology. Here, we discuss the zebrafish opioid system with specific focus on opioid gene expression, existing genetic models, as well as its pharmacological and developmental regulation. As many human brain diseases involve pain and aberrant reward, we also summarize zebrafish models relevant to opioid regulation of pain and addiction, including evidence of functional interplay between the opioid system and central dopaminergic and other neurotransmitter mechanisms. Additionally, we critically evaluate the limitations of zebrafish models for translational opioid research and emphasize their developing utility for improving our understanding of evolutionarily conserved mechanisms of pain-related, addictive, affective and other behaviors, as well as for fostering opioid-related drug discovery.
Collapse
Affiliation(s)
- Wandong Bao
- School of Pharmacy and School of Life Sciences, Southwest University, Chongqing, China
| | - Andrey D Volgin
- Military Medical Academy, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - Erik T Alpyshov
- School of Pharmacy and School of Life Sciences, Southwest University, Chongqing, China
| | - Ashton J Friend
- Tulane University School of Science and Engineering, New Orleans, LA, USA; The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA
| | - Tatyana V Strekalova
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Moscow, Russia; Department of Neuroscience, Maastricht University, Maastricht, Netherlands; Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Murilo S de Abreu
- The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA; Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Christopher Collins
- ZENEREI Research Center, Slidell, LA, USA; The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Allan V Kalueff
- School of Pharmacy and School of Life Sciences, Southwest University, Chongqing, China; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Ural Federal University, Ekaterinburg, Russia; Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia; Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; ZENEREI Research Center, Slidell, LA, USA; The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA.
| |
Collapse
|
36
|
Capaldo A, Gay F, Lepretti M, Paolella G, Martucciello S, Lionetti L, Caputo I, Laforgia V. Effects of environmental cocaine concentrations on the skeletal muscle of the European eel (Anguilla anguilla). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:862-873. [PMID: 29879672 DOI: 10.1016/j.scitotenv.2018.05.357] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 05/02/2023]
Abstract
The presence of illicit drugs in the aquatic environment represents a new potential risk for aquatic organisms, due to their constant exposure to substances with strong pharmacological activity. Currently, little is known about the ecological effects of illicit drugs. The aim of this study was to evaluate the influence of environmental concentrations of cocaine, an illicit drug widespread in surface waters, on the skeletal muscle of the European eel (Anguilla anguilla). The skeletal muscle of silver eels exposed to 20 ng L-1 of cocaine for 50 days were compared to control, vehicle control and two post-exposure recovery groups (3 and 10 days after interruption of cocaine). The eels general health, the morphology of the skeletal muscle and several parameters indicative of the skeletal muscle physiology were evaluated, namely the muscle whole protein profile, marker of the expression levels of the main muscle proteins; cytochrome oxidase activity, markers of oxidative metabolism; caspase-3, marker of apoptosis activation; serum levels of creatine kinase, lactate dehydrogenase and aspartate aminotransferase, markers of skeletal muscle damages. Cocaine-exposed eels appeared hyperactive but they showed the same general health status as the other groups. In contrast, their skeletal muscle showed evidence of serious injury, including muscle breakdown and swelling, similar to that typical of rhabdomyolysis. These changes were still present 10 days after the interruption of cocaine exposure. In fact, with the exception of the expression levels of the main muscle proteins, which remained unchanged, all the other parameters examined showed alterations that persisted for at least 10 days after the interruption of cocaine exposure. This study shows that even low environmental concentrations of cocaine cause severe damage to the morphology and physiology of the skeletal muscle of the silver eel, confirming the harmful impact of cocaine in the environment that potentially affects the survival of this species.
Collapse
Affiliation(s)
- Anna Capaldo
- Department of Biology, University of Naples Federico II, Via Cinthia, Edificio 7, 80126 Naples, Italy.
| | - Flaminia Gay
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132 - 84084 Fisciano - Salerno, Italy.
| | - Marilena Lepretti
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132 - 84084 Fisciano - Salerno, Italy.
| | - Gaetana Paolella
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132 - 84084 Fisciano - Salerno, Italy.
| | - Stefania Martucciello
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132 - 84084 Fisciano - Salerno, Italy.
| | - Lillà Lionetti
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132 - 84084 Fisciano - Salerno, Italy; ELFID (European Laboratory for Food-Induced Diseases), University of Naples Federico II, via Pansini 5, 80131 Naples, Italy.
| | - Ivana Caputo
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132 - 84084 Fisciano - Salerno, Italy; ELFID (European Laboratory for Food-Induced Diseases), University of Naples Federico II, via Pansini 5, 80131 Naples, Italy.
| | - Vincenza Laforgia
- Department of Biology, University of Naples Federico II, Via Cinthia, Edificio 7, 80126 Naples, Italy.
| |
Collapse
|
37
|
de Abreu MS, Friend AJ, Demin KA, Amstislavskaya TG, Bao W, Kalueff AV. Zebrafish models: do we have valid paradigms for depression? J Pharmacol Toxicol Methods 2018; 94:16-22. [DOI: 10.1016/j.vascn.2018.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/12/2018] [Accepted: 07/16/2018] [Indexed: 11/26/2022]
|
38
|
Zebrafish: an emerging real-time model system to study Alzheimer's disease and neurospecific drug discovery. Cell Death Discov 2018; 4:45. [PMID: 30302279 PMCID: PMC6170431 DOI: 10.1038/s41420-018-0109-7] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 12/22/2022] Open
Abstract
Zebrafish (Danio rerio) is emerging as an increasingly successful model for translational research on human neurological disorders. In this review, we appraise the high degree of neurological and behavioural resemblance of zebrafish with humans. It is highly validated as a powerful vertebrate model for investigating human neurodegenerative diseases. The neuroanatomic and neurochemical pathways of zebrafish brain exhibit a profound resemblance with the human brain. Physiological, emotional and social behavioural pattern similarities between them have also been well established. Interestingly, zebrafish models have been used successfully to simulate the pathology of Alzheimer’s disease (AD) as well as Tauopathy. Their relatively simple nervous system and the optical transparency of the embryos permit real-time neurological imaging. Here, we further elaborate on the use of recent real-time imaging techniques to obtain vital insights into the neurodegeneration that occurs in AD. Zebrafish is adeptly suitable for Ca2+ imaging, which provides a better understanding of neuronal activity and axonal dystrophy in a non-invasive manner. Three-dimensional imaging in zebrafish is a rapidly evolving technique, which allows the visualisation of the whole organism for an elaborate in vivo functional and neurophysiological analysis in disease condition. Suitability to high-throughput screening and similarity with humans makes zebrafish an excellent model for screening neurospecific compounds. Thus, the zebrafish model can be pivotal in bridging the gap from the bench to the bedside. This fish is becoming an increasingly successful model to understand AD with further scope for investigation in neurodevelopment and neurodegeneration, which promises exciting research opportunities in the future.
Collapse
|
39
|
Melancia F, Trezza V. Modelling fragile X syndrome in the laboratory setting: A behavioral perspective. Behav Brain Res 2018; 350:149-163. [DOI: 10.1016/j.bbr.2018.04.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022]
|
40
|
da Silva Chaves SN, Felício GR, Costa BPD, de Oliveira WEA, Lima-Maximino MG, Siqueira Silva DHD, Maximino C. Behavioral and biochemical effects of ethanol withdrawal in zebrafish. Pharmacol Biochem Behav 2018; 169:48-58. [DOI: 10.1016/j.pbb.2018.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/09/2022]
|
41
|
Lima-Maximino MG, Cueto-Escobedo J, Rodríguez-Landa JF, Maximino C. FGIN-1-27, an agonist at translocator protein 18 kDa (TSPO), produces anti-anxiety and anti-panic effects in non-mammalian models. Pharmacol Biochem Behav 2018; 171:66-73. [PMID: 29698632 DOI: 10.1016/j.pbb.2018.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 11/19/2022]
Abstract
FGIN-1-27 is an agonist at the translocator protein 18 kDa (TSPO), a cholesterol transporter that is associated with neurosteroidogenesis. This protein has been identified as a peripheral binding site for benzodiazepines; in anamniotes, however, a second TSPO isoform that is absent in amniotes has been implicated in erythropoiesis. Functional conservation of the central benzodiazepine-binding site located in the GABAA receptors has been demonstrated in anamniotes and amniotes alike; however, it was not previously demonstrated for TSPO. The present investigation explored the behavioral effects of FGIN-1-27 on an anxiety test in zebrafish (Danio rerio, Family: Cyprinide) and on a mixed anxiety/panic test on wall lizards (Tropidurus oreadicus, Family: Tropiduridae). Results showed that FGIN-1-27 reduced anxiety-like behavior in the zebrafish light/dark preference test similar to diazepam, but with fewer sedative effects. Similarly, FGIN-1-27 also reduced anxiety- and fear-like behaviors in the defense test battery in wall lizards, again producing fewer sedative-like effects than diazepam; the benzodiazepine was also unable to reduce fear-like behaviors in this species. These results A) underline the functional conservation of TSPO in defensive behavior in anamniotes; B) strengthen the proposal of using anamniote behavior as models in behavioral pharmacology; and C) suggest TSPO/neurosteroidogenesis as a target in treating anxiety disorders.
Collapse
Affiliation(s)
- Monica Gomes Lima-Maximino
- Laboratório de Neurofarmacologia e Biofísica, Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará - Campus VIII, Marabá, Brazil
| | - Jonathan Cueto-Escobedo
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| | | | - Caio Maximino
- Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil.
| |
Collapse
|
42
|
Meshalkina DA, Kysil EV, Warnick JE, Demin KA, Kalueff AV. Adult zebrafish in CNS disease modeling: a tank that's half-full, not half-empty, and still filling. Lab Anim (NY) 2018; 46:378-387. [PMID: 28984854 DOI: 10.1038/laban.1345] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/18/2017] [Indexed: 01/17/2023]
Abstract
The zebrafish (Danio rerio) is increasingly used in a broad array of biomedical studies, from cancer research to drug screening. Zebrafish also represent an emerging model organism for studying complex brain diseases. The number of zebrafish neuroscience studies is exponentially growing, significantly outpacing those conducted with rodents or other model organisms. Yet, there is still a substantial amount of resistance in adopting zebrafish as a first-choice model system. Studies of the repertoire of zebrafish neural and behavioral functions continue to reveal new opportunities for understanding the pathobiology of various CNS deficits. Although some of these models are well established in zebrafish, including models for anxiety, depression, and addiction, others are less recognized, for example, models of autism and obsessive-compulsive states. However, mounting data indicate that a wide spectrum of CNS diseases can be modeled in adult zebrafish. Here, we summarize recent findings using zebrafish CNS assays, discuss model limitations and the existing challenges, as well as outline future directions of research in this field.
Collapse
Affiliation(s)
- Darya A Meshalkina
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.,The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, Louisiana, USA
| | - Elana V Kysil
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Jason E Warnick
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, Louisiana, USA.,Department of Behavioral Sciences, Arkansas Tech University, Russellville, Arkansas, USA
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.,The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, Louisiana, USA
| | - Allan V Kalueff
- School of Pharmaceutical Sciences, Southwest University, Chongqing, China.,Laboratory of Biological Psychiatry, ITBM, St. Petersburg State University, St. Petersburg, Russia.,Ural Federal University, Ekaterinburg, Russia.,ZENEREI Research Center, Slidell, Louisiana, USA
| |
Collapse
|
43
|
Riley E, Maymi V, Pawlyszyn S, Yu L, Zhdanova IV. Prenatal cocaine exposure disrupts the dopaminergic system and its postnatal responses to cocaine. GENES BRAIN AND BEHAVIOR 2017; 17:e12436. [PMID: 29105298 DOI: 10.1111/gbb.12436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/28/2017] [Accepted: 10/31/2017] [Indexed: 02/01/2023]
Abstract
Impaired attention is the hallmark consequence of prenatal cocaine exposure (PCE), affecting brain development, learning, memory and social adaptation starting at an early age. To date, little is known about the brain structures and neurochemical processes involved in this effect. Through focusing on the visual system and employing zebrafish as a model, we show that PCE reduces expression of dopamine receptor Drd1, with levels reduced in the optic tectum and other brain regions, but not the telencephalon. Organism-wide, PCE results in a 1.7-fold reduction in the expression of the dopamine transporter (dat), at baseline. Acute cocaine administration leads to a 2-fold reduction in dat in drug-naive larvae but not PCE fish. PCE sensitizes animals to an anxiogenic-like behavioral effect of acute cocaine, bottom-dwelling, while loss of DAT due to genetic knockout (DATKO) leads to bottom-dwelling behavior at baseline. Neuronal calcium responses to visual stimuli in both PCE and DATKO fish show tolerance to acute cocaine in the principal regions of visual attention, the telencephalon and optic tectum. The zebrafish model can provide a sensitive assay by which to elucidate the molecular mechanisms and brain region-specific consequences of PCE, and facilitate the search for effective therapeutic solutions.
Collapse
Affiliation(s)
- E Riley
- Boston University School of Medicine, Boston, Massachusetts
| | - V Maymi
- Boston University School of Medicine, Boston, Massachusetts.,BioChron LLC, Worcester, Massachusetts
| | - S Pawlyszyn
- Boston University School of Medicine, Boston, Massachusetts
| | - L Yu
- Boston University School of Medicine, Boston, Massachusetts.,BioChron LLC, Worcester, Massachusetts
| | - I V Zhdanova
- Boston University School of Medicine, Boston, Massachusetts.,BioChron LLC, Worcester, Massachusetts
| |
Collapse
|
44
|
Stankiewicz AJ, McGowan EM, Yu L, Zhdanova IV. Impaired Sleep, Circadian Rhythms and Neurogenesis in Diet-Induced Premature Aging. Int J Mol Sci 2017; 18:E2243. [PMID: 29072584 PMCID: PMC5713213 DOI: 10.3390/ijms18112243] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/13/2017] [Accepted: 10/22/2017] [Indexed: 01/02/2023] Open
Abstract
Chronic high caloric intake (HCI) is a risk factor for multiple major human disorders, from diabetes to neurodegeneration. Mounting evidence suggests a significant contribution of circadian misalignment and sleep alterations to this phenomenon. An inverse temporal relationship between sleep, activity, food intake, and clock mechanisms in nocturnal and diurnal animals suggests that a search for effective therapeutic approaches can benefit from the use of diurnal animal models. Here, we show that, similar to normal aging, HCI leads to the reduction in daily amplitude of expression for core clock genes, a decline in sleep duration, an increase in scoliosis, and anxiety-like behavior. A remarkable decline in adult neurogenesis in 1-year old HCI animals, amounting to only 21% of that in age-matched Control, exceeds age-dependent decline observed in normal 3-year old zebrafish. This is associated with misalignment or reduced amplitude of daily patterns for principal cell cycle regulators, cyclins A and B, and p20, in brain tissue. Together, these data establish HCI in zebrafish as a model for metabolically induced premature aging of sleep, circadian functions, and adult neurogenesis, allowing for a high throughput approach to mechanistic studies and drug trials in a diurnal vertebrate.
Collapse
Affiliation(s)
- Alexander J Stankiewicz
- Department of Preclinical Research and Development, BioChron LLC, Worcester, MA 01605, USA.
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Erin M McGowan
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Lili Yu
- Department of Preclinical Research and Development, BioChron LLC, Worcester, MA 01605, USA.
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Irina V Zhdanova
- Department of Preclinical Research and Development, BioChron LLC, Worcester, MA 01605, USA.
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
45
|
Effect of novelty stress on behavioral responses of Danio rerio and assessment of dose-dependent effects of anxiolytics of benzodiazepine structure with phenazepam as an example. ACTA ACUST UNITED AC 2017. [DOI: 10.17816/rcf15357-63] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effect of benzodiazepine anxiolytic phenazepam in Danio rerio was investigated. Previously, Danio rerio showed the effects of other anxiolytics, dia_zepam and chlordiazepoxide. The analysis of the anxiolytic effect of phenazepam in Danio rerio was carried out for the first time.
Methods. A stress test on novelty situation was used: a fish was placed first in a beaker with a dissolved pharmacological substance (or water) and then into a novel tank for 6 min, where the trajectory, the path length, the number of movements to the upper part of the novel tank, the number and time of the pattern of “freezing” for each min of the experiment were measured.
Results. In response to the novelty of tank, the fish was shown to react by submerging to the bottom, increasing the freezing, and reducing the number of movements to the upper half of the novel tank. After phenazepam exposure (administration), the fish was not only in the lower, but also in the upper part of the novel tank. The average path length did not change significantly in the range of the doses used. The number and time of the freezing, as well as the time spent in the lower part of the novel tank, 2-fold decreased compared to the control group of animals and showed a dose-dependent effect. The number of movements to the upper part of the novel tank for the experiment increased significantly from 1 in the control to 57 after phenazepam in a dose of 1 mg/l. When analyzing the dynamics of the parameters for each min, it was shown that the time of the fish in the lower part of the novel tank decreased from 3th min of the experiment with the use of phenazepam in a dose of 0.5 mg/l. At the same time, the number of movements of fish to the upper part of the novel tank significantly increased more than 2 times from 3th min of the experiment with the use of phenazepam in a dose of 1 mg/l.
Conclusion. The described method to study behavioral responses of Danio rerio on novelty stress is high sensitive in comparison with traditional behavioral methods of studing tranquilizers. The prospect of using Danio rerio as animal model in behavioral pharmacology is significant and does not concede research on rodents.
Collapse
|
46
|
Bossé GD, Peterson RT. Development of an opioid self-administration assay to study drug seeking in zebrafish. Behav Brain Res 2017; 335:158-166. [PMID: 28811180 DOI: 10.1016/j.bbr.2017.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 01/21/2023]
Abstract
The zebrafish (Danio rerio) has become an excellent tool to study mental health disorders, due to its physiological and genetic similarity to humans, ease of genetic manipulation, and feasibility of small molecule screening. Zebrafish have been shown to exhibit characteristics of addiction to drugs of abuse in non-contingent assays, including conditioned place preference, but contingent assays have been limited to a single assay for alcohol consumption. Using inexpensive electronic, mechanical, and optical components, we developed an automated opioid self-administration assay for zebrafish, enabling us to measure drug seeking and gain insight into the underlying biological pathways. Zebrafish trained in the assay for five days exhibited robust self-administration, which was dependent on the function of the μ-opioid receptor. In addition, a progressive ratio protocol was used to test conditioned animals for motivation. Furthermore, conditioned fish continued to seek the drug despite an adverse consequence and showed signs of stress and anxiety upon withdrawal of the drug. Finally, we validated our assay by confirming that self-administration in zebrafish is dependent on several of the same molecular pathways as in other animal models. Given the ease and throughput of this assay, it will enable identification of important biological pathways regulating drug seeking and could lead to the development of new therapeutic molecules to treat addiction.
Collapse
Affiliation(s)
- Gabriel D Bossé
- Department of Pharmacology and Toxicology,University of Utah, Salt Lake City, UT 84112, USA
| | - Randall T Peterson
- Department of Pharmacology and Toxicology,University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
47
|
Khan KM, Collier AD, Meshalkina DA, Kysil EV, Khatsko SL, Kolesnikova T, Morzherin YY, Warnick JE, Kalueff AV, Echevarria DJ. Zebrafish models in neuropsychopharmacology and CNS drug discovery. Br J Pharmacol 2017; 174:1925-1944. [PMID: 28217866 PMCID: PMC5466539 DOI: 10.1111/bph.13754] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/11/2017] [Accepted: 02/14/2017] [Indexed: 12/12/2022] Open
Abstract
Despite the high prevalence of neuropsychiatric disorders, their aetiology and molecular mechanisms remain poorly understood. The zebrafish (Danio rerio) is increasingly utilized as a powerful animal model in neuropharmacology research and in vivo drug screening. Collectively, this makes zebrafish a useful tool for drug discovery and the identification of disordered molecular pathways. Here, we discuss zebrafish models of selected human neuropsychiatric disorders and drug-induced phenotypes. As well as covering a broad range of brain disorders (from anxiety and psychoses to neurodegeneration), we also summarize recent developments in zebrafish genetics and small molecule screening, which markedly enhance the disease modelling and the discovery of novel drug targets.
Collapse
Affiliation(s)
- Kanza M Khan
- Department of PsychologyUniversity of Southern MississippiHattiesburgMSUSA
| | - Adam D Collier
- Department of PsychologyUniversity of Southern MississippiHattiesburgMSUSA
- The International Zebrafish Neuroscience Research Consortium (ZNRC)SlidellLAUSA
| | - Darya A Meshalkina
- The International Zebrafish Neuroscience Research Consortium (ZNRC)SlidellLAUSA
- Institute of Translational BiomedicineSt. Petersburg State UniversitySt. PetersburgRussia
| | - Elana V Kysil
- Institute of Translational BiomedicineSt. Petersburg State UniversitySt. PetersburgRussia
| | | | | | | | - Jason E Warnick
- The International Zebrafish Neuroscience Research Consortium (ZNRC)SlidellLAUSA
- Department of Behavioral SciencesArkansas Tech UniversityRussellvilleARUSA
| | - Allan V Kalueff
- The International Zebrafish Neuroscience Research Consortium (ZNRC)SlidellLAUSA
- Institute of Translational BiomedicineSt. Petersburg State UniversitySt. PetersburgRussia
- Ural Federal UniversityEkaterinburgRussia
- Research Institute of Marine Drugs and Nutrition, College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangGuangdongChina
| | - David J Echevarria
- Department of PsychologyUniversity of Southern MississippiHattiesburgMSUSA
- The International Zebrafish Neuroscience Research Consortium (ZNRC)SlidellLAUSA
| |
Collapse
|
48
|
Three-dimensional scoring of zebrafish behavior unveils biological phenomena hidden by two-dimensional analyses. Sci Rep 2017; 7:1962. [PMID: 28512334 PMCID: PMC5434067 DOI: 10.1038/s41598-017-01990-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 04/05/2017] [Indexed: 11/21/2022] Open
Abstract
The study of zebrafish behavior represents a cornerstone upon which basic researchers promise to advance knowledge in life sciences. Although zebrafish swim in a three-dimensional (3D) space, their behavior in the lab is almost exclusively scored in two dimensions, whereby zebrafish are recorded using a single camera providing 2D videos. Whether this dimensional reduction preserves the reliability of data has not been addressed. Here we show that, compared to a 3D observation, 2D data are flawed by over-reporting and under-reporting of locomotory differences. Specifically, we first reconstructed 3D trajectories through the integration of synchronous information derived from two cameras, and then compared them with the original 2D views in classical experimental paradigms assessing shoaling tendency, fear, anxiety, and general locomotion. Our results suggest that traditional behavioral scoring of individual zebrafish performed in 2D may undermine data integrity, thereby requiring a general reconsideration of scoring zebrafish behavior to incorporate a 3D approach. We then demonstrate that, compared to 2D, a 3D approach requires a reduced number of subjects to achieve the same degree of validity. We anticipate these findings to largely benefit animal welfare by reducing the number of experimental subjects, without affecting statistical power.
Collapse
|
49
|
Kacprzak V, Patel NA, Riley E, Yu L, Yeh JRJ, Zhdanova IV. Dopaminergic control of anxiety in young and aged zebrafish. Pharmacol Biochem Behav 2017; 157:1-8. [PMID: 28408289 DOI: 10.1016/j.pbb.2017.01.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 01/26/2023]
Abstract
Changes in the expression of the dopamine transporter (DAT), or the sensitivity of dopamine receptors, are associated with aging and substance abuse and may underlie some of the symptoms common to both conditions. In this study, we explored the role of the dopaminergic system in the anxiogenic effects of aging and acute cocaine exposure by comparing the behavioral phenotypes of wild type (WT) and DAT knockout zebrafish (DAT-KO) of different ages. To determine the involvement of specific dopamine receptors in anxiety states, antagonists to D1 (SCH23390) and D2/D3 (sulpiride) were employed. We established that DAT-KO results in a chronic anxiety-like state, seen as an increase in bottom-dwelling and thigmotaxis. Similar effects were produced by aging and acute cocaine administration, both leading to reduction in DAT mRNA abundance (qPCR). Inhibition of D1 activity counteracted the anxiety-like effects associated with DAT deficit, independent of its origin. Inhibition of D2/D3 receptors reduced anxiety in young DAT-KO, and enhanced the anxiogenic effects of cocaine in WT, but did not affect aged WT or DAT-KO fish. These findings provide new evidence that the dopaminergic system plays a critical role in anxiety-like states, and suggest that adult zebrafish provide a sensitive diurnal vertebrate model for elucidating the molecular mechanisms of anxiety and a platform for anxiolytic drug screens.
Collapse
Affiliation(s)
- Victoria Kacprzak
- Boston University School of Medicine, Lab of Sleep and Circadian Physiology, R-911, 72 E. Concord St., Boston, MA 02118, United States.
| | - Neil A Patel
- Boston University School of Medicine, Lab of Sleep and Circadian Physiology, R-911, 72 E. Concord St., Boston, MA 02118, United States.
| | - Elizabeth Riley
- Boston University School of Medicine, Lab of Sleep and Circadian Physiology, R-911, 72 E. Concord St., Boston, MA 02118, United States.
| | - Lili Yu
- Boston University School of Medicine, Lab of Sleep and Circadian Physiology, R-911, 72 E. Concord St., Boston, MA 02118, United States.
| | - Jing-Ruey J Yeh
- Massachusetts General Hospital, Cardiovascular Research Center, 149 13th St., 4.217, Charlestown, MA 02129, United States.
| | - Irina V Zhdanova
- Boston University School of Medicine, Lab of Sleep and Circadian Physiology, R-911, 72 E. Concord St., Boston, MA 02118, United States.
| |
Collapse
|
50
|
Tran S, Fulcher N, Nowicki M, Desai P, Tsang B, Facciol A, Chow H, Gerlai R. Time-dependent interacting effects of caffeine, diazepam, and ethanol on zebrafish behaviour. Prog Neuropsychopharmacol Biol Psychiatry 2017; 75:16-27. [PMID: 28025019 DOI: 10.1016/j.pnpbp.2016.12.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/04/2016] [Accepted: 12/20/2016] [Indexed: 01/08/2023]
Abstract
Zebrafish have become a popular animal model for behavioural pharmacology due to their small size, rapid development, and amenability to high throughput behavioural drug screens. Furthermore, water-soluble compounds can be administered via immersion of the fish in the drug solution, which provides a non-invasive drug delivery method. Numerous studies have demonstrated stimulant effects of alcohol. Diazepam and caffeine, on the other hand have been found to have inhibitory effect on locomotor activity in zebrafish. However, the time-dependent changes induced by these psychoactive drugs are rarely reported, and potential drug interactions have not been examined in zebrafish, despite the translational relevance of this question. In the current study, we examine time- and dose-dependent changes in zebrafish following exposure to caffeine, diazepam, and ethanol quantifying four different behavioural parameters over a 30min recording session. We subsequently analyze potential drug-drug interactions by co-administering the three drugs in different combinations. Our time-course and dose-response analyses for each of the three drugs represent so far the most detailed studies available serving as a foundation for future psychopharmacology experiments with zebrafish. Furthermore, we report significant interactions between the three drugs corroborating findings obtained with rodent models as well as in humans, providing translational relevance for the zebrafish model.
Collapse
Affiliation(s)
- Steven Tran
- University of Toronto, Department of Cell and Systems Biology, Canada.
| | - Niveen Fulcher
- University of Toronto Mississauga, Department of Psychology, Canada
| | - Magda Nowicki
- University of Toronto Mississauga, Department of Psychology, Canada
| | - Priyanka Desai
- University of Toronto Mississauga, Department of Psychology, Canada
| | - Benjamin Tsang
- University of Toronto Mississauga, Department of Psychology, Canada
| | - Amanda Facciol
- University of Toronto Mississauga, Department of Psychology, Canada
| | - Hayden Chow
- University of Western Ontario, Department of Physiology and Pharmacology, Canada
| | - Robert Gerlai
- University of Toronto, Department of Cell and Systems Biology, Canada; University of Toronto Mississauga, Department of Psychology, Canada.
| |
Collapse
|