1
|
Dos Santos MA, Bortolin RH, Cerda A, de Oliveira R, Stefani TIM, Fajardo CM, Dorea EL, Bernik MMS, Damasceno NRT, Hirata MH, Hirata RDC. Variants in GHRL, RETN, and PLIN1 are associated with obesity, diabetes, and metabolic syndrome, and influence food consumption in adults with obesity. Nutr Res 2025; 134:13-23. [PMID: 39826191 DOI: 10.1016/j.nutres.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025]
Abstract
Genetic and environmental factors have important role in the pathogenesis of obesity and metabolic diseases. We hypothesized that genes involved in energy intake, cellular lipid metabolism and pro-inflammatory adipokines influence obesity-related metabolic disturbances and food intake. We explored the association of GHRL (rs26311G>C and rs4684677A>T), PLIN1 (rs2289487G>A and rs894160G>A), RETN (rs3745367C>T and rs7408174G>A), and NAMPT (rs1319501T>C) variants with obesity, metabolic and inflammatory markers, and food intake composition. Clinical, anthropometric, and laboratory data were obtained from 237 adults. Genomic DNA was extracted and genetic variants were analyzed by real-time polymerase chain reaction. Food intake was assessed in 81 subjects with obesity, who underwent a 9-week nutritional orientation program. Multivariate logistic regression analysis adjusted by covariates showed association of GHRL rs26311-G and rs4684677-A alleles with risk of type 2 diabetes (T2D) and/or metabolic syndrome (P < .05), and RETN rs7408174-C allele with risk of T2D and obesity (P < .05). Covariate-adjusted multivariate linear regression analysis showed association of PLIN1 rs894160-G allele with increased waist-to-hip ratio (P = .003). The nutritional orientation program reduced carbohydrate and total fat intake, in subjects with obesity (P < .05). Analysis of basal data revealed associations of PLIN1 rs894160-G with increased body mass index, PLIN1 rs2289487-A with reduced intake of total fat, monosaturated fatty acids and cholesterol, and RETN rs3745367-A with increased intake of protein and saturated fatty acids (P < .05). GHRL rs26311-G was associated with increased postprogram protein intake (P = .044). In conclusion, variants in GHRL, RETN, and PLIN1 are associated with obesity, T2D, metabolic syndrome, and increased waist-to-hip ratio, and influence food consumption in adults with obesity.
Collapse
Affiliation(s)
- Marina Aparecida Dos Santos
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, United States
| | - Alvaro Cerda
- Department of Basic Sciences, Center of Excellence in Translational Medicine, CEMT-BIOREN, Universidad de La Frontera, Temuco 4810296, Chile
| | - Raquel de Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Tamires Invencioni Moraes Stefani
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Cristina Moreno Fajardo
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Egídio Lima Dorea
- Medical Clinic Division, University Hospital, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | | | | | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| |
Collapse
|
2
|
Bakhashab S, Batarfi AA, Alhartani MM, Turki R, Mady W. Genetic Association Between Polycystic Ovary Syndrome and the APOA5 rs662799 and PLIN1 rs894160 Metabolic Variants in the Western Saudi Population: A Case-Control Study. Biomark Insights 2024; 19:11772719241258585. [PMID: 38887365 PMCID: PMC11181890 DOI: 10.1177/11772719241258585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a common endocrinological condition affecting women of reproductive age, associated with insulin resistance and obesity. PCOS pathogenesis is complex and multifactorial, involving genetic and environmental factors. Objectives This study aimed to determine and compare genotype and allele frequencies of single nucleotide polymorphisms (SNPs) in the apolipoprotein A5 (APOA5; rs662799) and perilipin 1 (PLIN1; rs894160, rs1052700 and rs6496589) genes in Western Saudi women to investigate their association with PCOS and its clinical characteristics. Design and methods This was a case-control study conducted on women with (n = 104) and without (n = 87) PCOS. The SNPs were genotyped using TaqMan genotyping assays. Results Significant and direct associations were detected between PCOS susceptibility and APOA5 SNP rs662799 and PLIN1 SNP rs894160 (P < .001). For APOA5 SNP rs662799, women with the A allele were more likely to have PCOS (relative risk [RR] = 1.348, odds ratio [OR] = 2.313, P < .001) and hypertriglyceridaemia (OR = 17.0, P = .5) than women with the G allele. For PLIN1 SNP rs894160, women with the T allele were more likely to have PCOS than women with the C allele (RR = 8.043, OR = 7.427, P < .001). For PLIN1 SNP rs1052700, women with the TT genotype were more likely to have hyperandrogenism (OR = 29.75, P = .02) and an irregular period (OR = 0.07, P = .040) than women with the AT genotype. Conclusion We identified novel alleles and genotypes contributing to the genetic risk of PCOS in the Western Saudi population.
Collapse
Affiliation(s)
- Sherin Bakhashab
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asma A Batarfi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahinar M Alhartani
- College of Medicine and Surgery, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Rola Turki
- Department of Obstetrics and Gynaecology, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Wessam Mady
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Vourdoumpa A, Paltoglou G, Charmandari E. The Genetic Basis of Childhood Obesity: A Systematic Review. Nutrients 2023; 15:1416. [PMID: 36986146 PMCID: PMC10058966 DOI: 10.3390/nu15061416] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Overweight and obesity in childhood and adolescence represents one of the most challenging public health problems of our century owing to its epidemic proportions and the associated significant morbidity, mortality, and increase in public health costs. The pathogenesis of polygenic obesity is multifactorial and is due to the interaction among genetic, epigenetic, and environmental factors. More than 1100 independent genetic loci associated with obesity traits have been currently identified, and there is great interest in the decoding of their biological functions and the gene-environment interaction. The present study aimed to systematically review the scientific evidence and to explore the relation of single-nucleotide polymorphisms (SNPs) and copy number variants (CNVs) with changes in body mass index (BMI) and other measures of body composition in children and adolescents with obesity, as well as their response to lifestyle interventions. Twenty-seven studies were included in the qualitative synthesis, which consisted of 7928 overweight/obese children and adolescents at different stages of pubertal development who underwent multidisciplinary management. The effect of polymorphisms in 92 different genes was assessed and revealed SNPs in 24 genetic loci significantly associated with BMI and/or body composition change, which contribute to the complex metabolic imbalance of obesity, including the regulation of appetite and energy balance, the homeostasis of glucose, lipid, and adipose tissue, as well as their interactions. The decoding of the genetic and molecular/cellular pathophysiology of obesity and the gene-environment interactions, alongside with the individual genotype, will enable us to design targeted and personalized preventive and management interventions for obesity early in life.
Collapse
Affiliation(s)
- Aikaterini Vourdoumpa
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece
| | - George Paltoglou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece
- Division of Endocrinology and Metabolism, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
4
|
Tan PY, Moore JB, Bai L, Tang G, Gong YY. In the context of the triple burden of malnutrition: A systematic review of gene-diet interactions and nutritional status. Crit Rev Food Sci Nutr 2022; 64:3235-3263. [PMID: 36222100 PMCID: PMC11000749 DOI: 10.1080/10408398.2022.2131727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Genetic background interacts with dietary components to modulate nutritional health status. This study aimed to review the evidence for gene-diet interactions in all forms of malnutrition. A comprehensive systematic literature search was conducted through April 2021 to identify observational and intervention studies reporting the effects of gene-diet interactions in over-nutrition, under-nutrition and micronutrient status. Risk of publication bias was assessed using the Quality Criteria Checklist and a tool specifically designed for gene-diet interaction research. 167 studies from 27 populations were included. The majority of studies investigated single nucleotide polymorphisms (SNPs) in overnutrition (n = 158). Diets rich in whole grains, vegetables, fruits and low in total and saturated fats, such as Mediterranean and DASH diets, showed promising effects for reducing obesity risk among individuals who had higher genetic risk scores for obesity, particularly the risk alleles carriers of FTO rs9939609, rs1121980 and rs1421085. Other SNPs in MC4R, PPARG and APOA5 genes were also commonly studied for interaction with diet on overnutrition though findings were inconclusive. Only limited data were found related to undernutrition (n = 1) and micronutrient status (n = 9). The findings on gene-diet interactions in this review highlight the importance of personalized nutrition, and more research on undernutrition and micronutrient status is warranted.
Collapse
Affiliation(s)
- Pui Yee Tan
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, United Kingdom
| | - J. Bernadette Moore
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, United Kingdom
| | - Ling Bai
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, United Kingdom
- School of Psychology, University of East Anglia, Norwich, United Kingdom
| | - GuYuan Tang
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, United Kingdom
| | - Yun Yun Gong
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
5
|
Polymorphism PLIN1 11482 G>A interacts with dietary intake to modulate anthropometric measures and lipid profile in adults with normal-weight obesity syndrome. Br J Nutr 2022; 128:1004-1012. [PMID: 34725012 DOI: 10.1017/s0007114521004396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Evidence shows that genetic polymorphisms in perilipin 1 gene (PLIN1) are associated with excessive accumulation of body fat and disturbances in cardiometabolic markers. Therefore, the aim of this study was to verify whether the SNP PLIN1 11482 G>A (rs894160) interacts with nutrient intake, anthropometric, body composition and cardiometabolic markers in adults with normal-weight obesity (NWO) syndrome. A cross-sectional study was carried out with 116 individuals aged 20-59 years, with normal BMI and high percentage of body fat. Anthropometric and body composition measures, glycaemic control and serum lipid markers, SNP PLIN1 11482 G>A and nutrient intake were evaluated. Interactions between nutrient intake and the SNP were determined by regression models and adjusted for potential confounders. The SNP frequency was 56·0 % GG, 38·8 % GA and 5·2 % AA. Anthropometric measures and biochemical markers were not different according to genotype, except for total cholesterol (TC), LDL-cholesterol and non-HDL-cholesterol concentrations. However, important interactions between the SNP and dietary intake were observed. Carbohydrate intake interacted with the SNP PLIN1 11482 G>A to modulate waist circumference (WC) and the homeostatic model assessment of insulin resistance index. Interaction of lipid intake and the SNP modulated TC and LDL-cholesterol concentrations, and the interaction between protein intake and the SNP tended to modulate weight, WC and BMI. The SNP PLIN1 11482 G>A seems to modulate responses in anthropometric and lipid profile biomarkers of subjects with NWO depending on the dietary macronutrient composition, which may have long-term impact on cardiometabolic markers.
Collapse
|
6
|
Iłowiecka K, Glibowski P, Libera J, Koch W. Changes in Novel Anthropometric Indices of Abdominal Obesity during Weight Loss with Selected Obesity-Associated Single-Nucleotide Polymorphisms: A Small One-Year Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11837. [PMID: 36142109 PMCID: PMC9517315 DOI: 10.3390/ijerph191811837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Whether BMI and the competing waist circumference (WC)-based anthropometric indices are associated with obesity-related single-nucleotide polymorphisms (SNPs) is as yet unknown. The current study aimed to evaluate the anthropometric indices (fat mass index, body shape index, visceral adiposity index, relative fat mass, body roundness index, and conicity index) during a weight loss intervention in 36 obese individuals. Blood biochemical parameters (total cholesterol, low-density lipoprotein, high-density lipoprotein, and triglycerides) and three SNPs (FTO rs9939609, TFAP2B rs987237, and PLIN1 rs894160) were assessed in 22 women and 14 men (35.58 ± 9.85 years, BMI 35.04 ± 3.80 kg/m2) who completed a 12-month balanced energy-restricted diet weight loss program. Body composition was assessed via bioelectrical impedance (SECA mBCA515). At the end of the weight loss intervention, all anthropometric indices were significantly reduced (p < 0.05). For the SNP FTO rs9939609, the higher risk allele (A) was characteristic of 88.9% of the study group, in which 10 participants (27.8%) were homozygous. We found a similar distribution of alleles in TFAP2B and PLIN1. Heterozygous genotypes in FTO rs9939609 and TFAP2B rs987237 were predisposed to significant reductions in WC-based novel anthropometric indices during weight loss. The influence of PLIN1 rs894160 polymorphisms on the changes in the analyzed indices during weight loss has not been documented in the present study.
Collapse
Affiliation(s)
- Katarzyna Iłowiecka
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
| | - Paweł Glibowski
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Science in Lublin, 8 Skromna Str., 20-704 Lublin, Poland
| | - Justyna Libera
- Division of Engineering and Cereals Technology, Department of Plant Food Technology and Gastronomy, University of Life Sciences, 8 Skromna Str., 20-704 Lublin, Poland
| | - Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
| |
Collapse
|
7
|
Vales-Villamarín C, Lumpuy-Castillo J, Gavela-Pérez T, de Dios O, Pérez-Nadador I, Soriano-Guillén L, Garcés C. Sex-Dependent Mediation of Leptin in the Association of Perilipin Polymorphisms with BMI and Plasma Lipid Levels in Children. Nutrients 2022; 14:nu14153072. [PMID: 35893926 PMCID: PMC9332311 DOI: 10.3390/nu14153072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Variations in the perilipin (PLIN) gene have been suggested to be associated with obesity and its related alterations, but a different nutritional status seems to contribute to differences in these associations. In our study, we examined the association of several polymorphisms at the PLIN locus with obesity and lipid profile in children, and then analyzed the mediation of plasma leptin levels on these associations. The single-nucleotide polymorphisms (SNPs) rs894160, rs1052700, and rs2304795 in PLIN1, and rs35568725 in PLIN2, were analyzed by RT-PCR in 1264 children aged 6–8 years. Our results showed a contrasting association of PLIN1 rs1052700 with apolipoprotein (Apo) A-I levels in boys and girls, with genotype TT carriers showing significantly higher Apo A-I levels in boys and significantly lower Apo A-I levels in girls. Significant associations of the SNP PLIN2 rs35568725 with high-density lipoprotein cholesterol (HDL-cholesterol), Apo A-I, and non-esterified fatty acids (NEFA) were observed in boys but not in girls. The associations of the SNPs studied with body mass index (BMI), NEFA, and Apo A-I in boys and girls were different depending on leptin concentration. In conclusion, we describe the mediation of plasma leptin levels in the association of SNPs in PLIN1 and PLIN2 with BMI, Apo A-I, and NEFA. Different leptin levels by sex may contribute to explain the sex-dependent association of the PLIN SNPs with these variables.
Collapse
Affiliation(s)
- Claudia Vales-Villamarín
- Lipid Research Laboratory, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain; (C.V.-V.); (O.d.D.); (I.P.-N.)
| | - Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, UAM, 28040 Madrid, Spain;
| | - Teresa Gavela-Pérez
- Department of Pediatrics, IIS-FJD, 28040 Madrid, Spain; (T.G.-P.); (L.S.-G.)
| | - Olaya de Dios
- Lipid Research Laboratory, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain; (C.V.-V.); (O.d.D.); (I.P.-N.)
| | - Iris Pérez-Nadador
- Lipid Research Laboratory, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain; (C.V.-V.); (O.d.D.); (I.P.-N.)
| | | | - Carmen Garcés
- Lipid Research Laboratory, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain; (C.V.-V.); (O.d.D.); (I.P.-N.)
- Correspondence: ; Tel.: +34-91-5404892
| |
Collapse
|
8
|
A Clinical-Genetic Score for Predicting Weight Loss after Bariatric Surgery: The OBEGEN Study. J Pers Med 2021; 11:jpm11101040. [PMID: 34683180 PMCID: PMC8537695 DOI: 10.3390/jpm11101040] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022] Open
Abstract
Around 30% of the patients that undergo bariatric surgery (BS) do not reach an appropriate weight loss. The OBEGEN study aimed to assess the added value of genetic testing to clinical variables in predicting weight loss after BS. A multicenter, retrospective, longitudinal, and observational study including 416 patients who underwent BS was conducted (Clinical.Trials.gov- NCT02405949). 50 single nucleotide polymorphisms (SNPs) from 39 genes were examined. Receiver Operating Characteristic (ROC) curve analysis were used to calculate sensitivity and specificity. Satisfactory response to BS was defined as at nadir excess weight loss >50%. A good predictive model of response [area under ROC of 0.845 (95% CI 0.805–0.880), p < 0.001; sensitivity 90.1%, specificity 65.5%] was obtained by combining three clinical variables (age, type of surgery, presence diabetes) and nine SNPs located in ADIPOQ, MC4R, IL6, PPARG, INSIG2, CNR1, ELOVL6, PLIN1 and BDNF genes. This predictive model showed a significant higher area under ROC than the clinical score (p = 0.0186). The OBEGEN study shows the key role of combining clinical variables with genetic testing to increase the predictability of the weight loss response after BS. This finding will permit us to implement a personalized medicine which will be associated with a more cost-effective clinical practice.
Collapse
|
9
|
Iłowiecka K, Glibowski P, Skrzypek M, Styk W. The Long-Term Dietitian and Psychological Support of Obese Patients Who Have Reduced Their Weight Allows Them to Maintain the Effects. Nutrients 2021; 13:nu13062020. [PMID: 34208363 PMCID: PMC8231289 DOI: 10.3390/nu13062020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/25/2022] Open
Abstract
The role of post-therapeutic support after weight loss in obesity treatment is not fully understood. Therefore, weight maintenance after a successful weight loss intervention is not very common, especially in obese individuals. This randomized controlled study was conducted to explore the efficacy of following dietary and psychological support in a group of 36 obese individuals. Participants (22 women, 14 men aged 35.58 ± 9.85 years, BMI 35.04 ± 3.80 kg/m2) who completed a 12-month weight loss phase (balanced energy-restricted diet) were randomly allocated to receive 18-month support (SG) or no additional care (CG). The support phase included some elements of Ten Top Tips (TTT), cognitive behavioral therapy (CBT), motivational interviewing (MI) in combination with nutritional education and assessment of the level of physical activity. The primary outcome was the maintenance of anthropometric parameters at an 18-month follow-up. The secondary outcomes included evaluation of biochemical parameters and single nucleotide polymorphisms (SNPs) in genes connected with obesity. A comparison of SG vs. CG after a 30-month period of the study revealed significant differences in weight changes (−3.83 ± 6.09 vs. 2.48 ± 6.24 kg), Body Mass Index (−1.27 ± 2.02 vs. 0.72 ± 2.12 kg/m2), visceral adipose tissue (−0.58 ± 0.63 vs. 0.45 ± 0.74 L), and waist circumference (−4.83 ± 4.05 vs. 1.83 ± 5.97 cm). Analysis of SNPs (rs9939609 FTO, rs987237 TFAP2B, and rs894160 PLIN1) provided further insight into the potential modulating effect of certain genotypes on weight loss and maintenance and extended the knowledge of the potential benefits of personalized medicine. Post-therapeutical support in current clinical practice may increase the chances of long-term weight loss maintenance in obesity treatment even in patients with a genetic predisposition to excessive weight.
Collapse
Affiliation(s)
- Katarzyna Iłowiecka
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
| | - Paweł Glibowski
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
- Correspondence: ; Tel.: +48-(81)-462-33-49
| | - Michał Skrzypek
- Department of Clinical Dietetics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Wojciech Styk
- Institute of Psychology, The John Paul II Catholic University of Lublin, 20-950 Lublin, Poland;
| |
Collapse
|
10
|
Extracellular vesicles and their role in gestational diabetes mellitus. Placenta 2021; 113:15-22. [PMID: 33714611 DOI: 10.1016/j.placenta.2021.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/19/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
Gestational diabetes mellitus (GDM) is a complex disorder that is defined by glucose intolerance with onset during pregnancy. The incidence of GDM is increasing worldwide. Pregnancies complicated with GDM have higher rates of maternal and fetal morbidity with short- and long-term consequences, including increased rates of cardiovascular disease and type II diabetes for both the mother and offspring. The pathophysiology of GDM still remains unclear and there has been interest in the role of small extracellular vesicles (sEVs) in the maternal metabolic adaptations that occur in pregnancy and GDM. Small EVs are nanosized particles that contain bioactive content, including miRNAs and proteins, which are released by cells to provide cell-to-cell communication. Pregnancy induces an increase in total and placental-secreted sEVs across gestation, with a further increase in sEV number and changes in the protein and miRNA composition of these sEVs in GDM. Research has suggested that these sEVs have an impact on maternal adaptations during pregnancy, including targeting the pancreas, skeletal muscle and adipose tissue. Consequently, this review will focus on the differences in total and placental sEVs in GDM compared to normal pregnancy, the role of sEVs in the pathophysiology of GDM and their clinical application as potential GDM biomarkers.
Collapse
|
11
|
Abstract
Obesity is associated with an increased risk of various diseases and mortality. Although nearly 50 % of adults have been reported trying to lose weight, the prevalence of obesity has increased. One factor that hinders weight loss-induced decrease in obesity prevalence is weight regain. Although behavioural, psychological and physiological factors associated with weight regain have been reviewed, the information regarding the relationship between weight regain and genetics has not been previously summarised. In this paper, we comprehensively review the association between genetic polymorphisms and weight regain in adults and children with obesity after weight loss. Based on this information, identification of genetic polymorphism in patients who undergo weight loss intervention might be used to estimate their risks of weight regain. Additionally, the genetic-based risk estimation may be used as a guide for physicians and dietitians to provide each of their patients with the most appropriate strategies for weight loss and weight maintenance.
Collapse
|
12
|
Powrózek T, Brzozowska A, Mazurek M, Prendecka M, Homa-Mlak I, Mlak R, Małecka-Massalska T. AA genotype of PLIN1 13041A>G as an unfavourable predictive factor of malnutrition associated with fat mass loss in locally advanced head and neck cancer male patients treated with radiotherapy. Support Care Cancer 2020; 29:1923-1932. [PMID: 32803726 PMCID: PMC7892500 DOI: 10.1007/s00520-020-05675-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 08/06/2020] [Indexed: 12/18/2022]
Abstract
Introduction Malnutrition is a frequently diagnosed condition in head and neck cancer (HNC) patients after radiation therapy (RTH). Malnutrition causes adipose tissue dysfunction associated with intensified lipolysis and disruption of the activity of mechanisms that protect adipose tissue against this process, which include the protective function of perilipin. Material and methods The purpose of this study was the evaluation of the predictive value of 13041A>G PLIN1 polymorphism in the development of malnutrition related to adipose tissue loss in a group of 80 patients with locally advanced HNC treated by means of radical radiation therapy. Results After the completion of RTH, men with AA genotype had significantly lower fat mass (FM compared to men with G haplotype; FM: 13.84 ± 6.36 kg and 19.06 ± 6.30 kg (p = 0.009). In consequence of RTH, the AA genotype carriers lost an average of 37.01% adipose tissue mass and patients with GA and GG genotypes lost 12.82 and 0.31% (p = 0.035), respectively. AA genotype was also associated with higher chance of ≥ 10%, ≥ 20% and ≥ 30% FM loss in the course of RTH (OR = 13.78; 5.78; 2.28). Conclusions The evaluation of such molecular factors as SNP 13041A>G may have higher predictive value in the development of malnutrition associated with severe loss of fat mass than the subjective scales, e.g., SGA and NRS-2002. The presence of AA genotype on men with HNC before RTH may facilitate earlier nutritional intervention and supportive treatment aimed at limiting or preventing body mass and fat mass loss during the applied treatment. Electronic supplementary material The online version of this article (10.1007/s00520-020-05675-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tomasz Powrózek
- Department of Human Physiology, Medical University of Lublin, Lublin, Poland.
| | - Anna Brzozowska
- St. John of Dukla Lublin Region Cancer Center, Lublin, Poland
| | - Marcin Mazurek
- Department of Human Physiology, Medical University of Lublin, Lublin, Poland
| | - Monika Prendecka
- Department of Human Physiology, Medical University of Lublin, Lublin, Poland
| | - Iwona Homa-Mlak
- Department of Human Physiology, Medical University of Lublin, Lublin, Poland
| | - Radosław Mlak
- Department of Human Physiology, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
13
|
Cuevas-Sierra A, Riezu-Boj JI, Guruceaga E, Milagro FI, Martínez JA. Sex-Specific Associations between Gut Prevotellaceae and Host Genetics on Adiposity. Microorganisms 2020; 8:E938. [PMID: 32580458 PMCID: PMC7356943 DOI: 10.3390/microorganisms8060938] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/06/2020] [Accepted: 06/19/2020] [Indexed: 01/01/2023] Open
Abstract
The gut microbiome has been recognized as a tool for understanding adiposity accumulation and for providing personalized nutrition advice for the management of obesity and accompanying metabolic complications. The genetic background is also involved in human energy homeostasis. In order to increase the value of nutrigenetic dietary advice, the interplay between genetics and microbiota must be investigated. The purpose of the present study was to evaluate interactive associations between gut microbiota composition and 95 obesity-related single nucleotide polymorphisms (SNPs) searched in the literature. Oral mucosa and fecal samples from 360 normal weight, overweight and obese subjects were collected. Next generation genotyping of these 95 SNPs and fecal 16S rRNA sequencing were performed. A genetic risk score (GRS) was constructed with 10 SNPs statistically or marginally associated with body mass index (BMI). Several microbiome statistical analyses at family taxonomic level were applied (LEfSe, Canonical Correspondence Analysis, MetagenomeSeq and Random Forest), and Prevotellaceae family was found in all of them as one of the most important bacterial families associated with BMI and GRS. Thus, in this family it was further analyzed the interactive association between BMI and GRS with linear regression models. Interestingly, women with higher abundance of Prevotellaceae and higher GRS were more obese, compared to women with higher GRS and lower abundance of Prevotellaceae. These findings suggest relevant interrelationships between Prevotellaceae and the genetic background that may determine interindividual BMI differences in women, which opens the way to new precision nutrition-based treatments for obesity.
Collapse
Affiliation(s)
- Amanda Cuevas-Sierra
- Department of Nutrition, Food Science, and Physiology, and Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (A.C.-S.); (J.I.R.-B.); (J.A.M.)
| | - José Ignacio Riezu-Boj
- Department of Nutrition, Food Science, and Physiology, and Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (A.C.-S.); (J.I.R.-B.); (J.A.M.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain;
| | - Elizabeth Guruceaga
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain;
- Proteomics, Genomics and Bioinformatics Core Facility, Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain
| | - Fermín Ignacio Milagro
- Department of Nutrition, Food Science, and Physiology, and Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (A.C.-S.); (J.I.R.-B.); (J.A.M.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain;
- Centro de Investigacion Biomedica en Red Fisiopatología de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Alfredo Martínez
- Department of Nutrition, Food Science, and Physiology, and Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (A.C.-S.); (J.I.R.-B.); (J.A.M.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain;
- Centro de Investigacion Biomedica en Red Fisiopatología de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
14
|
Qiao J, Sun Y, Wu J, Wang L. Investigation of the underling mechanism of ketamine for antidepressant effects in treatment-refractory affective disorders via molecular profile analysis. Exp Ther Med 2019; 18:580-588. [PMID: 31281445 PMCID: PMC6580107 DOI: 10.3892/etm.2019.7633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 01/24/2019] [Indexed: 11/08/2022] Open
Abstract
Ketamine elicits a rapid antidepressant effect in treatment-refractory affective disorders. The aim of the present study was to elucidate the underlying mechanism of this effect and to identify potential targets of ketamine for antidepressant effects. GSE73798 and GSE73799 datasets were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified in hippocampus or striatum samples treated with ketamine, phencyclidyne or memantine compared with a saline or normal group at 1, 2, 4 and 8 h. The overlapping DEGs were the DEGs in both hippocampus and striatum samples. Kyoto Encyclopedia of Genes and Genomes and BioCyc databases were used to perform functional annotation and pathway analyses. Protein-protein interactions (PPIs) were predicted using Search Tool for the Retrieval of Interacting Genes/Proteins version 9.1 for the DEGs in the striatum samples treated with ketamine, phencyclidine or memantine compared with normal samples. Reverse transcription-quantitative polymerase chain reaction was performed to determine mRNA levels. Perilipin 4 (Plin4), serum/glucocorticoid regulated kinase 1 (Sgk1), kruppel like factor 2 (Klf2) and DDB1 and CUL4 associated factor 12 like 1 (Dcaf12l1) were the overlapping DEGs in the striatum samples treated with the three drugs at different time points. The mRNA expression levels of Plin4, Sgk1 and Klf2 were significantly higher (P<0.05), and the mRNA expression level of Dcaf12l1 was significantly lower in the striatum samples of the ketamine-treated group compared with the control group in an in vivo experiment. Both Sgk1 and Klf2 were enriched in the ‘forkhead box O (FoxO) signaling pathway’, and Sgk1 was additionally enriched in the ‘mechanistic target of rapamycin kinase (mTOR) signaling pathway’. PPI networks of DEGs in the striatum samples treated with ketamine, phencyclidine and memantine compared with normal samples were constructed, and Klf2 was involved in more pairs and was therefore a gene hub in the three networks. The four genes, Plin4, Sgk1, Klf2 and Dcaf12l1, were differentially expressed in all of the groups that treated with the three drugs and their expression levels were verified in in vivo experiments. The FoxO and mTOR signaling pathways may be involved in the underlying mechanism of the antidepressant effects of ketamine, and Plin4, Sgk1, Klf2 and Dcaf12l1 may be potential biomarkers for depression in N-methyl-D-aspartic acid receptor antagonist treatment.
Collapse
Affiliation(s)
- Jun Qiao
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Yuan Sun
- Department of Anesthesiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jinfang Wu
- Department of Anesthesia Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Li Wang
- Department of Anesthesiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
15
|
Phenotype and genotype predictors of BMI variability among European adults. Nutr Diabetes 2018; 8:27. [PMID: 29795275 PMCID: PMC5966508 DOI: 10.1038/s41387-018-0041-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/14/2018] [Accepted: 04/09/2018] [Indexed: 01/13/2023] Open
Abstract
Background/Objective Obesity is a complex and multifactorial disease resulting from the interactions among genetics, metabolic, behavioral, sociocultural and environmental factors. In this sense, the aim of the present study was to identify phenotype and genotype variables that could be relevant determinants of body mass index (BMI) variability. Subjects/Methods In the present study, a total of 1050 subjects (798 females; 76%) were included. Least angle regression (LARS) analysis was used as regression model selection technique, where the dependent variable was BMI and the independent variables were age, sex, energy intake, physical activity level, and 16 polymorphisms previously related to obesity and lipid metabolism. Results The LARS analysis obtained the following formula for BMI explanation: (64.7 + 0.10 × age [years] + 0.42 × gender [0, men; 1, women] + −40.6 × physical activity [physical activity level] + 0.004 × energy intake [kcal] + 0.74 × rs9939609 [0 or 1–2 risk alleles] + −0.72 × rs1800206 [0 or 1–2 risk alleles] + −0.86 × rs1801282 [0 or 1–2 risk alleles] + 0.87 × rs429358 [0 or 1–2 risk alleles]. The multivariable regression model accounted for 21% of the phenotypic variance in BMI. The regression model was internally validated by the bootstrap method (r2 original data set = 0.208, mean r2 bootstrap data sets = 0.210). Conclusion In conclusion, age, physical activity, energy intake and polymorphisms in FTO, APOE, PPARG and PPARA genes are significant predictors of the BMI trait.
Collapse
|
16
|
Epigenetic Regulation of PLIN 1 in Obese Women and its Relation to Lipolysis. Sci Rep 2017; 7:10152. [PMID: 28860604 PMCID: PMC5578955 DOI: 10.1038/s41598-017-09232-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 07/17/2017] [Indexed: 02/08/2023] Open
Abstract
Increased adipocyte lipolysis links obesity to insulin resistance. The lipid droplet coating-protein Perilipin participates in regulation of lipolysis and is implicated in obesity. In the present study we investigate epigenetic regulation of the PLIN1 gene by correlating PLIN1 CpG methylation to gene expression and lipolysis, and functionally evaluating PLIN1 promoter methylation. PLIN1 CpG methylation in adipocytes and gene expression in white adipose tissue (WAT) was quantified in two cohorts by array. Basal lipolysis in WAT explants and adipocytes was quantified by measuring glycerol release. CpG-methylation of the PLIN1 promoter in adipocytes from obese women was higher as compared to never-obese women. PLIN1 promoter methylation was inversely correlated with PLIN1 mRNA expression and the lipolytic activity. Human mesenchymal stem cells (hMSCs) differentiated in vitro into adipocytes and harboring methylated PLIN1 promoter displayed decreased reporter gene activity as compared to hMSCs harboring unmethylated promoter. Treatment of hMSCs differentiated in vitro into adipocytes with a DNA methyltransferase inhibitor increased levels of PLIN1 mRNA and protein. In conclusion, the PLIN1 gene is epigenetically regulated and promoter methylation is inversely correlated with basal lipolysis in women suggesting that epigenetic regulation of PLIN1 is important for increased adipocyte lipolysis in insulin resistance states.
Collapse
|
17
|
Howell MD, Ottesen EW, Singh NN, Anderson RL, Seo J, Sivanesan S, Whitley EM, Singh RN. TIA1 is a gender-specific disease modifier of a mild mouse model of spinal muscular atrophy. Sci Rep 2017; 7:7183. [PMID: 28775379 PMCID: PMC5543135 DOI: 10.1038/s41598-017-07468-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/26/2017] [Indexed: 02/08/2023] Open
Abstract
Spinal muscular atrophy (SMA) is caused by deletions or mutations of Survival Motor Neuron 1 (SMN1) gene. The nearly identical SMN2 cannot compensate for SMN1 loss due to exon 7 skipping. The allele C (C +/+) mouse recapitulates a mild SMA-like phenotype and offers an ideal system to monitor the role of disease-modifying factors over a long time. T-cell-restricted intracellular antigen 1 (TIA1) regulates SMN exon 7 splicing. TIA1 is reported to be downregulated in obese patients, although it is not known if the effect is gender-specific. We show that female Tia1-knockout (Tia1 -/-) mice gain significant body weight (BW) during early postnatal development. We next examined the effect of Tia1 deletion in novel C +/+/Tia1 -/- mice. Underscoring the opposing effects of Tia1 deletion and low SMN level on BW gain, both C +/+ and C +/+/Tia1 -/- females showed similar BW gain trajectory at all time points during our study. We observed early tail necrosis in C +/+/Tia1 -/- females but not in males. We show enhanced impairment of male reproductive organ development and exacerbation of the C +/+/Tia1 -/- testis transcriptome. Our findings implicate a protein factor as a gender-specific modifier of a mild mouse model of SMA.
Collapse
Affiliation(s)
- Matthew D Howell
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, 50011, USA
| | - Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, 50011, USA
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, 50011, USA
| | - Rachel L Anderson
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, 50011, USA
| | - Joonbae Seo
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, 50011, USA
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | | | - Elizabeth M Whitley
- Department of Veterinary Pathology, Iowa State University, Ames, IA, 50011-1250, USA
- Pathogenesis, LLC, Gainesville, Florida, 32614, USA
| | - Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, 50011, USA.
| |
Collapse
|
18
|
Aller EE, Mariman EC, Bouwman FG, van Baak MA. Genetic Predictors of ≥5% Weight Loss by Multidisciplinary Advice to Severely Obese Subjects. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2017; 10:32-42. [PMID: 28578327 PMCID: PMC5872564 DOI: 10.1159/000469662] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/09/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Weight loss success is determined by genetic factors, which may differ according to treatment strategy. METHODS From a multidisciplinary obesity treatment program involving dietary advice, psychological counseling, and increased physical activity, 587 subjects (68% female; 46.1 ± 12.4 years; BMI 39.9 ± 6.3) were recruited. At baseline, a blood sample was drawn for DNA isolation. Genotypes were determined for 30 polymorphisms in 25 candidate genes. The association between genotypes and weight loss was assessed after 3 months (short-term) and after 12 months of treatment (long-term). Weight loss was categorized as ≥5% or <5% of initial weight. RESULTS The G/G genotype of PLIN1 (rs2289487) and PLIN1 (rs2304795), the T/T genotype of PLIN1 (rs1052700), and the C/C genotype of MMP2 predicted ≥5% weight loss in the first 3 months. The C/G-G/G genotype of PPARγ (rs1801282) and the T/C genotype of TIMP4 (rs3755724) predicted ≥5% weight loss after 12 months. Subjects with the combination of PPARγ (rs1801282) C/G-G/G and TIMP4 (rs3755724) T/C lost even more weight. CONCLUSION Polymorphisms in genes related to regulation of fat storage and structural adaptation of the adipocytes are predictors for weight loss success with different genes being relevant for short-term and long-term weight loss success.
Collapse
Affiliation(s)
| | | | | | - Marleen A. van Baak
- Department of Human Biology and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
19
|
Tokgöz Y, Işık IA, Akbari S, Kume T, Sayın O, Erdal E, Arslan N. Perilipin polymorphisms are risk factors for the development of obesity in adolescents? A case-control study. Lipids Health Dis 2017; 16:52. [PMID: 28274232 PMCID: PMC5343409 DOI: 10.1186/s12944-017-0440-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/27/2017] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The variations in perilipin gene (PLIN) were previously associated with obesity. We examined the association of polymorphisms at the PLIN locus in adolescents with obesity and their connection with serum adipokines. METHODS A total of 308 children (206 obese, 66.8% and 102 healthy control, 33.2%) between the ages of 10-18 years were included into the study. PLIN gene analysis [PLIN 1, PLIN 4, PLIN 6, PLIN 5'UTR-1234 C > G and PLIN 10171 A/T] were studied by Real Time-PCR. Serum leptin, adiponectin, resistin and ghrelin levels were studied by ELISA method in both groups and their link with perilipin polymorphisms were analyzed. RESULTS Serum leptin level was found significantly high in obese adolescents. Other adipokine levels were similar in both groups. The incidence of PLIN 1, PLIN 4, PLIN 5'UTR-1234 C > G and PLIN 10171 A/T minor and major alleles was similar in both groups. PLIN 6 T/T allele was determined significantly high in obese adolescents compared to that of control group. No correlation was detected between perilipin polymorphism and serum levels of adipokines. CONCLUSION The PLIN 6 polymorphism of the perilipin gene may influence the risk of the obesity during adolescence. TRIAL REGISTRATION Retrospectively registered.
Collapse
Affiliation(s)
- Yavuz Tokgöz
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Dokuz Eylul University Faculty of Medicine, 35330 Inciraltı-Izmir, Turkey
| | - Ishak Abdurrahman Işık
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Dokuz Eylul University Faculty of Medicine, 35330 Inciraltı-Izmir, Turkey
| | - Soheil Akbari
- Department of Medical Biology, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Tuncay Kume
- Department of Biochemistry, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Oya Sayın
- Research Laboratory, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Esra Erdal
- Department of Medical Biology, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Nur Arslan
- Department of Pediatric Metabolism and Nutrition, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
20
|
|
21
|
Feng X, Wang S, Duan X, Li C, Yan Z, Feng F, Yu S, Wu Y, Wang W. An Improved PCR-RFLP Assay for the Detection of a Polymorphism rs2289487 of PLIN1 Gene. J Clin Lab Anal 2016; 30:986-989. [PMID: 27611592 DOI: 10.1002/jcla.21968] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/15/2016] [Accepted: 02/27/2016] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND In recent research, it has been shown that rs2289487 within the PLIN1 gene has different variants that have been associated with obesity, type 2 diabetes, and other diseases. However, the isochizomers such as the BsmI enzyme required for detection of this polymorphism through polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method are expensive. In this study, we aimed to explore a novel PCR-RFLP method for identifying the single-nucleotide polymorphism (SNP) of rs2289487 of PLIN1 gene. METHODS A new restriction enzyme site was created through created restriction site PCR. In the forward primer, a deoxynucleotide A was substituted with C, and after PCR a new restriction enzyme site for BstUI was introduced into the PCR products. A total of 108 samples from Han Chinese were tested to evaluate this new method. RESULTS Allele frequencies in the Asian population were 0.326 for allele A and 0.674 for allele G, and the genotype frequencies were 12.8% for AA, 39.5% for AG, and 47.7% for GG. CONCLUSION The PCR-RFLP with new site for detecting the SNP of rs2289487 is an improved method with low cost and high accuracy.
Collapse
Affiliation(s)
- Xiaolei Feng
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Sihua Wang
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoran Duan
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Chunyang Li
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhen Yan
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Feifei Feng
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Songcheng Yu
- Department of Sanitary Chemistry, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongjun Wu
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
22
|
Khare P, Jagtap S, Jain Y, Baboota RK, Mangal P, Boparai RK, Bhutani KK, Sharma SS, Premkumar LS, Kondepudi KK, Chopra K, Bishnoi M. Cinnamaldehyde supplementation prevents fasting-induced hyperphagia, lipid accumulation, and inflammation in high-fat diet-fed mice. Biofactors 2016; 42:201-11. [PMID: 26893251 DOI: 10.1002/biof.1265] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 12/16/2022]
Abstract
Cinnamaldehyde, a bioactive component of cinnamon, is increasingly gaining interest for its preventive and therapeutic effects against metabolic complications like type-2 diabetes. This study is an attempt to understand the effect of cinnamaldehyde in high-fat diet (HFD)-associated increase in fasting-induced hyperphagia and related hormone levels, adipose tissue lipolysis and inflammation, and selected cecal microbial count in mice. Cinnamaldehyde, at 40 µM dose, prevented lipid accumulation and altered gene expression toward lipolytic phenotype in 3T3-L1 preadipocyte cell lines. In vivo, cinnamaldehyde coadministration prevented HFD-induced body weight gain, decreased fasting-induced hyperphagia, as well as circulating leptin and leptin/ghrelin ratio. In addition to that, cinnamaldehyde altered serum biochemical parameters related to lipolysis, that is, glycerol and free fatty acid levels. At transcriptional level, cinnamaldehyde increased anorectic gene expression in hypothalamus and lipolytic gene expression in visceral white adipose tissue. Furthermore, cinnamaldehyde also decreased serum IL-1β and inflammatory gene expression in visceral white adipose tissue. However, cinnamaldehyde did not modulate the population of selected gut microbial (Lactobacillus, Bifidibaceria, and Roseburia) count in cecal content. In conclusion, cinnamaldehyde increased adipose tissue lipolysis, decreased fasting-induced hyperphagia, normalized circulating levels of leptin/ghrelin ratio, and reduced inflammation in HFD-fed mice, which augurs well for its antiobesity role.
Collapse
Affiliation(s)
- Pragyanshu Khare
- National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab, India
- Department of Pharmacology, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, India
| | - Sneha Jagtap
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, India
| | - Yachna Jain
- National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab, India
| | - Ritesh K Baboota
- National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab, India
| | - Priyanka Mangal
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, India
| | - Ravneet K Boparai
- Department of Biotechnology, Government College for Girls-Sector 42, Chandigarh, India
| | - Kamlesh K Bhutani
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, India
| | - Shyam S Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, India
| | - Louis S Premkumar
- Department of Pharmacology, Southern Illinois University-School of Medicine, Springfield, IL, USA
| | - Kanthi K Kondepudi
- National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab, India
| | - Kanwaljit Chopra
- Department of Pharmacology, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, India
| | - Mahendra Bishnoi
- National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab, India
| |
Collapse
|
23
|
Luglio HF, Sulistyoningrum DC, Susilowati R. The role of genes involved in lipolysis on weight loss program in overweight and obese individuals. J Clin Biochem Nutr 2015; 57:91-7. [PMID: 26388665 PMCID: PMC4566022 DOI: 10.3164/jcbn.14-117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/23/2014] [Indexed: 01/22/2023] Open
Abstract
The ability of obese people to reduce weight in the same treatment varied. Genetic make up as well as the behavioral changes are important for the successfulness of the program. One of the most proposed genetic variations that have been reported in many intervention studies was genes that control lipolysis process. This review summarizes studies that were done showing the influence of genetic polymorphisms in lipolysis pathway and weight loss in a weight loss treatment program. Some studies had shown that certain enzymes involved in this process were related to successfulness of weight loss program. Single Nucleotide Polymorphism (SNP) in PLIN (11482G>A) and ADRB3 (Trp64Arg) are the most studied polymorphisms that have effect on weight loss intervention. However, those studies were not conclusive because of limited number of subjects used and controversies in the results. Thus, replication and confirmation on the role of those genes in weight loss are important due to their potential to be used as predictors of the results of the program.
Collapse
Affiliation(s)
- Harry Freitag Luglio
- Department of Health Nutrition, Faculty of Medicine, Universitas Gadjah Mada, Jl. Farmako, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Dian Caturini Sulistyoningrum
- Department of Health Nutrition, Faculty of Medicine, Universitas Gadjah Mada, Jl. Farmako, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Rina Susilowati
- Department of Histology and Cell Biology, Faculty of Medicine, Universitas Gadjah Mada, Jl. Farmako, Sekip Utara, Yogyakarta 55281, Indonesia
| |
Collapse
|
24
|
Goni L, Cuervo M, Milagro FI, Martínez JA. Future Perspectives of Personalized Weight Loss Interventions Based on Nutrigenetic, Epigenetic, and Metagenomic Data. J Nutr 2015; 146:905S-912S. [PMID: 26962191 DOI: 10.3945/jn.115.218354] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/21/2015] [Accepted: 09/23/2015] [Indexed: 12/24/2022] Open
Abstract
As obesity has become a major global public health challenge, a large number of studies have analyzed different strategies aimed at inducing a negative energy balance and, consequently, body weight loss. However, most existing weight loss programs are generally unsuccessful, so several interventions have been carried out to identify physiologic and behavioral factors concerning this variability in order to implement more personalized treatment. Nowadays, an individualized approach is being proposed through so-called personalized nutrition, whereby not only the phenotype but also the genotype is used for customized nutrition treatment. Regarding body weight regulation, ∼70 polymorphisms have been identified in or near genes related to energy expenditure, appetite, adipogenesis, insulin resistance, and lipid metabolism. Although personalized nutrition refers mainly to genetic makeup, recent advances in the investigation of the epigenome and the microbiome open the door to implement more personalized recommendations for body weight management. In this context, recent studies have demonstrated the existence of several epigenetic markers that may modify gene expression and could be involved in the outcome of weight loss interventions. Moreover, different studies have shown that dietary interventions could affect the composition of gut microbiota and have an impact on body weight. The integration of nutrigenetic, epigenetic, and metagenomic data may lead to the design of more personalized dietary treatments to prevent chronic diseases and to optimize the individual's response to dietary interventions.
Collapse
Affiliation(s)
- Leticia Goni
- Department of Nutrition, Food Sciences, and Physiology, University of Navarra, Pamplona, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Marta Cuervo
- Department of Nutrition, Food Sciences, and Physiology, University of Navarra, Pamplona, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain.,Navarra Institute for Health Research, Pamplona, Spain
| | - Fermín I Milagro
- Department of Nutrition, Food Sciences, and Physiology, University of Navarra, Pamplona, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
| | - J Alfredo Martínez
- Department of Nutrition, Food Sciences, and Physiology, University of Navarra, Pamplona, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain.,Navarra Institute for Health Research, Pamplona, Spain
| |
Collapse
|
25
|
|
26
|
Benton MC, Johnstone A, Eccles D, Harmon B, Hayes MT, Lea RA, Griffiths L, Hoffman EP, Stubbs RS, Macartney-Coxson D. An analysis of DNA methylation in human adipose tissue reveals differential modification of obesity genes before and after gastric bypass and weight loss. Genome Biol 2015; 16:8. [PMID: 25651499 PMCID: PMC4301800 DOI: 10.1186/s13059-014-0569-x] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 12/11/2014] [Indexed: 12/18/2022] Open
Abstract
Background Environmental factors can influence obesity by epigenetic mechanisms. Adipose tissue plays a key role in obesity-related metabolic dysfunction, and gastric bypass provides a model to investigate obesity and weight loss in humans. Results Here, we investigate DNA methylation in adipose tissue from obese women before and after gastric bypass and significant weight loss. In total, 485,577 CpG sites were profiled in matched, before and after weight loss, subcutaneous and omental adipose tissue. A paired analysis revealed significant differential methylation in omental and subcutaneous adipose tissue. A greater proportion of CpGs are hypermethylated before weight loss and increased methylation is observed in the 3′ untranslated region and gene bodies relative to promoter regions. Differential methylation is found within genes associated with obesity, epigenetic regulation and development, such as CETP, FOXP2, HDAC4, DNMT3B, KCNQ1 and HOX clusters. We identify robust correlations between changes in methylation and clinical trait, including associations between fasting glucose and HDAC4, SLC37A3 and DENND1C in subcutaneous adipose. Genes investigated with differential promoter methylation all show significantly different levels of mRNA before and after gastric bypass. Conclusions This is the first study reporting global DNA methylation profiling of adipose tissue before and after gastric bypass and associated weight loss. It provides a strong basis for future work and offers additional evidence for the role of DNA methylation of adipose tissue in obesity. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0569-x) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
Goni L, Cuervo M, Milagro FI, Martínez JA. A genetic risk tool for obesity predisposition assessment and personalized nutrition implementation based on macronutrient intake. GENES & NUTRITION 2015; 10:445. [PMID: 25430627 PMCID: PMC4246034 DOI: 10.1007/s12263-014-0445-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 11/19/2014] [Indexed: 11/24/2022]
Abstract
There is little evidence about genetic risk score (GRS)-diet interactions in order to provide personalized nutrition based on the genotype. The aim of the study was to assess the value of a GRS on obesity prediction and to further evaluate the interactions between the GRS and dietary intake on obesity. A total of 711 seekers of a Nutrigenetic Service were examined for anthropometric and body composition measurements and also for dietary habits and physical activity. Oral epithelial cells were collected for the identification of 16 SNPs (related with obesity or lipid metabolism) using DNA zip-coded beads. Genotypes were coded as 0, 1 or 2 according to the number of risk alleles, and the GRS was calculated by adding risk alleles with such a criterion. After being adjusted for gender, age, physical activity and energy intake, the GRS demonstrated that individuals carrying >7 risk alleles had in average 0.93 kg/m(2) of BMI, 1.69 % of body fat mass, 1.94 cm of waist circumference and 0.01 waist-to-height ratio more than the individuals with ≤7 risk alleles. Significant interactions for GRS and the consumption of energy, total protein, animal protein, vegetable protein, total fat, saturated fatty acids, polyunsaturated fatty acids, total carbohydrates, complex carbohydrates and fiber intake on adiposity traits were found after adjusted for confounders variables. The GRS confirmed that the high genetic risk group showed greater values of adiposity than the low risk group and demonstrated that macronutrient intake modifies the GRS association with adiposity traits.
Collapse
Affiliation(s)
- Leticia Goni
- />Department of Nutrition, Food Sciences and Physiology, University of Navarra, Irunlarrea, 1, 31008 Pamplona, Spain
- />Centre for Nutrition Research, University of Navarra, Irunlarrea, 1, 31008 Pamplona, Spain
| | - Marta Cuervo
- />Department of Nutrition, Food Sciences and Physiology, University of Navarra, Irunlarrea, 1, 31008 Pamplona, Spain
- />Centre for Nutrition Research, University of Navarra, Irunlarrea, 1, 31008 Pamplona, Spain
- />CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Fermín I. Milagro
- />Department of Nutrition, Food Sciences and Physiology, University of Navarra, Irunlarrea, 1, 31008 Pamplona, Spain
- />Centre for Nutrition Research, University of Navarra, Irunlarrea, 1, 31008 Pamplona, Spain
- />CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - J. Alfredo Martínez
- />Department of Nutrition, Food Sciences and Physiology, University of Navarra, Irunlarrea, 1, 31008 Pamplona, Spain
- />Centre for Nutrition Research, University of Navarra, Irunlarrea, 1, 31008 Pamplona, Spain
- />CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
28
|
Association study between gene polymorphisms in PPAR signaling pathway and porcine meat quality traits. Mamm Genome 2014; 24:322-31. [PMID: 23797830 DOI: 10.1007/s00335-013-9460-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 05/22/2013] [Indexed: 12/20/2022]
Abstract
There is increasing evidence suggesting that fatty acids biosynthesis and metabolism are regulated by peroxisome proliferator-activated receptors (PPARs), mostly through the PPAR signaling pathway at the transcriptomic level. We hypothesized that the genetic variants of the enzymes in the PPAR signaling pathway may be associated with the traits of porcine meat quality (PMQ). We mined 77 potentially functional single nucleotide polymorphisms in the PPAR signaling pathway of the pig. There were 13 TagSNPs in 13 different genes mapped within the reported pig quantitative trait loci (QTLs) regions related to PMQ based on the Pig QTL database. Based on the association study with ten measured PMQ traits in both the pathway level and the SNP level, we tested eight significantly associated traits with additive effect in the PPAR signaling pathway and explored only one significant TagSNP in gene RXRB, which is directly associated with the trait of skin weight. Moreover, several interactions of TagSNPs were also significantly related to some of PMQ traits. In this large and comprehensive candidate gene set study, we found a modest association of genes and SNPs in the PPAR signaling pathway with PMQ. Further investigation of these gene polymorphisms jointly with fatty acid measures and other genetic factors would help us better understand the regulation mechanisms of PMQ.
Collapse
|
29
|
Yu D, Li C, Xie J, Xu G, Li Y, Liu J, Chen B, Pan J, Shen M, Yang L, Hu D. Association between three genetic variants of the Perilipin Gene (PLIN) and glucose metabolism: results from a replication study among Chinese adults and a meta-analysis. Endocr Res 2013; 38:263-79. [PMID: 23517113 DOI: 10.3109/07435800.2013.778864] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE This study was aimed to replicate the associations between three Perilipin Gene (PLIN) variants (rs894160, rs1052700, and rs2304796) and diabetes risks and to evaluate the overall effects of these variants on diabetes risk and obesity risk. METHODS We conducted a cross-sectional study among 993 Chinese Han adults. We also made a meta-analysis to estimate associations between these variants and diabetes risk and obesity risk. RESULTS In the sample of all participants, all three single-nucleotide polymorphisms (SNPs) were not significantly associated with diabetes risks. The PLIN polymorphisms significantly interacted with central obesity in relation to diabetes risk (P for interaction = 0.036, 0.033, and 0.042 for rs1052700, rs894160, and rs2304796, respectively). In those with allele T of rs1052700 or allele A of rs894160, fasting glucose concentration and diabetes risk increased significantly with the increment of waist circumference. Only association between rs894160 and obesity risk was available for meta-analysis. The meta-analysis indicated the overall estimation of obesity risk for rs894160 was 0.97 (0.78, 1.16) among participants with allele A versus people with genotype GG and 1.46 (0.99, 1.93) among those with genotype AA versus allele G carriers. CONCLUSION Chinese adults with high waist circumference may have a high risk of diabetes, especially among those with allele T in rs1052700 or with allele A in rs894160. People with genotype AA (rs894160) may have a high risk of obesity.
Collapse
Affiliation(s)
- Dahai Yu
- Department of Preventive Medicine, Shenzhen University School of Medicine , Shenzhen, Guangdong 518060 , China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Perilipin proteins were discovered in the adipocyte, where they regulate lipid storage and lipolysis. Animal knockout models provided initial evidence of the critical role of perilipin 1, the most abundant of the adipocyte proteins, in energy and glucose metabolism. During a decade of study, genetic variation in perilipin 1 has been consistently but not invariably associated with body weight and obesity-related complications. Related phenotypes such as postprandial lipid metabolism and aerobic fitness are also modulated by perilipin 1 genotype, consistent with earlier metabolic studies. Investigations of gene-diet interactions, together with gene expression studies, have yielded increased understanding, but important questions about causal variants and mechanisms remain. The newest work examines perilipin 4, an adipocyte regulator of triglyceride synthesis and packaging. The novel discovery that a perilipin 4 variant creates a binding site for regulation of the perilipin gene (PLIN) by microRNA suggests intriguing new possibilities for additional mechanistic investigations of other perilipin proteins.
Collapse
Affiliation(s)
- Caren E Smith
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| | | |
Collapse
|
31
|
Individualized Weight Management: What Can Be Learned from Nutrigenomics and Nutrigenetics? PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 108:347-82. [DOI: 10.1016/b978-0-12-398397-8.00014-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
32
|
Dahlman I, Arner P. Genetics of adipose tissue biology. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 94:39-74. [PMID: 21036322 DOI: 10.1016/b978-0-12-375003-7.00003-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Adipose tissue morphology and release of free fatty acids, as well as peptide hormones, are believed to contribute to obesity and related metabolic disorders. These adipose tissue phenotypes are influenced by adiposity, but there is also a strong hereditary impact. Polymorphisms in numerous adipose-expressed genes have been evaluated for association with adipocyte and clinical phenotypes. In our opinion, some results are convincing. Thus ADRB2 and GPR74 genes are associated with adipocyte lipolysis, GPR74 also with BMI; PPARG and SREBP1, which promote adipogenesis and lipid storage, are associated with T2D and possible adiposity; ADIPOQ and ARL15 are associated with circulating levels of adiponectin, ARL15 also with coronary heart disease. We anticipate that the use of complementary approaches such as expression profiling and RNAi screening, and studies of additional levels of gene regulation, that is, miRNA and epigenetics, will be important to unravel the genetics of adipose tissue function.
Collapse
|
33
|
Greenberg AS, Coleman RA, Kraemer FB, McManaman JL, Obin MS, Puri V, Yan QW, Miyoshi H, Mashek DG. The role of lipid droplets in metabolic disease in rodents and humans. J Clin Invest 2011; 121:2102-10. [PMID: 21633178 DOI: 10.1172/jci46069] [Citation(s) in RCA: 497] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lipid droplets (LDs) are intracellular organelles that store neutral lipids within cells. Over the last two decades there has been a dramatic growth in our understanding of LD biology and, in parallel, our understanding of the role of LDs in health and disease. In its simplest form, the LD regulates the storage and hydrolysis of neutral lipids, including triacylglycerol and/or cholesterol esters. It is becoming increasingly evident that alterations in the regulation of LD physiology and metabolism influence the risk of developing metabolic diseases such as diabetes. In this review we provide an update on the role of LD-associated proteins and LDs in metabolic disease.
Collapse
Affiliation(s)
- Andrew S Greenberg
- Obesity and Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts 02111, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|