1
|
Hua Y, Zhou C, Fan R, Benazzouz S, Shen J, Xiao R, Ma W. Altered intestinal microbiota induced by high-fat diets affect cognition differently in mice. Nutr Res 2024; 132:67-84. [PMID: 39500027 DOI: 10.1016/j.nutres.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 12/14/2024]
Abstract
The role of the gut microbiota in the association between high-fat diet and cognition is not clear. We hypothesized that a high-fat diet may influence cognition by altering the intestinal microbiota. Fecal microbiota isolated from male C57BL/6J mice feeding on various high-fat diets and a control basic diet were transplanted to antibiotic-treated recipient mice. The measurement of weight and plasma lipids, novel object recognition test, 16S rRNA gene sequencing of feces, and hematoxylin-eosin staining of the hippocampal cornu ammonis 1 and cornu ammonis 3 areas were performed for all mice. Compared with those in the control and n-3 polyunsaturated fatty acid (n-3 PUFA) groups, donor obese mice fed with diets high in long-chain saturated fatty acids, n-6 polyunsaturated fatty acids (n-6 PUFAs), and trans fatty acids exhibited significant cognitive impairment (all P < .05). There were fewer neurons in the hippocampal area in the n-6 PUFA group than in the n-3 PUFA group (P < .05). Similar effect on cognition and neurons in hippocampal area in corresponding recipient mice were revealed after fecal microbiota transplantation. In addition, the composition of intestinal microbiota differed among recipient mice after fecal microbiota transplantation from donor mice. According to these results, it was concluded that diets rich in long-chain saturated fatty acids, n-6 PUFAs, and trans fatty acids may lead to cognitive impairment by damaging the structure of the hippocampus through influencing the intestinal microbiota in mice, whereas a diet high in n-3 PUFAs may exhibit a beneficial effect.
Collapse
Affiliation(s)
- Yinan Hua
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Cui Zhou
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Rong Fan
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Sara Benazzouz
- Laboratory of cellular and molecular biology, Faculty of biological sciences, University of Science and Technology Houari Boumediene, Bab Ezzouar, 16111, Algeria
| | - Jingyi Shen
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Weiwei Ma
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
2
|
Yu H, Wang R, Zhao Y, Song Y, Sui H, Wu Y, Miao H, Lyu B. Monosodium Glutamate Intake and Risk Assessment in China Nationwide, and a Comparative Analysis Worldwide. Nutrients 2023; 15:nu15112444. [PMID: 37299405 DOI: 10.3390/nu15112444] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
The sixth Total Diet Study (TDS) of China included a countrywide study to assess the health effects of MSG (monosodium glutamate). MSG detection, consumption analysis, and risk assessment were conducted on 168 samples from seven food categories of the most typical Chinese daily diet. The highest value of MSG in the daily diet of the Chinese population was 8.63 g/kg. An MSG intake of 17.63 mg/kg bw/d for the general population of China was obtained from content measurements combined with food consumption, while the data from the apparent consumption survey alone gave 40.20 mg/kg bw/d. The apparent consumption did not consider the loss of MSG during food cooking, resulting in an overestimate. To offer a global perspective, MSG content, food category contributions, and ingestion levels across nations were summarized and thoroughly investigated. A realistic, logical, and precise risk assessment protocol for MSG daily intake was developed in this article.
Collapse
Affiliation(s)
- Hangyu Yu
- China National Center for Food Safety and Risk Assessment, Beijing 100021, China
| | - Rui Wang
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Yunfeng Zhao
- China National Center for Food Safety and Risk Assessment, Beijing 100021, China
| | - Yan Song
- China National Center for Food Safety and Risk Assessment, Beijing 100021, China
| | - Haixia Sui
- China National Center for Food Safety and Risk Assessment, Beijing 100021, China
| | - Yongning Wu
- China National Center for Food Safety and Risk Assessment, Beijing 100021, China
| | - Hongjian Miao
- China National Center for Food Safety and Risk Assessment, Beijing 100021, China
| | - Bing Lyu
- China National Center for Food Safety and Risk Assessment, Beijing 100021, China
| |
Collapse
|
3
|
Cheng CCW, Wu JH, Louie JCY. Trans-fat labelling information on prepackaged foods and beverages sold in Hong Kong in 2019. Public Health Nutr 2023; 26:315-322. [PMID: 36415081 DOI: 10.1017/s1368980022002464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To examine the labelling status of trans-fat of pre-packaged foods sold in Hong Kong. DESIGN Data from 19 027 items in the 2019 FoodSwitch Hong Kong database were used. Ingredient lists were screened to identify specific (e.g. partially hydrogenated vegetable oil, PHVO) and non-specific trans-fat ingredient indicators (e.g. hydrogenated oil). Trans-fat content was obtained from the on-pack nutrition labels, which was converted into proportion of total fat (%total fat). Descriptive statistics were calculated for trans-fat content and the number of specific, non-specific and total trans-fat ingredients indicators found on the ingredients lists. Comparisons were made between regions using one-way ANOVA and χ2 for continuous and categorical variables, respectively. SETTING Cross-sectional audit. PARTICIPANTS Not applicable. RESULTS A total of 729 items (3·8 % of all products) reported to contain industrially produced trans-fat, with a median of 0·4 g/100 g or 100 ml (interquartile range (IQR): 0·1-0·6) and 1·2 %totalfat (IQR: 0·6-2·9). 'Bread and bakery products' had the highest proportion of items with industrially produced trans-fat (18·9 %). 'Non-alcoholic beverages' had the highest proportion of products of 'false negatives' labelling (e.g. labelled as 0 trans-fat but contains PHVO; 59·3 %). The majority of products with trans-fat indicator originated from Asia (70 %). CONCLUSIONS According to the labelling ∼4 % of pre-packaged food and beverages sold in Hong Kong in 2019 contained industrially produced trans-fat, and a third of these had trans-fat >2 %total fat. The ambiguous trans-fat labelling in Hong Kong may not effectively assist consumers in identifying products free from industrially produced trans-fat.
Collapse
Affiliation(s)
- Christopher Chi Wai Cheng
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, 5S-14 Kadoorie Biological Sciences Building, 1 Pokfulam Road, Pokfulam, Hong Kong
| | - Jason Hy Wu
- Food Policy Division, The George Institute for Global Health, Camperdown, NSW, Australia
| | - Jimmy Chun Yu Louie
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, 5S-14 Kadoorie Biological Sciences Building, 1 Pokfulam Road, Pokfulam, Hong Kong
- Food Policy Division, The George Institute for Global Health, Camperdown, NSW, Australia
| |
Collapse
|
4
|
Abu-Elfotuh K, Abdel-Sattar SA, Abbas AN, Mahran YF, Alshanwani AR, Hamdan AME, Atwa AM, Reda E, Ahmed YM, Zaghlool SS, El-Din MN. The protective effect of thymoquinone or/and thymol against monosodium glutamate-induced attention-deficit/hyperactivity disorder (ADHD)-like behavior in rats: Modulation of Nrf2/HO-1, TLR4/NF-κB/NLRP3/caspase-1 and Wnt/β-Catenin signaling pathways in rat model. Biomed Pharmacother 2022; 155:113799. [PMID: 36271575 DOI: 10.1016/j.biopha.2022.113799] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 11/26/2022] Open
Abstract
Both thymoquinone (TQ) and thymol (T) have been proved to possess a positive impact on human health. In this research, we aimed to investigate the effect of these compounds separately and together on the Attention-deficit/hyperactivity disorder (ADHD)-like behavior induced by monosodium glutamate (MSG) in rats. Forty male, Spargue Dawley rat pups (postnatal day 21), were randomly allocated into five groups: Normal saline (NS), MSG, MSG+TQ, MSG+T, and MSG+TQ+T. MSG (0.4 mg/kg/day), TQ (10 mg/kg/day) and T (30 mg/kg/day) were orally administered for 8 weeks. The behavioral tests proved that rats treated with TQ and/or T showed improved locomotor, attention and cognitive functions compared to the MSG group with more pronounced effect displayed with their combination. All treated groups showed improvement in MSG-induced aberrations in brain levels of GSH, IL-1β, TNF-α, GFAP, glutamate, calcium, dopamine, norepinephrine, Wnt3a, β-Catenin and BDNF. TQ and/or T treatment also enhanced the mRNA expression of Nrf2, HO-1 and Bcl2 while reducing the protein expression of TLR4, NFκB, NLRP3, caspase 1, Bax, AIF and GSK3β as compared to the MSG group. However, the combined therapy showed more significant effects in all measured parameters. All of these findings were further confirmed by the histopathological examinations. Current results concluded that the combined therapy of TQ and T had higher protective effects than their individual supplementations against MSG-induced ADHD-like behavior in rats.
Collapse
|
5
|
El Tabbal J. Monosodium glutamate in a type 2 diabetes context: A large scoping review. Regul Toxicol Pharmacol 2022; 133:105223. [PMID: 35817208 DOI: 10.1016/j.yrtph.2022.105223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/16/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
This scoping review aimed to map and elaborate the heterogenous and inconclusive body of evidence relating monosodium glutamate (MSG) and type 2 diabetes (T2DM). For this reason, multiple health outcomes related to T2DM were included and a systematic search was conducted. Experimental and observational trials between 1995 and January 2021 were collected. The tests were highly heterogenous in their samples, doses, route of exposures, durations, diets and conclusions. There was a pattern of negative effects of MSG at oral doses ≥2,000 mg/kg of body weight, and by gavage or injection at any given dose. Evidence was lacking in many areas and most of the evidence relied on short term tests. Further research should focus on standardizing and justifying methodologies, conducting long term studies and toxicokinetic tests, and avoiding bias. Focusing on the gaps highlighted and investigating mechanisms of action of MSG is crucial. Evidence-based toxicology is encouraged.
Collapse
Affiliation(s)
- Jana El Tabbal
- Department of Health Sciences, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom.
| |
Collapse
|
6
|
Agustí A, García-Pardo MP, López-Almela I, Campillo I, Maes M, Romaní-Pérez M, Sanz Y. Interplay Between the Gut-Brain Axis, Obesity and Cognitive Function. Front Neurosci 2018; 12:155. [PMID: 29615850 PMCID: PMC5864897 DOI: 10.3389/fnins.2018.00155] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
Obesity continues to be one of the major public health problems due to its high prevalence and co-morbidities. Common co-morbidities not only include cardiometabolic disorders but also mood and cognitive disorders. Obese subjects often show deficits in memory, learning and executive functions compared to normal weight subjects. Epidemiological studies also indicate that obesity is associated with a higher risk of developing depression and anxiety, and vice versa. These associations between pathologies that presumably have different etiologies suggest shared pathological mechanisms. Gut microbiota is a mediating factor between the environmental pressures (e.g., diet, lifestyle) and host physiology, and its alteration could partly explain the cross-link between those pathologies. Westernized dietary patterns are known to be a major cause of the obesity epidemic, which also promotes a dysbiotic drift in the gut microbiota; this, in turn, seems to contribute to obesity-related complications. Experimental studies in animal models and, to a lesser extent, in humans suggest that the obesity-associated microbiota may contribute to the endocrine, neurochemical and inflammatory alterations underlying obesity and its comorbidities. These include dysregulation of the HPA-axis with overproduction of glucocorticoids, alterations in levels of neuroactive metabolites (e.g., neurotransmitters, short-chain fatty acids) and activation of a pro-inflammatory milieu that can cause neuro-inflammation. This review updates current knowledge about the role and mode of action of the gut microbiota in the cross-link between energy metabolism, mood and cognitive function.
Collapse
Affiliation(s)
- Ana Agustí
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Maria P García-Pardo
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Inmaculada López-Almela
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Isabel Campillo
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Marina Romaní-Pérez
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Yolanda Sanz
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| |
Collapse
|
7
|
Mondal M, Sarkar K, Nath PP, Paul G. Monosodium glutamate suppresses the female reproductive function by impairing the functions of ovary and uterus in rat. ENVIRONMENTAL TOXICOLOGY 2018; 33:198-208. [PMID: 29119727 DOI: 10.1002/tox.22508] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 10/10/2017] [Accepted: 10/22/2017] [Indexed: 06/07/2023]
Abstract
The aim of the present study was to examine the effect of monosodium glutamate (MSG) on the functions of ovary and uterus in rat. Virgin female rats of Charles Foster strain (120 gms approximately) were administrated MSG by oral gavage at a dose level of 0.8, 1.6, 2.4 gm/kgBW/day, respectively for 30 and 40 days duration. We observed a significant decrease in the duration of proestrus, estrus and metestrus phases, and increase in the duration of diestrus phase and diestrus index compared to control. We found significant increase in the levels of serum LH, FSH and estradiol in test groups of rat. We also observed significant increase in the number of primary and primordial follicles, increase in the size of graafian follicle, and decrease in the size of corpus luteum. Further, we have seen significant increase in the activities SOD, CAT and GST, decrease in the activities GR and GPx, and decrease MDA level in MSG exposed groups. These results suggest that MSG impairs the functions of the ovary probably by augmenting the release of FSH, LH and estradiol; promoting the follicular maturation and improving the biochemical mechanism for antioxidant defense. We also observed significant potentiation of the force of contraction of uterus in estrus, metestrus and diestrus phases. This result suggests that MSG potentiates the contraction of uterus probably by stimulating the estradiol sensitivity to oxytocin. From the results it is concluded that MSG suppresses the female reproductive function in rat probably by impairing the functions of ovary and uterus.
Collapse
Affiliation(s)
- Mukti Mondal
- Molecular Neurotoxicology Laboratory, Department of Physiology, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Kaushik Sarkar
- Molecular Neurotoxicology Laboratory, Department of Physiology, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Partha Pratim Nath
- Molecular Neurotoxicology Laboratory, Department of Physiology, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Goutam Paul
- Molecular Neurotoxicology Laboratory, Department of Physiology, University of Kalyani, Kalyani, West Bengal, 741235, India
| |
Collapse
|
8
|
Update on food safety of monosodium l -glutamate (MSG). PATHOPHYSIOLOGY 2017; 24:243-249. [DOI: 10.1016/j.pathophys.2017.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 12/22/2022] Open
|
9
|
Mortensen A, Aguilar F, Crebelli R, Di Domenico A, Dusemund B, Frutos MJ, Galtier P, Gott D, Gundert-Remy U, Leblanc JC, Lindtner O, Moldeus P, Mosesso P, Parent-Massin D, Oskarsson A, Stankovic I, Waalkens-Berendsen I, Woutersen RA, Wright M, Younes M, Boon P, Chrysafidis D, Gürtler R, Tobback P, Altieri A, Rincon AM, Lambré C. Re-evaluation of glutamic acid (E 620), sodium glutamate (E 621), potassium glutamate (E 622), calcium glutamate (E 623), ammonium glutamate (E 624) and magnesium glutamate (E 625) as food additives. EFSA J 2017; 15:e04910. [PMID: 32625571 PMCID: PMC7009848 DOI: 10.2903/j.efsa.2017.4910] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) provides a scientific opinion re-evaluating the safety of glutamic acid-glutamates (E 620-625) when used as food additives. Glutamate is absorbed in the intestine and it is presystemically metabolised in the gut wall. No adverse effects were observed in the available short-term, subchronic, chronic, reproductive and developmental studies. The only effect observed was increased kidney weight and increased spleen weight; however, the increase in organ weight was not accompanied by adverse histopathological findings and, therefore, the increase in organ weight was not considered as an adverse effect. The Panel considered that glutamic acid-glutamates (E 620-625) did not raise concern with regards to genotoxicity. From a neurodevelopmental toxicity study, a no observed adverse effect level (NOAEL) of 3,200 mg monosodium glutamate/kg body weight (bw) per day could be identified. The Panel assessed the suitability of human data to be used for the derivation of a health-based guidance value. Although effects on humans were identified human data were not suitable due to the lack of dose-response data from which a dose without effect could be identified. Based on the NOAEL of 3,200 mg monosodium glutamate/kg bw per day from the neurodevelopmental toxicity study and applying the default uncertainty factor of 100, the Panel derived a group acceptable daily intake (ADI) of 30 mg/kg bw per day, expressed as glutamic acid, for glutamic acid and glutamates (E 620-625). The Panel noted that the exposure to glutamic acid and glutamates (E 620-625) exceeded not only the proposed ADI, but also doses associated with adverse effects in humans for some population groups.
Collapse
|
10
|
Longhi R, Almeida RF, Pettenuzzo LF, Souza DG, Machado L, Quincozes-Santos A, Souza DO. Effect of a trans fatty acid-enriched diet on mitochondrial, inflammatory, and oxidative stress parameters in the cortex and hippocampus of Wistar rats. Eur J Nutr 2017; 57:1913-1924. [PMID: 28567576 DOI: 10.1007/s00394-017-1474-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 05/19/2017] [Indexed: 01/22/2023]
Abstract
PURPOSE Previously showed that dietary trans fatty acids (TFAs) may cause systemic inflammation and affect the central nervous system (CNS) in Wistar rats by increased levels of cytokines in the cerebrospinal fluid (CSF) and serum (Longhi et al. Eur J Nutr 56(3):1003-1016, 1). Here, we aimed to clarifying the impact of diets with different TFA concentrations on cerebral tissue, focusing on hippocampus and cortex and behavioral performance. METHODS Wistar rats were fed either a normolipidic or a hyperlipidic diet for 90 days; diets had the same ingredients except for fat compositions, concentrations, and calories. We used lard in the cis fatty acid (CFA) group and PHSO in the TFA group. The intervention groups were as follows: (1) low lard (LL), (2) high lard (HL), (3) low partially hydrogenated soybean oil (LPHSO), and (4) high partially hydrogenated soybean oil (HPHSO). Mitochondrial parameters, tumor necrosis factor alpha (TNF-α), 2'7'-dichlorofluorescein (DCFH) levels in brain tissue, and open field task were analyzed. RESULTS A worse brain tissue response was associated with oxidative stress in cortex and hippocampus as well as impaired inflammatory and mitochondrial parameters at both PHSO concentrations and there were alterations in the behavioral performance. In many analyses, there were no significant differences between the LPHSO and HPHSO diets. CONCLUSIONS Partially hydrogenated soybean oil impaired cortical mitochondrial parameters and altered inflammatory and oxidative stress responses, and the hyperlipidic treatment caused locomotor and exploratory effects, but no differences on weight gain in all treatments. These findings suggest that quality is more important than the quantity of fat consumed in terms of CFA and TFA diets.
Collapse
Affiliation(s)
- Rafael Longhi
- Department of Biochemistry, Postgraduate Program in Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - Roberto Farina Almeida
- Department of Biochemistry, Postgraduate Program in Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Leticia Ferreira Pettenuzzo
- Department of Biochemistry, Postgraduate Program in Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Débora Guerini Souza
- Department of Biochemistry, Postgraduate Program in Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Letiane Machado
- Department of Biochemistry, Postgraduate Program in Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - André Quincozes-Santos
- Department of Biochemistry, Postgraduate Program in Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Diogo Onofre Souza
- Department of Biochemistry, Postgraduate Program in Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
11
|
Grimm MOW, Mett J, Grimm HS, Hartmann T. APP Function and Lipids: A Bidirectional Link. Front Mol Neurosci 2017; 10:63. [PMID: 28344547 PMCID: PMC5344993 DOI: 10.3389/fnmol.2017.00063] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/24/2017] [Indexed: 12/14/2022] Open
Abstract
Extracellular neuritic plaques, composed of aggregated amyloid-β (Aβ) peptides, are one of the major histopathological hallmarks of Alzheimer's disease (AD), a progressive, irreversible neurodegenerative disorder and the most common cause of dementia in the elderly. One of the most prominent risk factor for sporadic AD, carrying one or two aberrant copies of the apolipoprotein E (ApoE) ε4 alleles, closely links AD to lipids. Further, several lipid classes and fatty acids have been reported to be changed in the brain of AD-affected individuals. Interestingly, the observed lipid changes in the brain seem not only to be a consequence of the disease but also modulate Aβ generation. In line with these observations, protective lipids being able to decrease Aβ generation and also potential negative lipids in respect to AD were identified. Mechanistically, Aβ peptides are generated by sequential proteolytic processing of the amyloid precursor protein (APP) by β- and γ-secretase. The α-secretase appears to compete with β-secretase for the initial cleavage of APP, preventing Aβ production. All APP-cleaving secretases as well as APP are transmembrane proteins, further illustrating the impact of lipids on Aβ generation. Beside the pathological impact of Aβ, accumulating evidence suggests that Aβ and the APP intracellular domain (AICD) play an important role in regulating lipid homeostasis, either by direct effects or by affecting gene expression or protein stability of enzymes involved in the de novo synthesis of different lipid classes. This review summarizes the current literature addressing the complex bidirectional link between lipids and AD and APP processing including lipid alterations found in AD post mortem brains, lipids that alter APP processing and the physiological functions of Aβ and AICD in the regulation of several lipid metabolism pathways.
Collapse
Affiliation(s)
- Marcus O. W. Grimm
- Experimental Neurology, Saarland UniversityHomburg/Saar, Germany
- Neurodegeneration and Neurobiology, Saarland UniversityHomburg/Saar, Germany
- Deutsches Institut für DemenzPrävention (DIDP), Saarland UniversityHomburg/Saar, Germany
| | - Janine Mett
- Experimental Neurology, Saarland UniversityHomburg/Saar, Germany
| | - Heike S. Grimm
- Experimental Neurology, Saarland UniversityHomburg/Saar, Germany
| | - Tobias Hartmann
- Experimental Neurology, Saarland UniversityHomburg/Saar, Germany
- Neurodegeneration and Neurobiology, Saarland UniversityHomburg/Saar, Germany
- Deutsches Institut für DemenzPrävention (DIDP), Saarland UniversityHomburg/Saar, Germany
| |
Collapse
|
12
|
Gasem MAT. Effect of monosodium glutamate and aspartame on behavioral and biochemical parameters of male albino mice. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajb2015.15199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
13
|
J. Onaolapo O, Y. Onaolapo A, A. Akanmu M, Olayiwola G. Changes in Spontaneous Working-memory, Memory-recall and Approach-avoidance following “Low Dose” Monosodium Glutamate in Mice. AIMS Neurosci 2016. [DOI: 10.3934/neuroscience.2016.3.317] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
14
|
Rosa SG, Quines CB, da Rocha JT, Bortolatto CF, Duarte T, Nogueira CW. Antinociceptive action of diphenyl diselenide in the nociception induced by neonatal administration of monosodium glutamate in rats. Eur J Pharmacol 2015; 758:64-71. [DOI: 10.1016/j.ejphar.2015.03.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/13/2015] [Accepted: 03/14/2015] [Indexed: 12/21/2022]
|
15
|
Dias V, Trevizol F, Roversi K, Kuhn F, Roversi K, Pase C, Barcelos R, Emanuelli T, Bürger M. Trans-fat supplementation over two generations of rats exacerbates behavioral and biochemical damages in a model of mania: Co-treatment with lithium. Life Sci 2015; 132:6-12. [DOI: 10.1016/j.lfs.2015.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 03/04/2015] [Accepted: 04/09/2015] [Indexed: 12/25/2022]
|
16
|
Brosnan JT, Drewnowski A, Friedman MI. Is there a relationship between dietary MSG and [corrected] obesity in animals or humans? Amino Acids 2014; 46:2075-87. [PMID: 24927698 DOI: 10.1007/s00726-014-1771-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/26/2014] [Indexed: 01/21/2023]
Abstract
The sodium salt of glutamate (monosodium glutamate; MSG) imparts a savory/meaty taste to foods, and has been used as a flavoring agent for millennia. Past research on MSG/glutamate has evaluated its physiologic, metabolic and behavioral actions, and its safety. Ingested MSG has been found to be safe, and to produce no remarkable effects, except on taste. However, some recent epidemiologic and animal studies have associated MSG use with obesity and aberrations in fat metabolism. Reported effects are usually attributed to direct actions of ingested MSG in brain. As these observations conflict with past MSG research findings, a symposium was convened at the 13th International Congress on Amino Acids, Peptides and Proteins to discuss them. The principal conclusions were: (1) the proposed link between MSG intake and weight gain is likely explained by co-varying environmental factors (e.g., diet, physical activity) linked to the "nutrition transition" in developing Asian countries. (2) Controlled intervention studies adding MSG to the diet of animals and humans show no effect on body weight. (3) Hypotheses positing dietary MSG effects on body weight involve results from rodent MSG injection studies that link MSG to actions in brain not applicable to MSG ingestion studies. The fundamental reason is that glutamate is metabolically compartmentalized in the body, and generally does not passively cross biologic membranes. Hence, almost no ingested glutamate/MSG passes from gut into blood, and essentially none transits placenta from maternal to fetal circulation, or crosses the blood-brain barrier. Dietary MSG, therefore, does not gain access to brain. Overall, it appears that normal dietary MSG use is unlikely to influence energy intake, body weight or fat metabolism.
Collapse
Affiliation(s)
- John T Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada,
| | | | | |
Collapse
|
17
|
Abu-Taweel GM, A ZM, Ajarem JS, Ahmad M. Cognitive and biochemical effects of monosodium glutamate and aspartame, administered individually and in combination in male albino mice. Neurotoxicol Teratol 2014; 42:60-7. [PMID: 24556450 DOI: 10.1016/j.ntt.2014.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 02/09/2014] [Accepted: 02/10/2014] [Indexed: 12/20/2022]
Abstract
The present study was designed to investigate the in vivo effects of monosodium glutamate (MSG) and aspartame (ASM) individually and in combination on the cognitive behavior and biochemical parameters like neurotransmitters and oxidative stress indices in the brain tissue of mice. Forty male Swiss albino mice were randomly divided into four groups of ten each and were exposed to MSG and ASM through drinking water for one month. Group I was the control and was given normal tap water. Groups II and III received MSG (8 mg/kg) and ASM (32 mg/kg) respectively dissolved in tap water. Group IV received MSG and ASM together in the same doses. After the exposure period, the animals were subjected to cognitive behavioral tests in a shuttle box and a water maze. Thereafter, the animals were sacrificed and the neurotransmitters and oxidative stress indices were estimated in their forebrain tissue. Both MSG and ASM individually as well as in combination had significant disruptive effects on the cognitive responses, memory retention and learning capabilities of the mice in the order (MSG+ASM)>ASM>MSG. Furthermore, while MSG and ASM individually were unable to alter the brain neurotransmitters and the oxidative stress indices, their combination dose (MSG+ASM) decreased significantly the levels of neurotransmitters (dopamine and serotonin) and it also caused oxidative stress by increasing the lipid peroxides measured in the form of thiobarbituric acid-reactive substances (TBARS) and decreasing the level of total glutathione (GSH). Further studies are required to evaluate the synergistic effects of MSG and ASM on the neurotransmitters and oxidative stress indices and their involvement in cognitive dysfunctions.
Collapse
Affiliation(s)
| | - Zyadah M A
- Department of Biology, Dammam University, Saudi Arabia
| | - Jamaan S Ajarem
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Ahmad
- Department of Medical Surgical Nursing, College of Nursing, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
18
|
Insawang T, Selmi C, Cha’on U, Gershwin ME, Yongvanit P, Prasongwattana V. Response to Dr. Roger’s letter: further studies are necessary in order to conclude a causal association between the consumption of monosodium L-glutamate (MSG) and the prevalence of metabolic syndrome in the rural Thai population. Nutr Metab (Lond) 2013; 10:10. [PMID: 23320859 PMCID: PMC3599078 DOI: 10.1186/1743-7075-10-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/11/2013] [Indexed: 11/10/2022] Open
Abstract
Abstract
See related article: http://www.nutritionandmetabolism.com/content/10/1/14
Collapse
|
19
|
Sharma A, Prasongwattana V, Cha’on U, Selmi C, Hipkaeo W, Boonnate P, Pethlert S, Titipungul T, Intarawichian P, Waraasawapati S, Puapiroj A, Sitprija V, Reungjui S. Monosodium glutamate (MSG) consumption is associated with urolithiasis and urinary tract obstruction in rats. PLoS One 2013; 8:e75546. [PMID: 24086562 PMCID: PMC3784461 DOI: 10.1371/journal.pone.0075546] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/17/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The peritoneal injection of monosodium glutamate (MSG) can induce kidney injury in adult rats but the effects of long-term oral intake have not been determined. METHODS We investigated the kidney histology and function in adult male Wistar rats that were fed ad libitum with a standard rat chow pellet and water with or without the addition of 2 mg/g body weight MSG/day in drinking water (n=10 per group). Both MSG-treated and control animals were sacrificed after 9 months when renal function parameters, blood and urine electrolytes, and tissue histopathology were determined. RESULTS MSG-treated rats were more prone to kidney stone formation, as represented by the alkaline urine and significantly higher activity product of calcium phosphate. Accordingly, 3/10 MSG-treated rats developed kidney stones over 9 months versus none of the control animals. Further, 2/10 MSG-treated rats but none (0/10) of the controls manifested hydronephrosis. MSG-treated rats had significantly higher levels of serum creatinine and potassium including urine output volume, urinary excretion sodium and citrate compared to controls. In contrast, MSG-treated rats had significantly lower ammonium and magnesium urinary excretion. CONCLUSION Oral MSG consumption appears to cause alkaline urine and may increase the risks of kidney stones with hydronephrosis in rats. Similar effects in humans must be verified by dedicated studies.
Collapse
Affiliation(s)
- Amod Sharma
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Vitoon Prasongwattana
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Ubon Cha’on
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Carlo Selmi
- Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Milan, Italy
- BIOMETRA Department, University of Milan, Milan, Italy
| | - Wiphawi Hipkaeo
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Piyanard Boonnate
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Supattra Pethlert
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Tanin Titipungul
- Department of Pathology, Mahasarakham Hospital, Mahasarakham, Thailand
| | | | - Sakda Waraasawapati
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Anucha Puapiroj
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | - Sirirat Reungjui
- Department of Internal Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
20
|
Collison KS, Zaidi MZ, Inglis A, Al-Mohanna FA. Letter-to-the-Editor on “No effects of monosodium glutamate consumption on the body weight or composition of adult rats and mice” — further information. Physiol Behav 2013; 110-111:1-2. [DOI: 10.1016/j.physbeh.2012.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 11/28/2012] [Indexed: 10/27/2022]
|
21
|
Tordoff MG, Aleman TR, Murphy MC. No effects of monosodium glutamate consumption on the body weight or composition of adult rats and mice. Physiol Behav 2012; 107:338-45. [DOI: 10.1016/j.physbeh.2012.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/25/2012] [Indexed: 01/08/2023]
|
22
|
Collison KS, Makhoul NJ, Zaidi MZ, Al-Rabiah R, Inglis A, Andres BL, Ubungen R, Shoukri M, Al-Mohanna FA. Interactive effects of neonatal exposure to monosodium glutamate and aspartame on glucose homeostasis. Nutr Metab (Lond) 2012; 9:58. [PMID: 22697049 PMCID: PMC3466134 DOI: 10.1186/1743-7075-9-58] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/28/2012] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Recent evidence suggests that the effects of certain food additives may be synergistic or additive. Aspartame (ASP) and Monosodium Glutamate (MSG) are ubiquitous food additives with a common moiety: both contain acidic amino acids which can act as neurotransmitters, interacting with NMDA receptors concentrated in areas of the Central Nervous System regulating energy expenditure and conservation. MSG has been shown to promote a neuroendocrine dysfunction when large quantities are administered to mammals during the neonatal period. ASP is a low-calorie dipeptide sweetener found in a wide variety of diet beverages and foods. However, recent reports suggest that ASP may promote weight gain and hyperglycemia in a zebrafish nutritional model. METHODS We investigated the effects of ASP, MSG or a combination of both on glucose and insulin homeostasis, weight change and adiposity, in C57BL/6 J mice chronically exposed to these food additives commencing in-utero, compared to an additive-free diet. Pearson correlation analysis was used to investigate the associations between body characteristics and variables in glucose and insulin homeostasis. RESULTS ASP alone (50 mg/Kgbw/day) caused an increase in fasting blood glucose of 1.6-fold, together with reduced insulin sensitivity during an Insulin Tolerance Test (ITT) P < 0.05. Conversely MSG alone decreased blood triglyceride and total cholesterol (T-CHOL) levels. The combination of MSG (120 mg/Kgbw/day) and ASP elevated body weight, and caused a further increase in fasting blood glucose of 2.3-fold compared to Controls (prediabetic levels); together with evidence of insulin resistance during the ITT (P < 0.05). T-CHOL levels were reduced in both ASP-containing diets in both genders. Further analysis showed a strong correlation between body weight at 6 weeks, and body weight and fasting blood glucose levels at 17 weeks, suggesting that early body weight may be a predictor of glucose homeostasis in later life. CONCLUSIONS Aspartame exposure may promote hyperglycemia and insulin intolerance. MSG may interact with aspartame to further impair glucose homeostasis. This is the first study to ascertain the hyperglycemic effects of chronic exposure to a combination of these commonly consumed food additives; however these observations are limited to a C57BL/6 J mouse model. Caution should be applied in extrapolating these findings to other species.
Collapse
Affiliation(s)
- Kate S Collison
- Diabetes Research Unit, Department Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Nadine J Makhoul
- Diabetes Research Unit, Department Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Marya Z Zaidi
- Diabetes Research Unit, Department Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Rana Al-Rabiah
- Diabetes Research Unit, Department Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Angela Inglis
- Diabetes Research Unit, Department Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Bernard L Andres
- Diabetes Research Unit, Department Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Rosario Ubungen
- Diabetes Research Unit, Department Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Mohammed Shoukri
- Department of Biostatistics, Epidemiology and Scientific Computing, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Futwan A Al-Mohanna
- Diabetes Research Unit, Department Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh, 11211, Saudi Arabia
- College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| |
Collapse
|
23
|
Collison KS, Makhoul NJ, Zaidi MZ, Saleh SM, Andres B, Inglis A, Al-Rabiah R, Al-Mohanna FA. Gender dimorphism in aspartame-induced impairment of spatial cognition and insulin sensitivity. PLoS One 2012; 7:e31570. [PMID: 22509243 PMCID: PMC3317920 DOI: 10.1371/journal.pone.0031570] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 01/11/2012] [Indexed: 11/19/2022] Open
Abstract
Previous studies have linked aspartame consumption to impaired retention of learned behavior in rodents. Prenatal exposure to aspartame has also been shown to impair odor-associative learning in guinea pigs; and recently, aspartame-fed hyperlipidemic zebrafish exhibited weight gain, hyperglycemia and acute swimming defects. We therefore investigated the effects of chronic lifetime exposure to aspartame, commencing in utero, on changes in blood glucose parameters, spatial learning and memory in C57BL/6J mice. Morris Water Maze (MWM) testing was used to assess learning and memory, and a random-fed insulin tolerance test was performed to assess glucose homeostasis. Pearson correlation analysis was used to investigate the associations between body characteristics and MWM performance outcome variables. At 17 weeks of age, male aspartame-fed mice exhibited weight gain, elevated fasting glucose levels and decreased insulin sensitivity compared to controls (P<0.05). Females were less affected, but had significantly raised fasting glucose levels. During spatial learning trials in the MWM (acquisition training), the escape latencies of male aspartame-fed mice were consistently higher than controls, indicative of learning impairment. Thigmotactic behavior and time spent floating directionless was increased in aspartame mice, who also spent less time searching in the target quadrant of the maze (P<0.05). Spatial learning of female aspartame-fed mice was not significantly different from controls. Reference memory during a probe test was affected in both genders, with the aspartame-fed mice spending significantly less time searching for the former location of the platform. Interestingly, the extent of visceral fat deposition correlated positively with non-spatial search strategies such as floating and thigmotaxis, and negatively with time spent in the target quadrant and swimming across the location of the escape platform. These data suggest that lifetime exposure to aspartame, commencing in utero, may affect spatial cognition and glucose homeostasis in C57BL/6J mice, particularly in males.
Collapse
Affiliation(s)
- Kate S Collison
- Cell Biology and Diabetes Research Unit, Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
de Souza AS, Rocha MS, Tavares do Carmo MDG. Effects of a normolipidic diet containing trans fatty acids during perinatal period on the growth, hippocampus fatty acid profile, and memory of young rats according to sex. Nutrition 2012; 28:458-64. [DOI: 10.1016/j.nut.2011.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/13/2011] [Accepted: 08/17/2011] [Indexed: 10/14/2022]
|