1
|
Zhang L, Pang J, Feng Q, Hao J, Gu X, Jiang X, Yang S, Wei W, Wu R. Neuroanatomical basis of 5-HT 1A receptor agonism in disruption of maternal behavior in rats. Behav Brain Res 2025; 486:115554. [PMID: 40158553 DOI: 10.1016/j.bbr.2025.115554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/19/2025] [Accepted: 03/23/2025] [Indexed: 04/02/2025]
Abstract
The acute activation of serotonin 1 A (5-HT1A) receptors appears to disrupt maternal behavior in rats; however, the underlying neuroanatomical mechanisms remain poorly understood. We employed two approaches to investigate the role of 5-HT1A receptors in maternal behavior to address this knowledge gap. First, we used real-time polymerase chain reaction (PCR) to analyze 5-HT1A receptor mRNA expression in female rats at different reproductive stages. We identified stage- and region-specific expression patterns, including temporary increases in the nucleus accumbens (NAc), ventral tegmental area (VTA), and dorsal raphe nucleus (DRN), as well as a temporary decrease in the medial prefrontal cortex (mPFC), amygdala, hippocampus, and ventromedial hypothalamic nucleus (VMH) during the perinatal, early, and middle postpartum periods. These findings suggest that coordinated 5-HT1A activity across these brain regions is critical for normal maternal behavior. Second, we used c-Fos immunohistochemistry to elucidate the central mechanisms underlying the effects of the acute and repeated administration of 8-OH-DPAT (a 5-HT1A receptor agonist, 1.0 mg/kg, sc.) on maternal behavior. Acute 8-OH-DPAT administration disrupted maternal behaviors, including pup retrieval, pup licking, nest building and hovering over pups, while simultaneously increased c-Fos expression in the mPFC, ventral bed nucleus of the stria terminalis (vBNST), NAc shell, lateral septum (LS), and medial amygdala (MeA). Disruptions in pup retrieval, pup licking and nest building persisted following five days of repeated 8-OH-DPAT treatment, whereas hovering over pups showed substantial recovery, returning to near-normal levels. Concurrently, c-Fos expression increased in the vBNST but decreased in the mPFC, MeA, and DRN. These results suggest that acute and repeated 8-OH-DPAT administration disrupts maternal behavior via distinct presynaptic and postsynaptic 5-HT1A receptor mechanisms. This study highlights the complex regulatory role of 5-HT1A receptor activity in maternal care and provides insights into the neuroanatomical and neurochemical mechanisms underlying maternal behavior.
Collapse
Affiliation(s)
- Lanlan Zhang
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Jinyue Pang
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Qiyan Feng
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Jinmei Hao
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Xin Gu
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Xiayang Jiang
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Shengmei Yang
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Wanhong Wei
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Ruiyong Wu
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China.
| |
Collapse
|
2
|
Zhou J, Wu JW, Song BL, Jiang Y, Niu QH, Li LF, Liu YJ. 5-HT1A receptors within the intermediate lateral septum modulate stress vulnerability in male mice. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110966. [PMID: 38354893 DOI: 10.1016/j.pnpbp.2024.110966] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/04/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Chronic stress is a major risk factor for psychiatric disorders. However, certain individuals may be at higher risk due to greater stress susceptibility. Elucidating the neurobiology of stress resilience and susceptibility may facilitate the development of novel strategies to prevent and treat stress-related disorders such as depression. Mounting evidence suggests that the serotonin (5-HT) system is a major regulator of stress sensitivity. In this study, we assessed the functions of 5-HT1A and 5-HT2A receptors within the lateral septum (LS) in regulating stress vulnerability. Among a group of male mice exposed to chronic social defeat stress (CSDS), 47.2% were classified as stress-susceptible, and these mice employed more passive coping strategies during the defeat and exhibited more severe anxiety- and depression-like behaviors during the following behavioral tests. These stress-susceptible mice also exhibited elevated neuronal activity in the LS as evidenced by greater c-Fos expression, greater activity of 5-HT neurons in both the dorsal and median raphe nucleus, and downregulated expression of the 5-HT1A receptor in the intermediate LS (LSi). Finally, we found the stress-induced social withdrawal symptoms could be rapidly relieved by LSi administration of 8-OH-DPAT, a 5-HT1A receptor agonist. These results indicate that 5-HT1A receptors within the LSi play an important role in stress vulnerability in mice. Therefore, modulation of stress vulnerable via 5-HT1A receptor activation in the LSi is a potential strategy to treat stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Jie Zhou
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China
| | - Jiao-Wen Wu
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China
| | - Bai-Lin Song
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China
| | - Yi Jiang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China
| | - Qiu-Hong Niu
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China..
| | - Lai-Fu Li
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China..
| | - Ying-Juan Liu
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China..
| |
Collapse
|
3
|
Wakeford A, Nye JA, Grieb ZA, Voisin DA, Mun J, Huhman KL, Albers E, Michopoulos V. Sex influences the effects of social status on socioemotional behavior and serotonin neurochemistry in rhesus monkeys. Biol Sex Differ 2023; 14:75. [PMID: 37898775 PMCID: PMC10613371 DOI: 10.1186/s13293-023-00562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Despite observed sex differences in the prevalence of stress-related psychiatric conditions, most preclinical and translational studies have only included male subjects. Therefore, it has not been possible to effectively assess how sex interacts with other psychosocial risk factors to impact the etiology and maintenance of stress-related psychopathology. One psychosocial factor that interacts with sex to impact risk for stress-related behavioral and physiological deficits is social dominance. The current study was designed to assess sex differences in the effects of social status on socioemotional behavior and serotonin neurochemistry in socially housed rhesus monkeys. We hypothesized that sex and social status interact to influence socioemotional behaviors as well as serotonin 1A receptor binding potential (5HT1AR-BP) in regions of interest (ROIs) implicated in socioemotional behavior. METHODS Behavioral observations were conducted in gonadally intact adult female (n = 14) and male (n = 13) rhesus monkeys. 5HT1AR-BP was assessed via positron emission tomography using 4-(2'-Methoxyphenyl)-1-[2'-(N-2"-pyridinyl)-p[18F]fluorobenzamido]ethylpiperazine ([18F]MPPF). RESULTS Aggression emitted was greater in dominant compared to subordinate animals, regardless of sex. Submission emitted was significantly greater in subordinate versus dominant animals and greater in females than males. Affiliative behaviors emitted were not impacted by sex, status, or their interaction. Anxiety-like behavior emitted was significantly greater in females than in males regardless of social status. Hypothalamic 5HT1AR-BP was significantly greater in females than in males, regardless of social status. 5HT1AR-BP in the dentate gyrus of the hippocampus was significantly impacted by a sex by status interaction whereby 5HT1AR-BP in the dentate gyrus was greater in dominant compared to subordinate females but was not different between dominant and subordinate males. There were no effects of sex, status, or their interaction on 5HT1AR-BP in the DRN and in the regions of the PFC studied. CONCLUSIONS These data have important implications for the treatment of stress-related behavioral health outcomes, as they suggest that sex and social status are important factors to consider in the context of serotonergic drug efficacy.
Collapse
Affiliation(s)
- Alison Wakeford
- Emory National Primate Research Center, Atlanta, GA, 30322, USA
| | - Jonathon A Nye
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Zachary A Grieb
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Dené A Voisin
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Jiyoung Mun
- Emory National Primate Research Center, Atlanta, GA, 30322, USA
| | - Kim L Huhman
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
- Center for Behavioral Neuroscience, Atlanta, GA, USA
| | - Elliott Albers
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
- Center for Behavioral Neuroscience, Atlanta, GA, USA
| | - Vasiliki Michopoulos
- Emory National Primate Research Center, Atlanta, GA, 30322, USA.
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
4
|
Voisin DA, Wakeford A, Nye J, Mun J, Jones SR, Locke J, Huhman KL, Wilson ME, Albers HE, Michopoulos V. Sex and social status modify the effects of fluoxetine on socioemotional behaviors in Syrian hamsters and rhesus macaques. Pharmacol Biochem Behav 2022; 215:173362. [PMID: 35219757 PMCID: PMC8983589 DOI: 10.1016/j.pbb.2022.173362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/31/2022] [Accepted: 02/20/2022] [Indexed: 11/18/2022]
Abstract
Social subordination increases risk for psychiatric disorders, while dominance increases resilience to these disorders. Fluoxetine, a selective serotonin (5HT) reuptake inhibitor whose actions are mediated in part by the 5HT1A receptor (5HT1AR), has sex- and social status-specific effects on socioemotional behavior and aggressive behavior. However, the impact of social status on these sex-specific effects remains unclear. The current study evaluated the impact of acute fluoxetine treatment and social status on dominance-related behaviors in female and male hamsters, and the impact of chronic fluoxetine treatment on socioemotional behavior and 5HT1AR binding potential (5HT1ARBP) in female rhesus macaques. We hypothesized that sex differences in the effects of fluoxetine on aggression in hamsters would be diminished in dominant and enhanced in subordinate males and that aggression in female hamsters would be enhanced in dominants and diminished in subordinates. In female rhesus macaques, we hypothesized that chronic fluoxetine would alter socioemotional behaviors and site-specific 5HT1ARBP in a status-dependent manner. Male (n = 46) and female (n = 56) hamsters were paired with conspecifics for three days to establish social rank. Hamsters received a single dose of 20 mg/kg fluoxetine or vehicle two-hours prior to a test with a non-aggressive intruder. Female rhesus monkeys (n = 14) housed were administered fluoxetine (2.8 mg/kg/day) or vehicle injections chronically for 14-days, separated by a three-week washout period. On Day 15, positron emission tomography neuroimaging for 5HT1ARBP was conducted. Fluoxetine treatment decreased aggression in subordinate female monkeys and subordinate female hamsters but not in dominant females of either species. Fluoxetine decreased aggression in dominant but not in subordinate male hamsters. Fluoxetine also reduced and increased prefrontal 5HT1ARBP in dominant and subordinate females, respectively. Taken together, these results provide cross-species evidence that social status and sex impact how increased 5HT modulates agonistic behavior.
Collapse
Affiliation(s)
- Dené A Voisin
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States of America; Center for Behavioral Neuroscience, Atlanta, GA, United States of America
| | - Alison Wakeford
- Yerkes National Primate Research Center, Atlanta, GA, United States of America
| | - Jonathon Nye
- Yerkes National Primate Research Center, Atlanta, GA, United States of America; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Jiyoung Mun
- Yerkes National Primate Research Center, Atlanta, GA, United States of America; Molecular Imaging Department, Charles River Laboratories, Mattawan, MI, United States of America
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Jason Locke
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Kim L Huhman
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States of America; Center for Behavioral Neuroscience, Atlanta, GA, United States of America
| | - Mark E Wilson
- Yerkes National Primate Research Center, Atlanta, GA, United States of America; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States of America
| | - H Elliott Albers
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States of America; Center for Behavioral Neuroscience, Atlanta, GA, United States of America
| | - Vasiliki Michopoulos
- Yerkes National Primate Research Center, Atlanta, GA, United States of America; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States of America.
| |
Collapse
|
5
|
Fulenwider HD, Caruso MA, Ryabinin AE. Manifestations of domination: Assessments of social dominance in rodents. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12731. [PMID: 33769667 PMCID: PMC8464621 DOI: 10.1111/gbb.12731] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/31/2021] [Accepted: 03/22/2021] [Indexed: 01/01/2023]
Abstract
Social hierarchies are ubiquitous features of virtually all animal groups. The varying social ranks of members within these groups have profound effects on both physical and emotional health, with lower-ranked individuals typically being the most adversely affected by their respective ranks. Thus, reliable measures of social dominance in preclinical rodent models are necessary to better understand the effects of an individual's social rank on other behaviors and physiological processes. In this review, we outline the primary methodologies used to assess social dominance in various rodent species: those that are based on analyses of agonistic behaviors, and those that are based on resource competition. In synthesizing this review, we conclude that assays based on resource competition may be better suited to characterize social dominance in a wider variety of rodent species and strains, and in both males and females. Lastly, albeit expectedly, we demonstrate that similarly to many other areas of preclinical research, studies incorporating female subjects are lacking in comparison to those using males. These findings emphasize the need for an increased number of studies assessing social dominance in females to form a more comprehensive understanding of this behavioral phenomenon.
Collapse
Affiliation(s)
- Hannah D. Fulenwider
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandORUSA
| | - Maya A. Caruso
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandORUSA
| | - Andrey E. Ryabinin
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
6
|
LeClair KB, Russo SJ. Using social rank as the lens to focus on the neural circuitry driving stress coping styles. Curr Opin Neurobiol 2021; 68:167-180. [PMID: 33930622 DOI: 10.1016/j.conb.2021.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/02/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
Social hierarchy position in humans is negatively correlated with stress-related psychiatric disease risk. Animal models have largely corroborated human studies, showing that social rank can impact stress susceptibility and is considered to be a major risk factor in the development of psychiatric illness. Differences in stress coping style is one of several factors that mediate this relationship between social rank and stress susceptibility. Coping styles encompass correlated groupings of behaviors associated with differential physiological stress responses. Here, we discuss recent insights from animal models that highlight several neural circuits that can contribute to social rank-associated differences in coping style.
Collapse
Affiliation(s)
- Katherine B LeClair
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Scott J Russo
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
7
|
Lewis MW, Jones RT, Davis MT. Exploring the impact of trauma type and extent of exposure on posttraumatic alterations in 5-HT1A expression. Transl Psychiatry 2020; 10:237. [PMID: 32678079 PMCID: PMC7366706 DOI: 10.1038/s41398-020-00915-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
The long-term behavioral, psychological, and neurobiological effects of exposure to potentially traumatic events vary within the human population. Studies conducted on trauma-exposed human subjects suggest that differences in trauma type and extent of exposure combine to affect development, maintenance, and treatment of a variety of psychiatric syndromes. The serotonin 1-A receptor (5-HT1A) is an inhibitory G protein-coupled serotonin receptor encoded by the HTR1A gene that plays a role in regulating serotonin release, physiological stress responding, and emotional behavior. Studies from the preclinical and human literature suggest that dysfunctional expression of 5-HT1A is associated with a multitude of psychiatric symptoms commonly seen in trauma-exposed individuals. Here, we synthesize the literature, including numerous preclinical studies, examining differences in alterations in 5-HT1A expression following trauma exposure. Collectively, these findings suggest that the impact of trauma exposure on 5-HT1A expression is dependent, in part, on trauma type and extent of exposure. Furthermore, preclinical and human studies suggest that this observation likely applies to additional molecular targets and may help explain variation in trauma-induced changes in behavior and treatment responsivity. In order to understand the neurobiological impact of trauma, including the impact on 5-HT1A expression, it is crucial to consider both trauma type and extent of exposure.
Collapse
|
8
|
Dulka BN, Bagatelas ED, Bress KS, Grizzell JA, Cannon MK, Whitten CJ, Cooper MA. Chemogenetic activation of an infralimbic cortex to basolateral amygdala projection promotes resistance to acute social defeat stress. Sci Rep 2020; 10:6884. [PMID: 32327679 PMCID: PMC7181792 DOI: 10.1038/s41598-020-63879-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 04/06/2020] [Indexed: 12/15/2022] Open
Abstract
Tremendous individual differences exist in stress responsivity and social defeat stress is a key approach for identifying cellular mechanisms of stress susceptibility and resilience. Syrian hamsters show reliable territorial aggression, but after social defeat they exhibit a conditioned defeat (CD) response characterized by increased submission and an absence of aggression in future social interactions. Hamsters that achieve social dominance prior to social defeat exhibit greater defeat-induced neural activity in infralimbic (IL) cortex neurons that project to the basolateral amygdala (BLA) and reduced CD response compared to subordinate hamsters. Here, we hypothesize that chemogenetic activation of an IL-to-BLA neural projection during acute social defeat will reduce the CD response in subordinate hamsters and thereby produce dominant-like behavior. We confirmed that clozapine-N-oxide (CNO) itself did not alter the CD response and validated a dual-virus, Cre-dependent, chemogenetic approach by showing that CNO treatment increased c-Fos expression in the IL and decreased it in the BLA. We found that CNO treatment during social defeat reduced the acquisition of CD in subordinate, but not dominant, hamsters. This project extends our understanding of the neural circuits underlying resistance to acute social stress, which is an important step toward delineating circuit-based approaches for the treatment of stress-related psychopathologies.
Collapse
Affiliation(s)
- Brooke N Dulka
- Department of Psychology, University of Tennessee, Knoxville, TN, 37996, USA.,Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Elena D Bagatelas
- Department of Psychology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Kimberly S Bress
- Department of Psychology, University of Tennessee, Knoxville, TN, 37996, USA
| | - J Alex Grizzell
- Department of Psychology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Megan K Cannon
- Department of Psychology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Conner J Whitten
- Department of Psychology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Matthew A Cooper
- Department of Psychology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
9
|
McCann KE, Sinkiewicz DM, Rosenhauer AM, Beach LQ, Huhman KL. Transcriptomic Analysis Reveals Sex-Dependent Expression Patterns in the Basolateral Amygdala of Dominant and Subordinate Animals After Acute Social Conflict. Mol Neurobiol 2018; 56:3768-3779. [PMID: 30196395 DOI: 10.1007/s12035-018-1339-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/30/2018] [Indexed: 12/27/2022]
Abstract
The basolateral amygdala (BLA) is a critical nucleus mediating behavioral responses after exposure to acute social conflict. Male and female Syrian hamsters both readily establish a stable dominant-subordinate relationship among same-sex conspecifics, and the goal of the current study was to determine potential underlying genetic mechanisms in the BLA facilitating the establishment of social hierarchy. We sequenced the BLA transcriptomes of dominant, subordinate, and socially neutral males and females, and using de novo assembly techniques and gene network analyses, we compared these transcriptomes across social status within each sex. Our results revealed 499 transcripts that were differentially expressed in the BLA across both males and females and 138 distinct gene networks. Surprisingly, we found that there was virtually no overlap in the transcript changes or in gene network patterns in males and females of the same social status. These results suggest that, although males and females reliably engage in similar social behaviors to establish social dominance, the molecular mechanisms in the BLA by which these statuses are obtained and maintained are distinct.
Collapse
Affiliation(s)
- Katharine E McCann
- Neuroscience Institute, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA, 30303, USA
| | - David M Sinkiewicz
- Neuroscience Institute, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA, 30303, USA
| | - Anna M Rosenhauer
- Neuroscience Institute, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA, 30303, USA
| | - Linda Q Beach
- Neuroscience Institute, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA, 30303, USA
| | - Kim L Huhman
- Neuroscience Institute, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA, 30303, USA.
| |
Collapse
|
10
|
Dulka BN, Bress KS, Grizzell JA, Cooper MA. Social Dominance Modulates Stress-induced Neural Activity in Medial Prefrontal Cortex Projections to the Basolateral Amygdala. Neuroscience 2018; 388:274-283. [PMID: 30075245 DOI: 10.1016/j.neuroscience.2018.07.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/31/2022]
Abstract
Stress is a contributing factor in the etiology of several mood and anxiety disorders, and social defeat models are used to investigate the biological basis of stress-related psychopathologies. Male Syrian hamsters are highly aggressive and territorial, but after social defeat they exhibit a conditioned defeat (CD) response which is characterized by increased submissive behavior and a failure to defend their home territory against a smaller, non-aggressive intruder. Hamsters with dominant social status show increased c-Fos expression in the infralimbic (IL) cortex following social defeat and display a reduced CD response at testing compared to subordinates and controls. In this study, we tested the prediction that dominants would show increased defeat-induced neural activity in IL, but not prelimbic (PL) or ventral hippocampus (vHPC), neurons that send efferent projections to the basolateral amygdala (BLA) compared to subordinates. We performed dual immunohistochemistry for c-Fos and cholera toxin B (CTB) and found that dominants display a significantly greater proportion of double-labeled c-Fos + CTB cells in both the IL and PL. Furthermore, dominants display more c-Fos-positive cells in both the IL and PL, but not vHPC, compared to subordinates. These findings suggest that dominant hamsters selectively activate IL and PL, but not vHPC, projections to the amygdala during social defeat, which may be responsible for their reduced CD response. This project extends our understanding of the neural circuits underlying resistance to social stress, which is an important step toward delineating a circuit-based approach for the prevention and treatment of stress-related psychopathologies.
Collapse
Affiliation(s)
- Brooke N Dulka
- Department of Psychology, NeuroNET Research Center, University of Tennessee, United States.
| | - Kimberly S Bress
- Department of Psychology, NeuroNET Research Center, University of Tennessee, United States
| | - J Alex Grizzell
- Department of Psychology, NeuroNET Research Center, University of Tennessee, United States
| | - Matthew A Cooper
- Department of Psychology, NeuroNET Research Center, University of Tennessee, United States
| |
Collapse
|
11
|
Dulka BN, Koul-Tiwari R, Grizzell JA, Harvey ML, Datta S, Cooper MA. Dominance relationships in Syrian hamsters modulate neuroendocrine and behavioral responses to social stress. Stress 2018; 21:1-6. [PMID: 29932809 PMCID: PMC6309596 DOI: 10.1080/10253890.2018.1485646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/30/2018] [Indexed: 12/21/2022] Open
Abstract
Stress is a well-known risk factor for psychopathology and rodent models of social defeat have strong face, etiological, construct and predictive validity for these conditions. Syrian hamsters are highly aggressive and territorial, but after an acute social defeat experience they become submissive and no longer defend their home territory, even from a smaller, non-aggressive intruder. This defeat-induced change in social behavior is called conditioned defeat (CD). We have shown that dominant hamsters show increased neural activity in the ventromedial prefrontal cortex (vmPFC) following social defeat stress and exhibit a reduced CD response at social interaction testing compared to subordinates. Although the vmPFC can inhibit the neuroendocrine stress response, it is unknown whether dominants and subordinates differ in stress-induced activity of the extended hypothalamic-pituitary-adrenal (HPA) axis. Here, we show that, following acute social defeat, dominants exhibit decreased submissive and defensive behavior compared to subordinates but do not differ from subordinates or social status controls (SSCs) in defeat-induced cortisol concentrations. Furthermore, both dominants and SSCs show greater corticotropin-releasing hormone (CRH) mRNA expression in the basolateral/central amygdala compared to subordinates, while there was no effect of social status on CRH mRNA expression in the paraventricular nucleus of the hypothalamus or bed nucleus of the stria terminalis. Overall, status-dependent differences in the CD response do not appear linked to changes in stress-induced cortisol concentrations or CRH gene expression, which is consistent with the view that stress resilience is not a lack of a physiological stress response but the addition of stress coping mechanisms. Lay summary Dominant hamsters show resistance to the behavioral effects of acute social defeat compared to subordinates, but it is unclear whether social status modulates the neuroendocrine stress response in Syrian hamsters. This study indicates that dominant social status does not alter stress-induced activity of the extended hypothalamic-pituitary-adrenal (HPA) axis, which suggests that the ability of dominants to cope with social defeat stress is not associated with changes in their neuroendocrine stress response.
Collapse
Affiliation(s)
- Brooke N. Dulka
- Department of Psychology, University of Tennessee, Knoxville, TN, USA
- NeuroNET Research Center, University of Tennessee, Knoxville, TN, USA
| | - Richa Koul-Tiwari
- Department of Anesthesiology, Graduate School of Medicine, University of Tennessee, Knoxville, TN, USA
| | - J. Alex Grizzell
- Department of Psychology, University of Tennessee, Knoxville, TN, USA
- NeuroNET Research Center, University of Tennessee, Knoxville, TN, USA
| | | | - Subimal Datta
- Department of Psychology, University of Tennessee, Knoxville, TN, USA
- Department of Anesthesiology, Graduate School of Medicine, University of Tennessee, Knoxville, TN, USA
- Program in Comparative and Experimental Medicine, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - Matthew A. Cooper
- Department of Psychology, University of Tennessee, Knoxville, TN, USA
- NeuroNET Research Center, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
12
|
Laman-Maharg A, Trainor BC. Stress, sex, and motivated behaviors. J Neurosci Res 2017; 95:83-92. [PMID: 27870436 DOI: 10.1002/jnr.23815] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/01/2016] [Accepted: 06/13/2016] [Indexed: 01/01/2023]
Abstract
Stress is a major risk factor for development of psychiatric disorders such as depression and development of substance use disorder. Although there are important sex differences in the prevalence of these disorders, most preclinical models used to study stress-induced disorders have used males only. Social defeat stress is a commonly used method to induce stress in an ethologically relevant way but has only recently begun to be used in female rodents. Using these new female models, recent studies have examined how social defeat stress affects males and females differently at the behavioral, circuit, and molecular levels. This Mini-Review discusses sex differences in the effects of social defeat stress on social behavior and drug-seeking behavior as well as its impact on the mesolimbic dopamine system and the highly connected region of the bed nucleus of the stria terminalis. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Abigail Laman-Maharg
- Neuroscience Graduate Group, University of California, Davis, Davis, California.,Department of Psychology, University of California, Davis, Davis, California.,Center for Neuroscience, University of California, Davis, Davis, California
| | - Brian C Trainor
- Neuroscience Graduate Group, University of California, Davis, Davis, California.,Department of Psychology, University of California, Davis, Davis, California.,Center for Neuroscience, University of California, Davis, Davis, California
| |
Collapse
|
13
|
Cooper MA, Seddighi S, Barnes AK, Grizzell JA, Dulka BN, Clinard CT. Dominance status alters restraint-induced neural activity in brain regions controlling stress vulnerability. Physiol Behav 2017; 179:153-161. [PMID: 28606772 PMCID: PMC5581240 DOI: 10.1016/j.physbeh.2017.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/18/2017] [Accepted: 06/07/2017] [Indexed: 01/29/2023]
Abstract
Understanding the cellular mechanisms that control resistance and vulnerability to stress is an important step toward identifying novel targets for the prevention and treatment of stress-related mental illness. In Syrian hamsters, dominant and subordinate animals exhibit different behavioral and physiological responses to social defeat stress, with dominants showing stress resistance and subordinates showing stress vulnerability. We previously found that dominant and subordinate hamsters show different levels of defeat-induced neural activity in brain regions that modulate coping with stress, although the extent to which status-dependent differences in stress vulnerability generalize to non-social stressors is unknown. In this study, dominant, subordinate, and control male Syrian hamsters were exposed to acute physical restraint for 30min and restraint-induced c-Fos immunoreactivity was quantified in select brain regions. Subordinate animals showed less restraint-induced c-Fos immunoreactivity in the infralimbic (IL), prelimbic (PL), and ventral medial amygdala (vMeA) compared to dominants, which is consistent with the status-dependent effects of social defeat stress. Subordinate animals did not show increased c-Fos immunoreactivity in the rostroventral dorsal raphe nucleus (rvDRN), which is in contrast to the effects of social defeat stress. These findings indicate that status-dependent changes in neural activity generalize from one stressor to another in a brain region-dependent manner. These findings further suggest that while some neural circuits may support a generalized form of stress resistance, others may provide resistance to specific stressors.
Collapse
Affiliation(s)
- Matthew A Cooper
- Department of Psychology, NeuroNET Research Center, University of Tennessee, Knoxville, TN 37996-0900, United States.
| | - Sahba Seddighi
- Department of Psychology, NeuroNET Research Center, University of Tennessee, Knoxville, TN 37996-0900, United States
| | - Abigail K Barnes
- Department of Psychology, NeuroNET Research Center, University of Tennessee, Knoxville, TN 37996-0900, United States
| | - J Alex Grizzell
- Department of Psychology, NeuroNET Research Center, University of Tennessee, Knoxville, TN 37996-0900, United States
| | - Brooke N Dulka
- Department of Psychology, NeuroNET Research Center, University of Tennessee, Knoxville, TN 37996-0900, United States
| | - Catherine T Clinard
- Department of Psychology, NeuroNET Research Center, University of Tennessee, Knoxville, TN 37996-0900, United States
| |
Collapse
|
14
|
Dulka BN, Bourdon AK, Clinard CT, Muvvala MBK, Campagna SR, Cooper MA. Metabolomics reveals distinct neurochemical profiles associated with stress resilience. Neurobiol Stress 2017; 7:103-112. [PMID: 28828396 PMCID: PMC5552108 DOI: 10.1016/j.ynstr.2017.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/11/2017] [Accepted: 08/05/2017] [Indexed: 11/27/2022] Open
Abstract
Acute social defeat represents a naturalistic form of conditioned fear and is an excellent model in which to investigate the biological basis of stress resilience. While there is growing interest in identifying biomarkers of stress resilience, until recently, it has not been feasible to associate levels of large numbers of neurochemicals and metabolites to stress-related phenotypes. The objective of the present study was to use an untargeted metabolomics approach to identify known and unknown neurochemicals in select brain regions that distinguish susceptible and resistant individuals in two rodent models of acute social defeat. In the first experiment, male mice were first phenotyped as resistant or susceptible. Then, mice were subjected to acute social defeat, and tissues were immediately collected from the ventromedial prefrontal cortex (vmPFC), basolateral/central amygdala (BLA/CeA), nucleus accumbens (NAc), and dorsal hippocampus (dHPC). Ultra-high performance liquid chromatography coupled with high resolution mass spectrometry (UPLC-HRMS) was used for the detection of water-soluble neurochemicals. In the second experiment, male Syrian hamsters were paired in daily agonistic encounters for 2 weeks, during which they formed stable dominant-subordinate relationships. Then, 24 h after the last dominance encounter, animals were exposed to acute social defeat stress. Immediately after social defeat, tissue was collected from the vmPFC, BLA/CeA, NAc, and dHPC for analysis using UPLC-HRMS. Although no single biomarker characterized stress-related phenotypes in both species, commonalities were found. For instance, in both model systems, animals resistant to social defeat stress also show increased concentration of molecules to protect against oxidative stress in the NAc and vmPFC. Additionally, in both mice and hamsters, unidentified spectral features were preliminarily annotated as potential targets for future experiments. Overall, these findings suggest that a metabolomics approach can identify functional groups of neurochemicals that may serve as novel targets for the diagnosis, treatment, or prevention of stress-related mental illness.
Collapse
Affiliation(s)
- Brooke N Dulka
- Department of Psychology, University of Tennessee, Knoxville, TN 37996, United States
| | - Allen K Bourdon
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, United States
| | - Catherine T Clinard
- Department of Psychology, University of Tennessee, Knoxville, TN 37996, United States
| | - Mohan B K Muvvala
- Department of Psychology, University of Tennessee, Knoxville, TN 37996, United States
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, United States.,Biological Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, TN 37996, United States
| | - Matthew A Cooper
- Department of Psychology, University of Tennessee, Knoxville, TN 37996, United States
| |
Collapse
|
15
|
Rosenhauer AM, McCann KE, Norvelle A, Huhman KL. An acute social defeat stressor in early puberty increases susceptibility to social defeat in adulthood. Horm Behav 2017; 93:31-38. [PMID: 28390864 DOI: 10.1016/j.yhbeh.2017.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/21/2017] [Accepted: 04/04/2017] [Indexed: 11/25/2022]
Abstract
Syrian hamsters readily display territorial aggression. If they lose even a single agonistic encounter, however, hamsters show striking reductions in aggressive behavior and increases in submissive behavior, a distinct behavioral change that we have previously termed conditioned defeat. This acute social defeat stressor is primarily psychological and is effective in both males and females. Therefore, we maintain that this procedure presents an ideal model for studying behavioral and physiological responses to social stress. Here, we demonstrate that social avoidance following social defeat is a particularly useful dependent measure because of its sensitivity and stability between sexes and across the estrous cycle. In addition, we demonstrate that peripubertal hamsters exposed to a single, 15min social defeat exhibit significantly more social avoidance 24h later when compared with no-defeat controls. Later, defeated and non-defeated hamsters display similar agonistic behavior in adulthood indicating that the peripubertal defeat does not alter adult territorial aggression. After experiencing an additional social defeat in adulthood, however, the hamsters that experienced the pubertal defeat respond to the adult defeat with increased social avoidance when compared with hamsters that were defeated only in adulthood and with no-defeat controls. These data are the first to show that a single social defeat in puberty increases susceptibility to later social defeat in both males and females.
Collapse
Affiliation(s)
- Anna M Rosenhauer
- Neuroscience Institute, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA 30303, USA.
| | - Katharine E McCann
- Neuroscience Institute, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA 30303, USA.
| | - Alisa Norvelle
- Neuroscience Institute, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA 30303, USA.
| | - Kim L Huhman
- Neuroscience Institute, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA 30303, USA.
| |
Collapse
|
16
|
Clinard CT, Barnes AK, Adler SG, Cooper MA. Winning agonistic encounters increases testosterone and androgen receptor expression in Syrian hamsters. Horm Behav 2016; 86:27-35. [PMID: 27619945 PMCID: PMC5159211 DOI: 10.1016/j.yhbeh.2016.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/30/2016] [Accepted: 09/08/2016] [Indexed: 11/16/2022]
Abstract
Winning aggressive disputes is one of several experiences that can alter responses to future stressful events. We have previously tested dominant and subordinate male Syrian hamsters in a conditioned defeat model and found that dominant individuals show less change in behavior following social defeat stress compared to subordinates and controls, indicating a reduced conditioned defeat response. Resistance to the effects of social defeat in dominants is experience-dependent and requires the maintenance of dominance relationships for 14days. For this study we investigated whether winning aggressive interactions increases plasma testosterone and whether repeatedly winning increases androgen receptor expression. First, male hamsters were paired in daily 10-min aggressive encounters and blood samples were collected immediately before and 15min and 30min after the formation of dominance relationships. Dominants showed an increase in plasma testosterone at 15min post-interaction compared to their pre-interaction baseline, whereas subordinates and controls showed no change in plasma testosterone. Secondly, we investigated whether 14days of dominant social status increased androgen or estrogen alpha-receptor immunoreactivity in brain regions that regulate the conditioned defeat response. Dominants showed more androgen, but not estrogen alpha, receptor immuno-positive cells in the dorsal medial amygdala (dMeA) and ventral lateral septum (vLS) compared to subordinates and controls. Finally, we showed that one day of dominant social status was insufficient to increase androgen receptor immunoreactivity compared to subordinates. These results suggest that elevated testosterone signaling at androgen receptors in the dMeA and vLS might contribute to the reduced conditioned defeat response exhibited by dominant hamsters.
Collapse
Affiliation(s)
- Catherine T Clinard
- Department of Psychology, University of Tennessee, Knoxville, TN 37996, United States.
| | - Abigail K Barnes
- Department of Psychology, University of Tennessee, Knoxville, TN 37996, United States
| | - Samuel G Adler
- Department of Psychology, University of Tennessee, Knoxville, TN 37996, United States
| | - Matthew A Cooper
- Department of Psychology, University of Tennessee, Knoxville, TN 37996, United States
| |
Collapse
|
17
|
Belmer A, Patkar OL, Pitman KM, Bartlett SE. Serotonergic Neuroplasticity in Alcohol Addiction. Brain Plast 2016; 1:177-206. [PMID: 29765841 PMCID: PMC5928559 DOI: 10.3233/bpl-150022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Alcohol addiction is a debilitating disorder producing maladaptive changes in the brain, leading drinkers to become more sensitive to stress and anxiety. These changes are key factors contributing to alcohol craving and maintaining a persistent vulnerability to relapse. Serotonin (5-Hydroxytryptamine, 5-HT) is a monoamine neurotransmitter widely expressed in the central nervous system where it plays an important role in the regulation of mood. The serotonin system has been extensively implicated in the regulation of stress and anxiety, as well as the reinforcing properties of all of the major classes of drugs of abuse, including alcohol. Dysregulation within the 5-HT system has been postulated to underlie the negative mood states associated with alcohol use disorders. This review will describe the serotonergic (5-HTergic) neuroplastic changes observed in animal models throughout the alcohol addiction cycle, from prenatal to adulthood exposure. The first section will focus on alcohol-induced 5-HTergic neuroadaptations in offspring prenatally exposed to alcohol and the consequences on the regulation of stress/anxiety. The second section will compare alterations in 5-HT signalling induced by acute or chronic alcohol exposure during adulthood and following alcohol withdrawal, highlighting the impact on the regulation of stress/anxiety signalling pathways. The third section will outline 5-HTergic neuroadaptations observed in various genetically-selected ethanol preferring rat lines. Finally, we will discuss the pharmacological manipulation of the 5-HTergic system on ethanol- and anxiety/stress-related behaviours demonstrated by clinical trials, with an emphasis on current and potential treatments.
Collapse
Affiliation(s)
- Arnauld Belmer
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia.,Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - Omkar L Patkar
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia.,Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - Kim M Pitman
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia.,Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - Selena E Bartlett
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia.,Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
18
|
Yang A, Daya T, Carlton K, Yan JH, Schmid S. Differential effect of clomipramine on habituation and prepulse inhibition in dominant versus subordinate rats. Eur Neuropsychopharmacol 2016; 26:591-601. [PMID: 26754403 DOI: 10.1016/j.euroneuro.2015.12.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/24/2015] [Accepted: 12/12/2015] [Indexed: 02/06/2023]
Abstract
Many patients with depression have comorbidities associated with an impairment of sensorimotor gating, such as e.g. schizophrenia, Parkinson Disease, or Alzheimer disease. Anti-depressants like clomipramine that modulate serotonergic or norepinephrinergic neurotransmission have been shown to impact sensorimotor gating, it is therefore important to study potential effects of clomipramine in order to rule out an exacerbation of sensorimotor gating impairment. Prior studies in animals and humans have been inconclusive. Since serotonin and norepinephrine levels are closely related to anxiety and stress levels and therefore to the social status of an animal, we tested the hypothesis that acute and chronic effects of clomipramine on sensorimotor gating are different in dominant versus subordinate rats, which might be responsible for conflicting results in past animal studies. We used habituation and prepulse inhibition (PPI) of the acoustic startle response as operational measures of sensorimotor gating. After establishing the dominant animal in pair-housed male rats, we injected clomipramine for two weeks and measured acute effects on baseline startle, habituation and PPI after the first injection and chronic effects at the end of the two weeks. Chronic treatment with clomipramine significantly increased habituation in subordinate rats, but had no effect on habituation in dominant animals. Furthermore, PPI was slightly enhanced in subordinate rats upon chronic treatment while no changes occurred in dominant animals. We conclude that the social status of an animal, and therefore the basic anxiety/stress level determines whether or not clomipramine has a beneficial effect on sensorimotor gating and discuss possible underlying mechanisms.
Collapse
Affiliation(s)
- Alvin Yang
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Tahira Daya
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Karen Carlton
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Jin Hui Yan
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Susanne Schmid
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
19
|
Mouse model of OPRM1 (A118G) polymorphism increases sociability and dominance and confers resilience to social defeat. J Neurosci 2015; 35:3582-90. [PMID: 25716856 DOI: 10.1523/jneurosci.4685-14.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A single nucleotide polymorphism (SNP) in the human μ-opioid receptor gene (OPRM1 A118G) has been widely studied for its association in drug addiction, pain sensitivity, and, more recently, social behavior. The endogenous opioid system has been shown to regulate social distress and reward in a variety of animal models. However, mechanisms underlying the associations between the OPRM1 A118G SNP and these behaviors have not been clarified. We used a mouse model possessing the human equivalent nucleotide/amino acid substitution to study social affiliation and social defeat behaviors. In mice with the Oprm1 A112G SNP, we demonstrate that the G allele is associated with an increase in home-cage dominance and increased motivation for nonaggressive social interactions, similar to what is reported in human populations. When challenged by a resident aggressor, G-allele carriers expressed less submissive behavior and exhibited resilience to social defeat, demonstrated by a lack of subsequent social avoidance and reductions in anhedonia as measured by intracranial self-stimulation. Protection from social defeat in G-allele carriers was associated with a greater induction of c-fos in a resilience circuit comprising the nucleus accumbens and periaqueductal gray. These findings led us to test the role of endogenous opioids in the A112G mice. We demonstrate that the increase in social affiliation in G carriers is blocked by pretreatment with naloxone. Together, these data suggest a mechanism involving altered hedonic state and neural activation as well as altered endogenous opioid tone in the differential response to aversive and rewarding social stimuli in G-allele carriers.
Collapse
|
20
|
Visser AK, Ettrup A, Klein AB, van Waarde A, Bosker FJ, Meerlo P, Knudsen GM, de Boer SF. Similar serotonin-2A receptor binding in rats with different coping styles or levels of aggression. Synapse 2015; 69:226-32. [DOI: 10.1002/syn.21810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Anniek K.D. Visser
- Department of Nuclear Medicine and Molecular Imaging; University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| | - Anders Ettrup
- Neurobiology Research Unit, Rigshospitalet and University of Copenhagen; Copenhagen Denmark
| | - Anders B. Klein
- Neurobiology Research Unit, Rigshospitalet and University of Copenhagen; Copenhagen Denmark
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging; University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| | - Fokko J. Bosker
- Department of General Psychiatry, University Center of Psychiatry, University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| | - Peter Meerlo
- Department of Behavioral Physiology; Center for Behavior and Neurosciences, University of Groningen; Groningen The Netherlands
| | - Gitte M. Knudsen
- Neurobiology Research Unit, Rigshospitalet and University of Copenhagen; Copenhagen Denmark
| | - Sietse F. de Boer
- Department of Behavioral Physiology; Center for Behavior and Neurosciences, University of Groningen; Groningen The Netherlands
| |
Collapse
|
21
|
Cooper MA, Clinard CT, Morrison KE. Neurobiological mechanisms supporting experience-dependent resistance to social stress. Neuroscience 2015; 291:1-14. [PMID: 25677096 PMCID: PMC4369454 DOI: 10.1016/j.neuroscience.2015.01.072] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 11/16/2022]
Abstract
Humans and other animals show a remarkable capacity for resilience following traumatic, stressful events. Resilience is thought to be an active process related to coping with stress, although the cellular and molecular mechanisms that support active coping and stress resistance remain poorly understood. In this review, we focus on the neurobiological mechanisms by which environmental and social experiences promote stress resistance. In male Syrian hamsters, exposure to a brief social defeat stressor leads to increased avoidance of novel opponents, which we call conditioned defeat. Also, hamsters that have achieved dominant social status show reduced conditioned defeat as well as cellular and molecular changes in the neural circuits controlling the conditioned defeat response. We propose that experience-dependent neural plasticity occurs in the prelimbic (PL) cortex, infralimbic (IL) cortex, and ventral medial amygdala (vMeA) during the maintenance of dominance relationships, and that adaptations in these neural circuits support stress resistance in dominant individuals. Overall, behavioral treatments that promote success in competitive interactions may represent valuable interventions for instilling resilience.
Collapse
Affiliation(s)
- M A Cooper
- Department of Psychology, University of Tennessee, Knoxville, TN, 37996, USA.
| | - C T Clinard
- Department of Psychology, University of Tennessee, Knoxville, TN, 37996, USA
| | - K E Morrison
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
22
|
Puglisi-Allegra S, Andolina D. Serotonin and stress coping. Behav Brain Res 2014; 277:58-67. [PMID: 25108244 DOI: 10.1016/j.bbr.2014.07.052] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 12/25/2022]
Abstract
Coping is the necessary outcome of any stressful situation and the major determinant of stress resilience. Coping strategies can be divided into two broad categories, based on the presence (active) or absence (passive) of attempts to act upon the stressor. The role of brain serotonin (5-hydroxytryptamine, 5-HT) in coping behavior that is emerging from studies in animals and humans is the subject of this article. We have focused attention on studies that consider the coping behavior exhibited when the individual is faced with a new stressful experience. Coping styles characterize different species with different evolutionary histories, from fishes to mammals, and evidence shows that serotonin transmission in the central nervous system, with differences in transporter, receptor types and hormone or neurotransmitter influences is critical in determining coping behavior. Moreover, a major role of environmental challenges throughout the lifespan affects brain systems that control coping outcomes through 5-HT transmission. In particular early experiences, for their long-term effects in adulthood, and social experiences throughout the life span, for the effects on serotonin functioning, received attention in preclinical research because of their parallelism in humans and animals. Based on growing evidence pointing to a medial prefrontal cortex-amygdala system in mediating adaptive and maladaptive stress responses, we propose a brain circuit in which serotonin neurons in the dorsal raphe depending on the CRF (corticotropin releasing factor) regulatory action engage a prefrontal cortical-amygdala pathway through 5-HT1A receptors, GABA and Glutamate to moderate coping behavior.
Collapse
Affiliation(s)
- Stefano Puglisi-Allegra
- Dipartimento di Psicologia and Centro "Daniel Bovet," Sapienza Università di Roma, via dei Marsi 78, 00185 Rome, Italy; Fondazione Santa Lucia, IRCCS, via del Fosso di Fiorano 65, 00143 Rome, Italy.
| | - Diego Andolina
- Fondazione Santa Lucia, IRCCS, via del Fosso di Fiorano 65, 00143 Rome, Italy; Dipartimento di scienze cliniche applicate e biotecnologie Università degli Studi dell'Aquila, via Vetoio, 67010 Coppito, L'Aquila, Italy
| |
Collapse
|
23
|
Shannonhouse JL, Fong LA, Clossen BL, Hairgrove RE, York DC, Walker BB, Hercules GW, Mertesdorf LM, Patel M, Morgan C. Female-biased anorexia and anxiety in the Syrian hamster. Physiol Behav 2014; 133:141-51. [DOI: 10.1016/j.physbeh.2014.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/07/2014] [Accepted: 05/16/2014] [Indexed: 01/26/2023]
|
24
|
Maintenance of dominance status is necessary for resistance to social defeat stress in Syrian hamsters. Behav Brain Res 2014; 270:277-86. [PMID: 24875769 DOI: 10.1016/j.bbr.2014.05.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 01/15/2023]
Abstract
Resilience is an active process that involves a discrete set of neural substrates and cellular mechanisms and enables individuals to avoid some of the negative consequences of extreme stress. We have previously shown that dominant individuals show less stress-induced changes in behavior compared to subordinates using a conditioned defeat model in male Syrian hamsters (Mesocricetus auratus). To rule out pre-existing differences between dominants and subordinates, we examined whether 14 days of dominance experience is required to reduce the conditioned defeat response and whether the development of conditioned defeat resistance correlates with defeat-induced neural activation in select brain regions. We paired hamsters in daily 5-min aggressive encounters for 1, 7, or 14 days and then exposed animals to 3, 5-min social defeat episodes. The next day animals received conditioned defeat testing which involved a 5-min social interaction test with a non-aggressive intruder. In separate animals brains were collected after social defeat for c-Fos immunohistochemistry. We found that 14-day dominants showed a decreased conditioned defeat response compared to 14-day subordinates and controls, while 1-day and 7-day dominants did not differ from their subordinate counterparts. Also, the duration of dominance relationship was associated with distinct patterns of defeat-induced neural activation such that only 14-day dominants showed elevated c-Fos immunoreactivity in the ventral medial prefrontal cortex, medial amygdala, and lateral portions of the ventral medial hypothalamus. Our data suggest that resistance to social stress develops during the maintenance of dominance relationships and is associated with experience-dependent neural plasticity in select brain regions.
Collapse
|
25
|
Asan E, Steinke M, Lesch KP. Serotonergic innervation of the amygdala: targets, receptors, and implications for stress and anxiety. Histochem Cell Biol 2013; 139:785-813. [DOI: 10.1007/s00418-013-1081-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2013] [Indexed: 01/09/2023]
|
26
|
Morrison KE, Bader LR, McLaughlin CN, Cooper MA. Defeat-induced activation of the ventral medial prefrontal cortex is necessary for resistance to conditioned defeat. Behav Brain Res 2013; 243:158-64. [PMID: 23333400 DOI: 10.1016/j.bbr.2013.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 01/03/2013] [Accepted: 01/08/2013] [Indexed: 01/26/2023]
Abstract
The ventral medial prefrontal cortex (vmPFC) controls vulnerability to the negative effects of chronic or uncontrollable stress. Dominance status alters responses to social defeat in the conditioned defeat model, which is a model characterized by loss of territorial aggression and increased submissive and defensive behavior following an acute social defeat. We have previously shown that dominant individuals show a reduced conditioned defeat response and increased defeat-induced neural activation in the vmPFC compared to subordinates. Here, we tested the hypothesis that defeat-induced activation of the vmPFC is necessary to confer resistance to conditioned defeat in dominants. We paired weight-matched male Syrian hamsters (Mesocricetus auratus) in daily 5-min aggressive encounters for 2 weeks and identified dominants and subordinates. Twenty-four hours after the final pairing, animals were bilaterally injected with 200 nl of the GABAA receptor agonist muscimol (1.1 nmol) or 200 nl of saline vehicle 5 min prior to social defeat. Defeat consisted of 3, 5-min encounters with resident aggressor hamsters at 10-min intervals. Twenty-four hours following social defeat, animals received conditioned defeat testing which involved a 5-min social interaction test with a non-aggressive intruder. Muscimol injection prior to social defeat prevented the reduced conditioned defeat response observed in vehicle-treated dominants. Further, there was no effect of muscimol injection on the conditioned defeat response in subordinates or controls. These data support the conclusion that activation of the vmPFC during social defeat is necessary for the protective effects of dominant social status on the acquisition of conditioned defeat.
Collapse
Affiliation(s)
- Kathleen E Morrison
- Department of Psychology, University of Tennessee, Knoxville, TN, 37996, USA.
| | | | | | | |
Collapse
|
27
|
Toronchuk JA, Ellis GFR. Affective neuronal selection: the nature of the primordial emotion systems. Front Psychol 2013; 3:589. [PMID: 23316177 PMCID: PMC3540967 DOI: 10.3389/fpsyg.2012.00589] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 12/12/2012] [Indexed: 11/13/2022] Open
Abstract
Based on studies in affective neuroscience and evolutionary psychiatry, a tentative new proposal is made here as to the nature and identification of primordial emotional systems. Our model stresses phylogenetic origins of emotional systems, which we believe is necessary for a full understanding of the functions of emotions and additionally suggests that emotional organizing systems play a role in sculpting the brain during ontogeny. Nascent emotional systems thus affect cognitive development. A second proposal concerns two additions to the affective systems identified by Panksepp. We suggest there is substantial evidence for a primary emotional organizing program dealing with power, rank, dominance, and subordination which instantiates competitive and territorial behavior and is an evolutionary contributor to self-esteem in humans. A program underlying disgust reactions which originally functioned in ancient vertebrates to protect against infection and toxins is also suggested.
Collapse
Affiliation(s)
- Judith A Toronchuk
- Department of Psychology, Trinity Western University Langley, BC, Canada ; Department of Biology, Trinity Western University Langley, BC, Canada
| | | |
Collapse
|
28
|
Beasley M, Sabatinelli D, Obasi E. Neuroimaging evidence for social rank theory. Front Hum Neurosci 2012; 6:123. [PMID: 22586388 PMCID: PMC3347627 DOI: 10.3389/fnhum.2012.00123] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/18/2012] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marian Beasley
- Hwemudua Alcohol and Health Disparities Laboratory, Department of Counseling and Human Development Services, The University of Georgia Athens, GA, USA
| | | | | |
Collapse
|
29
|
Idova GV, Alperina EL, Cheido MA. Contribution of brain dopamine, serotonin and opioid receptors in the mechanisms of neuroimmunomodulation: Evidence from pharmacological analysis. Int Immunopharmacol 2012; 12:618-25. [DOI: 10.1016/j.intimp.2012.02.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 02/20/2012] [Accepted: 02/22/2012] [Indexed: 01/11/2023]
|
30
|
Morrison KE, Curry DW, Cooper MA. Social status alters defeat-induced neural activation in Syrian hamsters. Neuroscience 2012; 210:168-78. [PMID: 22433296 DOI: 10.1016/j.neuroscience.2012.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 03/01/2012] [Indexed: 01/14/2023]
Abstract
Although exposure to social stress leads to increased depression-like and anxiety-like behavior, some individuals are more vulnerable than others to these stress-induced changes in behavior. Prior social experience is one factor that can modulate how individuals respond to stressful events. In this study, we investigated whether experience-dependent resistance to the behavioral consequences of social defeat was associated with a specific pattern of neural activation. We paired weight-matched male Syrian hamsters in daily aggressive encounters for 2 weeks, during which they formed a stable dominance relationship. We also included control animals that were exposed to an empty cage each day for 2 weeks. Twenty-four hours after the final pairing or empty cage exposure, half of the subjects were socially defeated in 3, 5-min encounters, whereas the others were not socially defeated. Twenty-four hours after social defeat, animals were tested for conditioned defeat in a 5-min social interaction test with a non-aggressive intruder. We collected brains after social defeat and processed the tissue for c-Fos immunoreactivity. We found that dominants were more likely than subordinates to counter-attack the resident aggressor during social defeat, and they showed less submissive and defensive behavior at conditioned defeat testing compared with subordinates. Also, social status was associated with distinct patterns of defeat-induced neural activation in select brain regions, including the amygdala, prefrontal cortex, hypothalamus, and lateral septum. Our results indicate that social status is an important form of prior experience that predicts both initial coping style and the degree of resistance to social defeat. Further, the differences in defeat-induced neural activation suggest possible brain regions that may control resistance to conditioned defeat in dominant individuals.
Collapse
Affiliation(s)
- K E Morrison
- Department of Psychology, University of Tennessee, Knoxville, TN 37996, USA.
| | | | | |
Collapse
|
31
|
Kiser D, SteemerS B, Branchi I, Homberg JR. The reciprocal interaction between serotonin and social behaviour. Neurosci Biobehav Rev 2012; 36:786-98. [DOI: 10.1016/j.neubiorev.2011.12.009] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 11/23/2011] [Accepted: 12/14/2011] [Indexed: 11/27/2022]
|