1
|
Fernandes-da-Silva A, Miranda CS, Santana-Oliveira DA, Oliveira-Cordeiro B, Rangel-Azevedo C, Silva-Veiga FM, Martins FF, Souza-Mello V. Endoplasmic reticulum stress as the basis of obesity and metabolic diseases: focus on adipose tissue, liver, and pancreas. Eur J Nutr 2021; 60:2949-2960. [PMID: 33742254 DOI: 10.1007/s00394-021-02542-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 03/11/2021] [Indexed: 12/11/2022]
Abstract
Obesity challenges lipid and carbohydrate metabolism. The resulting glucolipotoxicity causes endoplasmic reticulum (ER) dysfunction, provoking the accumulation of immature proteins, which triggers the unfolded protein reaction (UPR) as an attempt to reestablish ER homeostasis. When the three branches of UPR fail to correct the unfolded/misfolded proteins, ER stress happens. Excessive dietary saturated fatty acids or fructose exhibit the same impact on the ER stress, induced by excessive ectopic fat accumulation or rising blood glucose levels, and meta-inflammation. These metabolic abnormalities can alleviate through dietary interventions. Many pathways are disrupted in adipose tissue, liver, and pancreas during ER stress, compromising browning and thermogenesis, favoring hepatic lipogenesis, and impairing glucose-stimulated insulin secretion within pancreatic beta cells. As a result, ER stress takes part in obesity, hepatic steatosis, and diabetes pathogenesis, arising as a potential target to treat or even prevent metabolic diseases. The scientific community seeks strategies to alleviate ER stress by avoiding inflammation, apoptosis, lipogenesis suppression, and insulin sensitivity augmentation through pharmacological and non-pharmacological interventions. This comprehensive review aimed to describe the contribution of excessive dietary fat or sugar to ER stress and the impact of this adverse cellular environment on adipose tissue, liver, and pancreas function.
Collapse
Affiliation(s)
- Aline Fernandes-da-Silva
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Av 28 de Setembro 87 fds, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Carolline Santos Miranda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Av 28 de Setembro 87 fds, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Daiana Araujo Santana-Oliveira
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Av 28 de Setembro 87 fds, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Brenda Oliveira-Cordeiro
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Av 28 de Setembro 87 fds, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Camilla Rangel-Azevedo
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Av 28 de Setembro 87 fds, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Flávia Maria Silva-Veiga
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Av 28 de Setembro 87 fds, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Fabiane Ferreira Martins
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Av 28 de Setembro 87 fds, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Av 28 de Setembro 87 fds, Rio de Janeiro, RJ, 20551-030, Brazil.
| |
Collapse
|
2
|
Harris RBS. Consuming sucrose solution promotes leptin resistance and site specifically modifies hypothalamic leptin signaling in rats. Am J Physiol Regul Integr Comp Physiol 2020; 320:R182-R194. [PMID: 33206557 DOI: 10.1152/ajpregu.00238.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rats consuming 30% sucrose solution and a sucrose-free diet (LiqS) become leptin resistant, whereas rats consuming sucrose from a formulated diet (HS) remain leptin responsive. This study tested whether leptin resistance in LiqS rats extended beyond a failure to inhibit food intake and examined leptin responsiveness in the hypothalamus and hindbrain of rats offered HS, LiqS, or a sucrose-free diet (NS). Female LiqS Sprague-Dawley rats initially only partially compensated for the calories consumed as sucrose, but energy intake matched that of HS and NS rats when they were transferred to calorimetry cages. There was no effect of diet on energy expenditure, intrascapular brown fat tissue (IBAT) temperature, or fat pad weight. A peripheral injection of 2 mg of leptin/kg on day 23 or day 26 inhibited energy intake of HS and NS but not LiqS rats. Inhibition occurred earlier in HS rats than in NS rats and was associated with a smaller meal size. Leptin had no effect on energy expenditure but caused a transient rise in IBAT temperature of HS rats. Leptin increased the phosphorylation of signal transducer and activator of transcription 3 (pSTAT3) in the hindbrain and ventromedial hypothalamus of all rats. There was a minimal effect of leptin in the arcuate nucleus, and only the dorsomedial hypothalamus showed a correlation between pSTAT3 and leptin responsiveness. These data suggest that the primary response to leptin is inhibition of food intake and the pattern of sucrose consumption, rather than calories consumed as sucrose, causes leptin resistance associated with site-specific differences in hypothalamic leptin signaling.
Collapse
Affiliation(s)
- Ruth B S Harris
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
3
|
Tian JL, Gomeshtapeh FI. Potential Roles of O-GlcNAcylation in Primary Cilia- Mediated Energy Metabolism. Biomolecules 2020; 10:biom10111504. [PMID: 33139642 PMCID: PMC7693894 DOI: 10.3390/biom10111504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022] Open
Abstract
The primary cilium, an antenna-like structure on most eukaryotic cells, functions in transducing extracellular signals into intracellular responses via the receptors and ion channels distributed along it membrane. Dysfunction of this organelle causes an array of human diseases, known as ciliopathies, that often feature obesity and diabetes; this indicates the primary cilia's active role in energy metabolism, which it controls mainly through hypothalamic neurons, preadipocytes, and pancreatic β-cells. The nutrient sensor, O-GlcNAc, is widely involved in the regulation of energy homeostasis. Not only does O-GlcNAc regulate ciliary length, but it also modifies many components of cilia-mediated metabolic signaling pathways. Therefore, it is likely that O-GlcNAcylation (OGN) plays an important role in regulating energy homeostasis in primary cilia. Abnormal OGN, as seen in cases of obesity and diabetes, may play an important role in primary cilia dysfunction mediated by these pathologies.
Collapse
Affiliation(s)
- Jie L. Tian
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Correspondence: ; Tel.: +1-706-583-5551
| | | |
Collapse
|
4
|
McCluskey LP, He L, Dong G, Harris R. Chronic exposure to liquid sucrose and dry sucrose diet have differential effects on peripheral taste responses in female rats. Appetite 2019; 145:104499. [PMID: 31669578 DOI: 10.1016/j.appet.2019.104499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 11/29/2022]
Abstract
Sugar-sweetened beverages are the major source of added calories in the Western diet and their prevalence is associated with obesity and metabolic disruption. Despite the critical role of the taste system in determining food selection and consumption, the effects of chronic sucrose consumption on the peripheral taste system in mammals have received limited attention. We offered female Sprague Dawley rats free access to water and one of three diets for up to 40 days: (1) sucrose-free chow or "NS" diet; (2) a high-sucrose dry diet or "HS"; or (3) 30% sucrose solution and the NS diet, designated "LiqS" diet. Sucrose consumption by LiqS rats gradually increased and by day 14 was equal to that of HS rats. Food intake decreased in LiqS rats, but their energy intake remained higher than for NS or HS rats. There was no significant difference in weight gain of the groups during the study. Recordings from the chorda tympani nerve (CT), which innervates taste buds on the anterior tongue, revealed decreased responses to 1 M sucrose in both LiqS and HS rats and to acesulfame K and salt tastants in LiqS rats after 40 days on diet. Umami, bitter, and acid response magnitudes were unchanged in both groups. These results demonstrate that chronic sucrose exposure inhibits taste responses to higher concentrations of sweet stimuli. More surprisingly, CT responses to NaCl and 0.5M NaAc were significantly reduced in rats on the LiqS diet. Thus, the physical form of the diet influences taste responsiveness to salt and sweet taste function. These data suggest that taste buds are previously unappreciated targets of chronic sucrose consumption.
Collapse
Affiliation(s)
- Lynnette Phillips McCluskey
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, United States.
| | - Lianying He
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, United States; Department of Pathology and Laboratory Medicine, Medical University of South Carolina, United States
| | - Guankuo Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, United States
| | - Ruth Harris
- Department of Physiology, Medical College of Georgia at Augusta University, United States
| |
Collapse
|
5
|
Slomp M, Belegri E, Blancas‐Velazquez AS, Diepenbroek C, Eggels L, Gumbs MC, Joshi A, Koekkoek LL, Lamuadni K, Ugur M, Unmehopa UA, la Fleur SE, Mul JD. Stressing the importance of choice: Validity of a preclinical free-choice high-caloric diet paradigm to model behavioural, physiological and molecular adaptations during human diet-induced obesity and metabolic dysfunction. J Neuroendocrinol 2019; 31:e12718. [PMID: 30958590 PMCID: PMC6593820 DOI: 10.1111/jne.12718] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/06/2019] [Accepted: 03/28/2019] [Indexed: 12/23/2022]
Abstract
Humans have engineered a dietary environment that has driven the global prevalence of obesity and several other chronic metabolic diseases to pandemic levels. To prevent or treat obesity and associated comorbidities, it is crucial that we understand how our dietary environment, especially in combination with a sedentary lifestyle and/or daily-life stress, can dysregulate energy balance and promote the development of an obese state. Substantial mechanistic insight into the maladaptive adaptations underlying caloric overconsumption and excessive weight gain has been gained by analysing brains from rodents that were eating prefabricated nutritionally-complete pellets of high-fat diet (HFD). Although long-term consumption of HFDs induces chronic metabolic diseases, including obesity, they do not model several important characteristics of the modern-day human diet. For example, prefabricated HFDs ignore the (effects of) caloric consumption from a fluid source, do not appear to model the complex interplay in humans between stress and preference for palatable foods, and, importantly, lack any aspect of choice. Therefore, our laboratory uses an obesogenic free-choice high-fat high-sucrose (fc-HFHS) diet paradigm that provides rodents with the opportunity to choose from several diet components, varying in palatability, fluidity, texture, form and nutritive content. Here, we review recent advances in our understanding how the fc-HFHS diet disrupts peripheral metabolic processes and produces adaptations in brain circuitries that govern homeostatic and hedonic components of energy balance. Current insight suggests that the fc-HFHS diet has good construct and face validity to model human diet-induced chronic metabolic diseases, including obesity, because it combines the effects of food palatability and energy density with the stimulating effects of variety and choice. We also highlight how behavioural, physiological and molecular adaptations might differ from those induced by prefabricated HFDs that lack an element of choice. Finally, the advantages and disadvantages of using the fc-HFHS diet for preclinical studies are discussed.
Collapse
Affiliation(s)
- Margo Slomp
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Evita Belegri
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Aurea S. Blancas‐Velazquez
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Charlene Diepenbroek
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Leslie Eggels
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Myrtille C.R. Gumbs
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Anil Joshi
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Laura L. Koekkoek
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Khalid Lamuadni
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Muzeyyen Ugur
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Unga A. Unmehopa
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Susanne E. la Fleur
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Joram D. Mul
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| |
Collapse
|
6
|
Harris RBS. Development of leptin resistance in sucrose drinking rats is associated with consuming carbohydrate-containing solutions and not calorie-free sweet solution. Appetite 2018; 132:114-121. [PMID: 30316873 DOI: 10.1016/j.appet.2018.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/10/2018] [Accepted: 10/09/2018] [Indexed: 01/24/2023]
Abstract
Rats offered 30% sucrose solution plus chow or a sucrose-free diet develop leptin resistance within 4 weeks. This experiment tested whether leptin resistance was associated with the reward of sweet taste or the pre- or post-absorptive effects of consumption of simple carbohydrate. Male Sprague Dawley rats were offered a sucrose-free diet (NS), a diet containing 67% calories as sucrose (HS) or NS diet plus 30% sucrose (LS), 0.03% saccharin (Sacc) or 20% SolCarb® solution for 38 days. SolCarb® is a maltodextrin powder. Sacc rats initially drank more than LS rats, but intakes were the same after Day 20. SolCarb® and LS rats drank the same number of calories from Day 15 to the end of the experiment. SolCarb® and LS rats ate less dry food than other groups, but total energy intake was greater than that of NS, HS and Sacc groups and over 80% of their energy intake was from carbohydrate. Leptin responsiveness was tested on Days 27 and 32 with each rat acting as its own control. An i.p. injection of 2 mg/kg leptin inhibited food intake of NS, HS and Sacc rats, but had no effect on energy intake of LS or SolCarb® rats or on consumption of Sacc, sucrose or SolCarb® solution. At the end of the experiment all of the rats were insulin sensitive, had the same body composition and serum leptin concentrations. These data indicate that consumption of a calorie containing carbohydrate solution and not sweet taste drives the development of leptin resistance and suggest that there is lower threshold for inhibition of hunger than for inhibition of reward by leptin.
Collapse
Affiliation(s)
- Ruth B S Harris
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
7
|
Lagerlöf O. O-GlcNAc cycling in the developing, adult and geriatric brain. J Bioenerg Biomembr 2018; 50:241-261. [PMID: 29790000 PMCID: PMC5984647 DOI: 10.1007/s10863-018-9760-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
Hundreds of proteins in the nervous system are modified by the monosaccharide O-GlcNAc. A single protein is often O-GlcNAcylated on several amino acids and the modification of a single site can play a crucial role for the function of the protein. Despite its complexity, only two enzymes add and remove O-GlcNAc from proteins, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Global and local regulation of these enzymes make it possible for O-GlcNAc to coordinate multiple cellular functions at the same time as regulating specific pathways independently from each other. If O-GlcNAcylation is disrupted, metabolic disorder or intellectual disability may ensue, depending on what neurons are affected. O-GlcNAc's promise as a clinical target for developing drugs against neurodegenerative diseases has been recognized for many years. Recent literature puts O-GlcNAc in the forefront among mechanisms that can help us better understand how neuronal circuits integrate diverse incoming stimuli such as fluctuations in nutrient supply, metabolic hormones, neuronal activity and cellular stress. Here the functions of O-GlcNAc in the nervous system are reviewed.
Collapse
Affiliation(s)
- Olof Lagerlöf
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
8
|
Harris RBS. Source of dietary sucrose influences development of leptin resistance in male and female rats. Am J Physiol Regul Integr Comp Physiol 2018; 314:R598-R610. [PMID: 29351425 PMCID: PMC6425621 DOI: 10.1152/ajpregu.00384.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/13/2017] [Accepted: 12/21/2017] [Indexed: 01/11/2023]
Abstract
Male rats offered 30% sucrose solution in addition to chow develop leptin resistance without an increase in energy intake or body fat. This study tested whether the leptin resistance was dependent on the physical form of the sucrose. Sprague-Dawley rats were offered a sucrose-free (NS) diet, a 66.6% of energy as sucrose (HS) diet, or the NS diet + 30% sucrose solution (LS). Sucrose intake of LS rats equaled that of HS rats, but total carbohydrate intake exceeded that of HS rats. After 33 days, male and female LS rats were resistant to the inhibitory effect of peripherally administered leptin on food intake. LS rats drank small, frequent meals of sucrose during light and dark periods, whereas HS rats consumed more meals during the dark than the light period and remained responsive to leptin. Diet did not affect daily energy intake or insulin sensitivity. There was a small increase in body fat in the female rats. Leptin sensitivity was restored within 5 days of withdrawal from sucrose in male LS rats. This rapid reversal suggested that leptin resistance was associated with the metabolic impact of drinking sucrose. An experiment was carried out to test whether activity of the hexosamine biosynthetic pathway and glycation of leptin signaling proteins were increased in LS rats, but the results were equivocal. A final experiment determined that female LS rats were leptin-resistant within 18 days of access to sucrose solution and that the small, but significant, increase in body fat was associated with increased adipocyte glucose utilization and insulin responsiveness, which may have been secondary to adipocyte leptin resistance.
Collapse
Affiliation(s)
- Ruth B S Harris
- Department of Physiology, Medical College of Georgia, Augusta University , Augusta, Georgia
| |
Collapse
|
9
|
Zimmerman AD, Harris RBS. In vivo and in vitro evidence that chronic activation of the hexosamine biosynthetic pathway interferes with leptin-dependent STAT3 phosphorylation. Am J Physiol Regul Integr Comp Physiol 2015; 308:R543-55. [PMID: 25568075 DOI: 10.1152/ajpregu.00347.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously reported that a 2-day peripheral infusion of glucosamine caused leptin resistance in rats, suggesting a role for the hexosamine biosynthetic pathway (HBP) in the development of leptin resistance. Here we tested leptin responsiveness in mice in which HBP activity was stimulated by offering 30% sucrose solution in addition to chow and water or by infusing glucosamine. Mice were leptin resistant after 33 days of access to sucrose. Resistance was associated with increased activity of the HBP and with phosphorylation of transcription factor signal transducer and activator of transcription-3 Tyr705 [pSTAT3(Y705)] but inhibition of suppressor of cytokine signaling 3 in the liver and hypothalamus. Intravenous infusion of glucosamine for 3 h stimulated pSTAT3(Y705) but prevented leptin-induced phosphorylation of STAT3(S727). In an in vitro system, glucose, glucosamine, and leptin each dose dependently increased O-linked β-N-acetylglucosamine (O-GlcNAc) protein and pSTAT3(Y705) in HepG2 cells. To test the effect of glucose on leptin responsiveness cells were incubated in 5.5 mM (LG) or 20 mM (HG) glucose for 18 h and were treated with 0 or 50 ng/ml leptin for 15 min. HG alone and LG + leptin produced similar increases in O-GlcNAc protein, glutamine fructose-6-phosphate amidotransferase (GFAT), and pSTAT3(Y705) compared with LG media. Leptin did not stimulate these proteins in HG cells, suggesting leptin resistance. Leptin-induced pSTAT3(S727) was prevented by HG media. Inhibition of GFAT with azaserine prevented LG + leptin and HG stimulation of pSTAT3. These data demonstrate development of leptin resistance in sucrose-drinking mice and provide new evidence of leptin-induced stimulation of the HBP.
Collapse
Affiliation(s)
- Arthur D Zimmerman
- Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Ruth B S Harris
- Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| |
Collapse
|