1
|
Zhang M, Wang O, Cai S, Zhao L, Zhao L. Composition, functional properties, health benefits and applications of oilseed proteins: A systematic review. Food Res Int 2023; 171:113061. [PMID: 37330842 DOI: 10.1016/j.foodres.2023.113061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/19/2023]
Abstract
Common oilseeds, such as soybean, peanut, rapeseed, sunflower seed, sesame seed and chia seed, are key sources of edible vegetable oils. Their defatted meals are excellent natural sources of plant proteins that can meet consumers' demand for health and sustainable substitutes for animal proteins. Oilseed proteins and their derived peptides are also associated with many health benefits, including weight loss and reduced risks of diabetes, hypertension, metabolic syndrome and cardiovascular events. This review summarizes the current status of knowledge on the protein and amino acid composition of common oilseeds as well as the functional properties, nutrition, health benefits and food applications of oilseed protein. Currently, oilseeds are widely applied in the food industry regarding for their health benefits and good functional properties. However, most oilseed proteins are incomplete proteins and their functional properties are not promising compared to animal proteins. They are also limited in the food industry due to their off-flavor, allergenic and antinutritional factors. These properties can be improved by protein modification. Therefore, in order to make better use of oilseed proteins, methods for improving their nutrition value, bioactive activity, functional and sensory characteristics, as well as the strategies for reducing their allergenicity were also discussed in this paper. Finally, examples for the application of oilseed proteins in the food industry are presented. Limitations and future perspectives for developing oilseed proteins as food ingredients are also pointed out. This review aims to foster thinking and generate novel ideas for future research. It will also provide novel ideas and broad prospects for the application of oilseeds in the food industry.
Collapse
Affiliation(s)
- Mingxin Zhang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Ou Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Liang Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
2
|
Pezeshki A, Chelikani PK. Low Protein Diets and Energy Balance: Mechanisms of Action on Energy Intake and Expenditure. Front Nutr 2021; 8:655833. [PMID: 34055853 PMCID: PMC8155302 DOI: 10.3389/fnut.2021.655833] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/20/2021] [Indexed: 12/30/2022] Open
Abstract
Low protein diets are associated with increased lifespan and improved cardiometabolic health primarily in rodents, and likely improve human health. There is strong evidence that moderate to severe reduction in dietary protein content markedly influences caloric intake and energy expenditure, which is often followed by a decrease in body weight and adiposity in animal models. While the neuroendocrine signals that trigger hyperphagic responses to protein restriction are better understood, there is accumulating evidence that increased sympathetic flux to brown adipose tissue, fibroblast growth factor-21 and serotonergic signaling are important for the thermogenic effects of low protein diets. This mini-review specifically focuses on the effect of low protein diets with variable carbohydrate and lipid content on energy intake and expenditure, and the underlying mechanisms of actions by these diets. Understanding the mechanisms by which protein restriction influences energy balance may unveil novel approaches for treating metabolic disorders in humans and improve production efficiency in domestic animals.
Collapse
Affiliation(s)
- Adel Pezeshki
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Prasanth K Chelikani
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States.,Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
3
|
Fu Y, Yin R, Guo E, Cheng R, Diao X, Xue Y, Shen Q. Protein Isolates from Raw and Cooked Foxtail Millet Attenuate Development of Type 2 Diabetes in Streptozotocin-Induced Diabetic Mice. Mol Nutr Food Res 2021; 65:e2000365. [PMID: 33480470 DOI: 10.1002/mnfr.202000365] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 12/02/2020] [Indexed: 02/06/2023]
Abstract
SCOPE Millet protein has received much attention due to its beneficial role in alleviating metabolic disease symptoms. This study aims to investigate the role and molecular mechanism of foxtail millet protein isolates, including protein isolates from raw and cooked foxtail millet in alleviating diabetes, including gut microbiota and intracellular signal pathways. METHODS AND RESULTS Protein isolates from raw and cooked foxtail millet are orally administered to streptozotocin (STZ)-induced diabetic mice for 5 weeks before hypoglycemic effect evaluation. The results show that foxtail millet protein isolates improve glucose intolerance and insulin resistance in diabetic mice. However, only the protein isolate from cooked foxtail millet reverse the weight loss trend and alleviate lipid disorders in diabetic mice. Besides, 16S rRNA sequencing show that both raw and cooked foxtail millet protein isolates altered diabetes-induced gut dysbiosis. In addition, western blotting analysis indicated that the protein isolate from cooked foxtail millet increases the expression levels of glucagon-like peptide-1 receptor (GLP-1R), phosphoinositide 3-kinase (PI3K), and phosphoinositide-protein kinase B (p-AKT)/AKT while the protein isolate from raw foxtail millet downregulates stearoyl-coenzyme A desaturase 1 (SCD1) level. CONCLUSION Both raw and cooked foxtail millet protein isolates can exert hypoglycemic effects in diabetic mice through rewiring glucose homeostasis, mitigating diabetes-induced gut dysbiosis, and affecting the GLP-1R/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yongxia Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- National Engineering Research Centre for Fruit and Vegetable Processing, Beijing, 100083, China
- Key Laboratory of Plant Protein and Grain processing, China Agricultural University, Beijing, 100083, China
| | - Ruiyang Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- National Engineering Research Centre for Fruit and Vegetable Processing, Beijing, 100083, China
- Key Laboratory of Plant Protein and Grain processing, China Agricultural University, Beijing, 100083, China
| | - Erhu Guo
- Shanxi Academy of Agricultural Sciences, Research Institute of Millet, Taiyuan, 030031, China
| | - Ruhong Cheng
- Hebei Academy of Agriculture and Forestry Sciences, Research Institute of Millet, Shijiazhuang, 050035, China
| | - Xianmin Diao
- Chinese Academy of Agricultural Sciences, Institute of Crop Science, Beijing, 100081, China
| | - Yong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- National Engineering Research Centre for Fruit and Vegetable Processing, Beijing, 100083, China
- Key Laboratory of Plant Protein and Grain processing, China Agricultural University, Beijing, 100083, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- National Engineering Research Centre for Fruit and Vegetable Processing, Beijing, 100083, China
- Key Laboratory of Plant Protein and Grain processing, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
4
|
Boosting GLP-1 by Natural Products. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1328:513-522. [DOI: 10.1007/978-3-030-73234-9_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Brunetta HS, de Camargo CQ, Nunes EA. Does l-leucine supplementation cause any effect on glucose homeostasis in rodent models of glucose intolerance? A systematic review. Amino Acids 2018; 50:1663-1678. [PMID: 30264171 DOI: 10.1007/s00726-018-2658-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 09/21/2018] [Indexed: 02/08/2023]
|
6
|
O'Halloran F, Bruen C, McGrath B, Schellekens H, Murray B, Cryan JF, Kelly AL, McSweeney PL, Giblin L. A casein hydrolysate increases GLP-1 secretion and reduces food intake. Food Chem 2018; 252:303-310. [DOI: 10.1016/j.foodchem.2018.01.107] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 12/13/2017] [Accepted: 01/15/2018] [Indexed: 12/21/2022]
|