1
|
Joue G, Navarro-Schröder T, Achtzehn J, Moffat S, Hennies N, Fuß J, Döller C, Wolbers T, Sommer T. Effects of estrogen on spatial navigation and memory. Psychopharmacology (Berl) 2024; 241:1037-1063. [PMID: 38407638 PMCID: PMC11031496 DOI: 10.1007/s00213-024-06539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
RATIONALE Animal studies suggest that the so-called "female" hormone estrogen enhances spatial navigation and memory. This contradicts the observation that males generally out-perform females in spatial navigation and tasks involving spatial memory. A closer look at the vast number of studies actually reveals that performance differences are not so clear. OBJECTIVES To help clarify the unclear performance differences between men and women and the role of estrogen, we attempted to isolate organizational from activational effects of estrogen on spatial navigation and memory. METHODS In a double-blind, placebo-controlled study, we tested the effects of orally administered estradiol valerate (E2V) in healthy, young women in their low-hormone menstrual cycle phase, compared to healthy, young men. Participants performed several first-person, environmentally rich, 3-D computer games inspired by spatial navigation and memory paradigms in animal research. RESULTS We found navigation behavior suggesting that sex effects dominated any E2 effects with men performing better with allocentric strategies and women with egocentric strategies. Increased E2 levels did not lead to general improvements in spatial ability in either sex but to behavioral changes reflecting navigation flexibility. CONCLUSION Estrogen-driven differences in spatial cognition might be better characterized on a spectrum of navigation flexibility rather than by categorical performance measures or skills.
Collapse
Affiliation(s)
- Gina Joue
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Tobias Navarro-Schröder
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030, Trondheim, Norway
| | - Johannes Achtzehn
- Department of Neurology with Experimental Neurology (CVK), Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Scott Moffat
- School of Psychology, Georgia Institute of Technology, 654 Cherry Street, Atlanta, GA, 30332, USA
| | - Nora Hennies
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Johannes Fuß
- Institute of Forensic Psychiatry and Sex Research, University Duisburg-Essen, Hohlweg 26, 45147, Essen, Germany
| | - Christian Döller
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030, Trondheim, Norway
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany
| | - Thomas Wolbers
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Tobias Sommer
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
2
|
Potier M, Maitre M, Leste-Lasserre T, Marsicano G, Chaouloff F, Marighetto A. Age-dependent effects of estradiol on temporal memory: A role for the type 1 cannabinoid receptor? Psychoneuroendocrinology 2023; 148:106002. [PMID: 36521252 DOI: 10.1016/j.psyneuen.2022.106002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
This study investigated in male mice how age modulates the effects of acute 17β-estradiol (E2) on dorsal CA1 (dCA1)-dependent retention of temporal associations, which are critical for declarative memory. E2 was systemically injected to young (3-4 months old) and aged (22-24 months old) adult mice either (i) 1 h before the acquisition of an auditory trace fear conditioning (TFC) procedure allowing the assessment of temporal memory retention 24 h later or (ii) during in vivo electrophysiological recordings of CA3 to dCA1 synaptic efficacy under anesthesia. In young mice, E2 induced parallel dose-dependent reductions in memory and synaptic efficacy, i.e. an impairment in TFC retention and a long-term (NMDA receptor-dependent) depression of dCA1 synaptic efficacy as assessed by field excitatory postsynaptic potentials. In contrast, E2 tended to improved TFC retention whilst failing to change synaptic efficacy in aged mice. Age-dependent effects of E2 treatment were confirmed by immunohistochemical analyses of TFC acquisition-elicited dCA1 Fos activation. Thus, such an activation was respectively reduced and enhanced in young and aged E2-treated mice, compared to vehicle treatments. Hippocampal mRNA expression of estrogen receptors by RT-PCR analyses revealed an age-related increase in each receptor mRNA expression. In keeping with the key role of the endocannabinoid system in memory processes and CA3 to dCA1 synaptic plasticity, we next examined the role of cannabinoid type 1 receptors (CB1-R) in the aforementioned age-dependent effects of E2. Having confirmed that mRNA expression of CB1-R diminishes with age, we then observed that the deleterious effects of E2 on both memory and synaptic efficacy were both prevented by the CB1-R antagonist Rimonabant whilst being absent in CB1-R knock out mice. This study (i) reveals age-dependent effects of acute E2 on temporal memory and CA3 to dCA1 synaptic efficacy and (ii) suggests a key role of CB1-R in mediating E2 deleterious effects in young adulthood. Aging-related reductions in CB1-R might thus underlie E2 paradoxical effects across age.
Collapse
Affiliation(s)
- Mylène Potier
- Pathophysiology of Declarative Memory, INSERM U1215, Neurocentre Magendie, Bordeaux, France; University of Bordeaux, Bordeaux, France.
| | - Marlène Maitre
- PUMA, INSERM U1215, Neurocentre Magendie, Bordeaux, France
| | | | - Giovanni Marsicano
- Endocannabinoids & NeuroAdaptation, INSERM U1215, Neurocentre Magendie, Bordeaux, France; University of Bordeaux, Bordeaux, France
| | - Francis Chaouloff
- Endocannabinoids & NeuroAdaptation, INSERM U1215, Neurocentre Magendie, Bordeaux, France; University of Bordeaux, Bordeaux, France.
| | - Aline Marighetto
- Pathophysiology of Declarative Memory, INSERM U1215, Neurocentre Magendie, Bordeaux, France; University of Bordeaux, Bordeaux, France
| |
Collapse
|
3
|
Lacasse JM, Boulos V, Fisher C, Hamilton S, Heron M, Mac Cionnaith CE, Peronace V, Tito N, Brake WG. Combined effects of the contraceptive hormones, ethinyl estradiol and levonorgestrel, on the use of place and response memory in gonadally-intact female rats. Psychoneuroendocrinology 2023; 147:105974. [PMID: 36403510 DOI: 10.1016/j.psyneuen.2022.105974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
During maze navigation rats can rely on hippocampus-mediated place memory or striatum-mediated response memory. Ovarian hormones bias whether females use place or response memory to reach a reward. Here, we investigated the impact of the contraceptive hormones, ethinyl estradiol (EE) and levonorgestrel (LNG), on memory bias. A total of 63 gonadally-intact female rats were treated with either 10 μg/kg of EE alone, 20 μg/kg of LNG alone, both 10 μg/kg of EE and 20 μg/kg of LNG together, or a sesame oil injection with 5% ethanol as a vehicle control. Rats in the control condition were tested during the diestrus phase of the estrous cycle in order to control for the low circulating levels of gonadotropin and ovarian hormones that occur with oral contraceptive administration. Rats treated with LNG alone had a bias towards the use of place memory compared to diestrus phase control rats. This bias was not observed if LNG was administered in combination with EE. Rats treated with EE or EE+LNG did not have a statistically significant difference in memory bias compared to rats in the control group. These data show that synthetic hormones contained in oral contraceptives administered to females influence which cognitive strategy is predominantly used during navigation.
Collapse
Affiliation(s)
- Jesse M Lacasse
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada.
| | - Vanessa Boulos
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Caleigh Fisher
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Sarran Hamilton
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Megan Heron
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Conall E Mac Cionnaith
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Vanessa Peronace
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Noémie Tito
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Wayne G Brake
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada.
| |
Collapse
|
4
|
Tronson NC, Schuh KM. Hormonal contraceptives, stress, and the brain: The critical need for animal models. Front Neuroendocrinol 2022; 67:101035. [PMID: 36075276 DOI: 10.1016/j.yfrne.2022.101035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/26/2022] [Accepted: 09/01/2022] [Indexed: 01/10/2023]
Abstract
Hormonal contraceptives are among the most important health and economic developments in the 20thCentury, providing unprecedented reproductive control and a range of health benefits including decreased premenstrual symptoms and protections against various cancers. Hormonal contraceptives modulate neural function and stress responsivity. These changes are usually innocuous or even beneficial, including their effects onmood. However, in approximately 4-10% of users, or up to 30 million people at any given time, hormonal contraceptives trigger depression or anxiety symptoms. How hormonal contraceptives contribute to these responses and who is at risk for adverse outcomes remain unknown. In this paper, we discussstudies of hormonal contraceptive use in humans and describe the ways in which laboratory animal models of contraceptive hormone exposure will be an essential tool for expanding findings to understand the precise mechanisms by which hormonal contraceptives influence the brain, stress responses, and depression risk.
Collapse
Affiliation(s)
- Natalie C Tronson
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA.
| | - Kristen M Schuh
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Bernaud VE, Bulen HL, Peña VL, Koebele SV, Northup-Smith SN, Manzo AA, Valenzuela Sanchez M, Opachich Z, Ruhland AM, Bimonte-Nelson HA. Task-dependent learning and memory deficits in the TgF344-AD rat model of Alzheimer's disease: three key timepoints through middle-age in females. Sci Rep 2022; 12:14596. [PMID: 36028737 PMCID: PMC9418316 DOI: 10.1038/s41598-022-18415-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/10/2022] [Indexed: 11/11/2022] Open
Abstract
The TgF344 rat model of Alzheimer's disease (AD) provides a comprehensive neuropathology presentation, with age-dependent development of tau tangles, amyloid-beta (A[Formula: see text]) plaques, neuronal loss, and increased gliosis. The behavioral trajectory of this model, particularly relating to spatial learning and memory, has yet to be fully characterized. The current experiment evaluated spatial working and reference memory performance, as well as several physiological markers of health, at 3 key age points in female TgF344-AD rats: 6-months, 9-months, and 12-months. At 6 months of age, indications of working and reference memory impairments were observed in transgenic (Tg) rats on the water radial-arm maze, a complex task that requires working and reference memory simultaneously; at 12 months old, Tg impairments were observed for two working memory measures on this task. Notably, no impairments were observed at the 9-month timepoint on this maze. For the Morris maze, a measure of spatial reference memory, Tg rats demonstrated significant impairment relative to wildtype (WT) controls at all 3 age-points. Frontal cortex, entorhinal cortex, and dorsal hippocampus were evaluated for A[Formula: see text]1-42 expression via western blot in Tg rats only. Analyses of A[Formula: see text]1-42 expression revealed age-dependent increases in all 3 regions critical to spatial learning and memory. Measures of physiological health, including heart, uterine, and body weights, revealed unique age-specific outcomes for female Tg rats, with the 9-month timepoint identified as critical for further research within the trajectory of AD-like behavior, physiology, and pathology.
Collapse
Affiliation(s)
- Victoria E Bernaud
- Behavioral Neuroscience and Comparative Psychology Division, Department of Psychology, Arizona Alzheimer's Consortium, Arizona State University, 950 S. McAllister Ave., PO Box 871104, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ, 85014, USA
| | - Haidyn L Bulen
- Behavioral Neuroscience and Comparative Psychology Division, Department of Psychology, Arizona Alzheimer's Consortium, Arizona State University, 950 S. McAllister Ave., PO Box 871104, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ, 85014, USA
| | - Veronica L Peña
- Behavioral Neuroscience and Comparative Psychology Division, Department of Psychology, Arizona Alzheimer's Consortium, Arizona State University, 950 S. McAllister Ave., PO Box 871104, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ, 85014, USA
| | - Stephanie V Koebele
- Behavioral Neuroscience and Comparative Psychology Division, Department of Psychology, Arizona Alzheimer's Consortium, Arizona State University, 950 S. McAllister Ave., PO Box 871104, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ, 85014, USA
| | - Steven N Northup-Smith
- Behavioral Neuroscience and Comparative Psychology Division, Department of Psychology, Arizona Alzheimer's Consortium, Arizona State University, 950 S. McAllister Ave., PO Box 871104, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ, 85014, USA
| | - Alma A Manzo
- Behavioral Neuroscience and Comparative Psychology Division, Department of Psychology, Arizona Alzheimer's Consortium, Arizona State University, 950 S. McAllister Ave., PO Box 871104, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ, 85014, USA
| | - Maria Valenzuela Sanchez
- Behavioral Neuroscience and Comparative Psychology Division, Department of Psychology, Arizona Alzheimer's Consortium, Arizona State University, 950 S. McAllister Ave., PO Box 871104, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ, 85014, USA
| | - Zorana Opachich
- Behavioral Neuroscience and Comparative Psychology Division, Department of Psychology, Arizona Alzheimer's Consortium, Arizona State University, 950 S. McAllister Ave., PO Box 871104, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ, 85014, USA
| | - Ashley M Ruhland
- Behavioral Neuroscience and Comparative Psychology Division, Department of Psychology, Arizona Alzheimer's Consortium, Arizona State University, 950 S. McAllister Ave., PO Box 871104, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ, 85014, USA
| | - Heather A Bimonte-Nelson
- Behavioral Neuroscience and Comparative Psychology Division, Department of Psychology, Arizona Alzheimer's Consortium, Arizona State University, 950 S. McAllister Ave., PO Box 871104, Tempe, AZ, 85287, USA.
- Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ, 85014, USA.
| |
Collapse
|
6
|
Schoenberg HL, Bremer GP, Carasi-Schwartz F, VonDoepp S, Arntsen C, Anacker AMJ, Toufexis DJ. Cyclic estrogen and progesterone during instrumental acquisition contributes to habit formation in female rats. Horm Behav 2022; 142:105172. [PMID: 35405411 DOI: 10.1016/j.yhbeh.2022.105172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 03/02/2022] [Accepted: 04/02/2022] [Indexed: 11/22/2022]
Abstract
Habit formation is thought to involve two parallel processes that are mediated by distinct neural substates: one that suppresses goal-directed behavior, and one that facilitates stimulus-response (S-R) learning, which underscores habitual behavior. In previous studies we showed that habitual responding emerges early during instrumental training in gonadally-intact female, compared to male, rats. The present study aimed to determine the role of ovarian hormones during instrumental acquisition in the transition from goal-directed to habitual behavior in female rats. Ovariectomized (OVX) female rats were given subcutaneous silastic capsules that released low levels of 17-β estradiol (E2) to maintain estrogen receptor availability. Rats were assigned to one of three hormone treatment conditions: no additional hormone replacement (Control group), replacement with high E2 (High E2 group), or replacement with high E2 followed by progesterone (High E2 + P4 group). Hormone replacement occurred twice during acquisition to mimic natural hormone fluctuations. At test, the Control and High E2 groups demonstrated responding that was sensitive to devaluation by lithium chloride-induced illness, indicating goal-directed behavior. In contrast, the High E2 + P4 group exhibited a pattern of devaluation-insensitive, habitual responding, that suggested the suppression of goal-directed processes. In a follow-up experiment, similar procedures were conducted, however during acquisition, OVX rats were given cyclic high E2 plus medroxy-progesterone (MPA), a form of progesterone that does not metabolize to neuroactive metabolites. In this group, goal-directed behavior was observed. These data indicate that habit formation is not facilitated in low estrogen states, nor in the presence of cyclic high E2. However, cyclic high E2, together with progesterone during acquisition, appears to facilitate the early emergence of habitual responding. Furthermore, these data suggest that a neuroactive progesterone metabolite, like allopregnanolone, in combination with high cyclic E2, supports this phenomenon.
Collapse
Affiliation(s)
- Hannah L Schoenberg
- Department of Psychological Science, University of Vermont, Burlington, VT 05401, United States of America.
| | - Gillian P Bremer
- Department of Psychological Science, University of Vermont, Burlington, VT 05401, United States of America
| | - Francesca Carasi-Schwartz
- Department of Psychological Science, University of Vermont, Burlington, VT 05401, United States of America
| | - Sarah VonDoepp
- Department of Psychological Science, University of Vermont, Burlington, VT 05401, United States of America
| | - Christian Arntsen
- Department of Psychological Science, University of Vermont, Burlington, VT 05401, United States of America
| | - Allison M J Anacker
- Department of Psychological Science, University of Vermont, Burlington, VT 05401, United States of America
| | - Donna J Toufexis
- Department of Psychological Science, University of Vermont, Burlington, VT 05401, United States of America.
| |
Collapse
|
7
|
Hippocampus-sensitive and striatum-sensitive learning one month after morphine or cocaine exposure in male rats. Pharmacol Biochem Behav 2022; 217:173392. [PMID: 35513118 PMCID: PMC9796089 DOI: 10.1016/j.pbb.2022.173392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 12/31/2022]
Abstract
These experiments examined whether morphine and cocaine alter the balance between hippocampal and striatal memory systems measured long after drug exposure. Male rats received injections of morphine (5 mg/kg), cocaine (20 mg/kg), or saline for five consecutive days. One month later, rats were trained to find food on a hippocampus-sensitive place task or a striatum-sensitive response task. Relative to saline controls, morphine-treated rats exhibited impaired place learning but enhanced response learning; prior cocaine exposure did not significantly alter learning on either task. Another set of rats was trained on a dual-solution T-maze that can be solved with either place or response strategies. While a majority (67%) of control rats used place solutions, morphine treatment one month prior resulted in the exclusive use of response solutions (100%). Prior cocaine treatment did not significantly alter strategy selection. Molecular markers related to learning and drug abuse were measured in the hippocampus and striatum one month after drug exposure in behaviorally untested rats. Protein levels of glial-fibrillary acidic protein (GFAP), an intermediate filament specific to astrocytes, increased significantly in the hippocampus after morphine exposure, but not after cocaine exposure. Exposure to morphine or cocaine did not significantly change levels of brain-derived neurotrophic factor (BDNF) or a downstream target of BDNF signaling, glycogen synthase kinase 3β (GSK3β), in the hippocampus or striatum. Thus, exposure to morphine resulted in a long-lasting shift from hippocampal toward striatal dominance during learning, an effect that may be associated with lasting alterations in hippocampal astrocytes. Cocaine produced changes in the same direction, suggesting that use of a higher dose or longer duration of exposure might produce effects comparable to those seen with morphine.
Collapse
|
8
|
Moreira ALP, Luchiari AC. Effects of oxybenzone on zebrafish behavior and cognition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152101. [PMID: 34863770 DOI: 10.1016/j.scitotenv.2021.152101] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
The increased ultraviolet (UV) radiation on the Earth's surface increased the need for UV filters products. One of the most used is oxybenzone, which is indiscriminately released in the environment. Oxybenzone's ecotoxicological effects on physiology have been investigated because of the bioaccumulation and action as an endocrine disruptor. However, little is known about its effects on behavior or cognition. In this study, we approach the effects of short-term oxybenzone exposure on locomotion, anxiety-like, social behavior, and short-term memory in zebrafish (Danio rerio). Adult zebrafish were exposed to oxybenzone 10, 100 and 1000 μg L-1 for 15 days and then tested (novel tank, shoal preference, mirror test, and T-maze with novelty). Fish exposed to oxybenzone showed reduced locomotion, decreased anxiety-like behavior, less time near/interacting with the shoal, fewer interactions with the mirror image, and decreased exploration of the novel arm in the T-maze test. These results suggest that oxybenzone affects perception, increases risk-taking, impairs proper aggressive response, and jeopardizes the animals' ability to retain information. These results reinforce the risk posed by products discarded into the aquatic ecosystems, especially those with underestimated toxic potential.
Collapse
Affiliation(s)
- Ana Luisa Pires Moreira
- Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Brazil
| | - Ana Carolina Luchiari
- Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Brazil.
| |
Collapse
|
9
|
Scavuzzo CJ, Newman LA, Gold PE, Korol DL. Extracellular levels of glucose in the hippocampus and striatum during maze training for food or water reward in male rats. Behav Brain Res 2021; 411:113385. [PMID: 34048874 PMCID: PMC8238909 DOI: 10.1016/j.bbr.2021.113385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 05/15/2021] [Accepted: 05/22/2021] [Indexed: 12/19/2022]
Abstract
Glucose potently enhances cognitive functions whether given systemically or directly to the brain. The present experiments examined changes in brain extracellular glucose levels while rats were trained to solve hippocampus-sensitive place or striatum-sensitive response learning tasks for food or water reward. Because there were no task-related differences in glucose responses, the glucose results were pooled across tasks to form combined trained groups. During the first 1-3 min of training for food reward, glucose levels in extracellular fluid (ECF) declined significantly in the hippocampus and striatum; the declines were not seen in untrained, rewarded rats. When trained for water reward, similar decreases were observed in both brain areas, but these findings were less consistent than those seen with food rewards. After the initial declines in ECF glucose levels, glucose increased in most groups, approaching asymptotic levels ∼15-30 min into training. Compared to untrained food controls, training with food reward resulted in significant glucose increases in the hippocampus but not striatum; striatal glucose levels exhibited large increases to food intake in both trained and untrained groups. In rats trained to find water, glucose levels increased significantly above the values seen in untrained rats in both hippocampus and striatum. The decreases in glucose early in training might reflect an increase in brain glucose consumption, perhaps triggering increased brain uptake of glucose from blood, as evident in the increases in glucose later in training. The increased brain uptake of glucose may provide additional neuronal metabolic substrate for metabolism or provide astrocytic substrate for production of glycogen and lactate.
Collapse
Affiliation(s)
- C J Scavuzzo
- Department of Psychology, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada.
| | - L A Newman
- Department of Psychological Science, Vassar College, 124 Raymond Avenue, Box 713, Poughkeepsie, NY, 12604, United States
| | - P E Gold
- Department of Biology, Syracuse University, Syracuse, NY, 13244, United States
| | - D L Korol
- Department of Biology, Syracuse University, Syracuse, NY, 13244, United States.
| |
Collapse
|
10
|
Echeverria V, Echeverria F, Barreto GE, Echeverría J, Mendoza C. Estrogenic Plants: to Prevent Neurodegeneration and Memory Loss and Other Symptoms in Women After Menopause. Front Pharmacol 2021; 12:644103. [PMID: 34093183 PMCID: PMC8172769 DOI: 10.3389/fphar.2021.644103] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
In mammals, sexual hormones such as estrogens play an essential role in maintaining brain homeostasis and function. Estrogen deficit in the brain induces many undesirable symptoms such as learning and memory impairment, sleep and mood disorders, hot flushes, and fatigue. These symptoms are frequent in women who reached menopausal age or have had ovariectomy and in men and women subjected to anti-estrogen therapy. Hormone replacement therapy alleviates menopause symptoms; however, it can increase cardiovascular and cancer diseases. In the search for therapeutic alternatives, medicinal plants and specific synthetic and natural molecules with estrogenic effects have attracted widespread attention between the public and the scientific community. Various plants have been used for centuries to alleviate menstrual and menopause symptoms, such as Cranberry, Ginger, Hops, Milk Thistle, Red clover, Salvia officinalis, Soy, Black cohosh, Turnera diffusa, Ushuva, and Vitex. This review aims to highlight current evidence about estrogenic medicinal plants and their pharmacological effects on cognitive deficits induced by estrogen deficiency during menopause and aging.
Collapse
Affiliation(s)
- Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Concepcion, Chile
- Research and Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, Unites States
| | | | - George E. Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Cristhian Mendoza
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Concepcion, Chile
| |
Collapse
|
11
|
Prakapenka AV, Korol DL. Estradiol selectively regulates metabolic substrates across memory systems in models of menopause. Climacteric 2021; 24:366-372. [PMID: 33982614 DOI: 10.1080/13697137.2021.1917537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Estrogen loss at menopause is thought to contribute to specific memory problems commonly encountered by women who are transitioning through or who have experienced menopause. Work in preclinical models suggests that estrogens bidirectionally regulate cognition through direct actions on different neural systems called memory systems, enhancing some types of learning and memory while impairing others. The energy load in the brain during cognitive activity is notoriously high, requiring sufficient provisions of metabolic substrates such as glucose, lactate, or ketones for optimal cognition. Thus, it is possible that estrogens bidirectionally regulate energy substrate availability within each system to produce the improvements and impairments in learning and memory. Indeed, estradiol increases extracellular levels of glucose in the hippocampus, a shift that corresponds to the hormone's beneficial effects on hippocampus-sensitive cognition. In contrast, estradiol decreases levels of lactate and ketones in the striatum, a shift that corresponds to the impairing effects of estradiol on striatum-sensitive cognition. Menopause may thus be associated with both cognitive improvements and impairments depending on estradiol status and on the problem to be solved. We propose that regulation of neural metabolism is one likely mechanism for these bidirectional effects of estradiol on cognition.
Collapse
Affiliation(s)
- A V Prakapenka
- Biology Department, Syracuse University, Syracuse, NY, USA
| | - D L Korol
- Biology Department, Syracuse University, Syracuse, NY, USA
| |
Collapse
|
12
|
McDonald RJ, Hong NS, Atwood A, Tyndall AV, Kolb B. An assessment of the functional effects of amphetamine-induced dendritic changes in the nucleus accumbens, medial prefrontal cortex, and hippocampus on different types of learning and memory function. Neurobiol Learn Mem 2021; 180:107408. [PMID: 33609742 DOI: 10.1016/j.nlm.2021.107408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
The present experiments investigated the effects of repeated amphetamine exposure on neural networks mediating different forms of learning and memory. Different components of these networks were assessed using various functional assays. The hypothesis was that abnormal dendritic changes in nucleus accumbens, medial prefrontal cortex, and hippocampus mediated by repeated amphetamine exposure would produce impairments on forms of learning and memory dependent on neural circuits relying on these brain systems, and have little or no effect on other forms of learning not dependent on these networks. Surprisingly, the results showed that many of the dendritic changes normally found in the nucleus accumbens, prefrontal cortex, and hippocampus following repeated amphetamine exposure were reversed back to control levels following extensive multi-domain cognitive training. Learning and memory functions associated with different neural networks also appeared normal except in one case. A neural network that includes, but is not limited to, the basolateral amygdala and nucleus accumbens was dysfunctional in rats repeatedly exposed to amphetamine despite the reversal of the majority of dendritic changes in the nucleus accumbens following cognitive training. Importantly, an increase in spine density that normally occurs in these brain regions following repeated amphetamine exposure remained following extensive cognitive training, particularly in the nucleus accumbens.
Collapse
Affiliation(s)
- Robert J McDonald
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.
| | - Nancy S Hong
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Ammon Atwood
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Amanda V Tyndall
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Bryan Kolb
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
13
|
Gardner RS, Gold PE, Korol DL. Inactivation of the striatum in aged rats rescues their ability to learn a hippocampus-sensitive spatial navigation task. Neurobiol Learn Mem 2020; 172:107231. [DOI: 10.1016/j.nlm.2020.107231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/29/2020] [Accepted: 04/13/2020] [Indexed: 01/23/2023]
|
14
|
Cerri S, Mus L, Blandini F. Parkinson's Disease in Women and Men: What's the Difference? JOURNAL OF PARKINSONS DISEASE 2020; 9:501-515. [PMID: 31282427 PMCID: PMC6700650 DOI: 10.3233/jpd-191683] [Citation(s) in RCA: 393] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Increasing evidence points to biological sex as an important factor in the development and phenotypical expression of Parkinson’s disease (PD). Risk of developing PD is twice as high in men than women, but women have a higher mortality rate and faster progression of the disease. Moreover, motor and nonmotor symptoms, response to treatments and disease risk factors differ between women and men. Altogether, sex-related differences in PD support the idea that disease development might involve distinct pathogenic mechanisms (or the same mechanism but in a different way) in male and female patients. This review summarizes the most recent knowledge concerning differences between women and men in PD clinical features, risk factors, response to treatments and mechanisms underlying the disease pathophysiology. Unraveling how the pathology differently affect the two sexes might allow the development of tailored interventions and the design of innovative programs that meet the distinct needs of men and women, improving patient care.
Collapse
Affiliation(s)
- Silvia Cerri
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Liudmila Mus
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Fabio Blandini
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
15
|
Wagner MA, Erickson KI, Bender CM, Conley YP. The Influence of Physical Activity and Epigenomics On Cognitive Function and Brain Health in Breast Cancer. Front Aging Neurosci 2020; 12:123. [PMID: 32457596 PMCID: PMC7225270 DOI: 10.3389/fnagi.2020.00123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/14/2020] [Indexed: 12/17/2022] Open
Abstract
The risk of breast cancer increases with age, with the majority of women diagnosed with breast cancer being postmenopausal. It has been estimated that 25-75% of women with breast cancer experience changes in cognitive function (CF) related to disease and treatment, which compromises psychological well-being, decision making, ability to perform daily activities, and adherence to cancer therapy. Unfortunately, the mechanisms that underlie neurocognitive changes in women with breast cancer remain poorly understood, which in turn limits the development of effective treatments and prevention strategies. Exercise has great potential as a non-pharmaceutical intervention to mitigate the decline in CF in women with breast cancer. Evidence suggests that DNA methylation, an epigenetic mechanism for gene regulation, impacts CF and brain health (BH), that exercise influences DNA methylation, and that exercise impacts CF and BH. Although investigating DNA methylation has the potential to uncover the biologic foundations for understanding neurocognitive changes within the context of breast cancer and its treatment as well as the ability to understand how exercise mitigates these changes, there is a dearth of research on this topic. The purpose of this review article is to compile the research in these areas and to recommend potential areas of opportunity for investigation.
Collapse
Affiliation(s)
- Monica A. Wagner
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kirk I. Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
- Discipline of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, Perth Campus, Murdoch, WA, Australia
| | | | - Yvette P. Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
16
|
Gardner RS, Newman LA, Mohler EG, Tunur T, Gold PE, Korol DL. Aging is not equal across memory systems. Neurobiol Learn Mem 2020; 172:107232. [PMID: 32315762 DOI: 10.1016/j.nlm.2020.107232] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/10/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
The present experiments compared the effects of aging on learning several hippocampus- and striatum-sensitive tasks in young (3-4 month) and old (24-28 month) male Fischer-344 rats. Across three sets of tasks, aging was accompanied not only by deficits on hippocampal tasks but also by maintained or even enhanced abilities on striatal tasks. On two novel object recognition tasks, rats showed impaired performance on a hippocampal object location task but enhanced performance on a striatal object replacement task. On a dual solution task, young rats predominately used hippocampal solutions and old rats used striatal solutions. In addition, on two maze tasks optimally solved using either hippocampus-sensitive place or striatum-sensitive response strategies, relative to young rats, old rats had impaired learning on the place version but equivalent learning on the response version. Because glucose treatments can reverse deficits in learning and memory across many tasks and contexts, levels of available glucose in the brain may have particular importance in cognitive aging observed across tasks and memory systems. During place learning, training-related rises in extracellular glucose levels were attenuated in the hippocampus of old rats compared to young rats. In contrast, glucose levels in the striatum increased comparably in young and old rats trained on either the place or response task. These extracellular brain glucose responses to training paralleled the impairment in hippocampus-sensitive learning and the sparing of striatum-sensitive learning seen as rats age, suggesting a link between age-related changes in learning and metabolic substrate availability in these brain regions.
Collapse
Affiliation(s)
- R S Gardner
- Department of Biology, Syracuse University, Syracuse, NY 13244, United States.
| | - L A Newman
- Department of Psychological Science, Vassar College, Poughkeepsie, NY 12604, United States
| | - E G Mohler
- Research and Development, AbbVie, North Chicago, IL 60064, United States
| | - T Tunur
- Department of Kinesiology, California State University San Marcos, San Marcos, CA 92096, United States
| | - P E Gold
- Department of Biology, Syracuse University, Syracuse, NY 13244, United States
| | - D L Korol
- Department of Biology, Syracuse University, Syracuse, NY 13244, United States.
| |
Collapse
|
17
|
Beltz AM, Moser JS. Ovarian hormones: a long overlooked but critical contributor to cognitive brain structures and function. Ann N Y Acad Sci 2020; 1464:156-180. [DOI: 10.1111/nyas.14255] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/13/2019] [Accepted: 09/18/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Adriene M. Beltz
- Department of PsychologyUniversity of Michigan Ann Arbor Michigan
| | - Jason S. Moser
- Department of PsychologyMichigan State University East Lansing Michigan
| |
Collapse
|
18
|
Tronson NC, Keiser AA. A Dynamic Memory Systems Framework for Sex Differences in Fear Memory. Trends Neurosci 2019; 42:680-692. [PMID: 31473031 DOI: 10.1016/j.tins.2019.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/17/2019] [Accepted: 07/29/2019] [Indexed: 01/04/2023]
Abstract
Emerging research demonstrates that a pattern of overlapping but distinct molecular and circuit mechanisms are engaged by males and females during memory tasks. Importantly, sex differences in neural mechanisms and behavioral strategies are evident even when performance on a memory task is similar between females and males. We propose that sex differences in memory may be best understood within a dynamic memory systems framework. Specifically, sex differences in hormonal influences and neural circuit development result in biases in the circuits engaged and the information preferentially stored or retrieved in males and females. By using animal models to understand the neural networks and molecular mechanisms required for memory in both sexes, we can gain crucial insights into sex and gender biases in disorders including post-traumatic stress disorder (PTSD) in humans.
Collapse
Affiliation(s)
- Natalie C Tronson
- Psychology Department, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Ashley A Keiser
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| |
Collapse
|
19
|
Korol DL, Gardner RS, Tunur T, Gold PE. Involvement of lactate transport in two object recognition tasks that require either the hippocampus or striatum. Behav Neurosci 2019; 133:176-187. [PMID: 30907617 DOI: 10.1037/bne0000304] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Growing evidence indicates that hippocampal lactate, released from astrocytes, is an important regulator of learning and memory processing. This study evaluated the selective involvement of hippocampal and striatal lactate in two object recognition tasks. The tasks tested recognition memory after a change in location of two target objects (double object location; dOL) or after replacement of familiar targets with two new objects set in the original locations (double object replacement; dOR). Rats received three study sessions across which exploration times decreased. The recognition index was the change in exploration time of both objects on a test trial from the exploration times on the final study trial. We first verified a double dissociation between hippocampus and striatum across these tasks. The sodium channel blocker, lidocaine, was infused into one of the two brain regions after the study sessions and before the test trial. To test the role of neuronal lactate in recognition memory, an inhibitor of the neuronal lactate transporter, α-cyano-4-hydroxycinnamate (4-CIN), was similarly infused. For both drugs, infusions into the hippocampus but not the striatum impaired recognition in the dOL, whereas infusions into the striatum but not hippocampus impaired recognition in the dOR. The findings obtained with 4-CIN demonstrate for the first time the importance of neuronal lactate uptake in the hippocampus and the striatum for object recognition memory processing. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
|
20
|
Kundu P, Korol DL, Bandara S, Monaikul S, Ondera CE, Helferich WG, Khan IA, Doerge DR, Schantz SL. Licorice root components mimic estrogens in an object location task but not an object recognition task. Horm Behav 2018; 103:97-106. [PMID: 29920269 PMCID: PMC6086590 DOI: 10.1016/j.yhbeh.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/13/2018] [Accepted: 06/02/2018] [Indexed: 01/24/2023]
Abstract
This study investigated the efficacy of components of licorice root to alter performance on two different recognition tasks, a hippocampus-sensitive metric change in object location (MCOL) task and a striatum-sensitive double object recognition (DOR) task. Isoliquiritigenin (ISL), licorice root extract (LRE), and whole licorice root powder (LRP) were assessed. Young adult female rats were ovariectomized (OVX) and exposed to ISL, LRE or LRP at 0.075%, 0.5% or 5% respectively in the diet. An estradiol group was included as a positive control based on our prior findings. Rats were allowed to explore two objects for three 5-min study trials (separated by 3-min intervals) before a fourth 5-min test trial where the objects were moved closer together (MCOL task) or replaced with two new objects (DOR task). Rats typically habituate to the objects across the three study trials. An increase in object exploration time in the test trial suggests the rat detected the change. Estradiol improved MCOL performance and impaired DOR performance, similar to previously shown effects of estradiol and other estrogens, which tend to improve learning and memory on hippocampus-sensitive tasks and impair striatum-sensitive cognition. LRP had no effect on recognition while exposure to ISL and LRE improved MCOL performance. Exposure to ISL, LRE and LRP failed to attenuate DOR, contrary to effects of estradiol shown here and to previous reports in young-adult OVX rats. These findings suggest components of licorice root may prove to be effective therapies targeting memory enhancement without unintended deleterious cognitive effects.
Collapse
Affiliation(s)
- Payel Kundu
- University of Illinois at Urbana-Champaign, Neuroscience Program, 405 N Mathews Ave, Urbana, IL 61801, USA.
| | - Donna L Korol
- Syracuse University, Department of Biology, 107 College Place, Syracuse, NY 13244, USA.
| | - Suren Bandara
- University of Illinois at Urbana-Champaign, Neuroscience Program, 405 N Mathews Ave, Urbana, IL 61801, USA
| | - Supida Monaikul
- University of Illinois at Urbana-Champaign, Neuroscience Program, 405 N Mathews Ave, Urbana, IL 61801, USA
| | - Caitlin E Ondera
- University of Illinois at Urbana-Champaign, Department of Comparative Biosciences, College of Veterinary Medicine, 2001 S Lincoln Ave, Urbana, IL 61802, USA.
| | - William G Helferich
- University of Illinois at Urbana-Champaign, Department of Food Science and Human Nutrition, 905 S. Goodwin, Urbana, IL 61801, USA.
| | - Ikhlas A Khan
- The University of Mississippi, 1558 University Circle, P.O. Box 1848, University, MS 38677, USA.
| | - Daniel R Doerge
- National Center for Toxicological Research, U.S. Food & Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA.
| | - Susan L Schantz
- University of Illinois at Urbana-Champaign, Neuroscience Program, 405 N Mathews Ave, Urbana, IL 61801, USA; University of Illinois at Urbana-Champaign, Department of Comparative Biosciences, College of Veterinary Medicine, 2001 S Lincoln Ave, Urbana, IL 61802, USA; University of Illinois at Urbana-Champaign, Beckman Institute, 405 N Mathews Ave, Urbana, IL 61801, USA.
| |
Collapse
|