1
|
Hunjan G, Shah SS, Kosey S, Aran KR. Gut microbiota and the tryptophan-kynurenine pathway in anxiety: new insights and treatment strategies. J Neural Transm (Vienna) 2025:10.1007/s00702-025-02938-8. [PMID: 40369368 DOI: 10.1007/s00702-025-02938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 04/28/2025] [Indexed: 05/16/2025]
Abstract
Anxiety disorders are mental health disorders characterized by long-lasting fear, worry, nervousness, and alterations in gut microbiota (GM). The GM is a vital modulator of brain function through the gut-brain axis, which acts as the neural pathway between the central and peripheral nervous systems. Dysbiosis of GM plays an essential role in anxiety development because of alterations in the vagus nerve, increased intestinal permeability, and altered breakdown of tryptophan (TRP). The Kynurenine (KYN) pathway plays a crucial role in the pathogenesis of anxiety disorders, primarily through its neuroprotective (KYNA) and neurotoxic (QUIN) metabolites. Higher ratios of KYNA/QUIN result in neuroprotection, whereas higher KYN/TRP ratios indicate increased QUIN production causing neuroinflammation. Studies on germ-free models exhibit higher plasma TRP levels, which interrupt the metabolic balance of TRP-derived compounds, thus causing brain impairment. A key issue in anxiety disorders is the dysregulation of GM, which disrupts TRP metabolism and neuroinflammatory pathways, however, remains poorly understood. Hence, the proper understanding of these mechanisms is crucial for future therapeutic advancements. Here, we highlight the significance of the TRP-KYN pathway and the potential of modulating KYN pathway enzymes, such as kynurenine aminotransferases (KATs), to adjust KYNA levels and restore neurotransmitter balance. It further discusses new therapeutic methods with a particular focus on probiotics that may restore GM and modulate TRP metabolism. Advancing our understanding of the intricate relationship between GM and anxiety disorders may facilitate novel, microbiota-targeted interventions. This ultimately contributes to precision medicine approaches in mental health care, thereby enhancing treatment efficacy and patient outcomes.
Collapse
Affiliation(s)
- Garry Hunjan
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Shiv Shankar Shah
- Krupanidhi College of Pharmacy, Carmelaram Gunjur Road, Hobli, off Sarjapur Road, Varthur, Bengaluru, 560035, Karnataka, India
| | - Sourabh Kosey
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
2
|
Liang J, Zhang J, Sun J, Liang Q, Zhan Y, Yang Z, Zhang Y, Jin L, Hu C, Zhao YT. Ketogenic diet attenuates neuroinflammation and restores hippocampal neurogenesis to improve CUMS induced depression-like behavior in mice. Food Funct 2025; 16:3408-3422. [PMID: 40197680 DOI: 10.1039/d5fo00226e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The ketogenic diet (KD) has been proposed as a potential treatment for depression. However, the underlying mechanisms remain poorly understood. This study aimed to evaluate further the effects of KD on chronic unpredictable mild stress (CUMS)-induced depression in mice and investigate the underlying mechanisms. The results demonstrated that KD intervention significantly alleviated CUMS-induced depression-like behaviors, as evidenced by a decrease in immobility time in the forced swimming test and tail suspension test, an increase in distance traveled in the open field test, and a greater preference for sucrose in the sucrose preference test. KD alleviated neuroinflammation by reducing the levels of glial cell activation markers Iba-1 and GFAP, inhibiting the expression of inflammatory factors IL-1β, TNF-α, and COX-2, and suppressing the overactivation of the TLR4/MyD88/NF-κB signaling pathway. Furthermore, KD increased the number of DCX-, BrdU-, and PSD95-positive cells in the hippocampus and enhanced the BDNF/TrkB/CREB and Wnt/β-catenin signaling pathways, thereby promoting hippocampal neurogenesis. These findings suggested that KD alleviated CUMS-induced depression-like behaviors in mice by reducing neuroinflammation, enhancing neurotrophic signaling, and promoting hippocampal neurogenesis, thereby providing a mechanistic basis for its potential as a novel dietary antidepressant therapy.
Collapse
Affiliation(s)
- Jinyuan Liang
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health Guangdong Ocean University, Zhanjiang, China.
| | - Jingxi Zhang
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health Guangdong Ocean University, Zhanjiang, China.
| | - Jingyu Sun
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health Guangdong Ocean University, Zhanjiang, China.
| | - Qingsheng Liang
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health Guangdong Ocean University, Zhanjiang, China.
| | - Yingtong Zhan
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health Guangdong Ocean University, Zhanjiang, China.
| | - Zhiyou Yang
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health Guangdong Ocean University, Zhanjiang, China.
| | - Yongping Zhang
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health Guangdong Ocean University, Zhanjiang, China.
| | - Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chuanyin Hu
- Department of Biology, Guangdong Medical University, Zhanjiang, China.
| | - Yun-Tao Zhao
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Modern Biochemistry Experimental Center, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
3
|
Chen J, Li W, Yu L, Zhang B, Li Z, Zou P, Ding B, Dai X, Wang Q. Combined Effects of Ketogenic Diet and Aerobic Exercise on Skeletal Muscle Fiber Remodeling and Metabolic Adaptation in Simulated Microgravity Mice. Metabolites 2025; 15:270. [PMID: 40278399 PMCID: PMC12029359 DOI: 10.3390/metabo15040270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/11/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
Objective: Prolonged microgravity environments impair skeletal muscle homeostasis by triggering fiber-type transitions and metabolic dysregulation. Although exercise and nutritional interventions may alleviate disuse atrophy, their synergistic effects under microgravity conditions remain poorly characterized. This study investigated the effects of an 8-week ketogenic diet combined with aerobic exercise in hindlimb-unloaded mice on muscle fiber remodeling and metabolic adaptation. Methods: Seven-week-old male C57BL/6J mice were randomly divided into six groups: normal diet control (NC), normal diet with hindlimb unloading (NH), normal diet with hindlimb unloading and exercise (NHE), ketogenic diet control (KC), ketogenic diet with hindlimb unloading (KH), and ketogenic diet with hindlimb unloading and exercise (KHE). During the last two weeks of intervention, hindlimb unloading was applied to simulate microgravity. Aerobic exercise groups performed moderate-intensity treadmill running (12 m/min, 60 min/day, and 6 days/week) for 8 weeks. Body weight, blood ketone, and glucose levels were measured weekly. Post-intervention assessments included the respiratory exchange ratio (RER), exhaustive exercise performance tests, and biochemical analyses of blood metabolic parameters. The skeletal muscle fiber-type composition was evaluated via immunofluorescence staining, lipid deposition was assessed using Oil Red O staining, glycogen content was analyzed by Periodic Acid-Schiff (PAS) staining, and gene expression was quantified using quantitative real-time PCR (RT-qPCR). Results: Hindlimb unloading significantly decreased body weight, induced muscle atrophy, and reduced exercise endurance in mice. However, the combination of KD and aerobic exercise significantly attenuated these adverse effects, as evidenced by increased proportions of oxidative muscle fibers (MyHC-I) and decreased proportions of glycolytic fibers (MyHC-IIb). Additionally, this combined intervention upregulated the expression of lipid metabolism-associated genes, including CPT-1b, HADH, PGC-1α, and FGF21, enhancing lipid metabolism and ketone utilization. These metabolic adaptations corresponded with improved exercise performance, demonstrated by the increased time to exhaustion in the KHE group compared to other hindlimb unloading groups. Conclusions: The combination of a ketogenic diet and aerobic exercise effectively ameliorates simulated microgravity-induced skeletal muscle atrophy and endurance impairment, primarily by promoting a fiber-type transition from MyHC-IIb to MyHC-I and enhancing lipid metabolism gene expression (CPT-1b, HADH, and PGC-1α). These findings underscore the potential therapeutic value of combined dietary and exercise interventions for mitigating muscle atrophy under simulated microgravity conditions.
Collapse
Affiliation(s)
- Jun Chen
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China;
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing 100029, China
| | - Wenjiong Li
- National Key Laboratory of Space Medicine, Beijing 100094, China; (W.L.); (Z.L.); (P.Z.); (B.D.)
| | - Liang Yu
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China; (L.Y.); (B.Z.)
| | - Bowei Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China; (L.Y.); (B.Z.)
| | - Zhili Li
- National Key Laboratory of Space Medicine, Beijing 100094, China; (W.L.); (Z.L.); (P.Z.); (B.D.)
| | - Peng Zou
- National Key Laboratory of Space Medicine, Beijing 100094, China; (W.L.); (Z.L.); (P.Z.); (B.D.)
| | - Bai Ding
- National Key Laboratory of Space Medicine, Beijing 100094, China; (W.L.); (Z.L.); (P.Z.); (B.D.)
| | - Xiaoqian Dai
- National Key Laboratory of Space Medicine, Beijing 100094, China; (W.L.); (Z.L.); (P.Z.); (B.D.)
| | - Qirong Wang
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing 100029, China
| |
Collapse
|
4
|
Costa A, Lucarini E. Treating chronic stress and chronic pain by manipulating gut microbiota with diet: can we kill two birds with one stone? Nutr Neurosci 2025; 28:221-244. [PMID: 38889540 DOI: 10.1080/1028415x.2024.2365021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Background: Chronic stress and chronic pain are closely linked by the capacity to exacerbate each other, sharing common roots in the brain and in the gut. The strict intersection between these two neurological diseases makes important to have a therapeutic strategy aimed at preventing both to maintain mental health in patients. Diet is an modifiable lifestyle factor associated with gut-brain axis diseases and there is growing interest in its use as adjuvant to main therapies. Several evidence attest the impact of specific diets or nutrients on chronic stress-related disorders and pain with a good degree of certainty. A daily adequate intake of foods containing micronutrients such as amino acids, minerals and vitamins, as well as the reduction in the consumption of processed food products can have a positive impact on microbiota and gut health. Many nutrients are endowed of prebiotic, anti-inflammatory, immunomodulatory and neuroprotective potential which make them useful tools helping the management of chronic stress and pain in patients. Dietary regimes, as intermittent fasting or caloric restriction, are promising, although further studies are needed to optimize protocols according to patient's medical history, age and sex. Moreover, by supporting gut microbiota health with diet is possible to attenuate comorbidities such as obesity, gastrointestinal dysfunction and mood disorders, thus reducing healthcare costs related to chronic stress or pain.Objective: This review summarize the most recent evidence on the microbiota-mediated beneficial effects of macro- and micronutrients, dietary-related factors, specific nutritional regimens and dietary intervention on these pathological conditions.
Collapse
Affiliation(s)
- Alessia Costa
- Department of Neuroscience, Psychology, Drug Area and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Area and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
5
|
Chrysafi M, Jacovides C, Papadopoulou SK, Psara E, Vorvolakos T, Antonopoulou M, Dakanalis A, Martin M, Voulgaridou G, Pritsa A, Mentzelou M, Giaginis C. The Potential Effects of the Ketogenic Diet in the Prevention and Co-Treatment of Stress, Anxiety, Depression, Schizophrenia, and Bipolar Disorder: From the Basic Research to the Clinical Practice. Nutrients 2024; 16:1546. [PMID: 38892480 PMCID: PMC11174630 DOI: 10.3390/nu16111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND The ketogenic diet (KD) has been highly developed in the past for the treatment of epileptic pathological states in children and adults. Recently, the current re-emergence in its popularity mainly focuses on the therapy of cardiometabolic diseases. The KD can also have anti-inflammatory and neuroprotective activities which may be applied to the prevention and/or co-treatment of a diverse range of psychiatric disorders. PURPOSE This is a comprehensive literature review that intends to critically collect and scrutinize the pre-existing research basis and clinical data of the potential advantageous impacts of a KD on stress, anxiety, depression, schizophrenia and bipolar disorder. METHODS This literature review was performed to thoroughly represent the existing research in this topic, as well as to find gaps in the international scientific community. In this aspect, we carefully investigated the ultimate scientific web databases, e.g., PubMed, Scopus, and Web of Science, to derive the currently available animal and clinical human surveys by using efficient and representative keywords. RESULTS Just in recent years, an increasing amount of animal and clinical human surveys have focused on investigating the possible impacts of the KD in the prevention and co-treatment of depression, anxiety, stress, schizophrenia, and bipolar disorder. Pre-existing basic research with animal studies has consistently demonstrated promising results of the KD, showing a propensity to ameliorate symptoms of depression, anxiety, stress, schizophrenia, and bipolar disorder. However, the translation of these findings to clinical settings presents a more complex issue. The majority of the currently available clinical surveys seem to be moderate, usually not controlled, and have mainly assessed the short-term effects of a KD. In addition, some clinical surveys appear to be characterized by enormous dropout rates and significant absence of compliance measurement, as well as an elevated amount of heterogeneity in their methodological design. CONCLUSIONS Although the currently available evidence seems promising, it is highly recommended to accomplish larger, long-term, randomized, double-blind, controlled clinical trials with a prospective design, in order to derive conclusive results as to whether KD could act as a potential preventative factor or even a co-treatment agent against stress, anxiety, depression, schizophrenia, and bipolar disorder. Basic research with animal studies is also recommended to examine the molecular mechanisms of KD against the above psychiatric diseases.
Collapse
Affiliation(s)
- Maria Chrysafi
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (M.C.); (C.J.); (E.P.); (M.A.); (M.M.); (M.M.)
| | - Constantina Jacovides
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (M.C.); (C.J.); (E.P.); (M.A.); (M.M.); (M.M.)
- Department of Nutritional Sciences and Dietetics, Faculty of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (S.K.P.); (G.V.); (A.P.)
| | - Sousana K. Papadopoulou
- Department of Nutritional Sciences and Dietetics, Faculty of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (S.K.P.); (G.V.); (A.P.)
| | - Evmorfia Psara
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (M.C.); (C.J.); (E.P.); (M.A.); (M.M.); (M.M.)
| | - Theophanis Vorvolakos
- Department of Psychiatry, School of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Marina Antonopoulou
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (M.C.); (C.J.); (E.P.); (M.A.); (M.M.); (M.M.)
| | - Antonios Dakanalis
- Department of Mental Health, Fondazione IRCCS San Gerardo dei Tintori, Via G.B. Pergolesi 33, 20900 Monza, Italy;
- Department of Medicine and Surgery, University of Milan Bicocca, Via Cadore 38, 20900 Monza, Italy
| | - Mato Martin
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (M.C.); (C.J.); (E.P.); (M.A.); (M.M.); (M.M.)
| | - Gavriela Voulgaridou
- Department of Nutritional Sciences and Dietetics, Faculty of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (S.K.P.); (G.V.); (A.P.)
| | - Agathi Pritsa
- Department of Nutritional Sciences and Dietetics, Faculty of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (S.K.P.); (G.V.); (A.P.)
| | - Maria Mentzelou
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (M.C.); (C.J.); (E.P.); (M.A.); (M.M.); (M.M.)
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (M.C.); (C.J.); (E.P.); (M.A.); (M.M.); (M.M.)
| |
Collapse
|
6
|
Braga Tibaes JR, Barreto Silva MI, Wollin B, Vine D, Tsai S, Richard C. Sex differences in systemic inflammation and immune function in diet-induced obesity rodent models: A systematic review. Obes Rev 2024; 25:e13665. [PMID: 38072656 DOI: 10.1111/obr.13665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 02/28/2024]
Abstract
Understanding sex differences in immunological responses in the context of obesity is important to improve health outcomes. This systematic review aimed to investigate sex differences in systemic inflammation, immune cell phenotype, and function in diet-induced obesity (DIO) animal models. A systematic search in Medline, Embase, and CINAHL from inception to April 2023 was conducted, using a combination of the following concepts: sex, obesity, cytokines, and immune cell phenotypes/function. Forty-one publications reporting on systemic inflammation (61%), cell phenotype (44%), and/or function (7%) were included. Females had lower systemic inflammation compared with males in response to DIO intervention and a higher proportion of macrophage (M)2-like cells compared with males that had a higher proportion of M1-like in adipose tissue. Although there were no clear sex differences in immune function, high-fat DIO intervention remains an important factor in the development of immune dysfunction in both males and females, including disturbances in cytokine production, proliferation, and migration of immune cells. Yet, the mechanistic links between diet and obesity on such immune dysfunction remain unclear. Future studies should investigate the role of diet and obesity in the functionality of immune cells and employ adequate methods for a high-quality investigation of sex differences in this context.
Collapse
Affiliation(s)
| | - Maria Ines Barreto Silva
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- Department of Applied Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Bethany Wollin
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Donna Vine
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Sue Tsai
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Caroline Richard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Grabowska K, Grabowski M, Przybyła M, Pondel N, Barski JJ, Nowacka-Chmielewska M, Liśkiewicz D. Ketogenic diet and behavior: insights from experimental studies. Front Nutr 2024; 11:1322509. [PMID: 38389795 PMCID: PMC10881757 DOI: 10.3389/fnut.2024.1322509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
As a journal page for full details. The ketogenic diet (KD) has been established as a treatment for epilepsy, but more recently it has been explored as an alternative or add-on therapy for many other diseases ranging from weight loss to neurological disorders. Animal models are widely used in studies investigating the therapeutic effects of the KD as well as underlying mechanisms. Especially in the context of neurological, psychiatric, and neurodevelopmental disorders essential endpoints are assessed by behavioral and motor tests. Here we summarized research evaluating the influence of the KD on cognition, depressive and anxiety-related behaviors, and social and nutritional behaviors of laboratory rodents. Each section contains a brief description of commonly used behavioral tests highlighting their limitations. Ninety original research articles, written in English, performed on mice or rats, providing measurement of blood beta-hydroxybutyrate (BHB) levels and behavioral evaluation were selected for the review. The majority of research performed in various disease models shows that the KD positively impacts cognition. Almost an equal number of studies report a reduction or no effect of the KD on depressive-related behaviors. For anxiety-related behaviors, the majority of studies show no effect. Despite the increasing use of the KD in weight loss and its appetite-reducing properties the behavioral evaluation of appetite regulation has not been addressed in preclinical studies. This review provides an overview of the behavioral effects of nutritional ketosis addressed to a broad audience of scientists interested in the KD field but not necessarily specializing in behavioral tests.
Collapse
Affiliation(s)
- Konstancja Grabowska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Mateusz Grabowski
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marta Przybyła
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Natalia Pondel
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| | - Jarosław J Barski
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marta Nowacka-Chmielewska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| | - Daniela Liśkiewicz
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Institute of Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
8
|
Smolensky IV, Zajac-Bakri K, Gass P, Inta D. Ketogenic diet for mood disorders from animal models to clinical application. J Neural Transm (Vienna) 2023; 130:1195-1205. [PMID: 36943505 PMCID: PMC10460725 DOI: 10.1007/s00702-023-02620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/10/2023] [Indexed: 03/23/2023]
Abstract
Mood disorders such as major depressive disorder (MDD) and bipolar disorder (BD) are often resistant to current pharmacological treatment. Therefore, various alternative therapeutic approaches including diets are, therefore, under investigation. Ketogenic diet (KD) is effective for treatment-resistant epilepsy and metabolic diseases, however, only a few clinical studies suggest its beneficial effect also for mental disorders. Animal models are a useful tool to uncover the underlying mechanisms of therapeutic effects. Women have a twice-higher prevalence of mood disorders but very little is known about sex differences in nutritional psychiatry. In this review, we aim to summarize current knowledge of the sex-specific effects of KD in mood disorders. Ketone bodies improve mitochondrial functions and suppress oxidative stress, inducing neuroprotective and anti-inflammatory effects which are both beneficial for mental health. Limited data also suggest KD-induced improvement of monoaminergic circuits and hypothalamus-pituitary-adrenal axis-the key pathophysiological pathways of mood disorders. Gut microbiome is an important mediator of the beneficial and detrimental effects of diet on brain functioning and mental health. Gut microbiota composition is affected in mood disorders but its role in the therapeutic effects of different diets, including KD, remains poorly understood. Still little is known about sex differences in the effects of KD on mental health as well as on metabolism and body weight. Some animal studies used both sexes but did not find differences in behavior, body weight loss or gut microbiota composition. More studies, both on a preclinical and clinical level, are needed to better understand sex-specific effects of KD on mental health.
Collapse
Affiliation(s)
- Ilya V Smolensky
- Department for Community Health, University of Fribourg, Fribourg, Switzerland.
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - Kilian Zajac-Bakri
- Department for Community Health, University of Fribourg, Fribourg, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Heidelberg, Germany
| | - Dragos Inta
- Department for Community Health, University of Fribourg, Fribourg, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Zhang J, Chen B, Zou K. Effect of ketogenic diet on exercise tolerance and transcriptome of gastrocnemius in mice. Open Life Sci 2023; 18:20220570. [PMID: 36852401 PMCID: PMC9961969 DOI: 10.1515/biol-2022-0570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/28/2022] [Accepted: 01/14/2023] [Indexed: 02/25/2023] Open
Abstract
Ketogenic diet (KD) has been proven to be an optional avenue in weight control. However, the impacts of KD on muscle strength and exercise endurance remain unclear. In this study, mice were randomly allocated to normal diet and KD groups to assess their exercise tolerance and transcriptomic changes of the gastrocnemius. KD suppressed body-weight and glucose levels and augmented blood ketone levels of mice. The total cholesterol, free fatty acids, and β-hydroxybutyric acid levels were higher and triglycerides and aspartate aminotransferase levels were lower in KD group. There was no notable difference in running distance/time and weight-bearing swimming time between the two groups. Furthermore, KD alleviated the protein levels of PGC-1α, p62, TnI FS, p-AMPKα, and p-Smad3, while advancing the LC3 II and TnI SS protein levels in the gastrocnemius tissues. RNA-sequencing found that 387 differentially expressed genes were filtered, and Cpt1b, Acadl, Eci2, Mlycd, Pdk4, Ptprc, C1qa, Emr1, Fcgr3, and Ctss were considered to be the hub genes. Our findings suggest that KD effectively reduced body weight but did not affect skeletal muscle strength and exercise endurance via AMPK/PGC-1α, Smad3, and p62/LC3 signaling pathways and these hub genes could be potential targets for muscle function in KD-treated mice.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Police Physical Training, Zhejiang Police Collage, Zhejiang, China
| | - Bo Chen
- Department of Physical Education, Beijing University of Chemical Technology, 15 North Third Ring East Road, Chaoyang District, Beijing, 100029, China
| | - Ke Zou
- School of Physical Education, Huaibei Normal University, Anhui, China
| |
Collapse
|
10
|
Gonçalves BSM, Mariotti FFN, Ponsone G, Soares TAA, Perão PCBG, Mônico-Neto M, Cariste LM, Maluf A, Nascimento GDSS, Antunes HKM, Céspedes IC, Viana MDB, Le Sueur-Maluf L. High and fluctuating levels of ovarian hormones induce an anxiogenic effect, which can be modulated under stress conditions: Evidence from an assisted reproductive rodent model. Horm Behav 2022; 137:105087. [PMID: 34826650 DOI: 10.1016/j.yhbeh.2021.105087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/24/2021] [Accepted: 11/14/2021] [Indexed: 11/22/2022]
Abstract
Elevated levels of endogenous ovarian hormones are conditions commonly experienced by women undergoing assisted reproductive technologies (ART). Additionally, infertility-associated stress and treatment routines are factors that together may have a highly negative impact on female emotionality, which can be aggravated when several cycles of ART are needed to attempt pregnancy. This study aimed to investigate the effect of high and fluctuating levels of gonadal hormones induced by repeated ovarian stimulation on the stress response in rodents. To mimic the context of ART, female rats were exposed to an unpredictable chronic mild stress (UCMS) paradigm for four weeks. During this time, three cycles of ovarian stimulation (superovulation) (150 IU/Kg of PMSG and 75 IU/Kg of hCG) were applied, with intervals of two estrous cycles between them. The rats were distributed into four groups: Repeated Superovulation/UCMS; Repeated Superovulation/No Stress; Saline/UCMS; and Saline/No Stress. Anxiety-like and depressive-like behaviors were evaluated in a light-dark transition box and by splash test, respectively. Corticosterone, estradiol, progesterone, and biometric parameters were assessed. Data were analyzed using a two-way Generalized Linear Model (GzLM). Our results showed that repeated ovarian stimulation exerts by itself an expressive anxiogenic effect. Surprisingly, when high and fluctuating levels of ovarian hormones were combined with chronic stress, anxiety-like behavior was no longer observed, and a depressive-like state was not detected. Our findings suggest that females subjected to emotional overload induced by repeated ovarian stimulation and chronic stress seem to trigger the elaboration of adaptive coping strategies.
Collapse
Affiliation(s)
| | | | - Giovana Ponsone
- Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, 11015-020 Santos, SP, Brazil
| | | | | | - Marcos Mônico-Neto
- Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, 11015-020 Santos, SP, Brazil
| | - Leonardo Moro Cariste
- Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, 11015-020 Santos, SP, Brazil
| | - Auro Maluf
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, UNIFESP, 11070-102 Santos, SP, Brazil
| | | | | | - Isabel Cristina Céspedes
- Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, 11015-020 Santos, SP, Brazil
| | - Milena de Barros Viana
- Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, 11015-020 Santos, SP, Brazil
| | - Luciana Le Sueur-Maluf
- Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, 11015-020 Santos, SP, Brazil.
| |
Collapse
|
11
|
Sahagun E, Bachman BB, Kinzig KP. Sex-specific effects of ketogenic diet after pre-exposure to a high-fat, high-sugar diet in rats. Nutr Metab Cardiovasc Dis 2021; 31:961-971. [PMID: 33546948 DOI: 10.1016/j.numecd.2020.09.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND AIMS The objectives were to evaluate the relationship between ketogenic diets, the ketone body beta-hydroxybutyrate (BHB), parameters known to increase risk for cardiovascular and metabolic diseases in both sexes, using a pre-clinical model of obesity. METHODS AND RESULTS Rats had access to a diet high in fat and sugar (HFS) for 12 weeks. After HFS, they switched to chow (HFS-CH) or ketogenic diet (HFS-KD) for 3 weeks to model a dietary intervention. Body weight, adiposity, and food intake were measured. Glucose tolerance and corticosterone response to stress were measured after HFS, then again after the intervention. Both sexes increased body weight, food intake, and adiposity compared to control (CTL) while on HFS. HFS females showed impaired glucose tolerance. HFS males developed a dampened corticosterone to stress, whereas HFS females developed an exacerbated response. The effects of HFS on adiposity and corticosterone were reversed in HFS-CH males. These same improvements were observed in HFS-CH females, although they still had impaired glucose tolerance. HFS-KD males showed some improvements, however, they still had higher body weight and adiposity than CTL. The same pattern was observed in females. These beneficial effects of KD correlated with plasma BHB levels in females but not in males. CONCLUSIONS These data model effects reported in clinical literature and serve as a valuable translational tool to further test causal mechanisms that lead to desirable outcomes of KD. These sex-specific relationships are important, as KD could potentially affect endocrine mechanisms differently in males and females.
Collapse
Affiliation(s)
- Elizabeth Sahagun
- Purdue University, Department of Psychological Sciences, 703 3rd Street, West Lafayette, IN, 47907, USA.
| | - Brent B Bachman
- Purdue University, Department of Psychological Sciences, 703 3rd Street, West Lafayette, IN, 47907, USA
| | - Kimberly P Kinzig
- Purdue University, Department of Psychological Sciences, 703 3rd Street, West Lafayette, IN, 47907, USA
| |
Collapse
|
12
|
Abstract
β-hydroxybutyrate, a ketone body metabolite, has been shown to suppress depression-like behavior in rodents. In this study, we examined its antidepressive property in acute and chronic administration modes in mice by using forced swim test and tail suspension test. Results showed that the decrease effect of β-hydroxybutyrate (300 mg/kg) on immobility time in the tail suspension test and forced swim test in stress-naive mice began to be significant at day 11. In a dose-dependent experiment, β-hydroxybutyrate treatment (11 days) showed significant antidepressant activities at the dose of 200 and 300 mg/kg. Unlike fluoxetine, β-hydroxybutyrate treatment (300 mg/kg) showed no antidepressant activities in the acute (1 hour before the test) and three times administration mode within 24 hours (1, 5, and 24 hours before the test). But in a co-administration mode, β-hydroxybutyrate (100 mg/kg) -fluoxetine (2.5 mg/kg) co-administration exhibited an obvious antidepressant activity in the tail suspension test and forced swim test. Further analysis showed that the antidepressant effects of β-hydroxybutyrate and fluoxetine were not associated with the change in mouse locomotor activity. Furthermore, both chronic β-hydroxybutyrate treatment and β-hydroxybutyrate-fluoxetine co-treatment suppressed chronic unpredictable stress-induced increase in immobility time in the tail suspension test and forced swim test as well as chronic unpredictable stress-induced decrease in mouse body weight. Taken together, these results indicate that β-hydroxybutyrate (1) needs a relatively long time to show comparable behavioral activity to that of fluoxetine in assays that are sensitive to the behavioral effects of established antidepressant compounds and (2) can augment the antidepressant action of a sub-therapeutic dose of fluoxetine.
Collapse
|
13
|
Mahajan VR, Elvig SK, Vendruscolo LF, Koob GF, Darcey VL, King MT, Kranzler HR, Volkow ND, Wiers CE. Nutritional Ketosis as a Potential Treatment for Alcohol Use Disorder. Front Psychiatry 2021; 12:781668. [PMID: 34916977 PMCID: PMC8670944 DOI: 10.3389/fpsyt.2021.781668] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/08/2021] [Indexed: 12/28/2022] Open
Abstract
Alcohol use disorder (AUD) is a chronic, relapsing brain disorder, characterized by compulsive alcohol seeking and disrupted brain function. In individuals with AUD, abstinence from alcohol often precipitates withdrawal symptoms than can be life threatening. Here, we review evidence for nutritional ketosis as a potential means to reduce withdrawal and alcohol craving. We also review the underlying mechanisms of action of ketosis. Several findings suggest that during alcohol intoxication there is a shift from glucose to acetate metabolism that is enhanced in individuals with AUD. During withdrawal, there is a decline in acetate levels that can result in an energy deficit and could contribute to neurotoxicity. A ketogenic diet or ingestion of a ketone ester elevates ketone bodies (acetoacetate, β-hydroxybutyrate and acetone) in plasma and brain, resulting in nutritional ketosis. These effects have been shown to reduce alcohol withdrawal symptoms, alcohol craving, and alcohol consumption in both preclinical and clinical studies. Thus, nutritional ketosis may represent a unique treatment option for AUD: namely, a nutritional intervention that could be used alone or to augment the effects of medications.
Collapse
Affiliation(s)
- Vikrant R Mahajan
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Sophie K Elvig
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD, United States
| | - Leandro F Vendruscolo
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD, United States
| | - George F Koob
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD, United States
| | - Valerie L Darcey
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - M Todd King
- National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, United States
| | - Henry R Kranzler
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, United States
| | - Corinde E Wiers
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|