1
|
Sjöholm Å, Bennet L, Nilsson PM. Cognitive dysfunction in diabetes - the 'forgotten' diabetes complication: a narrative review. Scand J Prim Health Care 2025; 43:448-454. [PMID: 39876043 PMCID: PMC12090258 DOI: 10.1080/02813432.2025.2455136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/10/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND In addition to peripheral neuropathy of various kinds, diabetes can also cause central neuropathy, which among other things can manifest itself as premature cognitive dysfunction, often linked to vascular dysfunction. Although the link between diabetes and cognitive dysfunction was discovered more than 100 years ago and has important clinical implications, this diabetes complication remains relatively unknown. Recent years have seen research that has clarified cerebral insulin resistance and defective insulin signaling as examples of pathogenic factors behind this cognitive impairment in diabetes. METHOD We provide a narrative review of select and contemporary publications with relevance for the interface between diabetes/prediabetes and cognitive function. RESULTS Recently published studies show that physical activity can reverse insulin resistance in the brain as well as cognitive impairment and pathological appetite regulation. Pharmacological interventions with, for example, nasal insulin, GLP-1 receptor agonists, SGLT-2 inhibitors, or PPAR-γ agonists have also shown promising results. CONCLUSION Optimization of lifestyle factors (e.g. physical activity), as well as several pharmaceutical agents already in clinical use against diabetes, have shown promising results in improving cognitive function in diabetic patients. An important task for primary health care, where most patients with type 2 diabetes are diagnosed, treated, and followed, is to increase awareness and early detection of cognitive dysfunction in these patients for optimizing risk factor control.
Collapse
Affiliation(s)
- Åke Sjöholm
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Gävle Hospital and University of Gävle, Gävle, Sweden
| | - Louise Bennet
- Department of Clinical Sciences, Lund University, Clinical Studies Sweden, Forum South, Skåne University Hospital, Lund, Sweden
| | - Peter M. Nilsson
- Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
2
|
Guo J, Kong D, Luo J, Xiong T, Wang F, Deng M, Kong Z, Yang S, Da J, Chen C, Lan J, Chu L, Han G, Liu J, Tan Y, Zhang J. Orexin-A Attenuates the Inflammatory Response in Sepsis-Associated Encephalopathy by Modulating Oxidative Stress and Inhibiting the ERK/NF-κB Signaling Pathway in Microglia and Astrocytes. CNS Neurosci Ther 2024; 30:e70096. [PMID: 39508266 PMCID: PMC11541240 DOI: 10.1111/cns.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Oxidative stress-induced inflammation is a major pathogenic mechanism in sepsis-associated encephalopathy (SAE). We hypothesized that regulation of reactive oxygen species (ROS) by the neuropeptide orexin-A could prevent SAE-induced oxidative stress and inflammation. Therefore, the aim of this study was to investigate the effects of orexin-A on oxidative stress and inflammation in SAE in mice. METHODS Adult male mice were treated with orexin-A (250 μg/kg, intranasal administration) to establish a cecal ligation perforation (CLP) model. We performed behavioral tests, observed neuronal damage in the hippocampal region, measured the levels of ROS, NOX2, and observed the structure of mitochondria by transmission electron microscopy. We then examined the inflammatory factors TNF-α and IL-1β, the activation of microglia and astrocytes, the expression of ERK/NF-κB, C3, and S100A10, and the presence of A1 type astrocytes and A2 type astrocytes. RESULTS Orexin-A treatment improved cognitive performance in CLP-induced SAE mice, attenuated neuronal apoptosis in the hippocampal region, ameliorated ROS levels and the extent of mitochondrial damage, and reduced protein expression of NOX2 in hippocampal tissue. In addition, orexin-A treatment significantly reduced microglia and astrocyte activation, inhibited the levels of P-ERK and NF-κB, and reduced the release of IL-1β and TNF-α, which were significantly increased after CLP. Finally, Orexin-A treatment significantly decreased the number of C3/glial fibrillary acidic protein (GFAP)-positive cells and increased the number of S100A10/GFAP-positive cells. CONCLUSION Our data suggest that orexin-A reduces ROS expression by inhibiting CLP-induced NOX2 production, thereby attenuating mitochondrial damage and neuronal apoptosis. Its inhibition of microglial and A1-type astrocyte activation and inflammation was associated with the ERK/NF-κB pathway. These suggest that orexin-A may reduce cognitive impairment in SAE by reducing oxidative stress-induced inflammation.
Collapse
Affiliation(s)
- Jing Guo
- GuiZhou University Medical CollegeGuiyangGuizhouChina
| | | | - Junchi Luo
- Department of NeurosurgeryGuizhou Provincial People's HospitalGuiyangChina
| | - Tao Xiong
- Department of NeurosurgeryGuizhou Provincial People's HospitalGuiyangChina
| | - Fang Wang
- GuiZhou University Medical CollegeGuiyangGuizhouChina
| | - Mei Deng
- Department of NeurosurgeryGuizhou Provincial People's HospitalGuiyangChina
| | - Zhuo Kong
- Department of NeurosurgeryGuizhou Provincial People's HospitalGuiyangChina
| | - Sha Yang
- GuiZhou University Medical CollegeGuiyangGuizhouChina
| | - Jingjing Da
- Department of NephrologyGuizhou Provincial People's HospitalGuiyangChina
| | - Chaofei Chen
- Institute of Pediatrics, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Jinhai Lan
- Department of the Second SurgeryZiyun People's HospitalAnshunChina
| | - Liangzhao Chu
- Department of NeurosurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Guoqiang Han
- Department of NeurosurgeryGuizhou Provincial People's HospitalGuiyangChina
| | - Jian Liu
- Department of NeurosurgeryGuizhou Provincial People's HospitalGuiyangChina
| | - Ying Tan
- Department of NeurosurgeryGuizhou Provincial People's HospitalGuiyangChina
| | - Jiqin Zhang
- Department of AnesthesiologyGuizhou Provincial People's HospitalGuiyangChina
| |
Collapse
|
3
|
Gendron WH, Fertan E, Roddick KM, Wong AA, Maliougina M, Hiani YE, Anini Y, Brown RE. Intranasal insulin treatment ameliorates spatial memory, muscular strength, and frailty deficits in 5xFAD mice. Physiol Behav 2024; 281:114583. [PMID: 38750806 DOI: 10.1016/j.physbeh.2024.114583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
The 5xFAD mouse model shows age-related weight loss as well as cognitive and motor deficits. Metabolic dysregulation, especially impaired insulin signaling, is also present in AD. This study examined whether intranasal delivery of insulin (INI) at low (0.875 U) or high (1.750 U) doses would ameliorate these deficits compared to saline in 10-month-old female 5xFAD and B6SJL wildtype (WT) mice. INI increased forelimb grip strength in the wire hang test in 5xFAD mice in a dose-dependent manner but did not improve the performance of 5xFAD mice on the balance beam. High INI doses reduced frailty scores in 5xFAD mice and improved spatial memory in both acquisition and reversal probe trials in the Morris water maze. INI increased swim speed in 5xFAD mice but had no effect on object recognition memory or working memory in the spontaneous alternation task, nor did it improve memory in the contextual or cued fear memory tasks. High doses of insulin increased the liver, spleen, and kidney weights and reduced brown adipose tissue weights. P-Akt signaling in the hippocampus was increased by insulin in a dose-dependent manner. Altogether, INI increased strength, reduced frailty scores, and improved visual spatial memory. Hypoglycemia was not present after INI, however alterations in tissue and organ weights were present. These results are novel and important as they indicate that intra-nasal insulin can reverse cognitive, motor and frailty deficits found in this mouse model of AD.
Collapse
Affiliation(s)
- William H Gendron
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Emre Fertan
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kyle M Roddick
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Aimée A Wong
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Maria Maliougina
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Yassine El Hiani
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Younes Anini
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Departments of Obstetrics and Gynecology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Richard E Brown
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
4
|
Wu DP, Yi W, Zhao YD, Wei YS, Liu LL, Yan QQ, Yu C, Liu JY, Zhu XX, Zhong ZG, Huang JL. Gliclazide Ameliorates Neuronal Injury by Attenuating Oxidative Stress in D-gal-Induced Senescent Cells and Aging Mice. Mol Neurobiol 2024; 61:4391-4401. [PMID: 38087171 DOI: 10.1007/s12035-023-03850-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/17/2023] [Indexed: 07/11/2024]
Abstract
Enhancement of oxidative stress and resultant neuronal injury play important roles in initiating cognitive impairment during the aging process. Thus, attenuating oxidative injury is regarded as a profitable therapeutic strategy for age-associated cognitive impairment. Previous studies showed that gliclazide (Gli) had a protective role in neuronal injury from cerebral ischemia/reperfusion (I/R) injury. However, whether Gli has a profitable effect on age-associated cognitive impairment remains largely unclear. The present study showed that Gli held the potential to attenuate neuronal apoptosis in D-gal-induced senescent cells and aging mice. Additionally, Gli could alleviate synaptic injury and cognitive function in D-gal-induced aging mice. Further study showed that Gli could attenuate oxidative stress in D-gal-induced senescent cells and aging mice. The p38 MAPK pathway was predicted as the downstream target of Gli retarding oxidative stress using in silico analysis. Further studies revealed that Gli attenuated D-gal-induced phosphorylation of p38 and facilitated Nrf2 nuclear expression, indicating that the anti-oxidative property of Gli may be associated with the p38 MAPK pathway. The study demonstrates that Gli has a beneficial effect on ameliorating D-gal-induced neuronal injury and cognitive impairment, making this compound a promising agent for the prevention and treatment of age-associated cognitive impairment.
Collapse
Affiliation(s)
- Deng-Pan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Xuzhou Ruihu Health Management Consulting Co., Ltd, Xuzhou, 221002, Jiangsu, China
| | - Wen Yi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yuan-Dan Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yan-Su Wei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Ling-Ling Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Qiu-Qing Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Chao Yu
- School of Basic Medicine, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jin-Yuan Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xiao-Xiao Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Zhen-Guo Zhong
- Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Jin-Lan Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Xuzhou Ruihu Health Management Consulting Co., Ltd, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
5
|
Guo J, Kong Z, Yang S, Da J, Chu L, Han G, Liu J, Tan Y, Zhang J. Therapeutic effects of orexin-A in sepsis-associated encephalopathy in mice. J Neuroinflammation 2024; 21:131. [PMID: 38760784 PMCID: PMC11102217 DOI: 10.1186/s12974-024-03111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) causes acute and long-term cognitive deficits. However, information on the prevention and treatment of cognitive dysfunction after sepsis is limited. The neuropeptide orexin-A (OXA) has been shown to play a protective role against neurological diseases by modulating the inflammatory response through the activation of OXR1 and OXR2 receptors. However, the role of OXA in mediating the neuroprotective effects of SAE has not yet been reported. METHODS A mouse model of SAE was induced using cecal ligation perforation (CLP) and treated via intranasal administration of exogenous OXA after surgery. Mouse survival, in addition to cognitive and anxiety behaviors, were assessed. Changes in neurons, cerebral edema, blood-brain barrier (BBB) permeability, and brain ultrastructure were monitored. Levels of pro-inflammatory factors (IL-1β, TNF-α) and microglial activation were also measured. The underlying molecular mechanisms were investigated by proteomics analysis and western blotting. RESULTS Intranasal OXA treatment reduced mortality, ameliorated cognitive and emotional deficits, and attenuated cerebral edema, BBB disruption, and ultrastructural brain damage in mice. In addition, OXA significantly reduced the expression of the pro-inflammatory factors IL-1β and TNF-α, and inhibited microglial activation. In addition, OXA downregulated the expression of the Rras and RAS proteins, and reduced the phosphorylation of P-38 and JNK, thus inhibiting activation of the MAPK pathway. JNJ-10,397,049 (an OXR2 blocker) reversed the effect of OXA, whereas SB-334,867 (an OXR1 blocker) did not. CONCLUSION This study demonstrated that the intranasal administration of moderate amounts of OXA protects the BBB and inhibits the activation of the OXR2/RAS/MAPK pathway to attenuate the outcome of SAE, suggesting that OXA may be a promising therapeutic approach for the management of SAE.
Collapse
Affiliation(s)
- Jing Guo
- GuiZhou University Medical College, Guiyang, 550025, Guizhou Province, China
| | - Zhuo Kong
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Sha Yang
- GuiZhou University Medical College, Guiyang, 550025, Guizhou Province, China
| | - Jingjing Da
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Liangzhao Chu
- Department of Neurosurgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guoqiang Han
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jian Liu
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Ying Tan
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Jiqin Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, China.
| |
Collapse
|
6
|
Ghosh A, Majie A, Karmakar V, Chatterjee K, Chakraborty S, Pandey M, Jain N, Roy Sarkar S, Nair AB, Gorain B. In-depth Mechanism, Challenges, and Opportunities of Delivering Therapeutics in Brain Using Intranasal Route. AAPS PharmSciTech 2024; 25:96. [PMID: 38710855 DOI: 10.1208/s12249-024-02810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Central nervous system-related disorders have become a continuing threat to human life and the current statistic indicates an increasing trend of such disorders worldwide. The primary therapeutic challenge, despite the availability of therapies for these disorders, is to sustain the drug's effective concentration in the brain while limiting its accumulation in non-targeted areas. This is attributed to the presence of the blood-brain barrier and first-pass metabolism which limits the transportation of drugs to the brain irrespective of popular and conventional routes of drug administration. Therefore, there is a demand to practice alternative routes for predictable drug delivery using advanced drug delivery carriers to overcome the said obstacles. Recent research attracted attention to intranasal-to-brain drug delivery for promising targeting therapeutics in the brain. This review emphasizes the mechanisms to deliver therapeutics via different pathways for nose-to-brain drug delivery with recent advancements in delivery and formulation aspects. Concurrently, for the benefit of future studies, the difficulties in administering medications by intranasal pathway have also been highlighted.
Collapse
Affiliation(s)
- Arya Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Ankit Majie
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Kaberi Chatterjee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Swarup Chakraborty
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, U.P., India
| | - Suparna Roy Sarkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India.
| |
Collapse
|
7
|
Pan L, Xiao S, Xu Z, Li W, Zhao L, Zhang L, Qi R, Wang J, Cai Y. Orexin-A attenuated motion sickness through modulating neural activity in hypothalamus nuclei. Br J Pharmacol 2024; 181:1474-1493. [PMID: 38129941 DOI: 10.1111/bph.16307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND AND PURPOSE We evaluated the hypothesis that central orexin application could counteract motion sickness responses through regulating neural activity in target brain areas. EXPERIMENTAL APPROACH Thec effects of intracerebroventricular (i.c.v.) injection of orexin-A and SB-334867 (OX1 antagonist) on motion sickness-induced anorexia, nausea-like behaviour (conditioned gaping), hypoactivity and hypothermia were investigated in rats subjected to Ferris wheel-like rotation. Orexin-A responsive brain areas were identified using Fos immunolabelling and were verified via motion sickness responses after intranucleus injection of orexin-A, SB-334867 and TCS-OX2-29 (OX2 antagonist). The efficacy of intranasal application of orexin-A versus scopolamine on motion sickness symptoms in cats was also investigated. KEY RESULTS Orexin-A (i.c.v.) dose-dependently attenuated motion sickness-related behavioural responses and hypothermia. Fos expression was inhibited in the ventral part of the dorsomedial hypothalamus (DMV) and the paraventricular nucleus (PVN), but was enhanced in the ventral part of the premammillary nucleus ventral part (PMV) by orexin-A (20 μg) in rotated animals. Motion sickness responses were differentially inhibited by orexin-A injection into the DMV (anorexia and hypoactivity), the PVN (conditioned gaping) and the PMV (hypothermia). SB-334867 and TCS-OX2-29 (i.c.v. and intranucleus injection) inhibited behavioural and thermal effects of orexin-A. Orexin-A (60 μg·kg-1) and scopolamine inhibited rotation-induced emesis and non-retching/vomiting symptoms, while orexin-A also attenuated anorexia with mild salivation in motion sickness cats. CONCLUSION AND IMPLICATIONS Orexin-A might relieve motion sickness through acting on OX1 and OX2 receptors in various hypothalamus nuclei. Intranasal orexin-A could be a potential strategy against motion sickness.
Collapse
Affiliation(s)
- Leilei Pan
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Shuifeng Xiao
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Zichao Xu
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wenping Li
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Long Zhao
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Ling Zhang
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Ruirui Qi
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Junqin Wang
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yiling Cai
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
8
|
Sun M, Liu M, Zhang F, Sang L, Song Y, Li P, Liu S, Yang H, Ma L, Cao J, Mi W, Ma Y. Triglyceride-glucose index predicts postoperative delirium in elderly patients with type 2 diabetes mellitus: a retrospective cohort study. Lipids Health Dis 2024; 23:107. [PMID: 38622624 PMCID: PMC11017528 DOI: 10.1186/s12944-024-02084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/20/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Postoperative delirium (POD) is more prevalent among elderly patients with type 2 diabetes mellitus (T2DM). Insulin resistance (IR) can be assessed using the triglyceride-glucose (TyG) index, a novel biomarker. This study aims to investigate the predictive potential of the TyG index for POD in elderly patients with T2DM. MATERIALS AND METHODS Elderly patients (≥ 65) with T2DM who underwent non-neurosurgery and non-cardiac surgery were enrolled. Univariate and multivariate logistic regression analyses were conducted to assess the association between the TyG index and POD. Additionally, subgroup analyses were performed to compare the sex-specific differences in the predictive ability of the TyG index for POD. RESULTS A total of 4566 patients were included in this retrospective cohort. The receiver operating characteristic (ROC) curve analysis determined the optimal cut-off value for the TyG index to be 8.678. In the univariate model, a TyG index > 8.678 exhibited an odds ratio (OR) of 1.668 (95% CI: 1.210-2.324, P = 0.002) for predicting POD. In the multivariate regression models, the ORs were 1.590 (95% CI: 1.133-2.252, P < 0.008), 1.661 (95% CI: 1.199-2.325, P < 0.003), and 1.603 (95% CI: 1.137-2.283, P = 0.008) for different models. Subgroup analyses demonstrated that the predictive ability of the TyG index was more pronounced in females compared to males. CONCLUSION The TyG index shows promise as a novel biomarker for predicting the occurrence of POD in elderly surgical patients with T2DM.
Collapse
Affiliation(s)
- Miao Sun
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100730, China
- Nation Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100730, China
| | - Min Liu
- Nation Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100730, China
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Faqiang Zhang
- Nation Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100730, China
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Lijuan Sang
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100730, China
| | - Yuxiang Song
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100730, China
| | - Peng Li
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100730, China
| | - Siyuan Liu
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100730, China
| | - Huikai Yang
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100730, China
| | - Libin Ma
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100730, China
| | - Jiangbei Cao
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100730, China
| | - Weidong Mi
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100730, China.
- Nation Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100730, China.
| | - Yulong Ma
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100730, China.
- Nation Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100730, China.
| |
Collapse
|
9
|
Ramasubbu K, Ramanathan G, Venkatraman G, Rajeswari VD. Sleep-associated insulin resistance promotes neurodegeneration. Mol Biol Rep 2023; 50:8665-8681. [PMID: 37580496 DOI: 10.1007/s11033-023-08710-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023]
Abstract
Lifestyle modification can lead to numerous health issues closely associated with sleep. Sleep deprivation and disturbances significantly affect inflammation, immunity, neurodegeneration, cognitive depletion, memory impairment, neuroplasticity, and insulin resistance. Sleep significantly impacts brain and memory formation, toxin excretion, hormonal function, metabolism, and motor and cognitive functions. Sleep restriction associated with insulin resistance affects these functions by interfering with the insulin signalling pathway, neurotransmission, inflammatory pathways, and plasticity of neurons. So, in this review, We discuss the evidence that suggests that neurodegeneration occurs via sleep and is associated with insulin resistance, along with the insulin signalling pathways involved in neurodegeneration and neuroplasticity, while exploring the role of hormones in these conditions.
Collapse
Affiliation(s)
- Kanagavalli Ramasubbu
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Gnanasambandan Ramanathan
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Ganesh Venkatraman
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - V Devi Rajeswari
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
10
|
Ten-Blanco M, Flores Á, Cristino L, Pereda-Pérez I, Berrendero F. Targeting the orexin/hypocretin system for the treatment of neuropsychiatric and neurodegenerative diseases: from animal to clinical studies. Front Neuroendocrinol 2023; 69:101066. [PMID: 37015302 DOI: 10.1016/j.yfrne.2023.101066] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 04/06/2023]
Abstract
Orexins (also known as hypocretins) are neuropeptides located exclusively in hypothalamic neurons that have extensive projections throughout the central nervous system and bind two different G protein-coupled receptors (OX1R and OX2R). Since its discovery in 1998, the orexin system has gained the interest of the scientific community as a potential therapeutic target for the treatment of different pathological conditions. Considering previous basic science research, a dual orexin receptor antagonist, suvorexant, was the first orexin agent to be approved by the US Food and Drug Administration to treat insomnia. In this review, we discuss and update the main preclinical and human studies involving the orexin system with several psychiatric and neurodegenerative diseases. This system constitutes a nice example of how basic scientific research driven by curiosity can be the best route to the generation of new and powerful pharmacological treatments.
Collapse
Affiliation(s)
- Marc Ten-Blanco
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - África Flores
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Neurosciences Institute, University of Barcelona and Bellvitge University Hospital-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Luigia Cristino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | - Inmaculada Pereda-Pérez
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando Berrendero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
11
|
Li YY, Yu KY, Cui YJ, Wang ZJ, Cai HY, Cao JM, Wu MN. Orexin-A aggravates cognitive deficits in 3xTg-AD mice by exacerbating synaptic plasticity impairment and affecting amyloid β metabolism. Neurobiol Aging 2023; 124:71-84. [PMID: 36758468 DOI: 10.1016/j.neurobiolaging.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Dementia is the main clinical feature of Alzheimer's disease (AD). Orexin has recently been linked to AD pathogenesis, and exogenous orexin-A (OXA) aggravates spatial memory impairment in APP/PS1 mice. However, the effects of OXA on other types of cognitive deficits, especially in 3xTg-AD mice exhibiting both plaque and tangle pathologies, have not been reported. Furthermore, the potential electrophysiological mechanism by which OXA affects cognitive deficits and the molecular mechanism by which OXA increases amyloid β (Aβ) levels are unknown. In the present study, the effects of OXA on cognitive functions, synaptic plasticity, Aβ levels, tau hyperphosphorylation, BACE1 and NEP expression, and circadian locomotor rhythm were evaluated. The results showed that OXA aggravated memory impairments and circadian rhythm disturbance, exacerbated hippocampal LTP depression, and increased Aβ and tau pathologies in 3xTg-AD mice by affecting BACE1 and NEP expression. These results indicated that OXA aggravates cognitive deficits and hippocampal synaptic plasticity impairment in 3xTg-AD mice by increasing Aβ production and decreasing Aβ clearance through disruption of the circadian rhythm and sleep-wake cycle.
Collapse
Affiliation(s)
- Yi-Ying Li
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education; Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Kai-Yue Yu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education; Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yu-Jia Cui
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education; Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhao-Jun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education; Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hong-Yan Cai
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education; Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China; Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ji-Min Cao
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education; Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Mei-Na Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education; Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
12
|
Chen L, Jiao J, Zhang Y. Therapeutic approaches for improving cognitive function in the aging brain. Front Neurosci 2022; 16:1060556. [PMID: 36570840 PMCID: PMC9773601 DOI: 10.3389/fnins.2022.1060556] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
The rapid aging of populations around the world has become an unprecedented challenge. Aging is associated with cognitive impairment, including dementia and mild cognitive impairment. Successful drug development for improving or maintaining cognition in the elderly is critically important. Although 4 drugs for improving cognition in Alzheimer's disease have been approved, a variety of potential drugs targeting age-related cognitive impairment are still in development. In addition, non-pharmacological interventions, including cognition-oriented treatments, non-invasive brain stimulation physical exercise, and lifestyle-related interventions, have also been suggested as cognitive enhancers in the last decade. In this paper, we reviewed the recent evidence of pharmacological and non-pharmacological interventions aimed at improving or maintaining cognition in the elderly.
Collapse
Affiliation(s)
- Lingmin Chen
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
| | - Jiao Jiao
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
| | - Yonggang Zhang
- Department of Periodical Press and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Zakharova IO, Bayunova LV, Zorina II, Shpakov AO, Avrova NF. Insulin and Brain Gangliosides Prevent Metabolic Disorders Caused by Activation of Free Radical Reactions after Two-Vessel Ischemia–Reperfusion Injury to the Rat Forebrain. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022010240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Chen W, Cai W, Hoover B, Kahn CR. Insulin action in the brain: cell types, circuits, and diseases. Trends Neurosci 2022; 45:384-400. [PMID: 35361499 PMCID: PMC9035105 DOI: 10.1016/j.tins.2022.03.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
Since its discovery over 100 years ago, insulin has been recognized as a key hormone in control of glucose homeostasis. Deficiencies of insulin signaling are central to diabetes and many other disorders. The brain is among the targets of insulin action, and insulin resistance is a major contributor to many diseases, including brain disorders. Here, we summarize key roles of insulin action in the brain and how this involves different brain cell types. Disordered brain insulin signaling can also contribute to neuropsychiatric diseases, affecting brain circuits involved in mood and cognition. Understanding of insulin signaling in different brain cell types/circuits and how these are altered in disease may lead to the development of new therapeutic approaches to these challenging disorders.
Collapse
|
15
|
Erichsen JM, Fadel JR, Reagan LP. Peripheral versus central insulin and leptin resistance: Role in metabolic disorders, cognition, and neuropsychiatric diseases. Neuropharmacology 2022; 203:108877. [PMID: 34762922 PMCID: PMC8642294 DOI: 10.1016/j.neuropharm.2021.108877] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/14/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023]
Abstract
Insulin and leptin are classically regarded as peptide hormones that play key roles in metabolism. In actuality, they serve several functions in both the periphery and central nervous system (CNS). Likewise, insulin and leptin resistance can occur both peripherally and centrally. Metabolic disorders such as diabetes and obesity share several key features including insulin and leptin resistance. While the peripheral effects of these disorders are well-known (i.e. cardiovascular disease, hypertension, stroke, dyslipidemia, etc.), the CNS complications of leptin and insulin resistance have come into sharper focus. Both preclinical and clinical findings have indicated that insulin and leptin resistance are associated with cognitive deficits and neuropsychiatric diseases such as depression. Importantly, these studies also suggest that these deficits in neuroplasticity can be reversed by restoration of insulin and leptin sensitivity. In view of these observations, this review will describe, in detail, the peripheral and central functions of insulin and leptin and explain the role of insulin and leptin resistance in various metabolic disorders, cognition, and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Jennifer M Erichsen
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA.
| | - Jim R Fadel
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA
| | - Lawrence P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA; Columbia VA Health Care System, Columbia, SC, 29208, USA
| |
Collapse
|
16
|
Toward the Decipherment of Molecular Interactions in the Diabetic Brain. Biomedicines 2022; 10:biomedicines10010115. [PMID: 35052794 PMCID: PMC8773210 DOI: 10.3390/biomedicines10010115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) has been associated with cognitive complications in the brain resulting from acute and chronic metabolic disturbances happening peripherally and centrally. Numerous studies have reported on the morphological, electrophysiological, biochemical, and cognitive changes in the brains of diabetic individuals. The detailed pathophysiological mechanisms implicated in the development of the diabetic cognitive phenotype remain unclear due to intricate molecular changes evolving over time and space. This review provides an insight into recent advances in understanding molecular events in the diabetic brain, focusing on cerebral glucose and insulin uptake, insulin action in the brain, and the role of the brain in the regulation of glucose homeostasis. Fully competent mitochondria are essential for energy metabolism and proper brain function; hence, the potential contribution of mitochondria to the DM-induced impairment of the brain is also discussed.
Collapse
|
17
|
Wolf V, Abdul Y, Ergul A. Novel Targets and Interventions for Cognitive Complications of Diabetes. Front Physiol 2022; 12:815758. [PMID: 35058808 PMCID: PMC8764363 DOI: 10.3389/fphys.2021.815758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/08/2021] [Indexed: 01/16/2023] Open
Abstract
Diabetes and cognitive dysfunction, ranging from mild cognitive impairment to dementia, often coexist in individuals over 65 years of age. Vascular contributions to cognitive impairment/dementia (VCID) are the second leading cause of dementias under the umbrella of Alzheimer's disease and related dementias (ADRD). Over half of dementia patients have VCID either as a single pathology or a mixed dementia with AD. While the prevalence of type 2 diabetes in individuals with dementia can be as high as 39% and diabetes increases the risk of cerebrovascular disease and stroke, VCID remains to be one of the less understood and less studied complications of diabetes. We have identified cerebrovascular dysfunction and compromised endothelial integrity leading to decreased cerebral blood flow and iron deposition into the brain, respectively, as targets for intervention for the prevention of VCID in diabetes. This review will focus on targeted therapies that improve endothelial function or remove iron without systemic effects, such as agents delivered intranasally, that may result in actionable and disease-modifying novel treatments in the high-risk diabetic population.
Collapse
Affiliation(s)
- Victoria Wolf
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Yasir Abdul
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States,*Correspondence: Yasir Abdul,
| | - Adviye Ergul
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
18
|
Ikeda Y, Nagase N, Tsuji A, Kitagishi Y, Matsuda S. Neuroprotection by dipeptidyl-peptidase-4 inhibitors and glucagon-like peptide-1 analogs via the modulation of AKT-signaling pathway in Alzheimer’s disease. World J Biol Chem 2021; 12:104-113. [PMID: 34904048 PMCID: PMC8637616 DOI: 10.4331/wjbc.v12.i6.104] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/21/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common reason for progressive dementia in the elderly. It has been shown that disorders of the mammalian/mechanistic target of rapamycin (mTOR) signaling pathways are related to the AD. On the other hand, diabetes mellitus (DM) is a risk factor for the cognitive dysfunction. The pathogenesis of the neuronal impairment caused by diabetic hyperglycemia is intricate, which contains neuro-inflammation and/or neurodegeneration and dementia. Glucagon-like peptide-1 (GLP1) is interesting as a possible link between metabolism and brain impairment. Modulation of GLP1 activity can influence amyloid-beta peptide aggregation via the phosphoinositide-3 kinase/AKT/mTOR signaling pathway in AD. The GLP1 receptor agonists have been shown to have favorable actions on the brain such as the improvement of neurological deficit. They might also exert a beneficial effect with refining learning and memory on the cognitive impairment induced by diabetes. Recent experimental and clinical evidence indicates that dipeptidyl-peptidase-4 (DPP4) inhibitors, being currently used for DM therapy, may also be effective for AD treatment. The DPP-4 inhibitors have demonstrated neuroprotection and cognitive improvements in animal models. Although further studies for mTOR, GLP1, and DPP4 signaling pathways in humans would be intensively required, they seem to be a promising approach for innovative AD-treatments. We would like to review the characteristics of AD pathogenesis, the key roles of mTOR in AD and the preventive and/ or therapeutic suggestions of directing the mTOR signaling pathway.
Collapse
Affiliation(s)
- Yuka Ikeda
- Food Science and Nutrition, Nara Women’s University, Nara 630-8506, Japan
| | - Nozomi Nagase
- Food Science and Nutrition, Nara Women’s University, Nara 630-8506, Japan
| | - Ai Tsuji
- Food Science and Nutrition, Nara Women’s University, Nara 630-8506, Japan
| | - Yasuko Kitagishi
- Food Science and Nutrition, Nara Women’s University, Nara 630-8506, Japan
| | - Satoru Matsuda
- Food Science and Nutrition, Nara Women’s University, Nara 630-8506, Japan
| |
Collapse
|
19
|
Insulin and α-Tocopherol Enhance the Protective Effect of Each Other on Brain Cortical Neurons under Oxidative Stress Conditions and in Rat Two-Vessel Forebrain Ischemia/Reperfusion Injury. Int J Mol Sci 2021; 22:ijms222111768. [PMID: 34769198 PMCID: PMC8584186 DOI: 10.3390/ijms222111768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/15/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022] Open
Abstract
Clinical trials show that insulin administered intranasally is a promising drug to treat neurodegenerative diseases, but at high doses its use may result in cerebral insulin resistance. Identifying compounds which could enhance the protective effects of insulin, may be helpful to reduce its effective dose. Our aim was thus to study the efficiency of combined use of insulin and α-tocopherol (α-T) to increase the viability of cultured cortical neurons under oxidative stress conditions and to normalize the metabolic disturbances caused by free radical reaction activation in brain cortex of rats with two-vessel forebrain ischemia/reperfusion injury. Immunoblotting, flow cytometry, colorimetric, and fluorometric techniques were used. α-T enhanced the protective and antioxidative effects of insulin on neurons in oxidative stress, their effects were additive. At the late stages of oxidative stress, the combined action of insulin and α-T increased Akt-kinase activity, inactivated GSK-3beta and normalized ERK1/2 activity in cortical neurons, it was more effective than either drug action. In the brain cortex, ischemia/reperfusion increased the lipid peroxidation product content and caused Na+,K+-ATPase oxidative inactivation. Co-administration of insulin (intranasally, 0.25 IU/rat) and α-T (orally, 50 mg/kg) led to a more pronounced normalization of the levels of Schiff bases, conjugated dienes and trienes and Na+,K+-ATPase activity than administration of each drug alone. Thus, α-T enhances the protective effects of insulin on cultured cortical neurons in oxidative stress and in the brain cortex of rats with cerebral ischemia/reperfusion injury.
Collapse
|