1
|
Cater JH, Mañucat-Tan NB, Georgiou DK, Zhao G, Buhimschi IA, Wyatt AR, Ranson M. A Novel Role for Plasminogen Activator Inhibitor Type-2 as a Hypochlorite-Resistant Serine Protease Inhibitor and Holdase Chaperone. Cells 2022; 11:cells11071152. [PMID: 35406715 PMCID: PMC8997907 DOI: 10.3390/cells11071152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
Plasminogen activator inhibitor type-2 (PAI-2), a member of the serpin family, is dramatically upregulated during pregnancy and in response to inflammation. Although PAI-2 exists in glycosylated and non-glycosylated forms in vivo, the majority of in vitro studies of PAI-2 have exclusively involved the intracellular non-glycosylated form. This study shows that exposure to inflammation-associated hypochlorite induces the oligomerisation of PAI-2 via a mechanism involving dityrosine formation. Compared to plasminogen activator inhibitor type-1 (PAI-1), both forms of PAI-2 are more resistant to hypochlorite-induced inactivation of its protease inhibitory activity. Holdase-type extracellular chaperone activity plays a putative non-canonical role for PAI-2. Our data demonstrate that glycosylated PAI-2 more efficiently inhibits the aggregation of Alzheimer’s disease and preeclampsia-associated amyloid beta peptide (Aβ), compared to non-glycosylated PAI-2 in vitro. However, hypochlorite-induced modification of non-glycosylated PAI-2 dramatically enhances its holdase activity by promoting the formation of very high-molecular-mass chaperone-active PAI-2 oligomers. Both PAI-2 forms protect against Aβ-induced cytotoxicity in the SH-SY5Y neuroblastoma cell line in vitro. In the villous placenta, PAI-2 is localised primarily to syncytiotrophoblast with wide interpersonal variation in women with preeclampsia and in gestational-age-matched controls. Although intracellular PAI-2 and Aβ staining localised to different placental cell types, some PAI-2 co-localised with Aβ in the extracellular plaque-like aggregated deposits abundant in preeclamptic placenta. Thus, PAI-2 potentially contributes to controlling aberrant fibrinolysis and the accumulation of misfolded proteins in states characterised by oxidative and proteostasis stress, such as in Alzheimer’s disease and preeclampsia.
Collapse
Affiliation(s)
- Jordan H. Cater
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522, Australia;
- School of Chemistry and Biomolecular Science, University of Wollongong, Wollongong 2522, Australia
| | - Noralyn B. Mañucat-Tan
- Flinders Health and Medical Research Institute and College of Medicine and Public Health, Flinders University, Bedford Park 5042, Australia; (N.B.M.-T.); (D.K.G.)
| | - Demi K. Georgiou
- Flinders Health and Medical Research Institute and College of Medicine and Public Health, Flinders University, Bedford Park 5042, Australia; (N.B.M.-T.); (D.K.G.)
| | - Guomao Zhao
- Department of Obstetrics and Gynaecology, University of Illinois at Chicago College of Medicine, Chicago, IL 60611, USA; (G.Z.); (I.A.B.)
| | - Irina A. Buhimschi
- Department of Obstetrics and Gynaecology, University of Illinois at Chicago College of Medicine, Chicago, IL 60611, USA; (G.Z.); (I.A.B.)
| | - Amy R. Wyatt
- Flinders Health and Medical Research Institute and College of Medicine and Public Health, Flinders University, Bedford Park 5042, Australia; (N.B.M.-T.); (D.K.G.)
- Correspondence: (A.R.W.); (M.R.)
| | - Marie Ranson
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522, Australia;
- School of Chemistry and Biomolecular Science, University of Wollongong, Wollongong 2522, Australia
- Correspondence: (A.R.W.); (M.R.)
| |
Collapse
|
2
|
Li N, Hou R, Yang T, Liu C, Wei J. miR-193a-3p Mediates Placenta Accreta Spectrum Development by Targeting EFNB2 via Epithelial-Mesenchymal Transition Pathway Under Decidua Defect Conditions. Front Mol Biosci 2021; 7:613802. [PMID: 33585562 PMCID: PMC7873918 DOI: 10.3389/fmolb.2020.613802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/15/2020] [Indexed: 11/26/2022] Open
Abstract
Objective: To clarify the role of microRNA-193a-3p (miR-193a-3p) in the pathogenesis of placenta accreta spectrum. Methods: The placental tissue expression levels of miR-193a-3p and Ephrin-B2 (EFNB2) were compared between a placenta accreta spectrum group and a control group. Transwell migration and invasion assays were used to verify the effect of miR-193a-3p and EFNB2 on HTR-8/SVneo cells cultured in human endometrial stromal cell (hESC)-conditioned medium. Epithelial-mesenchymal transition (EMT)-related proteins were examined by western blotting to establish whether the EMT pathway was altered in placenta accreta spectrum. To determine whether EFNB2 is a target gene of miR-193a-3p, luciferase activity assays were performed. Results: miR-193a-3p was upregulated but EFNB2 downregulated in the placenta accreta spectrum group and EFNB2 was a direct target of miR-193a-3p. Overexpression or inhibition of miR-193a-3p revealed that miR-193a-3p promoted the migration and invasion of HTR-8/SVneo cells cultured in hESC-conditioned medium. Furthermore, EMT was induced, as shown by increased N-cadherin, vimentin, MMP2, and MMP9 and decreased E-cadherin in the placenta accreta spectrum group and in HTR-8/SVneo cells transfected with miR-193a-3p mimics or si-EFNB2. The negative effect of miR-193a-3p inhibitor was reversed by co-transfection with si-EFNB2 in function studies and in analyses of EMT-related proteins in vitro. Conclusion: miR-193a-3p which upregulated in placenta accreta spectrum group increases HTR-8/SVneo cell migration and invasion by targeting EFNB2 via the EMT pathway under decidua defect conditions to lead to placenta accreta spectrum.
Collapse
Affiliation(s)
- Na Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, China
| | - Rui Hou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, China
| | - Tian Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, China
| | - Caixia Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, China
| | - Jun Wei
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, China
| |
Collapse
|
3
|
Adu-Gyamfi EA, Czika A, Liu TH, Gorleku PN, Fondjo LA, Djankpa FT, Ding YB, Wang YX. Ephrin and Eph receptor signaling in female reproductive physiology and pathology†. Biol Reprod 2020; 104:71-82. [PMID: 32940657 DOI: 10.1093/biolre/ioaa171] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/19/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022] Open
Abstract
Ephrins are ligands of Eph receptors (Ephs); both of which are sorted into two classes, A and B. There are five types of ephrin-As (ephrin-A1-5) and three types of ephrin-Bs (ephrin-B1-3). Also, there are 10 types of EphAs (EphA1-10) and six types of EphBs (EphB1-6). Binding of ephrins to the Eph receptors activates signaling cascades that regulate several biological processes such as cellular proliferation, differentiation, migration, angiogenesis, and vascular remodeling. Clarification of their roles in the female reproductive system is crucial to understanding the physiology and pathology of this system. Such knowledge will also create awareness regarding the importance of these molecules in diagnostic, prognostic, and therapeutic medicine. Hence, we have discussed the involvement of these molecules in the physiological and pathological events that occur within the female reproductive system. The evidence so far suggests that the ephrins and the Eph receptors modulate folliculogenesis, ovulation, embryo transport, implantation, and placentation. Abnormal expression of some of these molecules is associated with polycystic ovarian syndrome, ovarian cancer, tubal pregnancy, endometrial cancer, uterine leiomyoma (fibroids), cervical cancer, and preeclampsia, suggesting the need to utilize these molecules in the clinical setting. To enhance a quick development of this gradually emerging field in female reproductive medicine, we have highlighted some "gaps in knowledge" that need prospective investigation.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Armin Czika
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Tai-Hang Liu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Philip Narteh Gorleku
- Department of Medical Imaging, School of Medical Sciences, University of Cape Coast, Cape Coast, Republic of Ghana
| | - Linda Ahenkorah Fondjo
- Department of Molecular Medicine, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Republic of Ghana
| | - Francis Tanam Djankpa
- Department of Physiology, School of Medical Sciences, University of Cape Coast, Cape Coast, Republic of Ghana
| | - Yu-Bin Ding
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ying-Xiong Wang
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
4
|
Liu F, Yao Z, Lü P, Jiao QB, Liu Q, Wu HX, You Y, Minamisawa S. Pathophysiologic Role of Molecules Determining Arteriovenous Differentiation in Adult Life. J Vasc Res 2020; 57:245-253. [PMID: 32535603 DOI: 10.1159/000507627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 03/26/2020] [Indexed: 11/19/2022] Open
Abstract
The structural differences between arteries and veins are genetically predetermined. Vascular identity markers, the molecular markers specific to veins and arteries, determine the differential development of vessels during embryogenesis and their expression persists in adult vessels. It is revealed that they can be reactivated under various pathophysiologic conditions even after vessel differentiation. Thus, once considered as quiescent in adults, vascular identity markers may actually play significant roles in vascular remodeling. Manipulation of vascular identity and the underlying molecular mechanisms might be a novel strategy to improve vascular remodeling for clinical application.
Collapse
Affiliation(s)
- Fang Liu
- Nuclear Medicine Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhong Yao
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Ping Lü
- Vascular Surgery Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Qi-Bin Jiao
- Department of Cardiology, The Affiliated Hospital of Hangzhou Normal University, Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Qin Liu
- Vascular Surgery Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Xiao Wu
- Vascular Surgery Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun You
- Vascular Surgery Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Susumu Minamisawa
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Shi Z, Liu B, Li Y, Liu F, Yuan X, Wang Y. MicroRNA-652-3p promotes the proliferation and invasion of the trophoblast HTR-8/SVneo cell line by targeting homeobox A9 to modulate the expression of ephrin receptor B4. Clin Exp Pharmacol Physiol 2019; 46:587-596. [PMID: 30839116 DOI: 10.1111/1440-1681.13080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) are emerging as novel modulators in the pathogenesis of preeclampsia (PE). Multiple miRNAs have been shown to regulate the proliferation and invasion of trophoblast cells, which play a critical role in successful pregnancies. miR-652-3p has been identified as a novel disease-associated miRNA that is dysregulated in various pathological processes. However, whether miR-652-3p is dysregulated in PE and regulates the cellular function of trophoblast cells remains unknown. In the present study, we aimed to investigate the expression pattern of miR-652-3p in PE and explore its potential function in trophoblast cells. Herein, we found that miR-652-3p expression was significantly decreased in the placental tissues of pregnant women with PE. Cellular function experiments showed that overexpression of miR-652-3p promoted the viability, proliferation, and invasion of trophoblast cells in vitro. By contrast, inhibition of miR-652-3p had the opposite effect. Bioinformatics analysis predicted that homeobox A9 (HOXA9), a crucial regulator of trophoblast cell function, was a potential target gene of miR-652-3p. A luciferase reporter assay confirmed that miR-652-3p directly interacted with the 3'-untranslated region of HOXA9. Moreover, miR-652-3p was shown to negatively regulate the expression of HOXA9 and ephrin receptor B4 (EphB4) in trophoblast cells. Notably, overexpression of HOXA9 or EphB4 significantly reversed the regulatory effect of miR-652-3p on proliferation and invasion of trophoblast cells. Taken together, our findings demonstrate that miR-652-3p regulates the proliferation and invasion of trophoblast cells, possibly through targeting HOXA9 and modulating EphB4 expression.
Collapse
Affiliation(s)
- Ziyun Shi
- Department of Obstetrics, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Bo Liu
- Department of Clinical Laboratory, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanchuan Li
- Department of Obstetrics, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Feifei Liu
- Department of Obstetrics, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaohua Yuan
- Department of Obstetrics, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yaqin Wang
- Department of Obstetrics, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
6
|
Skalis G, Katsi V, Miliou A, Georgiopoulos G, Papazachou O, Vamvakou G, Nihoyannopoulos P, Tousoulis D, Makris T. MicroRNAs in Preeclampsia. Microrna 2019; 8:28-35. [PMID: 30101723 DOI: 10.2174/2211536607666180813123303] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/22/2018] [Accepted: 07/27/2018] [Indexed: 11/22/2022]
Abstract
Preeclampsia (PE) continues to represent a worldwide problem and challenge for both clinicians and laboratory-based doctors. Despite many efforts, the knowledge acquired regarding its pathogenesis and pathophysiology does not allow us to treat it efficiently. It is not possible to arrest its progressive nature, and the available therapies are limited to symptomatic treatment. Furthermore, both the diagnosis and prognosis are frequently uncertain, whilst the ability to predict its occurrence is very limited. MicroRNAs are small non-coding RNAs discovered two decades ago, and present great interest given their ability to regulate almost every aspect of the cell function. A lot of evidence regarding the role of miRNAs in pre-eclampsia has been accumulated in the last 10 years. Differentially expressed miRNAs are characteristic of both mild and severe PE. In many cases they target signaling pathway-related genes that result in altered processes which are directly involved in PE. Immune system, angiogenesis and trophoblast proliferation and invasion, all fundamental aspects of placentation, are controlled in various degrees by miRNAs which are up- or downregulated. Finally, miRNAs represent a potential therapeutic target and a diagnostic tool.
Collapse
Affiliation(s)
- Georgios Skalis
- Department of Cardiology, Helena Venizelou Hospital, Athens, Greece
| | - Vasiliki Katsi
- Cardiology Department, Hippokration Hospital, National Health System, Athens, Greece
| | - Antigoni Miliou
- 1st Department of Cardiology, Hippokration Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | | | | | - Georgia Vamvakou
- Department of Cardiology, Helena Venizelou Hospital, Athens, Greece
| | - Petros Nihoyannopoulos
- 1st Department of Cardiology, Hippokration Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Tousoulis
- 1st Department of Cardiology, Hippokration Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | - Thomas Makris
- Department of Cardiology, Helena Venizelou Hospital, Athens, Greece
| |
Collapse
|
7
|
Wang F, Yan J. MicroRNA-454 is involved in regulating trophoblast cell proliferation, apoptosis, and invasion in preeclampsia by modulating the expression of ephrin receptor B4. Biomed Pharmacother 2018; 107:746-753. [PMID: 30138897 DOI: 10.1016/j.biopha.2018.08.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 08/02/2018] [Accepted: 08/10/2018] [Indexed: 12/21/2022] Open
Abstract
Preeclampsia (PE) is a pregnancy-specific disorder representing a major cause for maternal and perinatal morbidity and mortality. The dysfunction of trophoblast cells plays an important role in the pathogenesis of PE. In recent years, microRNAs (miRNAs) have been suggested to play an important role in regulating trophoblast cell biological functions involved in the pathogenesis of PE. Accumulating evidence has showed that miR-454 plays an important role in regulating cell functions. However, whether miR-454 is involved in regulating cell functions of trophoblast cells during PE remains unclear. In this study, we found that miR-454 expression was significantly downregulated in placental tissues from PE patients. in vitro experiments showed that miR-454 overexpression significantly increased proliferation, inhibited apoptosis, and promoted invasion of trophoblast cells, whereas miR-454 inhibition markedly suppressed proliferation, increased apoptosis, and inhibited invasion of trophoblast cells. Interestingly, bioinformatics analysis predicted that ephrin receptor B4 (EPHB4), an important gene for regulating trophoblast cell function in PE, was a potential target gene of miR-454. Dual-luciferase reporter assay showed that miR-454 directly targeted the 3'-untranslated region of EPHB4. Real-time quantitative polymerase chain reaction and Western blot analysis demonstrated that miR-454 negatively regulated EPHB4 expression in trophoblast cells. Moreover, miR-454 expression was found inversely correlated with EPHB4 expression in placental tissues from PE patients. Importantly, EPHB4 overexpression partially reversed the promotion effect of miR-454 overexpression on trophoblast cell proliferation and invasion. Taken together, these findings demonstrate that miR-454 promotes the proliferation and invasion of trophoblast cells by inhibiting EPHB4 expression, and the decreased miR-454 expression may contribute to PE by promoting EPHB4 expression. Our study provides novel insights into understanding the molecular pathogenesis of PE.
Collapse
Affiliation(s)
- Furong Wang
- Department of Obstetrics, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China.
| | - Jin Yan
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| |
Collapse
|
8
|
Liu X, Liu X, Liu W, Luo M, Tao H, Wu D, Zhao Y, Zou L. HOXA9 transcriptionally regulates the EPHB4 receptor to modulate trophoblast migration and invasion. Placenta 2017; 51:38-48. [PMID: 28292467 DOI: 10.1016/j.placenta.2017.01.127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/24/2017] [Accepted: 01/29/2017] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Functional placenta formation is crucially dependent on extravillous trophoblast migration and invasion. EPHB4 has been identified to play a negative but important role in regulating trophoblast biological function, whereas the upstream regulation mechanism remains unknown. As reported, there is a transcriptional stimulation of EPHB4 expression consequent to HOXA9 activation in endothelial cells (ECs). Therefore, this study is conducted to investigate the role of HOXA9 and its relationship with EPHB4 in trophoblast cells. METHOD Both mRNA and protein expression levels of HOXA9 and EPHB4 were measured in preeclamptic placenta (n = 15) and normal placenta (n = 15). Next, the expression and location of HOXA9 and EPHB4 in first-trimester villi were shown via immunohistochemistry. Trophoblast cell line HTR-8/SVneo was used to explore the effect of HOXA9 on EPHB4 expression and trophoblast bioactivity by gain- and loss-of function studies. In addition, chromatin immunoprecipitation (ChIP) and luciferase assays were conducted to clarify the regulation mechanism of HOXA9 on EPHB4 expression in HTR-8/SVneo. RESULT HOXA9 and EPHB4 expression were increased in preeclamptic placenta compared with normal placenta. HOXA9 could promote EPHB4 expression and impaired HTR-8/SVneo cells migration and invasion. ChIP and luciferase assays revealed that HOXA9 could directly bind to EPHB4 promoter and promoted its transcription. CONCLUSION HOXA9 transcriptionally regulated EPHB4 expression to modulate trophoblasts migration and invasion, which may suggest a contribution of HOXA9-EPHB4 in the poor placentation in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Xiaoping Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxia Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weifang Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minglian Luo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Tao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
9
|
Martin-Almedina S, Martinez-Corral I, Holdhus R, Vicente A, Fotiou E, Lin S, Petersen K, Simpson MA, Hoischen A, Gilissen C, Jeffery H, Atton G, Karapouliou C, Brice G, Gordon K, Wiseman JW, Wedin M, Rockson SG, Jeffery S, Mortimer PS, Snyder MP, Berland S, Mansour S, Makinen T, Ostergaard P. EPHB4 kinase-inactivating mutations cause autosomal dominant lymphatic-related hydrops fetalis. J Clin Invest 2016; 126:3080-8. [PMID: 27400125 PMCID: PMC4966301 DOI: 10.1172/jci85794] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/09/2016] [Indexed: 12/20/2022] Open
Abstract
Hydrops fetalis describes fluid accumulation in at least 2 fetal compartments, including abdominal cavities, pleura, and pericardium, or in body tissue. The majority of hydrops fetalis cases are nonimmune conditions that present with generalized edema of the fetus, and approximately 15% of these nonimmune cases result from a lymphatic abnormality. Here, we have identified an autosomal dominant, inherited form of lymphatic-related (nonimmune) hydrops fetalis (LRHF). Independent exome sequencing projects on 2 families with a history of in utero and neonatal deaths associated with nonimmune hydrops fetalis uncovered 2 heterozygous missense variants in the gene encoding Eph receptor B4 (EPHB4). Biochemical analysis determined that the mutant EPHB4 proteins are devoid of tyrosine kinase activity, indicating that loss of EPHB4 signaling contributes to LRHF pathogenesis. Further, inactivation of Ephb4 in lymphatic endothelial cells of developing mouse embryos led to defective lymphovenous valve formation and consequent subcutaneous edema. Together, these findings identify EPHB4 as a critical regulator of early lymphatic vascular development and demonstrate that mutations in the gene can cause an autosomal dominant form of LRHF that is associated with a high mortality rate.
Collapse
Affiliation(s)
- Silvia Martin-Almedina
- Lymphovascular Research Unit, Cardiovascular and Cell Sciences Institute, St. George’s University of London, London, United Kingdom (UK)
| | - Ines Martinez-Corral
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Rita Holdhus
- Genomics Core Facility, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Andres Vicente
- Lymphatic Development Laboratory, Cancer Research UK London Research Institute, London, UK
| | - Elisavet Fotiou
- Lymphovascular Research Unit, Cardiovascular and Cell Sciences Institute, St. George’s University of London, London, United Kingdom (UK)
| | - Shin Lin
- Division of Cardiovascular Medicine and
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Kjell Petersen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Michael A. Simpson
- Division of Genetics and Molecular Medicine, King’s College London School of Medicine, Guy’s Hospital, London, UK
| | - Alexander Hoischen
- Genomics Core Facility, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Human Genetics, Radboud University Medical Center and Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center and Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Heather Jeffery
- Lymphovascular Research Unit, Cardiovascular and Cell Sciences Institute, St. George’s University of London, London, United Kingdom (UK)
| | - Giles Atton
- South West Thames Regional Genetics Unit, St. George’s University of London, London, UK
| | - Christina Karapouliou
- Lymphovascular Research Unit, Cardiovascular and Cell Sciences Institute, St. George’s University of London, London, United Kingdom (UK)
| | - Glen Brice
- South West Thames Regional Genetics Unit, St. George’s University of London, London, UK
| | - Kristiana Gordon
- Department of Dermatology, St. George’s University Hospital NHS Foundation Trust, London, UK
| | - John W. Wiseman
- Discovery Sciences, RAD-Transgenics, AstraZeneca R&D, Mölndal, Sweden
| | - Marianne Wedin
- Discovery Sciences, RAD-Transgenics, AstraZeneca R&D, Mölndal, Sweden
| | | | - Steve Jeffery
- Lymphovascular Research Unit, Cardiovascular and Cell Sciences Institute, St. George’s University of London, London, United Kingdom (UK)
| | - Peter S. Mortimer
- Lymphovascular Research Unit, Cardiovascular and Cell Sciences Institute, St. George’s University of London, London, United Kingdom (UK)
| | - Michael P. Snyder
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Siren Berland
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Sahar Mansour
- South West Thames Regional Genetics Unit, St. George’s University of London, London, UK
| | - Taija Makinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Pia Ostergaard
- Lymphovascular Research Unit, Cardiovascular and Cell Sciences Institute, St. George’s University of London, London, United Kingdom (UK)
| |
Collapse
|
10
|
Hashimoto T, Tsuneki M, Foster TR, Santana JM, Bai H, Wang M, Hu H, Hanisch JJ, Dardik A. Membrane-mediated regulation of vascular identity. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2016; 108:65-84. [PMID: 26992081 PMCID: PMC5310768 DOI: 10.1002/bdrc.21123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/22/2016] [Indexed: 02/06/2023]
Abstract
Vascular diseases span diverse pathology, but frequently arise from aberrant signaling attributed to specific membrane-associated molecules, particularly the Eph-ephrin family. Originally recognized as markers of embryonic vessel identity, Eph receptors and their membrane-associated ligands, ephrins, are now known to have a range of vital functions in vascular physiology. Interactions of Ephs with ephrins at cell-to-cell interfaces promote a variety of cellular responses such as repulsion, adhesion, attraction, and migration, and frequently occur during organ development, including vessel formation. Elaborate coordination of Eph- and ephrin-related signaling among different cell populations is required for proper formation of the embryonic vessel network. There is growing evidence supporting the idea that Eph and ephrin proteins also have postnatal interactions with a number of other membrane-associated signal transduction pathways, coordinating translation of environmental signals into cells. This article provides an overview of membrane-bound signaling mechanisms that define vascular identity in both the embryo and the adult, focusing on Eph- and ephrin-related signaling. We also discuss the role and clinical significance of this signaling system in normal organ development, neoplasms, and vascular pathologies.
Collapse
Affiliation(s)
- Takuya Hashimoto
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, Connecticut
- Department of Vascular Surgery, The University of Tokyo, Tokyo, Japan
| | - Masayuki Tsuneki
- Division of Cancer Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Trenton R. Foster
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Jeans M. Santana
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Hualong Bai
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
- Department of Vascular Surgery, The 1st Affiliated Hospital of Zhengzhou University, Henan, China
| | - Mo Wang
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Haidi Hu
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Jesse J. Hanisch
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Alan Dardik
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, Connecticut
| |
Collapse
|
11
|
Dong H, Yu C, Mu J, Zhang J, Lin W. Role of EFNB2/EPHB4 signaling in spiral artery development during pregnancy: An appraisal. Mol Reprod Dev 2015; 83:12-8. [PMID: 26501487 DOI: 10.1002/mrd.22593] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 10/22/2015] [Indexed: 12/30/2022]
Abstract
EFNB2 and EPHB4, which belong to a large tyrosine kinase receptor superfamily, are molecular markers of arterial and venous blood vessels, respectively. EFNB2/EPHB4 signaling plays an important role in physiological and pathological angiogenesis, and its role in tumor vessel development has been extensively studied. Pregnancy and tumors share similar features, including continuous cell proliferation and increased demand for a blood supply. Our previous studies showed that Efnb2 and Ephb4 were expressed dynamically in the spiral arteries, uterine natural killer cells, and trophoblasts during mouse gestation Days 6.5-12.5. Moreover, uterine natural killer cells and trophoblasts are required for the modification of spiral arteries. Oxygen tension within the pregnant uterus, which contributes to the vascular development, also affects EFNB2 and EPHB4 expression. Considering the role of EFNB2/EPHB4 signaling in embryonic and tumor vascular development, and its dynamic expression in the decidua and placenta, we hypothesize that EFNB2 and EPHB4 are involved in the regulation of spiral artery remodeling. Investigating this hypothesis will help clarify the mechanisms of pathological pregnancy that may underlie abnormal spiral artery development.
Collapse
Affiliation(s)
- Hongmei Dong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chaoran Yu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jiao Mu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ji Zhang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wei Lin
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
12
|
Ephrin-B2 mediates trophoblast-dependent maternal spiral artery remodeling in first trimester. Placenta 2015; 36:567-74. [DOI: 10.1016/j.placenta.2015.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 02/05/2015] [Accepted: 02/14/2015] [Indexed: 12/29/2022]
|
13
|
Chatzizacharias NA, Giaginis CT, Agapitos E, Theocharis SE. The role of ephrins' receptors and ephrins' ligands in normal placental development and disease. Expert Opin Ther Targets 2014; 18:269-275. [PMID: 24329716 DOI: 10.1517/14728222.2014.864638] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Ephrin (Eph) receptors and their membrane-anchored ligands, the ephrins, participate in a wide spectrum of pathophysiological processes, regulating cellular adhesion, migration or chemo-repulsion and tissue/cell boundary formation. Recent evidence has further extended the role of Eph receptors and their ligands as critical regulators of vascular remodelling during embryogenesis. The role of Ephs/ephrins signalling in the angiogenic development of murine placentas and in the invasion of the maternal tissues and the development of the placental vasculature in humans has currently attracted considerable interest. AREAS COVERED A literature review summarising the most recent data in terms of the role of Ephs/ephrins in normal placental development and disease, highlighting on their expression status in the different cellular populations of the placental vascularity. EXPERT OPINION Despite the fact that the role of Eph/ephrins signalling in normal placental development is still unclear, some studies tried to investigate their potential implication in placental pathologies, such as preeclampsia and placenta accreta. Even though no evidence for their direct implication occurred, their role is an interesting field for future research.
Collapse
Affiliation(s)
- Nikolaos A Chatzizacharias
- National and Kapodistrian University of Athens, Medical School, First Department of Pathology , Athens , Greece
| | | | | | | |
Collapse
|
14
|
Experimental hypoxia does not influence gene expression and protein synthesis of Eph receptors and ephrin ligands in human melanoma cells in vitro. Melanoma Res 2014; 23:85-95. [PMID: 23358429 DOI: 10.1097/cmr.0b013e32835e58f3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Eph receptor tyrosine kinases and their ephrin ligands are considered to play important roles in melanoma progression and metastasis. Moreover, hypoxia is known to contribute to melanoma metastasis. In this study, the influence of experimental hypoxia on the expression and synthesis of EphA2 and EphB4, and their corresponding ligands ephrinA1, ephrinA5, and ephrinB2 was studied systematically in four human melanoma cell lines in vitro. Melanoma cell monolayer and spheroid cultures were used as both extrinsic and intrinsic hypoxia models. Hypoxic conditions were confirmed by analyzing hypoxia-inducible factors 1α or 2α expression, vascular endothelial growth factor expression, and cellular uptake of [F]fluoromisonidazole. In normoxia, EphA2, EphB4, ephrinA1, ephrinA5, and ephrinB2 expression was detectable in all cell lines to varying extents. Considerable protein synthesis of EphA2 was detected in all cell lines. However, no effect of experimental hypoxia on both Eph/ephrin expression and protein synthesis was observed. This contributes critically to the debate on the hypothesis that hypoxia regulates the Eph/ephrin system in melanoma.
Collapse
|
15
|
Abstract
MicroRNAs are a class of noncoding small RNAs that regulate the expression of nearly 30% of all the human genes and participate in all fundamental cell processes. Genome-wide analysis has revealed that human placenta expresses more than 600 miRNA species, including placenta-specific ones with high levels of expression. Comparative analysis also has revealed many differentially expressed miRNAs with either high or low levels of expression in human placentas from normal versus preeclamptic pregnancies, indicating an important role of miRNAs in normal and pathological placental physiology. Although limited information is currently available as to how miRNA regulates human placental development and function, there are studies suggesting that preeclampsia-associated differentially expressed miRNAs possess critical roles in regulating placental development and function via targeting specific genes with diverse known functions. Herein we summarize the current findings regarding the expression of placental miRNAs and their function, especially in the trophoblast cells. We have recently found that the angiogenesis-associated miR-17-family miRNAs are upregulated in preeclamptic compared with normotensive placentas and they target the ephrin-B2/Eph receptor B4 (EPHB4) system. Because ephrin-B2 and EPHB4 has been previously shown to play a crucial role in trophoblast invasion into maternal spiral artery and vascular patterning during early human placental development, the miR-17-ephrin-B2/EPHB4 pathway seems to be a novel miRNA pathway for regulating normal and aberrant placental development during preeclampsia.
Collapse
Affiliation(s)
- Dong-bao Chen
- Department of Obstetrics and Gynecology, University of California Irvine, Irvine, CA 92697, USA.
| | | |
Collapse
|
16
|
Fu G, Brkić J, Hayder H, Peng C. MicroRNAs in Human Placental Development and Pregnancy Complications. Int J Mol Sci 2013; 14:5519-44. [PMID: 23528856 PMCID: PMC3634453 DOI: 10.3390/ijms14035519] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/26/2013] [Accepted: 03/04/2013] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs, which function as critical posttranscriptional regulators of gene expression by promoting mRNA degradation and translational inhibition. Placenta expresses many ubiquitous as well as specific miRNAs. These miRNAs regulate trophoblast cell differentiation, proliferation, apoptosis, invasion/migration, and angiogenesis, suggesting that miRNAs play important roles during placental development. Aberrant miRNAs expression has been linked to pregnancy complications, such as preeclampsia. Recent research of placental miRNAs focuses on identifying placental miRNA species, examining differential expression of miRNAs between placentas from normal and compromised pregnancies, and uncovering the function of miRNAs in the placenta. More studies are required to further understand the functional significance of miRNAs in placental development and to explore the possibility of using miRNAs as biomarkers and therapeutic targets for pregnancy-related disorders. In this paper, we reviewed the current knowledge about the expression and function of miRNAs in placental development, and propose future directions for miRNA studies.
Collapse
Affiliation(s)
- Guodong Fu
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada.
| | | | | | | |
Collapse
|
17
|
Fujiwara H, Nishioka Y, Matsumoto H, Suginami K, Horie A, Tani H, Matsumura N, Baba T, Sato Y, Araki Y, Konishi I. Eph-ephrin A system regulates human choriocarcinoma-derived JEG-3 cell invasion. Int J Gynecol Cancer 2013; 23:576-82. [PMID: 23429488 DOI: 10.1097/igc.0b013e3182849e36] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES The Eph-ephrin system is a unique system that can induce multiple cellular responses such as cell migration, regulation of angiogenesis, and axonal guidance. Previously, the Eph-ephrin system was reported to regulate human extravillous trophoblast invasion. In this study, we examined the possible involvement of the Eph-ephrin system in the invasion of malignant gestational trophoblastic diseases using a human choriocarcinoma-derived cell line, JEG-3. METHODS The mRNA expression of class A Ephs and ephrins on JEG-3 cells was examined by reverse transcription-polymerase chain reaction. The effects of recombinant human Eph A1 (r-Eph A1) and r-ephrin A4 on the proliferation and invasion of JEG-3 cells were investigated by cell proliferation and Matrigel invasion assays. The alterations of integrin expression on JEG-3 cells in the presence of r-Eph A1 and r-ephrin A4 were investigated by flow cytometry. The induction of phosphorylation of focal adhesion kinase in JEG-3 cells by r-ephrin A4 was examined by Western blot analysis. RESULTS By reverse transcription-polymerase chain reaction, mRNAs of Eph A1, A2, and A4 and ephrin A1, A4, and A5 were detected on JEG-3 cells. In Matrigel invasion assay, both r-Eph A1 and r-ephrin A4 promoted the invasion of JEG-3 cells without affecting cell proliferation. During 24-hour culture with r-Eph A1 and r-ephrin A4, the increase in integrin α 5 expression on JEG-3 cells was observed by flow cytometry. Western blotting analysis showed that r-ephrin A4 induced dephosphorylation of focal adhesion kinase in JEG-3 cells. CONCLUSIONS These findings suggest that Eph-ephrin interaction plays some role in the regulation of choriocarcinoma invasion in cooperation with integrins.
Collapse
Affiliation(s)
- Hiroshi Fujiwara
- Department of Gynecology and Obstetrics, Faculty of Medicine, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang W, Feng L, Zhang H, Hachy S, Satohisa S, Laurent LC, Parast M, Zheng J, Chen DB. Preeclampsia up-regulates angiogenesis-associated microRNA (i.e., miR-17, -20a, and -20b) that target ephrin-B2 and EPHB4 in human placenta. J Clin Endocrinol Metab 2012; 97:E1051-9. [PMID: 22438230 PMCID: PMC3387422 DOI: 10.1210/jc.2011-3131] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
CONTEXT Placental angiogenesis contributes to the pathogenesis of preeclampsia (PE) that affects 5-8% of all human pregnancies. MicroRNA (miRNA) are a class of noncoding 21- to 25-nucleotide RNA that negatively regulate gene expression posttranscriptionly. OBJECTIVE The aim of this study was to test the hypothesis that miRNA are differentially expressed in healthy term and PE placentas and a subclass of angiogenesis-associated miRNA are increased by PE. DESIGN Total miRNA were extracted from villous placental tissues from healthy term and severe preeclamptic pregnancies. Differential miRNA expression was analyzed by microarray and real-time quantitative PCR. Angiogenesis-associated miRNA were analyzed by target prediction databases. In situ hybridization was used to localize miRNA. Target verification was performed by transfection of miRNA precursors or antagomirs into endothelial and BeWo cells and luciferase reporter assays. RESULTS Three highly expressed miRNA (miR-17, -20a, and -20b) were found significantly increased in PE compared with healthy term placentas (n = 10 per group). They target on the same group of genes important for angiogenesis. miR-20b was expressed primarily in villous syncytiotrophoblasts in term placenta. Overexpression or inhibition of miR-20b differentially regulated mRNA expression of those genes in endothelial vs. trophoblast cells. Luciferase reporter assay showed that miR-20b targets EPHB4 and ephrin-B2 that have been shown to be critical for early human placental development. Placental ephrin-B2 mRNA was significantly down-regulated in PE compared with normotensive pregnancies. CONCLUSION miR-17, miR-20a, and miR-20b are differentially regulated in human placentas by PE. They regulate EPHB4 and ephrin-B2 expression in trophoblast and endothelial cells via the same "seed" sequence, suggesting their roles in early placental development.
Collapse
Affiliation(s)
- Wen Wang
- Department of Obstetrics and Gynecology, University of California Irvine, Irvine, California 92697, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Aplin J, Jones C, Harris L. Adhesion Molecules in Human Trophoblast – A Review. I. Villous Trophoblast. Placenta 2009; 30:293-8. [DOI: 10.1016/j.placenta.2008.12.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 10/22/2008] [Accepted: 12/03/2008] [Indexed: 01/19/2023]
|
20
|
Harris L, Jones C, Aplin J. Adhesion Molecules in Human Trophoblast – A Review. II. Extravillous Trophoblast. Placenta 2009; 30:299-304. [DOI: 10.1016/j.placenta.2008.12.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 12/04/2008] [Accepted: 12/06/2008] [Indexed: 01/28/2023]
|
21
|
Miller RK. Henning Schneider, M.D. Placenta 2009; 30 Suppl A:S66-70. [PMID: 19157539 DOI: 10.1016/j.placenta.2008.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 12/10/2008] [Accepted: 12/12/2008] [Indexed: 11/30/2022]
Abstract
This is a short biography of Henning Schneider, M.D., Professor and Chair Emeritus of Obstetrics and Gynecology at the University of Bern, Switzerland. From 1987-2005, he was also Director of the Women's Hospital in Bern. Dr. Schneider was a founding member and the second President of the International Federation of Placenta Associations (IFPA). A symposium in Professor Schneider's honour was held at IFPA Meeting 2008.
Collapse
Affiliation(s)
- R K Miller
- Department of Obstetrics and Gynecology, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642-8668, USA.
| |
Collapse
|
22
|
Zhang J, Dong H, Wang B, Zhu S, Croy BA. Dynamic changes occur in patterns of endometrial EFNB2/EPHB4 expression during the period of spiral arterial modification in mice. Biol Reprod 2008; 79:450-8. [PMID: 18463357 DOI: 10.1095/biolreprod.108.067975] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transient, human and murine decidua-associated, Natural Killer lymphocytes (uNK cells) have special, localized roles in early gestational endometrial remodeling and angiogenesis. To determine if uNK cells promote a specific vessel subtype, a histological time-course study of implantation site endothelia was undertaken using normal C57BL/6J (B6) and uNK-deficient B6.129-Rag2 tm1Fwa Il2rg tm2Cgn (alymphoid) mice, a strain lacking pregnancy-induced structural modifications of spiral arteries. Antibodies to EFNB2, EPHB4, and LYVE1, respectively, identified arterial, venous, and lymphatic endothelia. Unexpectedly, many uNK cells in B6 endometrium showed strong EFNB2 expression early in gestation, then became EPHB4+. This molecular transition coincided with structural modifications of spiral arteries that shifted from EFNB2+/EPHB4(-) to EFNB2+/EPHB4+. NK cells from B6 spleen and liver did not express EFNB2. LYVE1 expression was similar in endometrium from B6 and alymphoid mice, but EFNB2 and EPHB4 expression in alymphoid mice was dramatically different. Strong stromal expression of both molecules developed mesometrially, and this was reduced by B6 lymphocyte transfer. Trophoblasts reacted with each marker in both strains. Expression of EFNB2 by uNK cells and trophoblasts may be the key regulatory mechanism that drives their positional association with EFNB2+ arteries and prevents association of both cell types with EPHB4+ veins. Gain of EPHB4 by midgestation spiral arteries may signal completion of pregnancy-induced arterial modification and provide a repulsion mechanism that limits subsequent interactions of the modified vessel with uNK cells and trophoblasts.
Collapse
Affiliation(s)
- Jianhong Zhang
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|