1
|
Khorami-Sarvestani S, Vanaki N, Shojaeian S, Zarnani K, Stensballe A, Jeddi-Tehrani M, Zarnani AH. Placenta: an old organ with new functions. Front Immunol 2024; 15:1385762. [PMID: 38707901 PMCID: PMC11066266 DOI: 10.3389/fimmu.2024.1385762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
The transition from oviparity to viviparity and the establishment of feto-maternal communications introduced the placenta as the major anatomical site to provide nutrients, gases, and hormones to the developing fetus. The placenta has endocrine functions, orchestrates maternal adaptations to pregnancy at different periods of pregnancy, and acts as a selective barrier to minimize exposure of developing fetus to xenobiotics, pathogens, and parasites. Despite the fact that this ancient organ is central for establishment of a normal pregnancy in eutherians, the placenta remains one of the least studied organs. The first step of pregnancy, embryo implantation, is finely regulated by the trophoectoderm, the precursor of all trophoblast cells. There is a bidirectional communication between placenta and endometrium leading to decidualization, a critical step for maintenance of pregnancy. There are three-direction interactions between the placenta, maternal immune cells, and the endometrium for adaptation of endometrial immune system to the allogeneic fetus. While 65% of all systemically expressed human proteins have been found in the placenta tissues, it expresses numerous placenta-specific proteins, whose expression are dramatically changed in gestational diseases and could serve as biomarkers for early detection of gestational diseases. Surprisingly, placentation and carcinogenesis exhibit numerous shared features in metabolism and cell behavior, proteins and molecular signatures, signaling pathways, and tissue microenvironment, which proposes the concept of "cancer as ectopic trophoblastic cells". By extensive researches in this novel field, a handful of cancer biomarkers has been discovered. This review paper, which has been inspired in part by our extensive experiences during the past couple of years, highlights new aspects of placental functions with emphasis on its immunomodulatory role in establishment of a successful pregnancy and on a potential link between placentation and carcinogenesis.
Collapse
Affiliation(s)
- Sara Khorami-Sarvestani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Negar Vanaki
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sorour Shojaeian
- Department of Biochemistry, School of Medical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Kayhan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir-Hassan Zarnani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Su AL, Lash LH, Loch-Caruso R. N-Acetyl-L-cysteine and aminooxyacetic acid differentially modulate toxicity of the trichloroethylene metabolite S-(1,2-dichlorovinyl)-L-cysteine in human placental villous trophoblast BeWo cells. Toxicology 2023; 495:153611. [PMID: 37544576 PMCID: PMC10874504 DOI: 10.1016/j.tox.2023.153611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/23/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Trichloroethylene (TCE) is a known human carcinogen with toxicity attributed to its metabolism. S-(1,2-Dichlorovinyl)-L-cysteine (DCVC) is a metabolite of TCE formed downstream in TCE glutathione (GSH) conjugation and is upstream of several toxic metabolites. Despite knowledge that DCVC stimulates reactive oxygen species (ROS) generation and apoptosis in placental cells, the extent to which these outcomes are attributable to DCVC metabolism is unknown. The current study used N-acetyl-L-cysteine (NAC) at 5 mM and aminooxyacetic acid (AOAA) at 1 mM as pharmacological modifiers of DCVC metabolism to investigate DCVC toxicity at concentrations of 5-50 µM in the human placental trophoblast BeWo cell model capable of forskolin-stimulated syncytialization. Exposures of unsyncytialized BeWo cells, BeWo cells undergoing syncytialization, and syncytialized BeWo cells were studied. NAC pre/co-treatment with DCVC either failed to inhibit or exacerbated DCVC-induced H2O2 abundance, PRDX2 mRNA expression, and BCL2 mRNA expression. Although NAC increased mRNA expression of CYP3A4, which would be consistent with increased generation of the toxic metabolite N-acetyl-DCVC sulfoxide (NAcDCVCS), a CYP3A4 inhibitor ketoconazole did not significantly alter BeWo cell responses. Moreover, AOAA failed to inhibit cysteine conjugate β-lyase (CCBL), which bioactivates DCVC, and did not affect the percentage of nuclei condensed or fragmented, a measure of apoptosis, in all BeWo cell models. However, syncytialized cells had higher CCBL activity compared to unsyncytialized cells, suggesting that the former may be more sensitive to DCVC toxicity. Together, although neither NAC nor AOAA mitigated DCVC toxicity, differences in CCBL activity and potentially CYP3A4 expression dictated the differential toxicity derived from DCVC.
Collapse
Affiliation(s)
- Anthony L Su
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA.
| | - Lawrence H Lash
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA
| |
Collapse
|
3
|
Jaremek A, Shaha S, Jeyarajah MJ, Jaju Bhattad G, Chowdhury D, Riddell M, Renaud SJ. Genome-Wide Analysis of Hypoxia-Inducible Factor Binding Reveals Targets Implicated in Impaired Human Placental Syncytiotrophoblast Formation under Low Oxygen. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:846-865. [PMID: 37028593 DOI: 10.1016/j.ajpath.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/31/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023]
Abstract
Preeclampsia (PE) is a common and serious complication of pregnancy with no cure except premature delivery. The root cause of PE is improper development of the placenta-the temporary organ supporting fetal growth and development. Continuous formation of the multinucleated syncytiotrophoblast (STB) layer via differentiation and fusion of cytotrophoblasts (CTBs) is vital for healthy placentation and is impaired in preeclamptic pregnancies. In PE, there is reduced/intermittent placental perfusion, likely resulting in a persistently low O2 environment. Low O2 inhibits differentiation and fusion of CTBs into STB and may thus contribute to PE pathogenesis; however, the underlying mechanisms are unknown. Because low O2 activates a transcription factor complex in cells known as the hypoxia-inducible factor (HIF), the objective of this study was to investigate whether HIF signaling inhibits STB formation by regulating genes required for this process. Culture of primary CTBs, the CTB-like cell line BeWo, and human trophoblast stem cells under low O2 reduced cell fusion and differentiation into STB. Knockdown of aryl hydrocarbon receptor nuclear translocator (a key component of the HIF complex) in BeWo cells restored syncytialization and expression of STB-associated genes under different O2 levels. Chromatin immunoprecipitation sequencing facilitated the identification of global aryl hydrocarbon receptor nuclear translocator/HIF binding sites, including several near genes implicated in STB development, such as ERVH48-1 and BHLHE40, providing new insights into mechanisms underlying pregnancy diseases linked to poor placental O2 supply.
Collapse
Affiliation(s)
- Adam Jaremek
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Sumaiyah Shaha
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Mariyan J Jeyarajah
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Gargi Jaju Bhattad
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Diba Chowdhury
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Meghan Riddell
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
| | - Stephen J Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada.
| |
Collapse
|
4
|
Su AL, Harris SM, Elkin ER, Karnovsky A, Colacino J, Loch-Caruso RK. Trichloroethylene Metabolite S-(1,2-Dichlorovinyl)-l-cysteine Stimulates Changes in Energy Metabolites and Amino Acids in the BeWo Human Placental Trophoblast Model during Syncytialization. Chem Res Toxicol 2023; 36:882-899. [PMID: 37162359 PMCID: PMC10499396 DOI: 10.1021/acs.chemrestox.3c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Syncytialization, the fusion of cytotrophoblasts into an epithelial barrier that constitutes the maternal-fetal interface, is a crucial event of placentation. This process is characterized by distinct changes to amino acid and energy metabolism. A metabolite of the industrial solvent trichloroethylene (TCE), S-(1,2-dichlorovinyl)-l-cysteine (DCVC), modifies energy metabolism and amino acid abundance in HTR-8/SVneo extravillous trophoblasts. In the current study, we investigated DCVC-induced changes to energy metabolism and amino acids during forskolin-stimulated syncytialization in BeWo cells, a human villous trophoblastic cell line that models syncytialization in vitro. BeWo cells were exposed to forskolin at 100 μM for 48 h to stimulate syncytialization. During syncytialization, BeWo cells were also treated with DCVC at 0 (control), 10, or 20 μM. Following treatment, the targeted metabolomics platform, "Tricarboxylic Acid Plus", was used to identify changes in energy metabolism and amino acids. DCVC treatment during syncytialization decreased oleic acid, aspartate, proline, uridine diphosphate (UDP), UDP-d-glucose, uridine monophosphate, and cytidine monophosphate relative to forskolin-only treatment controls, but did not increase any measured metabolite. Notable changes stimulated by syncytialization in the absence of DCVC included increased adenosine monophosphate and guanosine monophosphate, as well as decreased aspartate and glutamate. Pathway analysis revealed multiple pathways in amino acid and sugar metabolisms that were altered with forskolin-stimulated syncytialization alone and DCVC treatment during syncytialization. Analysis of ratios of metabolites within the pathways revealed that DCVC exposure during syncytialization changed metabolite ratios in the same or different direction compared to syncytialization alone. Building off our oleic acid findings, we found that extracellular matrix metalloproteinase-2, which is downstream in oleic acid signaling, underwent the same changes as oleic acid. Together, the metabolic changes stimulated by DCVC treatment during syncytialization suggest changes in energy metabolism and amino acid abundance as potential mechanisms by which DCVC could impact syncytialization and pregnancy.
Collapse
Affiliation(s)
- Anthony L. Su
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109
| | - Sean M. Harris
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109
| | - Elana R. Elkin
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109
| | - Alla Karnovsky
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Justin Colacino
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rita Karen Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
5
|
Su AL, Loch-Caruso R. Apoptotic responses stimulated by the trichloroethylene metabolite S-(1,2-dichlorovinyl)-L-cysteine depend on cell differentiation state in BeWo human trophoblast cells. Toxicol In Vitro 2023; 86:105514. [PMID: 36336211 PMCID: PMC9949904 DOI: 10.1016/j.tiv.2022.105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/23/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
During pregnancy, the placental villous cytotrophoblasts differentiate via cell fusion and multinucleation to create syncytiotrophoblasts, a cell type at the maternal-fetal interface. Apoptosis of syncytiotrophoblasts is associated with adverse pregnancy outcomes. The human trophoblast BeWo cell line has been used as an in vitro model for this differentiation process, also known as syncytialization. In the current study, we exposed unsyncytialized BeWo cells, BeWo cells undergoing syncytialization, and syncytialized BeWo cells to S-(1,2-dichlorovinyl)-L-cysteine (DCVC), a metabolite of the industrial chemical trichloroethylene (TCE). DCVC exposure at 50 μM for 48 h decreased cell viability, increased cytotoxicity, increased caspase 3/7 activity, and increased nuclear condensation or fragmentation in BeWo cells regardless of their differentiation status. Investigating mechanisms of apoptosis, DCVC increased H2O2 abundance and decreased PRDX2 mRNA in all three BeWo cell models. DCVC decreased tumor necrosis factor-receptor 1 (TNF-R1) concentration in media and decreased NFKB1 and PRDX1 mRNA expression in syncytialized BeWo cells only. DCVC decreased BCL2 mRNA expression in syncytializing BeWo cells and in syncytialized BeWo cells only. Decreased LGALS3 mRNA was seen in unsyncytialized BeWo cells only. Together, these data suggest roles for oxidative stress and pro-inflammatory mechanisms underlying apoptosis in BeWo cells with differences depending on differentiation state.
Collapse
Affiliation(s)
- Anthony L Su
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA.
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA.
| |
Collapse
|
6
|
Kandel M, Tong S, Walker SP, Cannon P, Nguyen TV, MacDonald TM, Hannan NJ, Kaitu’u-Lino TJ, Bartho LA. Placental galectin-3 is reduced in early-onset preeclampsia. Front Physiol 2022; 13:1037597. [PMID: 36311252 PMCID: PMC9614155 DOI: 10.3389/fphys.2022.1037597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/30/2022] [Indexed: 08/31/2023] Open
Abstract
Preeclampsia is a disease of pregnancy responsible for significant maternal and neonatal mortality. Galectin-3 is a β-Galactoside binding protein. This study aimed to characterise galectin-3 in women with preeclampsia and human trophoblast stem cells (hTSCs). Galectin-3 was measured in placental lysates and plasma collected from patients with early-onset preeclampsia (delivered <34 weeks' gestation) and gestation matched controls. Placental galectin-3 protein was significantly reduced in 43 women with early-onset preeclampsia compared to 21 controls. mRNA expression of LGALS3 (galectin-3 encoding gene) was reduced in 29 women with early-onset preeclampsia, compared to 18 controls (p = 0.009). There was no significant difference in plasma galectin-3 protein in 46 women with early-onset preeclampsia compared to 20 controls. In a separate cohort of samples collected at 36 weeks' gestation, circulating galectin-3 was not altered in 23 women who later developed preeclampsia, versus 182 who did not. In syncytialised hTSCs, hypoxia increased mRNA expression of LGALS3 (p = 0.01). Treatment with inflammatory cytokines (TNF-α and IL-6) had no effect on LGALS3 mRNA expression. However, TNF-α treatment caused an increase in mRNA expression of LGALS3BP (galectin-3 binding protein encoding gene) in hTSCs (p = 0.03). This study showed a reduction of galectin-3 in placenta from pregnancies complicated by early-onset preeclampsia. LGALS3 mRNA expression was dysregulated by hypoxia exposure in placental stem cells.
Collapse
Affiliation(s)
- Manju Kandel
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, VIC, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Stephen Tong
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, VIC, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Susan P Walker
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, VIC, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Ping Cannon
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, VIC, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Tuong-Vi Nguyen
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, VIC, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Teresa M. MacDonald
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, VIC, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Natalie J. Hannan
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, VIC, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Tu’uhevaha J. Kaitu’u-Lino
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, VIC, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Lucy A Bartho
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, VIC, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia
| |
Collapse
|
7
|
Abostait A, Tyrrell J, Abdelkarim M, Shojaei S, Tse WH, El-Sherbiny IM, Keijzer R, Labouta HI. Placental Nanoparticle Uptake-On-a-Chip: The Impact of Trophoblast Syncytialization and Shear Stress. Mol Pharm 2022; 19:3757-3769. [PMID: 36053057 DOI: 10.1021/acs.molpharmaceut.2c00216] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The placenta is a dynamic and complex organ that plays an essential role in the health and development of the fetus. Placental disorders can affect the health of both the mother and the fetus. There is currently an unmet clinical need to develop nanoparticle-based therapies to target and treat placental disorders. However, little is known about the interaction of nanoparticles (NPs) with the human placenta under biomimetic conditions. Specifically, the impact of shear stress exerted on the trophoblasts (placental epithelial cells) by the maternal blood flow, the gradual fusion of the trophoblasts along the gestation period (syncytialization), and the impact of microvilli formation on the cell uptake of NPs is not known. To this end, we designed dynamic placenta-on-a-chip models using BeWo cells to recapitulate the micro-physiological environment, and we induced different degrees of syncytialization via chemical induction with forskolin. We characterized the degree of syncytialization quantitatively by measuring beta human chorionic gonadotropin (β-hCG) secretion, as well as qualitatively by immunostaining the tight junction protein, ZO-1, and counter nuclear staining. We also characterized microvilli formation under static and dynamic conditions via F-actin staining. We used these models to measure the cell uptake of chondroitin sulfate a binding protein (CSA) conjugated and control liposomes using confocal microscopy, followed by image analysis. Interestingly, exposure of the cells to a dynamic flow of media intrinsically induced syncytialization and microvilli formation compared to static controls. Under dynamic conditions, BeWo cells produced more β-hCG in conditions that increased the cell exposure time to forskolin (p < 0.005). Our cell uptake results clearly show a combined effect of the exerted shear stress and forskolin treatment on the cell uptake of liposomes as uptake increased in forskolin exposed conditions (p < 0.05). Overall, the difference in the extent of cell uptake of liposomes among the different conditions clearly displays a need for the development of dynamic models of the placenta that consider the changes in the placental cell phenotype along the gestation period, including syncytialization, microvilli formation, and the expression of different transport and uptake receptors. Knowledge generated from this work will inform future research aiming at developing drug delivery systems targeting the placenta.
Collapse
Affiliation(s)
- Amr Abostait
- College of Pharmacy, University of Manitoba, Winnipeg R3E 0T5, Canada.,Children's Hospital Research Institute of Manitoba, Winnipeg R3E 3P4, Canada
| | - Jack Tyrrell
- College of Pharmacy, University of Manitoba, Winnipeg R3E 0T5, Canada
| | - Mahmoud Abdelkarim
- College of Pharmacy, University of Manitoba, Winnipeg R3E 0T5, Canada.,Biomedical Engineering, University of Manitoba, Winnipeg R3T 5V6, Canada
| | - Shahla Shojaei
- College of Pharmacy, University of Manitoba, Winnipeg R3E 0T5, Canada
| | - Wai Hei Tse
- Children's Hospital Research Institute of Manitoba, Winnipeg R3E 3P4, Canada.,Depts of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology & Pathophysiology, University of Manitoba, Winnipeg R3A 1R9, Canada
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Richard Keijzer
- Children's Hospital Research Institute of Manitoba, Winnipeg R3E 3P4, Canada.,Depts of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology & Pathophysiology, University of Manitoba, Winnipeg R3A 1R9, Canada
| | - Hagar I Labouta
- College of Pharmacy, University of Manitoba, Winnipeg R3E 0T5, Canada.,Children's Hospital Research Institute of Manitoba, Winnipeg R3E 3P4, Canada.,Biomedical Engineering, University of Manitoba, Winnipeg R3T 5V6, Canada.,Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
8
|
Tersigni C, Maulucci G, Castellani R, Bianchetti G, Onori M, Franco R, Barbaro G, De Spirito M, Lanzone A, Scambia G, Di Simone N. Enoxaparin Increases D6 Receptor Expression and Restores Cytoskeleton Organization in Trophoblast Cells from Preeclampsia. Cells 2022; 11:cells11132036. [PMID: 35805120 PMCID: PMC9265963 DOI: 10.3390/cells11132036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
D6 is a scavenger receptor for CC chemokines expressed in the human placenta. It prevents excessive leukocyte tissue infiltration by internalizing chemokines through cytoskeleton-dependent intracellular transport. In preeclampsia (PE), the D6 receptor is overexpressed in trophoblast cells, but functionally impaired, due to cytoskeleton destructuring. Low molecular weight heparin (LMWH) represents a potential treatment for PE based on its anti-thrombotic and anti-inflammatory properties. Here, we investigated the effect of enoxaparin on D6 expression, and cytoskeleton organization primary cytotrophoblast cell cultures were obtained from the placentae of women with PE (n = 9) or uncomplicated pregnancy (n = 9). We demonstrated that enoxaparin is able to (i) increase D6 expression, and (ii) improve cytoskeletal fiber alignment in trophoblast cells from PE patients.
Collapse
Affiliation(s)
- Chiara Tersigni
- U.O.C. di Ostetricia e Patologia Ostetrica, Fondazione Policlinico Universitario A. Gemelli IRCCS, L. go A. Gemelli 8, 00168 Rome, Italy; (M.O.); (A.L.)
- Correspondence: ; Tel.: +39-063-015-7546
| | - Giuseppe Maulucci
- Dipartimento di Neuroscienze, Sezione di Biofisica, Università Cattolica del Sacro Cuore, L. go Francesco Vito 1, 00168 Rome, Italy; (G.M.); (G.B.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, L. go A. Gemelli 8, 00168 Rome, Italy
| | - Roberta Castellani
- Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, L.go Francesco Vito 1, 00168 Rome, Italy; (R.C.); (R.F.); (G.B.); (G.S.)
| | - Giada Bianchetti
- Dipartimento di Neuroscienze, Sezione di Biofisica, Università Cattolica del Sacro Cuore, L. go Francesco Vito 1, 00168 Rome, Italy; (G.M.); (G.B.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, L. go A. Gemelli 8, 00168 Rome, Italy
| | - Marianna Onori
- U.O.C. di Ostetricia e Patologia Ostetrica, Fondazione Policlinico Universitario A. Gemelli IRCCS, L. go A. Gemelli 8, 00168 Rome, Italy; (M.O.); (A.L.)
| | - Rita Franco
- Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, L.go Francesco Vito 1, 00168 Rome, Italy; (R.C.); (R.F.); (G.B.); (G.S.)
| | - Greta Barbaro
- Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, L.go Francesco Vito 1, 00168 Rome, Italy; (R.C.); (R.F.); (G.B.); (G.S.)
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Sezione di Biofisica, Università Cattolica del Sacro Cuore, L. go Francesco Vito 1, 00168 Rome, Italy; (G.M.); (G.B.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, L. go A. Gemelli 8, 00168 Rome, Italy
| | - Antonio Lanzone
- U.O.C. di Ostetricia e Patologia Ostetrica, Fondazione Policlinico Universitario A. Gemelli IRCCS, L. go A. Gemelli 8, 00168 Rome, Italy; (M.O.); (A.L.)
- Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, L.go Francesco Vito 1, 00168 Rome, Italy; (R.C.); (R.F.); (G.B.); (G.S.)
| | - Giovanni Scambia
- Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, L.go Francesco Vito 1, 00168 Rome, Italy; (R.C.); (R.F.); (G.B.); (G.S.)
- U.O.C. di Ginecologia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, L. go A. Gemelli 8, 00168 Rome, Italy
| | - Nicoletta Di Simone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy;
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| |
Collapse
|
9
|
Jovanović Krivokuća M, Vilotić A, Nacka-Aleksić M, Pirković A, Ćujić D, Legner J, Dekanski D, Bojić-Trbojević Ž. Galectins in Early Pregnancy and Pregnancy-Associated Pathologies. Int J Mol Sci 2021; 23:69. [PMID: 35008499 PMCID: PMC8744741 DOI: 10.3390/ijms23010069] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/30/2022] Open
Abstract
Galectins are a family of conserved soluble proteins defined by an affinity for β-galactoside structures present on various glycoconjugates. Over the past few decades, galectins have been recognized as important factors for successful implantation and maintenance of pregnancy. An increasing number of studies have demonstrated their involvement in trophoblast cell function and placental development. In addition, several lines of evidence suggest their important roles in feto-maternal immune tolerance regulation and angiogenesis. Changed or dysregulated galectin expression is also described in pregnancy-related disorders. Although the data regarding galectins' clinical relevance are still at an early stage, evidence suggests that some galectin family members are promising candidates for better understanding pregnancy-related pathologies, as well as predicting biomarkers. In this review, we aim to summarize current knowledge of galectins in early pregnancy as well as in pregnancy-related pathologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Žanka Bojić-Trbojević
- Institute for Application of Nuclear Energy Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (M.J.K.); (A.V.); (M.N.-A.); (A.P.); (D.Ć.); (J.L.); (D.D.)
| |
Collapse
|
10
|
Timofeeva AV, Fedorov IS, Brzhozovskiy AG, Bugrova AE, Chagovets VV, Volochaeva MV, Starodubtseva NL, Frankevich VE, Nikolaev EN, Shmakov RG, Sukhikh GT. miRNAs and Their Gene Targets-A Clue to Differentiate Pregnancies with Small for Gestational Age Newborns, Intrauterine Growth Restriction, and Preeclampsia. Diagnostics (Basel) 2021; 11:diagnostics11040729. [PMID: 33923995 PMCID: PMC8073204 DOI: 10.3390/diagnostics11040729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022] Open
Abstract
Despite the differences in the clinical manifestations of major obstetric syndromes, such as preeclampsia (PE) and intrauterine growth restriction (IUGR), their pathogenesis is based on the dysregulation of proliferation, differentiation, and invasion of cytotrophoblast cells that occur in the developing placenta, decidual endometrium, and myometrial parts of the spiral arteries. To understand the similarities and differences in the molecular mechanisms of PE and IUGR, samples of the placental bed and placental tissue were analyzed using protein mass spectrometry and the deep sequencing of small RNAs, followed by validation of the data obtained by quantitative RT-PCR in real time. A comparison of the transcriptome and proteomic profiles in the samples made it possible to conclude that the main changes in the molecular profile in IUGR occur in the placental bed, in contrast to PE, in which the majority of molecular changes occurs in the placenta. In placental bed samples, significant changes in the ratio of miRNA and its potential target gene expression levels were revealed, which were unique for IUGR (miR-30c-5p/VIM, miR-28-3p/VIM, miR-1-3p/ANXA2, miR-30c-5p/FBN1; miR-15b-5p/MYL6), unique for PE (miR-185-3p/FLNA), common for IUGR and PE (miR-30c-5p/YWHAZ and miR-654-3p/FGA), but all associated with abnormality in the hemostatic and vascular systems as well as with an inflammatory process at the fetal‒maternal interface.
Collapse
Affiliation(s)
- Angelika V. Timofeeva
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (A.G.B.); or (A.E.B.); (V.V.C.); (M.V.V.); or (N.L.S.); (V.E.F.); (R.G.S.); (G.T.S.)
- Correspondence: or ; Tel.: +7-495-5314444
| | - Ivan S. Fedorov
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (A.G.B.); or (A.E.B.); (V.V.C.); (M.V.V.); or (N.L.S.); (V.E.F.); (R.G.S.); (G.T.S.)
| | - Alexander G. Brzhozovskiy
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (A.G.B.); or (A.E.B.); (V.V.C.); (M.V.V.); or (N.L.S.); (V.E.F.); (R.G.S.); (G.T.S.)
- Laboratory of Mass Spectrometry, CDISE, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia;
| | - Anna E. Bugrova
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (A.G.B.); or (A.E.B.); (V.V.C.); (M.V.V.); or (N.L.S.); (V.E.F.); (R.G.S.); (G.T.S.)
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vitaliy V. Chagovets
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (A.G.B.); or (A.E.B.); (V.V.C.); (M.V.V.); or (N.L.S.); (V.E.F.); (R.G.S.); (G.T.S.)
| | - Maria V. Volochaeva
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (A.G.B.); or (A.E.B.); (V.V.C.); (M.V.V.); or (N.L.S.); (V.E.F.); (R.G.S.); (G.T.S.)
| | - Natalia L. Starodubtseva
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (A.G.B.); or (A.E.B.); (V.V.C.); (M.V.V.); or (N.L.S.); (V.E.F.); (R.G.S.); (G.T.S.)
- Department of Chemical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| | - Vladimir E. Frankevich
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (A.G.B.); or (A.E.B.); (V.V.C.); (M.V.V.); or (N.L.S.); (V.E.F.); (R.G.S.); (G.T.S.)
| | - Evgeny N. Nikolaev
- Laboratory of Mass Spectrometry, CDISE, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia;
| | - Roman G. Shmakov
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (A.G.B.); or (A.E.B.); (V.V.C.); (M.V.V.); or (N.L.S.); (V.E.F.); (R.G.S.); (G.T.S.)
| | - Gennady T. Sukhikh
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (A.G.B.); or (A.E.B.); (V.V.C.); (M.V.V.); or (N.L.S.); (V.E.F.); (R.G.S.); (G.T.S.)
- Department of Obstetrics, Gynecology, Neonatology and Reproduction, First Moscow State Medical University Named after I.M. Sechenov, 119991 Moscow, Russia
| |
Collapse
|
11
|
Pankiewicz K, Fijałkowska A, Issat T, Maciejewski TM. Insight into the Key Points of Preeclampsia Pathophysiology: Uterine Artery Remodeling and the Role of MicroRNAs. Int J Mol Sci 2021; 22:3132. [PMID: 33808559 PMCID: PMC8003365 DOI: 10.3390/ijms22063132] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
Preeclampsia affects about 3-8% of all pregnancies. It represents a complex and multifaceted syndrome with at least several potential pathways leading to the development of disease. The main dogma in preeclampsia is the two-stage model of disease. Stage 1 (placental stage) takes place in early pregnancy and is thought to be impaired placentation due to inadequate trophoblastic invasion of the maternal spiral arteries that leads to reduced placental perfusion and release of numerous biological factors causing endothelial damage and development of acute maternal syndrome with systemic multiorgan failure (stage 2-the onset of maternal clinical symptoms, maternal stage). Recently, in the light of the vast body of evidence, two-stage model of preeclampsia has been updated with a few novel pathways leading to clinical manifestation in the second part of pregnancy. This paper reviews current state of knowledge about pathophysiology of preeclampsia and places particular focus on the recent advances in understanding of uterine artery remodeling alterations, as well as the role of microRNAs in preeclampsia.
Collapse
Affiliation(s)
- Katarzyna Pankiewicz
- Department of Obstetrics and Gynecology, Institute of Mother and Child in Warsaw, Kasprzaka 17a, 01-211 Warsaw, Poland; (T.I.); (T.M.M.)
| | - Anna Fijałkowska
- Department of Cardiology, Institute of Mother and Child in Warsaw, Kasprzaka 17a, 01-211 Warsaw, Poland;
| | - Tadeusz Issat
- Department of Obstetrics and Gynecology, Institute of Mother and Child in Warsaw, Kasprzaka 17a, 01-211 Warsaw, Poland; (T.I.); (T.M.M.)
| | - Tomasz M. Maciejewski
- Department of Obstetrics and Gynecology, Institute of Mother and Child in Warsaw, Kasprzaka 17a, 01-211 Warsaw, Poland; (T.I.); (T.M.M.)
| |
Collapse
|
12
|
Roles of HIF and 2-Oxoglutarate-Dependent Dioxygenases in Controlling Gene Expression in Hypoxia. Cancers (Basel) 2021; 13:cancers13020350. [PMID: 33477877 PMCID: PMC7832865 DOI: 10.3390/cancers13020350] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that such dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. Abstract Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. We highlight the relevance of HIF and 2-OGDs in the control of gene expression in response to hypoxia and their relevance to human biology and health.
Collapse
|
13
|
Tu J, Fang Y, Han D, Tan X, Jiang H, Gong X, Wang X, Hong W, Wei W. Activation of nuclear factor-κB in the angiogenesis of glioma: Insights into the associated molecular mechanisms and targeted therapies. Cell Prolif 2020; 54:e12929. [PMID: 33300633 PMCID: PMC7848966 DOI: 10.1111/cpr.12929] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
Glioma is the most commonly observed primary intracranial tumour and is associated with massive angiogenesis. Glioma neovascularization provides nutrients for the growth and metabolism of tumour tissues, promotes tumour cell division and proliferation, and provides conditions ideal for the infiltration and migration of tumour cells to distant places. Growing evidence suggests that there is a correlation between the activation of nuclear factor (NF)‐κB and the angiogenesis of glioma. In this review article, we highlighted the functions of NF‐κB in the angiogenesis of glioma, showing that NF‐κB activation plays a pivotal role in the growth and progression of glioma angiogenesis and is a rational therapeutic target for antiangiogenic strategies aimed at glioma.
Collapse
Affiliation(s)
- Jiajie Tu
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Yilong Fang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Dafei Han
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Xuewen Tan
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Haifeng Jiang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Xun Gong
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Xinming Wang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenming Hong
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
14
|
Freitag N, Tirado-Gonzalez I, Barrientos G, Powell KL, Boehm-Sturm P, Koch SP, Hecher K, Staff AC, Arck PC, Diemert A, Blois SM. Galectin-3 deficiency in pregnancy increases the risk of fetal growth restriction (FGR) via placental insufficiency. Cell Death Dis 2020; 11:560. [PMID: 32703931 PMCID: PMC7378206 DOI: 10.1038/s41419-020-02791-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/26/2022]
Abstract
Fetal growth restriction (FGR) is the most common pregnancy complication in developed countries. Pregnancies affected by FGR, frequently concur with complications and high risk of neonatal morbidity and mortality. To date, no approved treatment is available for pregnant women affected with FGR. The objective of this study was to investigate the contribution of galectin-3 (gal-3), a β-galactoside binding protein involved in pregnancy, placental function and fetal growth. We demonstrated that lack of gal-3 during mouse pregnancy leads to placental dysfunction and drives FGR in the absence of a maternal preeclampsia syndrome. Analysis of gal-3 deficient dams revealed placental inflammation and malperfusion, as well as uterine natural killer cell infiltration with aberrant activation. Our results also show that FGR is associated with a failure to increase maternal circulating gal-3 levels during the second and third trimester in human pregnancies. Placentas from human pregnancies affected by FGR displayed lower gal-3 expression, which correlated with placental dysfunction. These data highlight the importance of gal-3 in the promotion of proper placental function, as its absence leads to placental disease and subsequent FGR.
Collapse
Affiliation(s)
- Nancy Freitag
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, and Charité - Universitätsmedizin Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for Psychosomatic Medicine, Berlin, Germany
| | - Irene Tirado-Gonzalez
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriela Barrientos
- Laboratorio de Medicina Experimental, Hospital Alemán, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Katie L Powell
- Division of Perinatal Research, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia
| | - Philipp Boehm-Sturm
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universitätzu Berlin, and Berlin Institute of Health, Department of Experimental Neurology, Center for Stroke Research, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7 T Experimental MRIs, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan P Koch
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universitätzu Berlin, and Berlin Institute of Health, Department of Experimental Neurology, Center for Stroke Research, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7 T Experimental MRIs, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kurt Hecher
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20251, Germany
| | - Anne C Staff
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Division of Obstetrics and Gyneacology, Oslo University Hospital, Oslo, Norway
| | - Petra C Arck
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20251, Germany
| | - Anke Diemert
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20251, Germany
| | - Sandra M Blois
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, and Charité - Universitätsmedizin Berlin, Berlin, Germany. .,Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20251, Germany.
| |
Collapse
|
15
|
Zhong X, Qian X, Chen G, Song X. The role of galectin-3 in heart failure and cardiovascular disease. Clin Exp Pharmacol Physiol 2019; 46:197-203. [PMID: 30372548 DOI: 10.1111/1440-1681.13048] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Xiao Zhong
- Cardiovascular Center; The Fourth Affiliated Hospital; Harbin Medical University; Harbin China
| | - Xiaoqian Qian
- Department of Nephrology; Xin Hua Hospital Affiliated; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Guangping Chen
- Department of Physiology; Emory University School of Medicine; Atlanta Georgia
| | - Xiang Song
- Cardiovascular Center; The Fourth Affiliated Hospital; Harbin Medical University; Harbin China
| |
Collapse
|
16
|
Wu F, Tian F, Zeng W, Liu X, Fan J, Lin Y, Zhang Y. Role of peroxiredoxin2 downregulation in recurrent miscarriage through regulation of trophoblast proliferation and apoptosis. Cell Death Dis 2017; 8:e2908. [PMID: 28661480 PMCID: PMC5520946 DOI: 10.1038/cddis.2017.301] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 01/02/2023]
Abstract
Peroxiredoxin (Prdx) 2 is an antioxidant protein that utilizes its redox-sensitive cysteine groups to reduce hydrogen peroxide molecules and protect cells against oxidative damage from reactive oxygen species (ROS). However, its function in trophoblasts at the maternal-fetal interface has not been clarified yet. In this study, significantly lower Prdx2 expression was found in the first-trimester villous cytotrophoblasts of patients with recurrent miscarriage (RM) than in cytotrophoblasts from healthy controls. Further, Prdx2 knockdown inhibited proliferation and increased apoptosis of trophoblast cells. The reason for this may be an increase in the level of cellular ROS after knockdown of Prdx2, which may subsequently lead to an increase in the expression of phosphorylated p53 (p-p53) and p38-MAPK/p21. Prdx2 knockdown also impaired the fusion of BeWo cells induced by forskolin. Bioinformatics analysis identified a c-Myc-binding site in the Prdx2 promoter region, and chromatin immunoprecipitation verified that c-Myc directly bound to a site in this locus. Suppression and overexpression of c-Myc resulted in reduction and increase of Prdx2 expression respectively. Furthermore, we demonstrated that c-Myc was downregulated in the first-trimester cytotrophoblasts of patients with RM, and its downregulation is also related with inhibited cell proliferation, increased apoptosis, as well as upregulated p21 expression and p-p53/p53 ratio. Our findings indicate that Prdx2 might have an important role in the regulation of trophoblast proliferation and apoptosis during early pregnancy, and that its expression is mediated by c-Myc. Thus, these two proteins may be involved in the pathogenesis of RM and may represent potential therapeutic targets.
Collapse
Affiliation(s)
- Fan Wu
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, the International Peace Maternity &Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuju Tian
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, the International Peace Maternity &Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weihong Zeng
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, the International Peace Maternity &Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaorui Liu
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, the International Peace Maternity &Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxia Fan
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, the International Peace Maternity &Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Lin
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, the International Peace Maternity &Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Gao Z, Luo G, Ni B. Progress in mass spectrometry-based proteomic research of tumor hypoxia (Review). Oncol Rep 2017; 38:676-684. [PMID: 28656308 DOI: 10.3892/or.2017.5748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 05/31/2017] [Indexed: 11/06/2022] Open
Abstract
A hypoxic microenvironment effects various signaling pathways in the human body, including those that are critical for normal physiology and those that support tumorigenesis or cancer progression. A hypoxic tumor microenvironment, in particular, modulates cell migration, invasion and resistance to radiotherapy and chemotherapy. Development of the mass spectrometry (MS) technique has allowed for expansion of proteomic study to a wide variety of fields, with the study of tumor hypoxia being among the latest to enjoy its benefits. In such studies, changes in the proteome of tumor tissue or cells induced by the hypoxic conditions are analyzed. A multitude of hypoxic regulatory proteins have already been identified, increasing our understanding of the mechanisms underlying tumor occurrence and development and representing candidate reference markers for tumor diagnosis and therapy. The present review provides the first summary of the collective studies on tumor microenvironment hypoxia that have been completed using MS-based proteomic techniques, providing a systematic discussion of the benefits and current challenges of the various applications.
Collapse
Affiliation(s)
- Zhiqi Gao
- Department of Pathophysiology and High Altitude Pathology/Key Laboratory of High Altitude Environment Medicine (Third Military Medical University), Ministry of Education/Key Laboratory of High Altitude Medicine, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Gang Luo
- Department of Pathophysiology and High Altitude Pathology/Key Laboratory of High Altitude Environment Medicine (Third Military Medical University), Ministry of Education/Key Laboratory of High Altitude Medicine, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Bing Ni
- Department of Pathophysiology and High Altitude Pathology/Key Laboratory of High Altitude Environment Medicine (Third Military Medical University), Ministry of Education/Key Laboratory of High Altitude Medicine, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
18
|
Chen WS, Cao Z, Leffler H, Nilsson UJ, Panjwani N. Galectin-3 Inhibition by a Small-Molecule Inhibitor Reduces Both Pathological Corneal Neovascularization and Fibrosis. Invest Ophthalmol Vis Sci 2017; 58:9-20. [PMID: 28055102 PMCID: PMC5225999 DOI: 10.1167/iovs.16-20009] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose Corneal neovascularization and scarring commonly lead to significant vision loss. This study was designed to determine whether a small-molecule inhibitor of galectin-3 can inhibit both corneal angiogenesis and fibrosis in experimental mouse models. Methods Animal models of silver nitrate cautery and alkaline burn were used to induce mouse corneal angiogenesis and fibrosis, respectively. Corneas were treated with the galectin-3 inhibitor, 33DFTG, or vehicle alone and were processed for whole-mount immunofluorescence staining and Western blot analysis to quantify the density of blood vessels and markers of fibrosis. In addition, human umbilical vein endothelial cells (HUVECs) and primary human corneal fibroblasts were used to analyze the role of galectin-3 in the process of angiogenesis and fibrosis in vitro. Results Robust angiogenesis was observed in silver nitrate-cauterized corneas on day 5 post injury, and markedly increased corneal opacification was demonstrated in alkaline burn-injured corneas on days 7 and 14 post injury. Treatment with the inhibitor substantially reduced corneal angiogenesis and opacification with a concomitant decrease in α-smooth muscle actin (α-SMA) expression and distribution. In vitro studies revealed that 33DFTG inhibited VEGF-A-induced HUVEC migration and sprouting without cytotoxic effects. The addition of exogenous galectin-3 to corneal fibroblasts in culture induced the expression of fibrosis-related proteins, including α-SMA and connective tissue growth factor. Conclusions Our data provide proof of concept that targeting galectin-3 by the novel, small-molecule inhibitor, 33DFTG, ameliorates pathological corneal angiogenesis as well as fibrosis. These findings suggest a potential new therapeutic strategy for treating ocular disorders related to pathological angiogenesis and fibrosis.
Collapse
Affiliation(s)
- Wei-Sheng Chen
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States
| | - Zhiyi Cao
- New England Eye Center/Department of Ophthalmology, Tufts University, Boston, Massachusetts, United States
| | - Hakon Leffler
- Section of Microbiology Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Ulf J Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, Sweden
| | - Noorjahan Panjwani
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States 2New England Eye Center/Department of Ophthalmology, Tufts University, Boston, Massachusetts, United States
| |
Collapse
|
19
|
Szklanna PB, Wynne K, Nolan M, Egan K, Áinle FN, Maguire PB. Comparative proteomic analysis of trophoblast cell models reveals their differential phenotypes, potential uses, and limitations. Proteomics 2017; 17:e1700037. [PMID: 28317260 DOI: 10.1002/pmic.201700037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/09/2017] [Accepted: 03/15/2017] [Indexed: 12/13/2022]
Abstract
Trophoblastic cell lines are widely used in in vitro studies of placental function as a surrogate for primary trophoblasts. To date, no reference proteomics dataset exists to directly compare the shared and unique characteristics of these cells. Here, we performed comparative proteomic profiling of the BeWo and HTR8/SVneo cell lines using label-free quantitative MS. A total of 1557 proteins were identified, which included 338 uniquely attributed to BeWo cells, and a further 304 specifically identified in HTR8/SVneo cells. Raw data are available via ProteomeXchange, identifier PDX005045. Of the 915 proteins expressed by both cell lines, 105 were of higher abundance in BeWo cells, while 199 proteins had a significantly higher expression in HTR8/SVneo cells. Comparative GO of unique and upregulated proteins revealed principal differences in cell junction/adhesion, catenin complex, spindle and microtubule associated complex, as well as cell differentiation. Our data indicate that BeWo cells express an epithelial proteome more characteristic of villous trophoblasts, whereas HTR8/SVneo cells embrace a mesenchymal phenotype, more characteristic of extravillous trophoblasts. This novel comparative proteomic profiling of these trophoblastic cell lines provides a useful platform for future investigations of placental function.
Collapse
Affiliation(s)
- Paulina B Szklanna
- UCD Conway Institute SPHERE Research Group, School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Kieran Wynne
- UCD Conway Institute Proteomics Core, University College Dublin, Belfield, Dublin, Ireland
| | - Marie Nolan
- UCD Conway Institute SPHERE Research Group, School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Karl Egan
- UCD Conway Institute SPHERE Research Group, School of Medicine and Medical Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Fionnuala Ní Áinle
- UCD Conway Institute SPHERE Research Group, School of Medicine and Medical Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Patricia B Maguire
- UCD Conway Institute SPHERE Research Group, School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
20
|
Tersigni C, Di Nicuolo F, Maulucci G, Rolfo A, Giuffrida D, Veglia M, De Spirito M, Scambia G, Todros T, Di Simone N. Placental Chemokine Receptor D6 Is Functionally Impaired in Pre-Eclampsia. PLoS One 2016; 11:e0164747. [PMID: 27780270 PMCID: PMC5079655 DOI: 10.1371/journal.pone.0164747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/29/2016] [Indexed: 01/22/2023] Open
Abstract
Background Pre-eclampsia (PE) is a major cause of maternal and perinatal morbidity and mortality worldwide. It is defined by new onset of hypertension and proteinuria after the 20th week of gestation and characterized by systemic exaggerated inflammatory response. D6 is a chemokines scavenger receptor that binds with high affinity CC chemokines, internalizes and targets the ligands for degradation. It is expressed in trophoblast-derived tissues and prevents excessive placenta leukocyte infiltration.The aim of this study was to investigate the expression and function of D6 in human placentae from pre-eclamptic and healthy pregnant women. Methods and Results Plasma levels of D6-binding CC chemokines (CCL-2, CCL-3, CCL-4, CCL-7, CCL-11) and pro-inflammatory cytokines (IL-6, TNF-α, CRP) were analyzed in 37 healthy pregnant women and 38 patients with PE by multiplex bead assay. Higher circulating levels of CCL7, CCL11, IL-6, (p<0.0001) and CRP (p<0.05) were observed in PE women compared to controls. Levels of circulating CCL4 were decreased in PE (p<0.001), while no significant differences of CCL2, CCL3 or TNF-α levels were detected. Immunofluorescent staining of placental sections showed higher expression of D6 receptor in the PE syncytiotrophoblast. Confocal and Western blot (WB) analyses revealed a prevalent distribution of D6 in trophoblast cells membranes in PE. Increased activation of D6 intracellular pathway was observed by Western blot analyses of p-LIMK and p-cofilin in trophoblast cell lysates. D6 functional assays showed reduced scavenging of CCL2 in PE cells compared to controls. Since actin filaments spatial assembling is essential for D6 intracellular trafficking and scavenging activity, we investigated by confocal microscopy trophoblast cytoskeleton organization and we observed a dramatic disarrangement in PE compared to controls. Conclusions our results suggest membrane distribution of D6 receptor on trophoblast cell membranes in PE, together with reduced functionality, probably due to cytoskeleton impairment.
Collapse
Affiliation(s)
- Chiara Tersigni
- Department of Obstetrics and Gynaecology, Fondazione Policlinico Agostino Gemelli, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Fiorella Di Nicuolo
- Department of Obstetrics and Gynaecology, Fondazione Policlinico Agostino Gemelli, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Giuseppe Maulucci
- Institute of Physics, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Alessandro Rolfo
- Department of Surgical Sciences, Sant'Anna Hospital, Università degli Studi di Torino, Turin, Italy
| | - Domenica Giuffrida
- Department of Surgical Sciences, Sant'Anna Hospital, Università degli Studi di Torino, Turin, Italy
| | - Manuela Veglia
- Department of Obstetrics and Gynaecology, Fondazione Policlinico Agostino Gemelli, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Marco De Spirito
- Institute of Physics, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Giovanni Scambia
- Department of Obstetrics and Gynaecology, Fondazione Policlinico Agostino Gemelli, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Tullia Todros
- Department of Surgical Sciences, Sant'Anna Hospital, Università degli Studi di Torino, Turin, Italy
| | - Nicoletta Di Simone
- Department of Obstetrics and Gynaecology, Fondazione Policlinico Agostino Gemelli, Università Cattolica Del Sacro Cuore, Rome, Italy
| |
Collapse
|
21
|
Novoa-Herran S, Umaña-Perez A, Canals F, Sanchez-Gomez M. Serum depletion induces changes in protein expression in the trophoblast-derived cell line HTR-8/SVneo. Cell Mol Biol Lett 2016; 21:22. [PMID: 28536624 PMCID: PMC5415790 DOI: 10.1186/s11658-016-0018-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/05/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND How nutrition and growth factor restriction due to serum depletion affect trophoblast function remains poorly understood. We performed a proteomic differential study of the effects of serum depletion on a first trimester human immortalized trophoblast cell line. METHODS The viability of HTR-8/SVneo trophoblast cells in culture with 0, 0.5 and 10 % fetal bovine serum (FBS) were assayed via MTT at 24, 48 and 64 h. A comparative proteomic analysis of the cells grown with those FBS levels for 24 h was performed using two-dimensional electrophoresis (2DE), followed by mass spectrometry for protein spot identification, and a database search and bioinformatics analysis of the expressed proteins. Differential spots were identified using the Kolmogorov-Smirnov test (n = 3, significance level 0.10, D > 0.642) and/or ANOVA (n = 3, p < 0.05). RESULTS The results showed that low serum doses or serum depletion differentially affect cell growth and protein expression. Differential expression was seen in 25 % of the protein spots grown with 0.5 % FBS and in 84 % of those grown with 0 % FBS, using 10 % serum as the physiological control. In 0.5 % FBS, this difference was related with biological processes typically affected by the serum, such as cell cycle, regulation of apoptosis and proliferation. In addition to these changes, in the serum-depleted proteome we observed downregulation of keratin 8, and upregulation of vimentin, the glycolytic enzymes enolase and pyruvate kinase (PKM2) and tumor progression-related inosine-5'-monophosphate dehydrogenase 2 (IMPDH2) enzyme. The proteins regulated by total serum depletion, but not affected by growth in 0.5 % serum, are members of the glycolytic and nucleotide metabolic pathways and the epithelial-to-mesenchymal transition (EMT), suggesting an adaptive switch characteristic of malignant cells. CONCLUSIONS This comparative proteomic analysis and the identified proteins are the first evidence of a protein expression response to serum depletion in a trophoblast cell model. Our results show that serum depletion induces specific changes in protein expression concordant with main cell metabolic adaptations and EMT, resembling the progression to a malignant phenotype.
Collapse
Affiliation(s)
- Susana Novoa-Herran
- Departamento de Química, Grupo de Investigación en Hormonas (Hormone Research Laboratory), Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Cra 30 45-03 Ed 451 Of 464, AA 111321 Bogotá, Colombia
| | - Adriana Umaña-Perez
- Departamento de Química, Grupo de Investigación en Hormonas (Hormone Research Laboratory), Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Cra 30 45-03 Ed 451 Of 464, AA 111321 Bogotá, Colombia
| | - Francesc Canals
- Laboratory of Proteomics, Vall d'Hebron Institute of Oncology (VHIO), Centre Cellex, C Natzaret 115-117, 08035 Barcelona, Spain
| | - Myriam Sanchez-Gomez
- Departamento de Química, Grupo de Investigación en Hormonas (Hormone Research Laboratory), Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Cra 30 45-03 Ed 451 Of 464, AA 111321 Bogotá, Colombia
| |
Collapse
|
22
|
Salle V, Schmidt J, Smail A, Mazière C, Conte MA, Brulé A, Mazière JC, Cadet E, Herpe YE, Duhaut P. Antibodies directed against annexin A2 and obstetric morbidity. J Reprod Immunol 2016; 118:50-53. [PMID: 27631133 DOI: 10.1016/j.jri.2016.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 01/11/2023]
Abstract
Acquired and inherited thrombophilia have both been reported to be associated with an increased risk of obstetric complications in early or later stages of pregnancy. Annexin A2 (ANXA2) is strongly expressed in vascular and placental tissues and plays a crucial role in fibrinolysis. The aim of the present study was to evaluate the prevalence of antibodies directed against ANXA2 in patients with recurrent miscarriage or obstetric complications. Anti-ANXA2 antibodies (aANXA2) were detected by ELISA in the sera from 46 women with obstetric morbidity, mainly recurrent miscarriage. The cut-off value for positivity was defined as 3 standard deviations above the mean optical density (OD) obtained in the sera from 42 female blood donors. The prevalence of aANXA2 in patients and healthy individuals was 15.2% and 2.3%, respectively. A statistically significant difference was observed between the 2 groups in terms of aANXA2 IgG titers (p=0.01). The highest aANXA2 levels were observed in sera from 2 patients with recurrent miscarriage and one patient with preeclampsia. aANXA2 could play a role in thrombotic mechanisms leading to recurrent pregnancy loss and placental vascular disease. Further studies are needed to determine whether ANXA2 is critical for maintenance of placental integrity.
Collapse
Affiliation(s)
- V Salle
- Department of Internal Medicine, Amiens University Hospital, France; INSERM U1088, Biochemistry Laboratory, Amiens University Hospital, France.
| | - J Schmidt
- Department of Internal Medicine, Amiens University Hospital, France
| | - A Smail
- Department of Internal Medicine, Amiens University Hospital, France
| | - C Mazière
- INSERM U1088, Biochemistry Laboratory, Amiens University Hospital, France
| | - M A Conte
- INSERM U1088, Biochemistry Laboratory, Amiens University Hospital, France
| | - A Brulé
- French Blood Establishment-North of France, France
| | - J C Mazière
- INSERM U1088, Biochemistry Laboratory, Amiens University Hospital, France
| | - E Cadet
- Department of Genetics, Amiens University Hospital, France
| | - Y E Herpe
- Biobank of Picardie, Amiens University Hospital, Amiens, France
| | - P Duhaut
- Department of Internal Medicine, Amiens University Hospital, France
| |
Collapse
|
23
|
Yang H, Yin J, Ficarrotta K, Hsu SH, Zhang W, Cheng C. Aberrant expression and hormonal regulation of Galectin-3 in endometriosis women with infertility. J Endocrinol Invest 2016; 39:785-91. [PMID: 26886939 PMCID: PMC4906070 DOI: 10.1007/s40618-016-0435-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/21/2016] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To investigate the role and potential molecular mechanism of Galectin-3 (Gal-3) in the etiology of endometriosis-associated infertility. METHODS We detected Gal-3 expression in eutopic endometrium from women with endometriosis-associated infertility and healthy women without endometriosis or infertility. We then evaluated Gal-3 expression in endometrial glandular epithelial cells (EECs) and endometrial stromal cells (ESCs) and investigated its response to hormone stimulation in EECs and ESCs from both groups of women. RESULTS Results of real-time PCR and western blot analysis showed Gal-3 expression in both proliferative and secretory stages of the menstrual cycle decreased significantly in women with endometriosis-associated infertility compared to healthy women. The changes in expression of Gal-3 were more dramatic in EECs than ESCs. Moreover, estrogen (E2) and progesterone (P4) induced Gal-3 expression in EECs of healthy groups, and P4 was more significant than E2 and combined E2 and P4 (E2P4). However, in the endometriosis group, P4 failed to induce a similar increase in Gal-3 expression. CONCLUSIONS Our results suggest that aberrant expression of Gal-3 might contribute to infertility in patients with endometriosis due to progesterone resistance.
Collapse
Affiliation(s)
- H. Yang
- />Department of Reproductive Endocrinology, Obstetrics and Gynecology Hospital, Fudan University, 413 Zhaozhou Road, Shanghai, 200011 China
| | - J. Yin
- />Department of Gynecology, Chongqing Ninth People’s Hospital, Chongqing, China
| | - K. Ficarrotta
- />Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL 33620 USA
| | - S. H. Hsu
- />Department of Medicine, SUNY Downstate Medical Center, New York, NY USA
| | - W. Zhang
- />Department of Reproductive Endocrinology, Obstetrics and Gynecology Hospital, Fudan University, 413 Zhaozhou Road, Shanghai, 200011 China
| | - C. Cheng
- />Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| |
Collapse
|
24
|
Timoshenko AV. Towards molecular mechanisms regulating the expression of galectins in cancer cells under microenvironmental stress conditions. Cell Mol Life Sci 2015; 72:4327-40. [PMID: 26245305 PMCID: PMC11113283 DOI: 10.1007/s00018-015-2008-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/12/2015] [Accepted: 07/30/2015] [Indexed: 02/07/2023]
Abstract
Galectins, a family of soluble β-galactoside-binding proteins, serve as mediators of fundamental biological processes, such as cell growth, differentiation, adhesion, migration, survival, and death. The purpose of this review is to summarize the current knowledge regarding the ways in which the expression of individual galectins differs in normal and transformed human cells exposed to various stimuli mimicking physiological and pathological microenvironmental stress conditions. A conceptual point is being made and grounded that the modulation of galectin expression profiles is a key aspect of cellular stress responses. Moreover, this modulation might be precisely regulated at transcriptional and post-transcriptional levels in the context of non-overlapping transcription factors and miRNAs specific to galectins.
Collapse
Affiliation(s)
- Alexander V Timoshenko
- Department of Biology, Western University, 1151 Richmond Street, London, ON, N6A 5B7, Canada.
| |
Collapse
|
25
|
Yang JI, Kong TW, Kim HS, Kim HY. The Proteomic Analysis of Human Placenta with Pre-eclampsia and Normal Pregnancy. J Korean Med Sci 2015; 30:770-8. [PMID: 26028931 PMCID: PMC4444479 DOI: 10.3346/jkms.2015.30.6.770] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/03/2015] [Indexed: 01/27/2023] Open
Abstract
Preeclampsia is one of the most important and complexed disorders for women's health. Searching for novel proteins as biomarkers to reveal pathogenesis, proteomic approaches using 2DE has become a valuable tool to understanding of preeclampsia. To analyze the proteomic profiling of preclamptic placenta compared to that of normal pregnancy for better understanding of pathogenesis in preeclampsia, placentas from each group were handled by use of proteomics approach using 2DE combined with MALDI-TOF-MS. The 20 spots of showing differences were analysed and identified. Among differentially expressed protein spots Hsp 27 and Hsp 70 were selected for validation using Western blot analysis. In preeclamptic placenta 9 differentially expressed proteins were down-regulated with Hsp 70, serum albumin crystal structure chain A, lamin B2, cytokeratin 18, actin cytoplasmic, alpha fibrinogen precursor, septin 2, dihydrolipoamide branched chain transacylase E2 and firbrinogen beta chain. The 11 up-regulated proteins were fibrinogen gamma, cardiac muscle alpha actin proprotein, cytokeratin 8, calumenin, fibrinogen fragment D, F-actin capping protein alpha-1 subunit, Hsp 27, Hsp 40, annexin A4, enoyl-CoA delta isomerase and programmed cell death protein 6. The western blot analysis for validation also showed significant up-regulation of Hsp 27 and down-regulation of Hsp 70 in the placental tissues with preeclmaptic pregnancies. This proteomic profiling of placenta using 2DE in preeclampsia successfully identifies various proteins involved in apoptosis, mitochondrial dysfunction, as well as three Hsps with altered expression, which might play a important role for the understanding of pathogenesis in preeclampsia.
Collapse
Affiliation(s)
- Jeong In Yang
- Department of Obstetrics and Gynecology, Ajou University Medical School, Suwon, Korea
| | - Tae Wook Kong
- Department of Obstetrics and Gynecology, Ajou University Medical School, Suwon, Korea
| | - Haeng Soo Kim
- Department of Obstetrics and Gynecology, Ajou University Medical School, Suwon, Korea
| | - Ho Yeon Kim
- Department of Obstetrics and Gynecology, Kangdong Sacred Heart Hospital, Hallym University Medical School, Seoul, Korea
| |
Collapse
|
26
|
Blois SM, Conrad ML, Freitag N, Barrientos G. Galectins in angiogenesis: consequences for gestation. J Reprod Immunol 2014; 108:33-41. [PMID: 25622880 DOI: 10.1016/j.jri.2014.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/26/2014] [Accepted: 12/03/2014] [Indexed: 12/25/2022]
Abstract
Members of the galectin family have been shown to exert several roles in the context of reproduction. They contribute to placentation, maternal immune regulation and facilitate angiogenesis encompassing decidualisation and placenta formation during pregnancy. In the context of neo-vascularisation, galectins have been shown to augment signalling pathways that lead to endothelial cell activation, cell proliferation, migration and tube formation in vitro in addition to angiogenesis in vivo. Angiogenesis during gestation ensures not only proper foetal growth and development, but also maternal health. Consequently, restriction of placental blood flow has major consequences for both foetus and mother, leading to pregnancy diseases. In this review we summarise both the established and the emerging roles of galectin in angiogenesis and discuss the possible implications during healthy and pathological gestation.
Collapse
Affiliation(s)
- Sandra M Blois
- Universitätsmedizin Berlin, Charité-Center 12 Internal Medicine and Dermatology, Medizinische Klinik mit Schwerpunkt Psychosomatik, Reproductive Medicine Research Group, Berlin, Germany.
| | - Melanie L Conrad
- Universitätsmedizin Berlin, Charité-Center 12 Internal Medicine and Dermatology, Medizinische Klinik mit Schwerpunkt Psychosomatik, Reproductive Medicine Research Group, Berlin, Germany
| | - Nancy Freitag
- Universitätsmedizin Berlin, Charité-Center 12 Internal Medicine and Dermatology, Medizinische Klinik mit Schwerpunkt Psychosomatik, Reproductive Medicine Research Group, Berlin, Germany
| | - Gabriela Barrientos
- Laboratorio de Medicina Experimental, Hospital Alemán, Buenos Aires, Argentina
| |
Collapse
|
27
|
A proteomic analysis of placental trophoblastic cells in preeclampsia-eclampsia. Cell Biochem Biophys 2014; 69:247-58. [PMID: 24343450 DOI: 10.1007/s12013-013-9792-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
To explore the proteomic changes of placental trophoblastic cells in preeclampsia-eclampsia (PE), placental trophoblastic cells from normally pregnant women and women with hypertension during gestational period were prepared by laser capture microdissection (LCM), and proteins isolated from these cells were subjected to labeling and proteolysis with isotope-coded affinity tag reagent. A qualitative and quantitative analysis of the proteome expression of placental trophoblastic cells was made using two-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS). A total of 831 proteins in placental trophoblastic cells were identified by combined use of LCM technique and 2D LC-MS/MS. The result was superior to that of conventional two-dimensional electrophoresis method. There were marked differences in 169 proteins of placental trophoblastic cells between normally pregnant women and women with PE. Of 70 (41.4 %) proteins with more than twofold differences, 31 proteins were down-regulated, and 39 were up-regulated in placental trophoblastic cells of the woman with PE. Laminin expression in placenta trophoblastic cells of women with PE was significantly down-regulated as confirmed by Western blot analysis. These findings provide insights into the proteomic changes in placental trophoblastic cells in response to PE and may identify novel protein targets associated with the pathogenesis of PE.
Collapse
|
28
|
14-3-3 tau (YWHAQ) gene promoter hypermethylation in human placenta of preeclampsia. Placenta 2014; 35:981-8. [DOI: 10.1016/j.placenta.2014.09.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/06/2014] [Accepted: 09/22/2014] [Indexed: 12/16/2022]
|
29
|
Baig S, Kothandaraman N, Manikandan J, Rong L, Ee KH, Hill J, Lai CW, Tan WY, Yeoh F, Kale A, Su LL, Biswas A, Vasoo S, Choolani M. Proteomic analysis of human placental syncytiotrophoblast microvesicles in preeclampsia. Clin Proteomics 2014; 11:40. [PMID: 25469110 PMCID: PMC4247627 DOI: 10.1186/1559-0275-11-40] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 10/29/2014] [Indexed: 12/20/2022] Open
Abstract
Background Placental syncytiotrophoblast microvesicles (STBM) are shed into the maternal circulation during normal pregnancy. STBM circulate in significantly increased amounts in preeclampsia (PE) and are considered to be among contributors to the exaggerated proinflammatory, procoagulant state of PE. However, protein composition of STBM in normal pregnancy and PE remains unknown. We therefore sought to determine the protein components of STBM and whether STBM protein expressions differ in preeclamptic and normal pregnancies. Patients with PE (n = 3) and normal pregnant controls (n = 6) were recruited. STBM were prepared from placental explant culture supernatant. STBM proteins were analyzed by a combination of 1D Gel-LC-MS/MS. Protein expressions levels were quantified using spectral counts and validated by immunohistochemistry. Results Over 400 proteins were identified in the STBM samples. Among these, 25 proteins were found to be differentially expressed in preeclampsia compared to healthy pregnant controls, including integrins, annexins and histones. Conclusion STBM proteins include those that are implicated in immune response, coagulation, oxidative stress, apoptosis as well as lipid metabolism pathways. Differential protein expressions of STBM suggest their pathophysiological relevance in PE. Electronic supplementary material The online version of this article (doi:10.1186/1559-0275-11-40) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sonia Baig
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore & National University Health System, 10 Medical Drive, Singapore, 119260 Singapore
| | - Narasimhan Kothandaraman
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore & National University Health System, 10 Medical Drive, Singapore, 119260 Singapore
| | - Jayapal Manikandan
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore & National University Health System, 10 Medical Drive, Singapore, 119260 Singapore
| | - Li Rong
- Experimental Therapeutic Center, Agency for Science, Technology and Research, 31 Biopolis Way, Singapore, 138669 Singapore
| | - Kim Huey Ee
- Experimental Therapeutic Center, Agency for Science, Technology and Research, 31 Biopolis Way, Singapore, 138669 Singapore
| | - Jeffrey Hill
- Experimental Therapeutic Center, Agency for Science, Technology and Research, 31 Biopolis Way, Singapore, 138669 Singapore
| | - Chin Wee Lai
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore & National University Health System, 10 Medical Drive, Singapore, 119260 Singapore
| | - Wan Yu Tan
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore & National University Health System, 10 Medical Drive, Singapore, 119260 Singapore
| | - Felicia Yeoh
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore & National University Health System, 10 Medical Drive, Singapore, 119260 Singapore
| | - Anita Kale
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore & National University Health System, 10 Medical Drive, Singapore, 119260 Singapore
| | - Lin Lin Su
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore & National University Health System, 10 Medical Drive, Singapore, 119260 Singapore
| | - Arijit Biswas
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore & National University Health System, 10 Medical Drive, Singapore, 119260 Singapore
| | - Sheila Vasoo
- Division of Rheumatology, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore & National University Health System, 10 Medical Drive, Singapore, 119260 Singapore
| | - Mahesh Choolani
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore & National University Health System, 10 Medical Drive, Singapore, 119260 Singapore
| |
Collapse
|
30
|
Ikemori RY, Machado CML, Furuzawa KM, Nonogaki S, Osinaga E, Umezawa K, de Carvalho MA, Verinaud L, Chammas R. Galectin-3 up-regulation in hypoxic and nutrient deprived microenvironments promotes cell survival. PLoS One 2014; 9:e111592. [PMID: 25369297 PMCID: PMC4219723 DOI: 10.1371/journal.pone.0111592] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 10/06/2014] [Indexed: 01/20/2023] Open
Abstract
Galectin-3 (gal-3) is a β-galactoside binding protein related to many tumoral aspects, e.g. angiogenesis, cell growth and motility and resistance to cell death. Evidence has shown its upregulation upon hypoxia, a common feature in solid tumors such as glioblastoma multiformes (GBM). This tumor presents a unique feature described as pseudopalisading cells, which accumulate large amounts of gal-3. Tumor cells far from hypoxic/nutrient deprived areas express little, if any gal-3. Here, we have shown that the hybrid glioma cell line, NG97ht, recapitulates GBM growth forming gal-3 positive pseudopalisades even when cells are grafted subcutaneously in nude mice. In vitro experiments were performed exposing these cells to conditions mimicking tumor areas that display oxygen and nutrient deprivation. Results indicated that gal-3 transcription under hypoxic conditions requires previous protein synthesis and is triggered in a HIF-1α and NF-κB dependent manner. In addition, a significant proportion of cells die only when exposed simultaneously to hypoxia and nutrient deprivation and demonstrate ROS induction. Inhibition of gal-3 expression using siRNA led to protein knockdown followed by a 1.7–2.2 fold increase in cell death. Similar results were also found in a human GBM cell line, T98G. In vivo, U87MG gal-3 knockdown cells inoculated subcutaneously in nude mice demonstrated decreased tumor growth and increased time for tumor engraftment. These results indicate that gal-3 protected cells from cell death under hypoxia and nutrient deprivation in vitro and that gal-3 is a key factor in tumor growth and engraftment in hypoxic and nutrient-deprived microenvironments. Overexpression of gal-3, thus, is part of an adaptive program leading to tumor cell survival under these stressing conditions.
Collapse
Affiliation(s)
- Rafael Yamashita Ikemori
- Faculdade de Medicina da Universidade de São Paulo, Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil
- * E-mail: (RYI); (RC)
| | - Camila Maria Longo Machado
- Faculdade de Medicina da Universidade de São Paulo, Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil
- Laboratório de Investigação Médica em Medicina Nuclear – LIM43, São Paulo, SP, Brazil
| | - Karina Mie Furuzawa
- Faculdade de Medicina da Universidade de São Paulo, Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil
| | - Suely Nonogaki
- Departamento de Patologia do Instituto Adolfo Lutz, São Paulo, SP, Brazil
| | - Eduardo Osinaga
- Facultad de Medicina de La Universidad de La Republica, Montevideo, Uruguay
| | | | | | - Liana Verinaud
- Departamento de Microbiologia e Imunologia, Instituto de Biologia, UNICAMP, Campinas, SP, Brazil
| | - Roger Chammas
- Faculdade de Medicina da Universidade de São Paulo, Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil
- * E-mail: (RYI); (RC)
| |
Collapse
|
31
|
Gharesi-Fard B, Zolghadri J, Kamali-Sarvestani E. Proteome differences in the first- and third-trimester human placentas. Reprod Sci 2014; 22:462-8. [PMID: 25201741 DOI: 10.1177/1933719114549857] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Placenta is a transient and unique pregnancy tissue that supports the fetus nutritionally and metabolically. Expression of the unique placental proteins in different stages may influence the development of the fetus as well as the pregnancy outcome. The present study aimed to compare the total placental proteome differences between the normal first- and third-trimester human placentas. In the current study, placental proteome was compared between normal first- and third-trimester placentas using 2-dimensional polyacrylamide gel electrophoresis method for separation and matrix-assisted laser desorption/ionization time-of flight mass spectrometry technique for identification of the proteins. Despite the overall similarities, comparison of the mean intensity of the protein spots between the first- and third-trimester placental proteomes revealed that 22 spots were differentially expressed (P < .05) among which 11 distinct spots were successfully identified. Of the 11 differentially expressed proteins, 4 were increased (protein disulfide isomerase, tropomyosin 4 isoform 2, enolase 1, and 78-kDa glucose-regulated protein), while the remaining 7 (actin γ1 propeptide, heat shock protein gp96, α1-antitrypsin, EF-hand domain family member D1, tubulin α1, glutathione S-transferase, and vitamin D binding protein) showed decreased expression in the placentas from the first-trimester compared to the full-term ones. In summary, the results of the present study as the first research on the comparison of the first- and third-trimester human placental proteomes introduced a group of 11 proteins with altered expression. Interestingly, some of these proteins are reported to be altered in pregnancy-related disorders.
Collapse
Affiliation(s)
- Behrouz Gharesi-Fard
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran Proteomics Laboratory, School of Advanced Medical Sciences and Technologies, Shiraz, Iran
| | - Jaleh Zolghadri
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran Department of Obstetrics and Gynecology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Eskandar Kamali-Sarvestani
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran Proteomics Laboratory, School of Advanced Medical Sciences and Technologies, Shiraz, Iran Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
32
|
Gharesi-Fard B, Zolghadri J, Kamali-Sarvestani E. Alteration in the expression of proteins in unexplained recurrent pregnancy loss compared with in the normal placenta. J Reprod Dev 2014; 60:261-7. [PMID: 24621454 PMCID: PMC4139499 DOI: 10.1262/jrd.2013-096] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The placenta is a unique pregnancy-related tissue and plays a key role in occurrence of unexplained recurrent pregnancy loss
(URPL). Abnormal placentation might play a key role in occurrence of URPL. Therefore, the purpose of this study was to compare the
human placental proteome between URPL placentas and normal placental matched for gestational week. Total placental proteins were
extracted, and the two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) technique was used for separation of the placental
proteomes. Protein spots differentially expressed between URPL and normal placentas were selected and identified by the
matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF/TOF) technique after being digested in the
gel. Moreover, quantitative real-time PCR and Western blot techniques were used to confirm the differential expression mass
results for some differentially expressed proteins. The results indicated that at least 19 protein spots were differentially
expressed between URPL and normal placentas (P < 0.05), and twelve of them were successfully identified. While only two
proteins were downregulated (calumenin and enolase 1), the remaining ten spots (actin gamma 1 propeptide, cathepsin D
prepropeptide, heat shock protein gp96, tubulin beta, tubulin alpha 1, glutathione S-transferase, vitamin D binding protein,
prohibitin, actin beta, apolipoprotein A-I) showed increased expression in URPL cases in comparison with normal placentas.
Real-time PCR also confirmed the downregulation of calumenin and upregulation of prohibitin and apolipoprotein A-I at the mRNA
levels. In conclusion, the results of the present study showed that alteration in the expression of proteins involved in
proliferation and migration of endothelial cells as well as control of coagulation by these cells might play an important role in
the pathogenesis of URPL.
Collapse
|
33
|
Gourvas V, Soulitzis N, Konstantinidou A, Dalpa E, Koukoura O, Koutroulakis D, Spandidos DA, Sifakis S. Reduced ANXA5 mRNA and protein expression in pregnancies complicated by preeclampsia. Thromb Res 2013; 133:495-500. [PMID: 24393658 DOI: 10.1016/j.thromres.2013.12.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/16/2013] [Accepted: 12/19/2013] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The placental anticoagulant protein Annexin A5 (ANXA5) is a multifunctional protein that is highly expressed on the apical surfaces of syncytiotrophoblasts, and plays an important role in haemostatic regulations, maintaining blood fluidity of the placenta. The aim of this study was to investigate the expression of ANXA5 in pregnancies complicated by preeclampsia (PE). MATERIALS AND METHODS Placental tissue samples were collected from 23 pregnancies with PE and 34 normal pregnancies. ANXA5 mRNA levels were measured by quantitative Real-Time PCR (qPCR), while ANXA5 protein expression was measured by Western Blot (WB) and immunohistochemistry. RESULTS ANXA5 mRNA expression in PE samples was lower than 1% of its expression in normal samples (mean ± SD: 0.002 ± 0.004 vs. 0.55 ± 0.38, p < 0.001), while ANXA5 protein levels in PE samples were approximately at 65% of the average normal expression (mean ± SD: 0.53 ± 0.30 vs. 0.81 ± 0.25, p=0.001). Immunohistochemical analysis also verified the above results, since PE placentas tended to have low labelling indexes (LIs), in contrast to controls which demonstrated high LIs (p=0.020). Statistical analysis of the WB data revealed that ANXA5 protein expression was increased in PE smokers vs. PE non-smokers (mean ± SD: 0.64 ± 0.23 vs. 0.41 ± 0.33, p=0.027). CONCLUSIONS These results suggest that ANXA5 downregulation could be part of the pathophysiology of PE and the possible impairment in coagulation processes, which are seen in pregnancies that demonstrate PE. Further studies may investigate whether ANXA5 could be used as a biomarker for the early detection of PE and for the prediction of its severity.
Collapse
Affiliation(s)
- Victor Gourvas
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Nikolaos Soulitzis
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion, Crete, Greece
| | | | - Efterpi Dalpa
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Ourania Koukoura
- Department of Obstetrics and Gynaecology, University Hospital of Heraklion, Crete, Greece
| | - Demetrios Koutroulakis
- Department of Obstetrics and Gynaecology, University Hospital of Heraklion, Crete, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Stavros Sifakis
- Department of Obstetrics and Gynaecology, University Hospital of Heraklion, Crete, Greece.
| |
Collapse
|
34
|
Lim R, Barker G, Lappas M. TREM-1 expression is increased in human placentas from severe early-onset preeclamptic pregnancies where it may be involved in syncytialization. Reprod Sci 2013; 21:562-72. [PMID: 24026310 DOI: 10.1177/1933719113503406] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Preeclampsia, a major cause of maternal and perinatal morbidity and mortality, is thought to be attributable to dysregulation of trophoblast invasion and differentiation. Microarray studies have shown that triggering receptor expressed on myeloid cells (TREM) 1, a cell surface molecule involved in the inflammatory response, is increased in preeclamptic placentas. The aim of this study was to determine the level of TREM-1 expression in severe early-onset preeclamptic placentas and its functional role in trophoblast differentiation. Placenta was obtained from women with severe early-onset preeclampsia (n = 19) and gestationally matched preterm controls placentas (n = 8). The TREM-1 expression was determined by quantitative reverse transcriptase polymerase chain reaction and Western blotting. The effect of TREM-1 small interfering RNA on cell fusion and differentiation was assessed in BeWo cells. The effect of oxygen tension on TREM-1 levels, in basal or forskolin-treated BeWo cells, was also assessed. The TREM-1 was localized to the syncytiotrophoblast layer, and TREM-1 messenger RNA and protein expression was significantly increased in preeclamptic placentas. The BeWo cells treated with forskolin were associated with increased TREM-1 expression. The TREM-1 knockdown inhibited forskolin-induced expression of the differentiation marker β-human chorionic gonadotropin but had no effect on the cell-fusion marker E-cadherin. The increase in TREM-1 expression in BeWo cells treated with forskolin during normoxic conditions was reduced in forskolin-treated cells under hypoxic conditions. In conclusion, TREM-1 is increased in preeclamptic placentas and by forskolin treatment. Knockdown of TREM-1 by RNA interference inhibits cell differentiation but has no effect on cell-cell fusion. Finally, we show that TREM-1 upregulation is attenuated under hypoxic conditions in which cell differentiation is impaired.
Collapse
Affiliation(s)
- Ratana Lim
- 1Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | | | | |
Collapse
|
35
|
Syncytin-1 modulates placental trophoblast cell proliferation by promoting G1/S transition. Cell Signal 2013; 25:1027-35. [PMID: 23333240 DOI: 10.1016/j.cellsig.2013.01.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 12/22/2012] [Accepted: 01/08/2013] [Indexed: 02/07/2023]
Abstract
Placental syncytiotrophoblasts formed by the fusion of cytotrophoblasts constitute the interface between maternal and fetal circulations. The syncytium, composed of a continuous layer of syncytiotrophoblasts, assumes the fetal-maternal nutrient exchange, placental barrier, and endocrine functions important for the maintenance of normal pregnancy. Syncytin-1, an endogenous retroviral gene product, mediates the fusion of cytotrophoblasts. While the fusogenic function of syncytin-1 has been well established, little is known regarding its nonfusogenic activities. This study investigates the role of syncytin-1 in trophoblast proliferation. We found that syncytin-1 knockdown significantly inhibited BeWo cell growth and DNA synthesis. Moreover, time course studies on key cell cycle regulators demonstrated an upregulation of p15 and downregulation of CDK4, E2F1, PCNA, and c-Myc, which consequently led to a reduced level of CDK1. These results, together with those from flow cytometry analysis, indicated that syncytin-1 knockdown blocked the G1/S transition phase of the cell cycle. Moreover, syncytin-1 overexpression promoted CHO cell proliferation and led to changes opposite to those observed in syncytin-1 knockdown experiments, confirming the critical role of syncytin-1 for G1/S transition. Thus, syncytin-1, through both nonfusogenic and fusogenic, functions, may co-regulate the input (proliferation) and output (fusion) of the cytotrophoblast "pool". Such co-regulation could be an efficient way to achieve the balance between these two opposing processes, which is required for syncytium homeostasis. Since decreased syncytin-1 expression has been shown to be associated with preeclamptic and hypoxic condition, insufficient replenishing of the cytotrophoblast "pool" may contribute to syncytium deficiency, a critical pathological change frequently found in preeclamptic placentas.
Collapse
|
36
|
Mushahary D, Gautam P, Sundaram CS, Sirdeshmukh R. Expanded protein expression profile of human placenta using two-dimensional gel electrophoresis. Placenta 2012; 34:193-6. [PMID: 23261269 DOI: 10.1016/j.placenta.2012.11.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 11/14/2012] [Accepted: 11/18/2012] [Indexed: 10/27/2022]
Abstract
Studying proteins expressed in placenta is important to understand its function in pregnancy and fetal growth. Here, we present protein expression profiling from normal human placenta by 2-D gel - MS/MS approach that resulted in identification of 117 unique proteins. Integration with earlier analyses resulted in a profile of 423 non-redundant proteins, 75 of them being new identifications unique to this study including their isoforms. We present a compilation of placental protein expressions identified by proteomic approaches, their functions and known clinical implications. We believe that our dataset would be a useful resource for studies related to placental dysfunction.
Collapse
Affiliation(s)
- D Mushahary
- CSIR - Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | | | | | | |
Collapse
|
37
|
Wei BR, Xu C, Rote NS. Increased resistance to apoptosis during differentiation and syncytialization of BeWo choriocarcinoma cells. ACTA ACUST UNITED AC 2012; 3:805-813. [PMID: 29623239 DOI: 10.4236/abb.2012.326100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transition from mononuclear villous cytotrophoblast into multinuclear syncytiotrophoblast in the human placenta is accompanied by changes in apoptosis-related proteins and an apparent increased resistance to induced apoptosis. We investigated the specific nature and timing of changes in Bcl-2, Bax, p53, and caspases 3 and 8 in forskolin-treated BeWo choriocarcinoma cells, a model for villous cytotrophoblast differentiation. BeWo cells were treated with forskolin or vehicle alone for up to 72 h and evaluated at 24 h intervals for syncytialization and quantitative expression specific apoptosis-related proteins and mRNAs. Syncytialization was quantified using fluorescent staining of intercellular membranes and enumeration of the percentage of nuclei in multinucleate cells, and differential localization of apoptosis-related proteins to multinuclear or mononuclear cells was determined by quantitative immunofluorescence. Forskolin treatment for up to 72 h resulted in 80% syncytialization, increased expression of Bcl-2 protein (P < 0.01) and mRNA (P < 0.05), and significantly decreased expression of protein and mRNA for Bax, p53, and caspases 3 and 8. Syncytialized cells expressed higher levels of Bcl-2 protein concurrent with increased resistance to cisplatin-induced apoptosis. Thus, syncytialization of BeWo cells was accompanied by altered transcription of apoptotic-related proteins characteristic of increased apoptosis resistance secondary to increased expression of the anti-apoptotic protein Bcl-2 and diminish expression of pro-apoptotic proteins.
Collapse
Affiliation(s)
- Bih-Rong Wei
- Department of Reproductive Biology, Case Western Reserve University School of Medicine, Case Western Reserve University, Cleveland, USA.,Department of Obstetrics and Gynecology, University Hospitals Case Medical Center, Cleveland, USA.,SAIC-Frederick, Bethesda, USA
| | - Chuan Xu
- Department of Reproductive Biology, Case Western Reserve University School of Medicine, Case Western Reserve University, Cleveland, USA.,Department of Obstetrics and Gynecology, University Hospitals Case Medical Center, Cleveland, USA
| | - Neal S Rote
- Department of Reproductive Biology, Case Western Reserve University School of Medicine, Case Western Reserve University, Cleveland, USA.,Department of Obstetrics and Gynecology, University Hospitals Case Medical Center, Cleveland, USA
| |
Collapse
|
38
|
Brouillard F, Fritsch J, Edelman A, Ollero M. Contribution of proteomics to the study of the role of cytokeratins in disease and physiopathology. Proteomics Clin Appl 2012; 2:264-85. [PMID: 21136830 DOI: 10.1002/prca.200780018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cytokeratins (CKs), the most abundant group of cytoskeletal intermediate filaments, and proteomics are strongly connected. On the one hand, proteomics has been extremely useful to uncover new features and functions of CKs, on the other, the highly abundant CKs serve as an exceptional tool to test new technological developments in proteomics. As a result, proteomics has contributed to finding valuable associations of CKs with diseases as diverse as cancer, cystic fibrosis, steatohepatitis, viral and bacterial infection, keratoconus, vitreoretinopathy, preeclampsia or the chronic fatigue syndrome, as well as to characterizing their participation in a number of physiopathological processes, including drug resistance, response to toxicants, inflammation, stem cell differentiation, embryo development, and tissue repair. In some cases, like in cystic fibrosis, CKs have been described as potential therapeutic targets. The development of a specific field of proteomics where CKs become the main subject of research aims and hypotheses is suggested.
Collapse
Affiliation(s)
- Franck Brouillard
- INSERM, Unité 845, Paris, France; Faculté de Médecine René Descartes, Université Paris-Descartes, Plateau Protéomes IFR94, Paris, France
| | | | | | | |
Collapse
|
39
|
Yang H, Lei C, Cheng C, Feng Y, Zhang W, Petracco RG, Sak S. The Antiapoptotic Effect of Galectin-3 in Human Endometrial Cells under the Regulation of Estrogen and Progesterone1. Biol Reprod 2012; 87:39. [DOI: 10.1095/biolreprod.112.099234] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
40
|
Chae JI, Kim J, Lee SG, Koh MW, Jeon YJ, Kim DW, Ko SM, Seo KS, Lee HK, Choi NJ, Cho SK, Ryu J, Kang S, Lee DS, Chung HM, Koo DB. Quantitative proteomic analysis of pregnancy-related proteins from peripheral blood mononuclear cells during pregnancy in pigs. Anim Reprod Sci 2012; 134:164-76. [PMID: 22917877 DOI: 10.1016/j.anireprosci.2012.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 05/17/2012] [Accepted: 07/13/2012] [Indexed: 01/20/2023]
Abstract
Information obtained from peripheral blood could help us understand the underlying mechanisms in autoimmune diseases, cancer, pregnancy, and other conditions. In this paper, we present the protein map of porcine peripheral blood mononuclear cells (PBMC) to better understand the molecular expression changes that occur during pregnancy using proteomic analysis. We detected 94 differentially expressed proteins in pregnant vs. non-pregnant (NP) pigs, and a representative set of the proteins was subjected to LC-MS/MS analysis. Furthermore, the identified proteins were categorized according to their biological process and molecular function. By classifying the proteins according to their functions, a large number of differentially regulated proteins involved in anti-oxidant, detoxification and stress response pathways were found, including peroxiredoxin (PRX) 1, 2, and 6, glutathione-S-transferase (GST), annexin A2, and A6, and heat shock protein 27 (HSP 27) during pregnancy (pregnancy d of E40, embryonic day 40; E70, embryonic day 70; and E93, embryonic day 93) compared with non-pregnancy. In this study, a proteomic approach utilizing 2-DE and LC-MS/MS was applied to evaluate specific molecular expression changes during pregnancy compared with non-pregnancy. Together, these data offer new information about the proteome map and factors that are differentially regulated during maintenance of normal pregnancy.
Collapse
Affiliation(s)
- Jung-Il Chae
- Department of Oral Pharmacology, School of Dentistry and Institute of Dental Bioscience, BK21 Project, Chonbuk National University, Jeonju, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mary S, Patil GV, Kulkarni AV, Kulkarni MJ, Joshi SR, Mehendale SS, Giri AP. Dynamic proteome in enigmatic preeclampsia: an account of molecular mechanisms and biomarker discovery. Proteomics Clin Appl 2012; 6:79-90. [PMID: 22447695 DOI: 10.1002/prca.201100089] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The coevolution of genomics and proteomics has led to advancements in the field of diagnosis and molecular mechanisms of disease. Proteomics is now stepping into the field of obstetrics, where early diagnosis of pregnancy complication such as preeclampsia (PE) is imperative. PE is a multifactorial disease characterized by hypertension with proteinuria, which is a leading cause of maternal and neonatal morbidity and mortality occurring in 5-7% of pregnancies worldwide. This review discusses the probable molecular mechanisms that lead to PE and summarizes the proteomics research carried out in understanding the pathogenicity of PE, and for identifying the candidate biomarker for diagnosis of the disease.
Collapse
Affiliation(s)
- Sheon Mary
- Division of Biochemical Sciences, National Chemical Laboratory (CSIR), Pune, Maharashtra, India
| | | | | | | | | | | | | |
Collapse
|
42
|
Menkhorst EM, Lane N, Winship AL, Li P, Yap J, Meehan K, Rainczuk A, Stephens A, Dimitriadis E. Decidual-secreted factors alter invasive trophoblast membrane and secreted proteins implying a role for decidual cell regulation of placentation. PLoS One 2012; 7:e31418. [PMID: 22359590 PMCID: PMC3281063 DOI: 10.1371/journal.pone.0031418] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/07/2012] [Indexed: 11/25/2022] Open
Abstract
Inadequate or inappropriate implantation and placentation during the establishment of human pregnancy is thought to lead to first trimester miscarriage, placental insufficiency and other obstetric complications. To create the placental blood supply, specialized cells, the ‘extravillous trophoblast’ (EVT) invade through the differentiated uterine endometrium (the decidua) to engraft and remodel uterine spiral arteries. We hypothesized that decidual factors would regulate EVT function by altering the production of EVT membrane and secreted factors. We used a proteomics approach to identify EVT membrane and secreted proteins regulated by decidual cell factors. Human endometrial stromal cells were decidualized in vitro by treatment with estradiol (10−8 M), medroxyprogesterone acetate (10−7 M) and cAMP (0.5 mM) for 14 days. Conditioned media (CM) was collected on day 2 (non-decidualized CM) and 14 (decidualized CM) of treatment. Isolated primary EVT cultured on Matrigel™ were treated with media control, non-decidualized or decidualized CM for 16 h. EVT CM was fractionated for proteins <30 kDa using size-exclusion affinity nanoparticles (SEAN) before trypsin digestion and HPLC-MS/MS. 43 proteins produced by EVT were identified; 14 not previously known to be expressed in the placenta and 12 which had previously been associated with diseases of pregnancy including preeclampsia. Profilin 1, lysosome associated membrane glycoprotein 1 (LAMP1), dipeptidyl peptidase 1 (DPP1/cathepsin C) and annexin A2 expression by interstitial EVT in vivo was validated by immunhistochemistry. Decidual CM regulation in vitro was validated by western blotting: decidualized CM upregulated profilin 1 in EVT CM and non-decidualized CM upregulated annexin A2 in EVT CM and pro-DPP1 in EVT cell lysate. Here, non-decidualized factors induced protease expression by EVT suggesting that non-decidualized factors may induce a pro-inflammatory cascade. Preeclampsia is a pro-inflammatory condition. Overall, we have demonstrated the potential of a proteomics approach to identify novel proteins expressed by EVT and to uncover the mechanisms leading to disease states.
Collapse
Affiliation(s)
| | - Natalie Lane
- Prince Henry's Institute, Clayton, Victoria, Australia
| | | | - Priscilla Li
- Prince Henry's Institute, Clayton, Victoria, Australia
| | - Joanne Yap
- Prince Henry's Institute, Clayton, Victoria, Australia
| | - Katie Meehan
- Prince Henry's Institute, Clayton, Victoria, Australia
| | - Adam Rainczuk
- Prince Henry's Institute, Clayton, Victoria, Australia
| | | | | |
Collapse
|
43
|
Bang JI, Bae DW, Lee HS, Deb GK, Kim MO, Sohn SH, Han CH, Kong IK. Proteomic analysis of placentas from cloned cat embryos identifies a set of differentially expressed proteins related to oxidative damage, senescence and apoptosis. Proteomics 2011; 11:4454-67. [DOI: 10.1002/pmic.201000772] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 08/25/2011] [Accepted: 08/28/2011] [Indexed: 12/16/2022]
|
44
|
Yang H, Taylor HS, Lei C, Cheng C, Zhang W. Hormonal Regulation of Galectin 3 in Trophoblasts and Its Effects on Endometrium. Reprod Sci 2011; 18:1118-27. [DOI: 10.1177/1933719111407212] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Huan Yang
- Department of Reproductive Endocrinology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Hugh S. Taylor
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Sciences, and Department of Molecular, Cellular and Developmental Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Caixia Lei
- Shanghai Ji Ai Genetics and IVF China-USA Centre, Shanghai, China
| | - Chao Cheng
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Wei Zhang
- Department of Reproductive Endocrinology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
45
|
Doroudgar S, Glembotski CC. The cardiokine story unfolds: ischemic stress-induced protein secretion in the heart. Trends Mol Med 2011; 17:207-14. [PMID: 21277256 PMCID: PMC3078974 DOI: 10.1016/j.molmed.2010.12.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 12/22/2022]
Abstract
Intercellular communication depends on many factors, including proteins released via the classical or non-classical secretory pathways, many of which must be properly folded to be functional. Owing to their adverse effects on the secretion machinery, stresses such as ischemia can impair the folding of secreted proteins. Paradoxically, cells rely on secreted proteins to mount a response designed to resist stress-induced damage. This review examines this paradox using proteins secreted from the heart, cardiokines, as examples, and focuses on how the ischemic heart maintains or even increases the release of select cardiokines that regulate important cellular processes in the heart, including excitation-contraction coupling, hypertrophic growth, myocardial remodeling and stem cell function, in ways that moderate ischemic damage and enhance cardiac repair.
Collapse
Affiliation(s)
- Shirin Doroudgar
- SDSU Heart Institute and the Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | | |
Collapse
|
46
|
Sado T, Naruse K, Noguchi T, Haruta S, Yoshida S, Tanase Y, Kitanaka T, Oi H, Kobayashi H. Inflammatory pattern recognition receptors and their ligands: factors contributing to the pathogenesis of preeclampsia. Inflamm Res 2011; 60:509-20. [PMID: 21380737 PMCID: PMC7095834 DOI: 10.1007/s00011-011-0319-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 02/02/2011] [Accepted: 02/17/2011] [Indexed: 01/01/2023] Open
Abstract
Problem Preeclampsia, a pregnancy-specific hypertensive syndrome, is one of the leading causes of premature births as well as fetal and maternal death. Preeclampsia lacks effective therapies because of the poor understanding of disease pathogenesis. The aim of this paper is to review molecular signaling pathways that could be responsible for the pathogenesis of preeclampsia. Method of study This article reviews the English-language literature for pathogenesis and pathophysiological mechanisms of preeclampsia based on genome-wide gene expression profiling and proteomic studies. Results We show that the expression of the genes and proteins involved in response to stress, host-pathogen interactions, immune system, inflammation, lipid metabolism, carbohydrate metabolism, growth and tissue remodeling was increased in preeclampsia. Several significant common pathways observed in preeclampsia overlap the datasets identified in TLR (Toll-like receptor)- and RAGE (receptor for advanced glycation end products)-dependent signaling pathways. Placental oxidative stress and subsequent chronic inflammation are considered to be major contributors to the development of preeclampsia. Conclusion This review summarizes recent advances in TLR- and RAGE-mediated signaling and the target molecules, and provides new insights into the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Toshiyuki Sado
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Jin H, Hu R, Cheng Y, Yang F, Zhou X, Li X, Yang PY. Differential protein expression level identification by knockout of 14-3-3τ with siRNA technique and 2DE followed MALDI-TOF-TOF-MS. Analyst 2011; 136:401-6. [DOI: 10.1039/c0an00309c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Dellios NL, Lappas M, Young IR, Palliser HK, Hirst JJ, Oliva K, Ayhan M, Rice GE. Increased expression of alpha-enolase in cervico-vaginal fluid during labour. Eur J Obstet Gynecol Reprod Biol 2010; 153:16-22. [PMID: 20650559 DOI: 10.1016/j.ejogrb.2010.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 05/13/2010] [Accepted: 06/24/2010] [Indexed: 11/18/2022]
Abstract
OBJECTIVES The aim of this study was (i) to characterise differentially expressed proteins in cervico-vaginal fluid (CVF) at the time of preterm labour onset and (ii) to confirm these studies in human CVF samples taken from women before and during spontaneous labour. STUDY DESIGN Preterm labour was induced in sheep (n = 5) via fetal dexamethasone infusion (1 mg/24 h). CVF samples were taken prior to dexamethasone infusion (0 h), 28 h after the start of dexamethasone infusion, and immediately prior to delivery. Two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) were used to identify differentially expressed proteins. For the human studies, paired CVF samples were taken 5-9 days before labour and during spontaneous labour onset (n = 7). RESULTS There was a 4.2-fold increase in α-enolase protein expression in sheep CVF during labour. Likewise, α-enolase protein expression was significantly increased during spontaneous human labour at term. CONCLUSIONS Alpha-enolase is known to be bound to neutrophils and interact in the immune response, and thus may play a role in inflammation associated with human labour.
Collapse
Affiliation(s)
- Nicole L Dellios
- Translational Proteomics, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Gharesi-Fard B, Zolghadri J, Kamali-Sarvestani E. Proteome Differences of Placenta Between Pre-Eclampsia and Normal Pregnancy. Placenta 2010; 31:121-5. [DOI: 10.1016/j.placenta.2009.11.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/07/2009] [Accepted: 11/10/2009] [Indexed: 11/16/2022]
|