1
|
Cheng T, Wu L, Tao J, Tu S, Fan X, Wang Y, Wang Y. Natural Human Antimicrobial Peptides and Female Reproductive Tract Infections. Arch Pharm (Weinheim) 2025; 358:e70008. [PMID: 40376728 DOI: 10.1002/ardp.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/19/2025] [Accepted: 04/25/2025] [Indexed: 05/18/2025]
Abstract
Female reproductive tract infections (RTIs) are a major health challenge worldwide and are the leading cause of infertility and adverse pregnancy outcomes. The rising incidence of RTIs highlights their status as a major public health issue. Microbial dysbiosis, particularly bacterial, fungal, and viral infections, constitutes the primary etiological factor disrupting female reproductive health. Antimicrobial peptides (AMPs) are evolutionarily conserved host defense molecules that exhibit broad-spectrum antimicrobial activity against pathogens, as well as anti-inflammatory and immunomodulatory properties. This review systematically summarizes the structural diversity, biological sources, and mechanistic pathways of human-derived AMPs in combating RTIs, with a particular emphasis on their therapeutic potential in fertility preservation. Emerging evidence suggests AMPs as promising alternatives to conventional antibiotics in the post-antibiotic era.
Collapse
Affiliation(s)
- Tong Cheng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, Lanzhou, China
| | - Luming Wu
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jijun Tao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, Lanzhou, China
| | - Shiyan Tu
- The First Hospital of Lanzhou University & The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xue Fan
- The First Hospital of Lanzhou University & The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yixiang Wang
- The First Hospital of Lanzhou University & The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yiqing Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, Lanzhou, China
- The First Hospital of Lanzhou University & The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Reproductive Medicine Transformation Application & Key Laboratory for Reproductive Medicine and Embryo of Gansu Province, Lanzhou, China
| |
Collapse
|
2
|
Yun S, Kang SH, Ryu J, Kim K, Lee KY, Lee JJ, Hong JY, Son GH. The Role of Beta-Defensin 2 in Preventing Preterm Birth with Chorioamnionitis: Insights into Inflammatory Responses and Epithelial Barrier Protection. Int J Mol Sci 2025; 26:2127. [PMID: 40076749 PMCID: PMC11900102 DOI: 10.3390/ijms26052127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/13/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Antimicrobial peptides, such as beta-defensin 2 (BD2), are vital in controlling infections and immune responses. In this study, we investigated the expression and role of BD2 in the amniotic membrane and human amniotic epithelial cells (hAECs) from patients with preterm birth and chorioamnionitis, focusing on its regulation of inflammatory cytokines and its protective effect on the epithelial barrier. Our results show increased BD2 expression in chorioamnionitis, and Lipopolysaccharide (LPS)-induced inflammation increased BD2 release from hAECs in a dose- and time-dependent manner. BD2 treatment effectively modulated the inflammatory response by reducing pro-inflammatory cytokines (IL-6, IL-1β) and enhancing the release of the anti-inflammatory cytokine IL-10. Additionally, BD2 helps preserve epithelial barrier integrity by restoring E-cadherin expression and reducing Snail expression in inflamed hAECs. In an LPS-induced preterm birth mouse model, BD2 treatment delayed preterm delivery and reduced inflammatory cytokine levels. These results suggest that BD2 plays a protective role in preventing preterm birth by regulating inflammation and maintaining epithelial barrier function, highlighting its therapeutic potential for inflammation-related preterm birth.
Collapse
Affiliation(s)
- Sangho Yun
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (S.Y.); (S.-H.K.); (J.J.L.)
| | - Shin-Hae Kang
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (S.Y.); (S.-H.K.); (J.J.L.)
| | - Jiwon Ryu
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea; (J.R.); (K.K.); (K.-Y.L.)
| | - Kyoungseon Kim
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea; (J.R.); (K.K.); (K.-Y.L.)
| | - Keun-Young Lee
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea; (J.R.); (K.K.); (K.-Y.L.)
| | - Jae Jun Lee
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (S.Y.); (S.-H.K.); (J.J.L.)
- Departments of Anesthesiology and Pain Medicine, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Ji Young Hong
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (S.Y.); (S.-H.K.); (J.J.L.)
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Sacred Heart Hospital, Hallym University Medical Center, Chuncheon 24253, Republic of Korea
| | - Ga-Hyun Son
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (S.Y.); (S.-H.K.); (J.J.L.)
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea; (J.R.); (K.K.); (K.-Y.L.)
| |
Collapse
|
3
|
Zhou L, Zhang Y, Yi X, Chen Y, Li Y. Advances in proteins, polysaccharides, and composite biomaterials for enhanced wound healing via microenvironment management: A review. Int J Biol Macromol 2024; 282:136788. [PMID: 39490870 DOI: 10.1016/j.ijbiomac.2024.136788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Wound management is crucial yet imposes substantial social and economic burdens on patients and healthcare systems. The recent rapid advancements in biomaterials and manufacturing technology have created favorable conditions for expediting wound healing. This review examines the latest developments in biomacromolecule-based wound dressings, with a particular focus on proteins and polysaccharides, and their role in modulating the wound microenvironment. The importance of extracellular matrix (ECM)-inspired materials, such as hydrogels and biomimetic dressings, is emphasized. Additionally, this review explores the functionalization of wound dressings, emphasizing properties such as hemostatic capabilities, pain relief, antimicrobial activity, and innovative smart functions like electroceuticals and wound condition monitoring. The study integrates discussions on both the macroscopic healing outcomes and the microscopic pathophysiological mechanisms, highlighting recent advances in managing wound environments to expedite healing. Finally, the review critically assesses the challenges associated with the clinical translation of these wound-healing materials in the future.
Collapse
Affiliation(s)
- Lingyan Zhou
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoli Yi
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yining Chen
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Shen CJ, Hu SY, Hou CP, Shen CF, Cheng CM. T Cell Responses to SARS-CoV-2 in Vaccinated Pregnant Women: A Comparative Study of Pre-Pregnancy and During-Pregnancy Infections. Vaccines (Basel) 2024; 12:1208. [PMID: 39591111 PMCID: PMC11598868 DOI: 10.3390/vaccines12111208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/06/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
The COVID-19 pandemic has posed unprecedented challenges to global public health, particularly for vulnerable populations like pregnant women. This study delves into the T cell immune responses in pregnant women with confirmed SARS-CoV-2 infection, all of whom received three doses of a COVID-19 vaccine. Using the ELISpot assay, we measured T cell responses against SARS-CoV-2 spike S1 and nucleocapsid peptides in two groups: those infected before and during pregnancy. Our results showed weak to moderate correlations between T cell responses and neutralizing antibody levels, with no statistically significant differences between the two groups. T cell reactivity appeared to decrease over time post-diagnosis, regardless of infection timing. Intriguingly, over half of the participants maintained detectable T cell memory responses beyond one year post-infection, suggesting the long-term persistence of cellular immunity. These insights contribute to the understanding of COVID-19 immunology in pregnant women, highlighting the importance of considering both humoral and cellular immune responses in this high-risk population.
Collapse
Affiliation(s)
- Ching-Ju Shen
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Shu-Yu Hu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan;
| | | | - Ching-Fen Shen
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan;
| |
Collapse
|
5
|
Lintao RCV, Richardson LS, Kammala AK, Chapa J, Yunque-Yap DA, Khanipov K, Golovko G, Dalmacio LMM, Menon R. PGRMC2 and HLA-G regulate immune homeostasis in a microphysiological model of human maternal-fetal membrane interface. Commun Biol 2024; 7:1041. [PMID: 39179795 PMCID: PMC11344061 DOI: 10.1038/s42003-024-06740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024] Open
Abstract
Chorion trophoblasts (CTCs) and immune cell-enriched decidua (DECs) comprise the maternal-fetal membrane interface called the chorio-decidual interface (CDi) which constantly gets exposed to maternal stressors without leading to labor activation. This study explored how CTCs act as a barrier at CDi. The roles of human leukocyte antigen (HLA)-G and progesterone receptor membrane component 2 (PGRMC2) in mediating immune homeostasis were also investigated. The CDi was recreated in a two-chamber microfluidic device (CDi-on-chip) with an outer chamber of primary DECs and immune cell line-derived innate immune cells and an inner chamber of wild-type or PGRMC2 or HLA-G knockout immortalized CTCs. To mimic maternal insults, DECs were treated with lipopolysaccharide, poly(I:C), or oxidative stress inducer cigarette smoke extract. Expression levels of inflammation and immunity genes via targeted RNA sequencing, production of soluble mediators, and immune cell migration into CTCs were determined. In CDi-on-chip, decidua and immune cells became inflammatory in response to insults while CTCs were refractory, highlighting their barrier function. HLA-G and PGRMC2 are found to be vital to immune homeostasis at the CDi, with PGRMC2 serving as an upstream regulator of inflammation, HLA-G expression, and mesenchymal-epithelial transition, and HLA-G serving as a frontline immunomodulatory molecule, thus preventing fetal membrane compromise.
Collapse
Affiliation(s)
- Ryan C V Lintao
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Institute of Reproductive Health, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | - Lauren S Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Jenieve Chapa
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Dianne Aster Yunque-Yap
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Microbiome and Bioinformatics Analysis Core, The Institute for Translational Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- National Aeronautics and Space Administration Johnson Space Center, Houston, TX, USA
- KBR, Houston, TX, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Microbiome and Bioinformatics Analysis Core, The Institute for Translational Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - George Golovko
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Microbiome and Bioinformatics Analysis Core, The Institute for Translational Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Leslie Michelle M Dalmacio
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
6
|
Atalay N, Balci N, Gürsoy M, Gürsoy UK. Systemic Factors Affecting Human Beta-Defensins in Oral Cavity. Pathogens 2024; 13:654. [PMID: 39204254 PMCID: PMC11357671 DOI: 10.3390/pathogens13080654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Human beta-defensins are host defense peptides with broad antimicrobial and inflammatory functions. In the oral cavity, these peptides are produced mainly by the keratinocytes of the epithelium; however, fibroblasts, monocytes, and macrophages also contribute to oral human beta-defensin expressions. The resident and immune cells of the oral cavity come into contact with various microbe-associated molecular patterns continuously and simultaneously. The overall antimicrobial cellular response is highly influenced by local and environmental factors. Recent studies have produced evidence showing that not only systemic chronic diseases but also systemic factors like hyperglycemia, pregnancy, the long-term use of certain vitamins, and aging can modulate oral cellular antimicrobial responses against microbial challenges. Therefore, the aim of this narrative review is to discuss the role of systemic factors on oral human beta-defensin expressions.
Collapse
Affiliation(s)
- Nur Atalay
- Department of Periodontology, Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520 Turku, Finland; (N.A.); (M.G.)
| | - Nur Balci
- Department of Periodontology, Faculty of Dentistry, Medipol University, Goztepe Mahallesi, Ataturk Caddesi 40, Beykoz, 34815 Istanbul, Turkey;
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520 Turku, Finland; (N.A.); (M.G.)
- Welfare Division, Oral Health Care, 20540 Turku, Finland
| | - Ulvi Kahraman Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520 Turku, Finland; (N.A.); (M.G.)
| |
Collapse
|
7
|
Liu Y, Li S, Liu B, Zhang J, Wang C, Feng L. Maternal urban particulate matter (SRM 1648a) exposure disrupted the cellular immune homeostasis during early life: The potential attribution of altered placental transcriptome profile. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169432. [PMID: 38135080 DOI: 10.1016/j.scitotenv.2023.169432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Ambient fine particular matter (PM2.5) exposure has been associated with numerous adverse effects including triggering functional disorders of the placenta and inducing immune imbalance in offspring. However, how maternal PM2.5 exposure impacts immune development during early life is not fully understood. In the current study, we exposed mice with low-, middle-, and high-dose PM2.5 during pregnancy to investigate the potential link between the transcriptional changes in the placenta and immune imbalance in mice offspring induced by PM2.5 exposures. Using flow cytometry, we found that the proportions of B cells, CD3+CD4+ T cells, CD3+CD8+ T cells, and macrophage (Mφ) cells were altered in the blood of PM2.5-exposed mice pups but not dendritic cells (DCs) and natural killer cells (NKs). Using bulk RNA sequencing, we found that PM2.5 exposure altered the transcriptional profile which indicated an inhibition of the complement and coagulation cascades in the placenta. Weighted gene co-expression network analysis (WGCNA) revealed the potential crosstalk between the perturbation of placental gene expression and the changes of immune cell subsets in pups on postnatal day 10 (PND10). Specifically, WGCNA identified a cluster of genes including Defb15, Defb20, Defb25, Cst8, Cst12, and Adam7 that might regulate the core immune cell types in PND10 pups. Although the underlying mechanisms of how maternal PM2.5 exposure induces peripheral lymphocyte disturbance in offspring still remain much unknown, our findings here shed light on the potential role of placental dysfunction in these adverse effects.
Collapse
Affiliation(s)
- Yongjie Liu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Shuman Li
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Bin Liu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Jun Zhang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Cuiping Wang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Department of Maternal and Child Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| | - Liping Feng
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA.
| |
Collapse
|
8
|
Choi SR, Choi SJ. Afterbirth oral fluid secretory leukocyte protease inhibitor decreased in acute histologic chorioamnionitis in preterm birth. Am J Reprod Immunol 2023; 90:e13733. [PMID: 37382168 DOI: 10.1111/aji.13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/14/2023] [Accepted: 05/28/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Secretory leukocyte protease inhibitor (SLPI) is an innate anti-inflammatory and anti-microbial peptide and produced in amnion of fetal membranes during pregnancy. However, studies on the association between SLPI levels in amniotic fluid and acute chorioamnionitis are limited. Afterbirth oral fluid (AOF) of the baby could be useful for representing the intra-amniotic environment precisely just before delivery. This study aimed to determine the relationship between SLPI levels in AOF and acute histologic chorioamnionitis (HC). METHODS AOF of the baby was obtained during delivery from 24(0/7) to 36(6/7) weeks of gestational age (preterm group, n = 94) and from 37(0/7) to 41(6/7) weeks of gestational age (term group, n = 27) just after birth. SLPI expression levels among five classifications were compared to the intensity of acute HC as follows: no inflammation, acute subchorionitis, acute chorionitis, acute chorioamnionitis, and funisits. The SLPI and matrix metalloproteinase-8 (MMP-8) concentrations of AOF were determined using Enzyme Linked Immunosorbent Assay. Histologic examination of the placenta and membranes was performed after delivery. RESULTS SLPI concentrations in AOF inversely decreased according to the intensity of acute HC (161.62 ng/mL in funisitis, 134.83 ng/mL in acute chorioamnionitis, 749.35 ng/mL in acute chorionitis, 953.05 ng/mL in acute subchorionitis, and 1126.77 ng/mL in no inflammation [p = .021]). The MMP-8 concentrations in AOF and maternal serum C-reactive protein were the highest in funisitis. The SLPI/ MMP-8 ratio was low in subgroup with acute chorioamnionitis and funisitis. CONCLUSION Along with increased MMP-8 levels, decreased SLPI levels in AOF of the baby could be an additional factor in predicting acute HC immediately after birth.
Collapse
Affiliation(s)
- Soo Ran Choi
- Department of Obstetrics and Gynecology, Inha University College of Medicine, Inha University Hospital, Incheon, South Korea
| | - Suk Jin Choi
- Department of Pathology, Inha University College of Medicine, Inha University Hospital, Incheon, South Korea
| |
Collapse
|
9
|
Fesahat F, Firouzabadi AM, Zare-Zardini H, Imani M. Roles of Different β-Defensins in the Human Reproductive System: A Review Study. Am J Mens Health 2023; 17:15579883231182673. [PMID: 37381627 PMCID: PMC10334010 DOI: 10.1177/15579883231182673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/21/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
Human β-defensins (hBDs) are cationic peptides with an amphipathic spatial shape and a high cysteine content. The members of this peptide family have been found in the human body with various functions, including the human reproductive system. Of among β-defensins in the human body, β-defensin 1, β-defensin 2, and β-defensin 126 are known in the human reproductive system. Human β-defensin 1 interacts with chemokine receptor 6 (CCR6) in the male reproductive system to prevent bacterial infections. This peptide has a positive function in antitumor immunity by recruiting dendritic cells and memory T cells in prostate cancer. It is necessary for fertilization via facilitating capacitation and acrosome reaction in the female reproductive system. Human β-defensin 2 is another peptide with antibacterial action which can minimize infection in different parts of the female reproductive system such as the vagina by interacting with CCR6. Human β-defensin 2 could play a role in preventing cervical cancer via interactions with dendritic cells. Human β-defensin 126 is required for sperm motility and protecting the sperm against immune system factors. This study attempted to review the updated knowledge about the roles of β-defensin 1, β-defensin 2, and β-defensin 126 in both the male and female reproductive systems.
Collapse
Affiliation(s)
- Farzaneh Fesahat
- Reproductive Immunology Research
Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amir Masoud Firouzabadi
- Reproductive Immunology Research
Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hadi Zare-Zardini
- Hematology and Oncology Research
Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Imani
- Reproductive Immunology Research
Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
10
|
van Dijk A, Guabiraba R, Bailleul G, Schouler C, Haagsman HP, Lalmanach AC. Evolutionary diversification of defensins and cathelicidins in birds and primates. Mol Immunol 2023; 157:53-69. [PMID: 36996595 DOI: 10.1016/j.molimm.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
Divergent evolution for more than 310 million years has resulted in an avian immune system that is complex and more compact than that of primates, sharing much of its structure and functions. Not surprisingly, well conserved ancient host defense molecules, such as defensins and cathelicidins, have diversified over time. In this review, we describe how evolution influenced the host defense peptides repertoire, its distribution, and the relationship between structure and biological functions. Marked features of primate and avian HDPs are linked to species-specific characteristics, biological requirements, and environmental challenge.
Collapse
|
11
|
High Glucose Promotes Inflammation and Weakens Placental Defenses against E. coli and S. agalactiae Infection: Protective Role of Insulin and Metformin. Int J Mol Sci 2023; 24:ijms24065243. [PMID: 36982317 PMCID: PMC10048930 DOI: 10.3390/ijms24065243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Placentas from gestational diabetes mellitus (GDM) patients undergo significant metabolic and immunologic adaptations due to hyperglycemia, which results in an exacerbated synthesis of proinflammatory cytokines and an increased risk for infections. Insulin or metformin are clinically indicated for the treatment of GDM; however, there is limited information about the immunomodulatory activity of these drugs in the human placenta, especially in the context of maternal infections. Our objective was to study the role of insulin and metformin in the placental inflammatory response and innate defense against common etiopathological agents of pregnancy bacterial infections, such as E. coli and S. agalactiae, in a hyperglycemic environment. Term placental explants were cultivated with glucose (10 and 50 mM), insulin (50–500 nM) or metformin (125–500 µM) for 48 h, and then they were challenged with live bacteria (1 × 105 CFU/mL). We evaluated the inflammatory cytokine secretion, beta defensins production, bacterial count and bacterial tissue invasiveness after 4–8 h of infection. Our results showed that a GDM-associated hyperglycemic environment induced an inflammatory response and a decreased beta defensins synthesis unable to restrain bacterial infection. Notably, both insulin and metformin exerted anti-inflammatory effects under hyperglycemic infectious and non-infectious scenarios. Moreover, both drugs fortified placental barrier defenses, resulting in reduced E. coli counts, as well as decreased S. agalactiae and E. coli invasiveness of placental villous trees. Remarkably, the double challenge of high glucose and infection provoked a pathogen-specific attenuated placental inflammatory response in the hyperglycemic condition, mainly denoted by reduced TNF-α and IL-6 secretion after S. agalactiae infection and by IL-1β after E. coli infection. Altogether, these results suggest that metabolically uncontrolled GDM mothers develop diverse immune placental alterations, which may help to explain their increased vulnerability to bacterial pathogens.
Collapse
|
12
|
Lyra A, Ala-Jaakkola R, Yeung N, Datta N, Evans K, Hibberd A, Lehtinen MJ, Forssten SD, Ibarra A, Pesonen T, Junnila J, Ouwehand AC, Baranowski K, Maukonen J, Crawford G, Lehtoranta L. A Healthy Vaginal Microbiota Remains Stable during Oral Probiotic Supplementation: A Randomised Controlled Trial. Microorganisms 2023; 11:499. [PMID: 36838464 PMCID: PMC9961720 DOI: 10.3390/microorganisms11020499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
The primary objective of this randomised, placebo-controlled, triple-blind study was to assess whether orally consumed Lactobacillus acidophilus La-14 (La-14) and Lacticaseibacillus rhamnosus HN001 (HN001) colonise a healthy human vagina. Furthermore, potential effects on vaginal microbiota and immune markers were explored. Fifty women devoid of vaginal complaints (Nugent score 0-3 and vaginal pH ≤ 4.5) were randomised into a 2-week intervention with either La-14 and HN001 as the verum product or a comparable placebo. Vaginal swab samples were collected at baseline, after one and two weeks of intervention, and after a one-week follow-up, for assessing colonisation of the supplemented lactobacilli, vaginal microbiota, and six specific immune markers. Colonisation of L. acidophilus and L. rhamnosus was not observed above the assay detection limit (5.29 and 5.11 log 10 genomes/swab for L. acidophilus and L. rhamnosus, respectively). Vaginal microbiotas remained stable and predominated by lactobacilli throughout the intervention, and vaginal pH remained optimal (at least 90% of participants in both groups had pH 4.0 or 4.5 throughout the study). Immune markers elafin and human β-defensin 3 (HBD-3) were significantly decreased in the verum group (p = 0.022 and p = 0.028, respectively) but did not correlate with any microbiota changes. Adverse events raised no safety concerns, and no undesired changes in the vaginal microbiota or immune markers were detected.
Collapse
Affiliation(s)
- Anna Lyra
- IFF Health & Biosciences, 02460 Kantvik, Finland
| | | | | | - Neeta Datta
- IFF Health & Biosciences, 02460 Kantvik, Finland
| | - Kara Evans
- IFF Health & Biosciences, Madison, WI 53716, USA
| | | | | | | | - Alvin Ibarra
- IFF Health & Biosciences, 02460 Kantvik, Finland
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Olaya Contreras M, Caicedo Marmolejo BE. Actualidad en corioamnionitis. UNIVERSITAS MÉDICA 2022. [DOI: 10.11144/javeriana.umed63-4.cori] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
La corioamnionitis se ha relacionados con desenlaces desfavorables en el período prenatal y neonatal (abortos, parto pretérmino, sepsis neonatal, entre otros), además de implicaciones a largo plazo en la infancia, tales como alteraciones en el coeficiente intelectual. Por esta razón es de vital importancia el diagnóstico histopatológico oportuno. En este artículo se revisará el abordaje histopatológico de la corioamnionitis, su estadificación e implicaciones clínicas.
Collapse
|
14
|
Vidal MS, Lintao RCV, Severino MEL, Tantengco OAG, Menon R. Spontaneous preterm birth: Involvement of multiple feto-maternal tissues and organ systems, differing mechanisms, and pathways. Front Endocrinol (Lausanne) 2022; 13:1015622. [PMID: 36313741 PMCID: PMC9606232 DOI: 10.3389/fendo.2022.1015622] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Survivors of preterm birth struggle with multitudes of disabilities due to improper in utero programming of various tissues and organ systems contributing to adult-onset diseases at a very early stage of their lives. Therefore, the persistent rates of low birth weight (birth weight < 2,500 grams), as well as rates of neonatal and maternal morbidities and mortalities, need to be addressed. Active research throughout the years has provided us with multiple theories regarding the risk factors, initiators, biomarkers, and clinical manifestations of spontaneous preterm birth. Fetal organs, like the placenta and fetal membranes, and maternal tissues and organs, like the decidua, myometrium, and cervix, have all been shown to uniquely respond to specific exogenous or endogenous risk factors. These uniquely contribute to dynamic changes at the molecular and cellular levels to effect preterm labor pathways leading to delivery. Multiple intervention targets in these different tissues and organs have been successfully tested in preclinical trials to reduce the individual impacts on promoting preterm birth. However, these preclinical trial data have not been effectively translated into developing biomarkers of high-risk individuals for an early diagnosis of the disease. This becomes more evident when examining the current global rate of preterm birth, which remains staggeringly high despite years of research. We postulate that studying each tissue and organ in silos, as how the majority of research has been conducted in the past years, is unlikely to address the network interaction between various systems leading to a synchronized activity during either term or preterm labor and delivery. To address current limitations, this review proposes an integrated approach to studying various tissues and organs involved in the maintenance of normal pregnancy, promotion of normal parturition, and more importantly, contributions towards preterm birth. We also stress the need for biological models that allows for concomitant observation and analysis of interactions, rather than focusing on these tissues and organ in silos.
Collapse
Affiliation(s)
- Manuel S. Vidal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ryan C. V. Lintao
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Mary Elise L. Severino
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ourlad Alzeus G. Tantengco
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
15
|
Silini AR, Ramuta TŽ, Pires AS, Banerjee A, Dubus M, Gindraux F, Kerdjoudj H, Maciulatis J, Weidinger A, Wolbank S, Eissner G, Giebel B, Pozzobon M, Parolini O, Kreft ME. Methods and criteria for validating the multimodal functions of perinatal derivatives when used in oncological and antimicrobial applications. Front Bioeng Biotechnol 2022; 10:958669. [PMID: 36312547 PMCID: PMC9607958 DOI: 10.3389/fbioe.2022.958669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
Perinatal derivatives or PnDs refer to tissues, cells and secretomes from perinatal, or birth-associated tissues. In the past 2 decades PnDs have been highly investigated for their multimodal mechanisms of action that have been exploited in various disease settings, including in different cancers and infections. Indeed, there is growing evidence that PnDs possess anticancer and antimicrobial activities, but an urgent issue that needs to be addressed is the reproducible evaluation of efficacy, both in vitro and in vivo. Herein we present the most commonly used functional assays for the assessment of antitumor and antimicrobial properties of PnDs, and we discuss their advantages and disadvantages in assessing the functionality. This review is part of a quadrinomial series on functional assays for the validation of PnDs spanning biological functions such as immunomodulation, anticancer and antimicrobial, wound healing, and regeneration.
Collapse
Affiliation(s)
- Antonietta R. Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Taja Železnik Ramuta
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Salomé Pires
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Institute of Biophysics, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Asmita Banerjee
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Marie Dubus
- Université de Reims Champagne Ardenne, EA 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), Reims, France
| | - Florelle Gindraux
- Service de Chirurgie Orthopédique, Traumatologique et Plastique, CHU Besançon and Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, Besançon, France
| | - Halima Kerdjoudj
- Université de Reims Champagne Ardenne, EA 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), Reims, France
| | - Justinas Maciulatis
- The Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Günther Eissner
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michela Pozzobon
- Stem Cells and Regenerative Medicine Lab, Department of Women’s and Children’s Health, University of Padova, Fondazione Istituto di Ricerca Pediatrica Città Della Speranza, Padoa, Italy
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica Del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Mateja Erdani Kreft
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Mateja Erdani Kreft,
| |
Collapse
|
16
|
Zhai YJ, Feng Y, Ma X, Ma F. Defensins: defenders of human reproductive health. Hum Reprod Update 2022; 29:126-154. [PMID: 36130055 PMCID: PMC9825273 DOI: 10.1093/humupd/dmac032] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/31/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Reproductive tract infection is an important factor leading to male and female infertility. Among female infertility factors, microbial and viral infections are the main factors affecting female reproductive health and causing tubal infertility, ectopic tubal pregnancy and premature delivery. Among male infertility factors, 13-15% of male infertility is related to infection. Defensins are cationic antibacterial and antiviral peptides, classified into α-defensins, β-defensins and θ-defensins. Humans only have α-defensins and β-defensins. Apart from their direct antimicrobial functions, defensins have an immunomodulatory function and are involved in many physiological processes. Studies have shown that defensins are widely distributed in the female reproductive tract (FRT) and male reproductive tract (MRT), playing a dual role of host defence and fertility protection. However, to our knowledge, the distribution, regulation and function of defensins in the reproductive tract and their relation to reproduction have not been reviewed. OBJECTIVE AND RATIONALE This review summarizes the expression, distribution and regulation of defensins in the reproductive tracts to reveal the updated research on the dual role of defensins in host defence and the protection of fertility. SEARCH METHODS A systematic search was conducted in PubMed using the related keywords through April 2022. Related data from original researches and reviews were integrated to comprehensively review the current findings and understanding of defensins in the human reproductive system. Meanwhile, female and male transcriptome data in the GEO database were screened to analyze defensins in the human reproductive tracts. OUTCOMES Two transcriptome databases from the GEO database (GSE7307 and GSE150852) combined with existing researches reveal the expression levels and role of the defensins in the reproductive tracts. In the FRT, a high expression level of α-defensin is found, and the expression levels of defensins in the vulva and vagina are higher than those in other organs. The expression of defensins in the endometrium varies with menstrual cycle stages and with microbial invasion. Defensins also participate in the local immune response to regulate the risk of spontaneous preterm birth. In the MRT, a high expression level of β-defensins is also found. It is mainly highly expressed in the epididymal caput and corpus, indicating that defensins play an important role in sperm maturation. The expression of defensins in the MRT varies with androgen levels, age and the status of microbial invasion. They protect the male reproductive system from bacterial infections by neutralizing lipopolysaccharide and downregulating pro-inflammatory cytokines. In addition, animal and clinical studies have shown that defensins play an important role in sperm maturation, motility and fertilization. WIDER IMPLICATIONS As a broad-spectrum antimicrobial peptide without drug resistance, defensin has great potential for developing new natural antimicrobial treatments for reproductive tract infections. However, increasing evidence has shown that defensins can not only inhibit microbial invasion but can also promote the invasion and adhesion of some microorganisms in certain biological environments, such as human immunodeficiency virus. Therefore, the safety of defensins as reproductive tract anti-infective drugs needs more in-depth research. In addition, the modulatory role of defensins in fertility requires more in-depth research since the current conclusions are based on small-size samples. At present, scientists have made many attempts at the clinical transformation of defensins. However, defensins have problems such as poor stability, low bioavailability and difficulties in their synthesis. Therefore, the production of safe, effective and low-cost drugs remains a challenge.
Collapse
Affiliation(s)
| | | | - Xue Ma
- Correspondence address. Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7781-821X (F.M.); Department of Pediatric Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7650-6214 (X.M.)
| | - Fang Ma
- Correspondence address. Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7781-821X (F.M.); Department of Pediatric Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7650-6214 (X.M.)
| |
Collapse
|
17
|
Menon R. Epithelial to mesenchymal transition (EMT) of feto-maternal reproductive tissues generates inflammation: a detrimental factor for preterm birth. BMB Rep 2022. [PMID: 35880430 PMCID: PMC9442346 DOI: 10.5483/bmbrep.2022.55.8.174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human pregnancy is a delicate and complex process where multiorgan interactions between two independent systems, the mother, and her fetus, maintain pregnancy. Intercellular interactions that can define homeostasis at the various cellular level between the two systems allow uninterrupted fetal growth and development until delivery. Interactions are needed for tissue remodeling during pregnancy at both fetal and maternal tissue layers. One of the mechanisms that help tissue remodeling is via cellular transitions where epithelial cells undergo a cyclic transition from epithelial to mesenchymal (EMT) and back from mesenchymal to epithelial (MET). Two major pregnancy-associated tissue systems that use EMT, and MET are the fetal membrane (amniochorion) amnion epithelial layer and cervical epithelial cells and will be reviewed here. EMT is often associated with localized inflammation, and it is a well-balanced process to facilitate tissue remodeling. Cyclic transition processes are important because a terminal state or the static state of EMT can cause accumulation of proinflammatory mesenchymal cells in the matrix regions of these tissues and increase localized inflammation that can cause tissue damage. Interactions that determine homeostasis are often controlled by both endocrine and paracrine mediators. Pregnancy maintenance hormone progesterone and its receptors are critical for maintaining the balance between EMT and MET. Increased intrauterine oxidative stress at term can force a static (terminal) EMT and increase inflammation that are physiologic processes that destabilize homeostasis that maintain pregnancy to promote labor and delivery of the fetus. However, conditions that can produce an untimely increase in EMT and inflammation can be pathologic. These tissue damages are often associated with adverse pregnancy complications such as preterm prelabor rupture of the membranes (pPROM) and spontaneous preterm birth (PTB). Therefore, an understanding of the biomolecular processes that maintain cyclic EMT-MET is critical to reducing the risk of pPROM and PTB. Extracellular vesicles (exosomes of 40-160 nm) that can carry various cargo are involved in cellular transitions as paracrine mediators. Exosomes can carry a variety of biomolecules as cargo. Studies specifically using exosomes from cells undergone EMT can carry a pro-inflammatory cargo and in a paracrine fashion can modify the neighboring tissue environment to cause enhancement of uterine inflammation.
Collapse
Affiliation(s)
- Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston 77555-1062, TX, USA
| |
Collapse
|
18
|
Antimicrobial Peptides in Early-Life Host Defense, Perinatal Infections, and Necrotizing Enterocolitis—An Update. J Clin Med 2022; 11:jcm11175074. [PMID: 36079001 PMCID: PMC9457252 DOI: 10.3390/jcm11175074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Host defense against early-life infections such as chorioamnionitis, neonatal sepsis, or necrotizing enterocolitis (NEC) relies primarily on innate immunity, in which antimicrobial peptides (AMPs) play a major role. AMPs that are important for the fetus and neonate include α and β defensins, cathelicidin LL-37, antiproteases (elafin, SLPI), and hepcidin. They can be produced by the fetus or neonate, the placenta, chorioamniotic membranes, recruited neutrophils, and milk-protein ingestion or proteolysis. They possess antimicrobial, immunomodulating, inflammation-regulating, and tissue-repairing properties. AMPs are expressed as early as the 13th week and increase progressively through gestation. Limited studies are available on AMP expression and levels in the fetus and neonate. Nevertheless, existing evidence supports the role of AMPs in pathogenesis of chorioamnionitis, neonatal sepsis, and NEC, and their association with disease severity. This suggests a potential role of AMPs in diagnosis, prevention, prognosis, and treatment of sepsis and NEC. Herein, we present an overview of the antimicrobial and immunomodulating properties of human AMPs, their sources in the intrauterine environment, fetus, and neonate, and their changes during pre- and post-natal infections and NEC. We also discuss emerging data regarding the potential utility of AMPs in early-life infections, as diagnostic or predictive biomarkers and as therapeutic alternatives or adjuncts to antibiotic therapy considering the increase of antibiotic resistance in neonatal intensive care units.
Collapse
|
19
|
Understanding the Immune System in Fetal Protection and Maternal Infections during Pregnancy. J Immunol Res 2022; 2022:7567708. [PMID: 35785037 PMCID: PMC9249541 DOI: 10.1155/2022/7567708] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
The fetal-maternal immune system determines the fate of pregnancy. The trophoblast cells not only give an active response against external stimuli but are also involved in secreting most of the cytokines. These cells have an essential function in fetal acceptance or fetal rejection. Other immune cells also play a pivotal role in carrying out a successful pregnancy. The disruption in this mechanism may lead to harmful effects on pregnancy. The placenta serves as an immune barrier in fetus protection against invading pathogens. Once the infections prevail, they may localize in placental and fetal tissues, and the presence of inflammation due to cytokines may have detrimental effects on pregnancy. Moreover, some pathogens are responsible for congenital fetal anomalies and affect almost all organs of the developing fetus. This review article is designed to address the bacterial and viral infections that threaten pregnancy and their possible outcomes. Moreover, training of the fetal immune system against the exposure of infections and the role of CD49a + NK cells in embryonic development will also be highlighted.
Collapse
|
20
|
Devarampati LJ, Koduganti RR, Savant S, Gullapelli P, Manchala S, Mydukuru A. Role of Placental Extracts in Periodontal Regeneration: A Literature Review. Cureus 2022; 14:e26042. [PMID: 35859977 PMCID: PMC9288833 DOI: 10.7759/cureus.26042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 11/05/2022] Open
Abstract
Periodontium is a specialized tissue surrounding the teeth. It is made up of the gingiva, periodontal ligament, cementum, and alveolar bone. The healing of periodontal tissues when infected occurs through repair and regeneration. The central dogma of regenerative periodontics is to stimulate a cascade of healing events that, if coordinated well, can lead to proper tissue synthesis which in turn would play a very important part in managing periodontitis and preventing tooth loss. Many regenerative procedures are being followed in periodontics using newer and modified barrier membranes. Placental membranes like amnion, chorion and amnion-chorion membranes are one among these that serve the purpose because of their active components and therapeutic effects. This literature review highlights the benefits of placental extracts in regenerative periodontal therapy.
Collapse
|
21
|
Li J, Wang L, Ding J, Cheng Y, Diao L, Li L, Zhang Y, Yin T. Multiomics Studies Investigating Recurrent Pregnancy Loss: An Effective Tool for Mechanism Exploration. Front Immunol 2022; 13:826198. [PMID: 35572542 PMCID: PMC9094436 DOI: 10.3389/fimmu.2022.826198] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/31/2022] [Indexed: 12/18/2022] Open
Abstract
Patients with recurrent pregnancy loss (RPL) account for approximately 1%-5% of women aiming to achieve childbirth. Although studies have shown that RPL is associated with failure of endometrial decidualization, placental dysfunction, and immune microenvironment disorder at the maternal-fetal interface, the exact pathogenesis remains unknown. With the development of high-throughput technology, more studies have focused on the genomics, transcriptomics, proteomics and metabolomics of RPL, and new gene mutations and new biomarkers of RPL have been discovered, providing an opportunity to explore the pathogenesis of RPL from different biological processes. Bioinformatics analyses of these differentially expressed genes, proteins and metabolites also reflect the biological pathways involved in RPL, laying a foundation for further research. In this review, we summarize the findings of omics studies investigating decidual tissue, villous tissue and blood from patients with RPL and identify some possible limitations of current studies.
Collapse
Affiliation(s)
- Jianan Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Linlin Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China.,Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Jinli Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanxiang Cheng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Longfei Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tailang Yin
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
22
|
Placental Tissues as Biomaterials in Regenerative Medicine. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6751456. [PMID: 35496035 PMCID: PMC9050314 DOI: 10.1155/2022/6751456] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/19/2022] [Indexed: 12/02/2022]
Abstract
Placental tissues encompass all the tissues which support fetal development, including the placenta, placental membrane, umbilical cord, and amniotic fluid. Since the 1990s there has been renewed interest in the use of these tissues as a raw material for regenerative medicine applications. Placental tissues have been extensively studied for their potential contribution to tissue repair applications. Studies have attributed their efficacy in augmenting the healing process to the extracellular matrix scaffolds rich in collagens, glycosaminoglycans, and proteoglycans, as well as the presence of cytokines within the tissues that have been shown to stimulate re-epithelialization, promote angiogenesis, and aid in the reduction of inflammation and scarring. The compositions and properties of all birth tissues give them the potential to be valuable biomaterials for the development of new regenerative therapies. Herein, the development and compositions of each of these tissues are reviewed, with focus on the structural and signaling components that are relevant to medical applications. This review also explores current configurations and recent innovations in the use of placental tissues as biomaterials in regenerative medicine.
Collapse
|
23
|
Reiss JD, Peterson LS, Nesamoney SN, Chang AL, Pasca AM, Marić I, Shaw GM, Gaudilliere B, Wong RJ, Sylvester KG, Bonifacio SL, Aghaeepour N, Gibbs RS, Stevenson DK. Perinatal infection, inflammation, preterm birth, and brain injury: A review with proposals for future investigations. Exp Neurol 2022; 351:113988. [DOI: 10.1016/j.expneurol.2022.113988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 11/26/2022]
|
24
|
Šket T, Ramuta TŽ, Starčič Erjavec M, Kreft ME. The Role of Innate Immune System in the Human Amniotic Membrane and Human Amniotic Fluid in Protection Against Intra-Amniotic Infections and Inflammation. Front Immunol 2021; 12:735324. [PMID: 34745106 PMCID: PMC8566738 DOI: 10.3389/fimmu.2021.735324] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/23/2021] [Indexed: 01/18/2023] Open
Abstract
Intra-amniotic infection and inflammation (IAI) affect fetal development and are highly associated with preterm labor and premature rupture of membranes, which often lead to adverse neonatal outcomes. Human amniotic membrane (hAM), the inner part of the amnio-chorionic membrane, protects the embryo/fetus from environmental dangers, including microbial infection. However, weakened amnio-chorionic membrane may be breached or pathogens may enter through a different route, leading to IAI. The hAM and human amniotic fluid (hAF) respond by activation of all components of the innate immune system. This includes changes in 1) hAM structure, 2) presence of immune cells, 3) pattern recognition receptors, 4) cytokines, 5) antimicrobial peptides, 6) lipid derivatives, and 7) complement system. Herein we provide a comprehensive and integrative review of the current understanding of the innate immune response in the hAM and hAF, which will aid in design of novel studies that may lead to breakthroughs in how we perceive the IAI.
Collapse
Affiliation(s)
- Tina Šket
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
25
|
Son GH, Lee JJ, Kim Y, Lee KY. The Role of Antimicrobial Peptides in Preterm Birth. Int J Mol Sci 2021; 22:ijms22168905. [PMID: 34445608 PMCID: PMC8396209 DOI: 10.3390/ijms22168905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are short cationic amphipathic peptides with a wide range of antimicrobial properties and play an important role in the maintenance of immune homeostasis by modulating immune responses in the reproductive tract. As intra-amniotic infection and microbial dysbiosis emerge as common causes of preterm births (PTBs), a better understanding of the AMPs involved in the development of PTB is essential. The altered expression of AMPs has been reported in PTB-related clinical presentations, such as preterm labor, intra-amniotic infection/inflammation, premature rupture of membranes, and cervical insufficiency. Moreover, it was previously reported that dysregulation of AMPs may affect the pregnancy prognosis. This review aims to describe the expression of AMPs associated with PTBs and to provide new perspectives on the role of AMPs in PTB.
Collapse
Affiliation(s)
- Ga-Hyun Son
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul 07441, Korea;
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24523, Korea; (J.-J.L.); (Y.K.)
- Correspondence: ; Tel.: +82-2-6960-1205
| | - Jae-Jun Lee
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24523, Korea; (J.-J.L.); (Y.K.)
- Departments of Anesthesiology and Pain Medicine, College of Medicine, Hallym University, Chuncheon 24523, Korea
| | - Youngmi Kim
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24523, Korea; (J.-J.L.); (Y.K.)
| | - Keun-Young Lee
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul 07441, Korea;
| |
Collapse
|
26
|
Ramuta TŽ, Šket T, Starčič Erjavec M, Kreft ME. Antimicrobial Activity of Human Fetal Membranes: From Biological Function to Clinical Use. Front Bioeng Biotechnol 2021; 9:691522. [PMID: 34136474 PMCID: PMC8201995 DOI: 10.3389/fbioe.2021.691522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
The fetal membranes provide a supportive environment for the growing embryo and later fetus. Due to their versatile properties, the use of fetal membranes in tissue engineering and regenerative medicine is increasing in recent years. Moreover, as microbial infections present a crucial complication in various treatments, their antimicrobial properties are gaining more attention. The antimicrobial peptides (AMPs) are secreted by cells from various perinatal derivatives, including human amnio-chorionic membrane (hACM), human amniotic membrane (hAM), and human chorionic membrane (hCM). By exhibiting antibacterial, antifungal, antiviral, and antiprotozoal activities and immunomodulatory activities, they contribute to ensuring a healthy pregnancy and preventing complications. Several research groups investigated the antimicrobial properties of hACM, hAM, and hCM and their derivatives. These studies advanced basic knowledge of antimicrobial properties of perinatal derivatives and also provided an important insight into the potential of utilizing their antimicrobial properties in a clinical setting. After surveying the studies presenting assays on antimicrobial activity of hACM, hAM, and hCM, we identified several considerations to be taken into account when planning future studies and eventual translation of fetal membranes and their derivatives as antimicrobial agents from bench to bedside. Namely, (1) the standardization of hACM, hAM, and hCM preparation to guarantee rigorous antimicrobial activity, (2) standardization of the antimicrobial susceptibility testing methods to enable comparison of results between various studies, (3) investigation of the antimicrobial properties of fetal membranes and their derivatives in the in vivo setting, and (4) designation of donor criteria that enable the optimal donor selection. By taking these considerations into account, future studies will provide crucial information that will enable reaching the optimal treatment outcomes using the fetal membranes and their derivatives as antimicrobial agents.
Collapse
Affiliation(s)
- Taja Železnik Ramuta
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tina Šket
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | | | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
27
|
Rouzaire M, Corvaisier M, Roumeau V, Mulliez A, Sendy F, Delabaere A, Gallot D. Predictors of Short Latency Period Exceeding 48 h after Preterm Premature Rupture of Membranes. J Clin Med 2021; 10:E150. [PMID: 33406795 PMCID: PMC7796089 DOI: 10.3390/jcm10010150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/18/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Preterm premature rupture of membranes (PPROM) is a complication responsible for a third of preterm births. Clinical management is initially hospital based, but homecare management is possible if patients are clinically stable 48 h after PPROM. This study set out to determine factors that are predictive of short latency (delivery ≤ 7 days) exceeding 48 h after PPROM, enabling estimation of the prevalence of maternal and neonatal complications and comparison of maternal and fetal outcomes between inpatient and outpatient management. METHOD This was a monocentric retrospective study conducted between 1 January 2010 and 28 February 2017 on all patients experiencing PPROM at 24 to 34 weeks + 6 days and who gave birth after 48 h. Maternal, obstetric, fetal, and neonatal variables were included in the data collected. The primary endpoint was latency, defined as the number of days between rupture of membranes and delivery. RESULTS 170 consecutive patients were analyzed. Short latency could be predicted by the need for tocolysis, a cervical length less than 25 mm at admission and the existence of anamnios. Outpatient follow-up was not found to lead to increased maternal morbidity or neonatal mortality. CONCLUSION Our study highlights predictive factors of short latency exceeding 48 h after PPROM. Knowledge of these factors may provide justification for outpatient monitoring of patients presenting with a long cervix, absence of need for tocolysis and persistence of amniotic fluid and, thus, no risk factors after 48 h of admission.
Collapse
Affiliation(s)
- Marion Rouzaire
- Obstetrics and Gynaecology Department, Clermont-Ferrand University Hospital, 63000 Clermont-Ferrand, France; (M.C.); (F.S.); (A.D.); (D.G.)
| | - Marion Corvaisier
- Obstetrics and Gynaecology Department, Clermont-Ferrand University Hospital, 63000 Clermont-Ferrand, France; (M.C.); (F.S.); (A.D.); (D.G.)
| | - Virginie Roumeau
- Obstetrics and Gynaecology Department, Emile Roux Hospital, 12 boulevard du Dr Chantemesse, 43012 Le Puy-en-Velay, France;
| | - Aurélien Mulliez
- Biostatistics Unit (DRCI) Clermont-Ferrand University Hospital, 63000 Clermont-Ferrand, France;
| | - Feras Sendy
- Obstetrics and Gynaecology Department, Clermont-Ferrand University Hospital, 63000 Clermont-Ferrand, France; (M.C.); (F.S.); (A.D.); (D.G.)
| | - Amélie Delabaere
- Obstetrics and Gynaecology Department, Clermont-Ferrand University Hospital, 63000 Clermont-Ferrand, France; (M.C.); (F.S.); (A.D.); (D.G.)
| | - Denis Gallot
- Obstetrics and Gynaecology Department, Clermont-Ferrand University Hospital, 63000 Clermont-Ferrand, France; (M.C.); (F.S.); (A.D.); (D.G.)
- “Translational Approach to Epithelial Injury and Repair” Team, Auvergne University, CNRS, Inserm, GReD, 63000 Clermont-Ferrand, France
| |
Collapse
|
28
|
Cornish EF, Filipovic I, Åsenius F, Williams DJ, McDonnell T. Innate Immune Responses to Acute Viral Infection During Pregnancy. Front Immunol 2020; 11:572567. [PMID: 33101294 PMCID: PMC7556209 DOI: 10.3389/fimmu.2020.572567] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Immunological adaptations in pregnancy allow maternal tolerance of the semi-allogeneic fetus but also increase maternal susceptibility to infection. At implantation, the endometrial stroma, glands, arteries and immune cells undergo anatomical and functional transformation to create the decidua, the specialized secretory endometrium of pregnancy. The maternal decidua and the invading fetal trophoblast constitute a dynamic junction that facilitates a complex immunological dialogue between the two. The decidual and peripheral immune systems together assume a pivotal role in regulating the critical balance between tolerance and defense against infection. Throughout pregnancy, this equilibrium is repeatedly subjected to microbial challenge. Acute viral infection in pregnancy is associated with a wide spectrum of adverse consequences for both mother and fetus. Vertical transmission from mother to fetus can cause developmental anomalies, growth restriction, preterm birth and stillbirth, while the mother is predisposed to heightened morbidity and maternal death. A rapid, effective response to invasive pathogens is therefore essential in order to avoid overwhelming maternal infection and consequent fetal compromise. This sentinel response is mediated by the innate immune system: a heritable, highly evolutionarily conserved system comprising physical barriers, antimicrobial peptides (AMP) and a variety of immune cells—principally neutrophils, macrophages, dendritic cells, and natural killer cells—which express pattern-receptors that detect invariant molecular signatures unique to pathogenic micro-organisms. Recognition of these signatures during acute infection triggers signaling cascades that enhance antimicrobial properties such as phagocytosis, secretion of pro-inflammatory cytokines and activation of the complement system. As well as coordinating the initial immune response, macrophages and dendritic cells present microbial antigens to lymphocytes, initiating and influencing the development of specific, long-lasting adaptive immunity. Despite extensive progress in unraveling the immunological adaptations of pregnancy, pregnant women remain particularly susceptible to certain acute viral infections and continue to experience mortality rates equivalent to those observed in pandemics several decades ago. Here, we focus specifically on the pregnancy-induced vulnerabilities in innate immunity that contribute to the disproportionately high maternal mortality observed in the following acute viral infections: Lassa fever, Ebola virus disease (EVD), dengue fever, hepatitis E, influenza, and novel coronavirus infections.
Collapse
Affiliation(s)
- Emily F Cornish
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Iva Filipovic
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Fredrika Åsenius
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - David J Williams
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Thomas McDonnell
- Department of Biochemical Engineering, University College London, London, United Kingdom
| |
Collapse
|
29
|
Isolation and characterization human chorion membrane trophoblast and mesenchymal cells. Placenta 2020; 101:139-146. [PMID: 32979718 DOI: 10.1016/j.placenta.2020.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION To develop protocols for isolation and culture of human chorionic mesenchymal and trophoblast cells and test their differential responsiveness to oxidative stress. METHODS Chorion trophoblast cells (CTC) and chorion mesenchymal cells (CMC) were isolated from term fetal membranes by modifying current protocols. Their purity and characteristics were tested using bright field microscopy and after staining for cytokeratin (CK)-7 and vimentin. Cigarette smoke extract (CSE) was used to stimulate cells, and we determined reactive oxygen species (ROS) production using 2'7'-dichlorodihydro-fluorescein assay, stress signaler p38MAPK activation (Western blot) and senescence by flow cytometry. Co-treatment with antioxidant N-acetyl cystine (NAC) either alone or in combination with SB203580 (p38MAPK inhibitor) was used to test oxidative stress (OS)- and p38MAPK-mediated effects. RESULTS The isolation and cell culture protocol used in this study yielded 92% pure CTC and 100% pure CMC. CSE treatment significantly induced ROS production, P-p38MAPK activation, and senescence in both cell types compared to controls. Cotreatment with NAC reduced ROS production and p38MAPK activation, and co-treatment with both NAC and SB203580 reduced senescence. ROS response in CMC was higher than CTC; however, senescence of CTC was 10-fold higher than CMC. CONCLUSIONS We introduce approaches for proper isolation and culture of CTC and CMC without any influence or overgrowth of one specific type cell that can confound results. Using this approach, we determined differential effects of CTC and CMC to OS condition seen at term labor. Both CTC and CMC undergo p38MAPK-mediated senescence; however, the rate of senescence is higher in CTC.
Collapse
|
30
|
Richardson LS, Radnaa E, Urrabaz-Garza R, Lavu N, Menon R. Stretch, scratch, and stress: Suppressors and supporters of senescence in human fetal membranes. Placenta 2020; 99:27-34. [PMID: 32750642 PMCID: PMC7530028 DOI: 10.1016/j.placenta.2020.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Throughout gestation, amnion membranes undergo mechanical and or physiological stretch, scratch, or stress which is withstood by repairing and remodeling processes to protect the growing fetus. At term, increased oxidative stress (OS) activates p38MAPK, induces senescence, and inflammation contributing to membrane dysfunction to promote labor. However, the signaling initiated by stretch and scratch is still unclear. This study compares the induction of p38MAPK mediated senescence by stretch, scratch, and stress in human amnion epithelial cells (AECs). METHODS Primary AECs from term, not-in-labor, fetal membranes were cultured using the following conditions (N = 3); 1) CellFlex chambers with or without 20% biaxial stretch, 2) 8-well coverslips with or without scratch, and 3) cells exposed to cigarette smoke extract (CSE) inducing OS. p38MAPK (Western blot or immunocytochemistry), senescence activation, and inflammation (matrix metalloproteinases 9 [MMP9] activity-ELISA) were determined in cells exposed to various conditions. T-test and One-Way ANOVA was used to assess significance. RESULTS Biological membrane extension, mimicked by 20% biaxial stretch of AEC, maintained an epithelial morphology and activated P-p38MAPK (P = 0.02) compared to the non-stretch controls, but did not induce senescence or MMP9 activation. AEC scratches were healed within 40-hrs, which included proliferation, migration, and cellular transitions aided by p38MAPK activation but not senescence. CSE induced OS increased p38MAPK (P = 0.018) activation, senescence (P = 0.019), and MMP9 (P = 0.02). CONCLUSION Physiologic stretch and scratch experienced during gestation can cause p38MAPK activation without causing senescence or inflammation. This may be indicative of p38MAPK's role in tissue remodeling during pregnancy. Overwhelming OS, experienced at term, results in P-p38MAPK mediated senescence and inflammation to disrupt membrane remodeling.
Collapse
Affiliation(s)
- Lauren S Richardson
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Enkhtuya Radnaa
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Rheanna Urrabaz-Garza
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Narmada Lavu
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Ramkumar Menon
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA.
| |
Collapse
|
31
|
Menon R, Behnia F, Polettini J, Richardson LS. Novel pathways of inflammation in human fetal membranes associated with preterm birth and preterm pre-labor rupture of the membranes. Semin Immunopathol 2020; 42:431-450. [PMID: 32785751 DOI: 10.1007/s00281-020-00808-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022]
Abstract
Spontaneous preterm birth (PTB) and preterm pre-labor rupture of the membranes (pPROM) are major pregnancy complications. Although PTB and pPROM have common etiologies, they arise from distinct pathophysiologic pathways. Inflammation is a common underlying mechanism in both conditions. Balanced inflammation is required for fetoplacental growth; however, overwhelming inflammation (physiologic at term and pathologic at preterm) can lead to term and preterm parturition. A lack of effective strategies to control inflammation and reduce the risk of PTB and pPROM suggests that there are several modes of the generation of inflammation which may be dependent on the type of uterine tissue. The avascular fetal membrane (amniochorion), which provides structure, support, and protection to the intrauterine cavity, is one of the key contributors of inflammation. Localized membrane inflammation helps tissue remodeling during pregnancy. Two unique mechanisms that generate balanced inflammation are the progressive development of senescence (aging) and cyclic cellular transitions: epithelial to mesenchymal (EMT) and mesenchymal to epithelial (MET). The intrauterine build-up of oxidative stress at term or in response to risk factors (preterm) can accelerate senescence and promote a terminal state of EMT, resulting in the accumulation of inflammation. Inflammation degrades the matrix and destabilizes membrane function. Inflammatory mediators from damaged membranes are propagated via extracellular vesicles (EV) to maternal uterine tissues and transition quiescent maternal uterine tissues into an active state of labor. Membrane inflammation and its propagation are fetal signals that may promote parturition. This review summarizes the mechanisms of fetal membrane cellular senescence, transitions, and the generation of inflammation that contributes to term and preterm parturitions.
Collapse
Affiliation(s)
- Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, MRB 11.138, 301 301 University Blvd, Galveston, TX, 77555-1062, USA.
| | - Faranak Behnia
- Department of Obstetrics, Gynecology, and Reproductive Sciences, McGovern Medical School at the University of Texas Health Science Center at Houston, UT Health, Houston, Texas, USA
| | - Jossimara Polettini
- Universidade Federal da Fronteira Sul, Campus Passo Fundo, Rua Capitão Araujo, 20, Centro, Passo Fundo, Rio Grande do Sul, Brazil
| | - Lauren S Richardson
- Division of Maternal-Fetal Medicine and Perinatal Research Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, MRB 11.138, 301 301 University Blvd, Galveston, TX, 77555-1062, USA
| |
Collapse
|
32
|
Harris SM, Boldenow E, Domino SE, Loch-Caruso R. Toxicant Disruption of Immune Defenses: Potential Implications for Fetal Membranes and Pregnancy. Front Physiol 2020; 11:565. [PMID: 32547423 PMCID: PMC7272693 DOI: 10.3389/fphys.2020.00565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/07/2020] [Indexed: 11/22/2022] Open
Abstract
In addition to providing a physical compartment for gestation, the fetal membranes (FM) are an active immunological barrier that provides defense against pathogenic microorganisms that ascend the gravid reproductive tract. Pathogenic infection of the gestational tissues (FM and placenta) is a leading known cause of preterm birth (PTB). Some environmental toxicants decrease the capacity for organisms to mount an immune defense against pathogens. For example, the immunosuppressive effects of the widespread environmental contaminant trichloroethylene (TCE) are documented for lung infection with Streptococcus zooepidemicus. Group B Streptococcus (GBS; Streptococcus agalactiae) is a bacterial pathogen that is frequently found in the female reproductive tract and can colonize the FM in pregnant women. Work in our laboratory has demonstrated that a bioactive TCE metabolite, S-(1, 2-dichlorovinyl)-L-cysteine (DCVC), potently inhibits innate immune responses to GBS in human FM in culture. Despite these provocative findings, little is known about how DCVC and other toxicants modify the risk for pathogenic infection of FM. Infection of the gestational tissues (FM and placenta) is a leading known cause of PTB, therefore toxicant compromise of FM ability to fight off infectious microorganisms could significantly contribute to PTB risk. This Perspective provides the current status of understanding of toxicant-pathogen interactions in FM, highlighting knowledge gaps, challenges, and opportunities for research that can advance protections for maternal and fetal health.
Collapse
Affiliation(s)
- Sean M. Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Erica Boldenow
- Department of Biology, Calvin College, Grand Rapids, MI, United States
| | - Steven E. Domino
- Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
33
|
Endometriosis Is Associated with Adverse Pregnancy Outcomes: a National Population-Based Study. Reprod Sci 2020; 27:1175-1180. [PMID: 31953772 DOI: 10.1007/s43032-019-00109-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/04/2019] [Indexed: 12/27/2022]
Abstract
Pregnancy and neonatal outcomes in women diagnosed with endometriosis were investigated using data collected from the Korea National Health Insurance Claims Database and the National Health Screening Program for Infants and Children. A total of 3,778,561 women who gave birth between 2007 and 2015 were identified, and 1,938,424 primiparous women and their newborns were included in this study. Women with a diagnosis of endometriosis had a significantly higher incidence of multiple pregnancy, cesarean section, breech presentation, postpartum hemorrhage, placental abruption, placenta previa, and stillbirth than women without endometriosis (P < 0.0001). The rates of preterm birth and low birth weight were also increased in women with endometriosis (P < 0.0001). After adjusting for age, the estimated risks of these outcomes remained significant. Women previously diagnosed with endometriosis have an increased risk of adverse pregnancy and neonatal outcomes. Particular attention and information regarding these conditions should be provided to women with endometriosis during the preconception or antenatal periods.
Collapse
|
34
|
Mei C, Yang W, Wei X, Wu K, Huang D. The Unique Microbiome and Innate Immunity During Pregnancy. Front Immunol 2019; 10:2886. [PMID: 31921149 PMCID: PMC6929482 DOI: 10.3389/fimmu.2019.02886] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/25/2019] [Indexed: 12/26/2022] Open
Abstract
A successful pregnancy depends on not only the tolerance of the fetal immune system by the mother but also resistance against the threat of hazardous microorganisms. Infection with pathogenic microorganisms during pregnancy may lead to premature delivery, miscarriage, growth restriction, neonatal morbidity, and other adverse outcomes. Moreover, the host also has an intact immune system to avoid these adverse outcomes. It is important to note the presence of normal bacteria in the maternal reproductive tract and the principal role of the maternal-placental-fetal interaction in antimicrobial immunity. Previous studies mainly focused on maternal infection during pregnancy. However, this review summarizes the new views on the study of the maternal microbiome and expounds the innate immune defense mechanism of the maternal vagina and decidua as well as how cytotrophoblasts and syncytiotrophoblasts recognize and kill bacteria in the placenta. Fetal immune systems, thought to be weak, also exhibit an immune defense function that is indispensable for maintaining the safety of the fetus. The skin, lungs, and intestines of the fetus during pregnancy constitute the main immune barriers. These findings will provide a new understanding of the effects of normal microbial flora and how the host resists harmful microbes during pregnancy. We believe that it may also contribute to the reference on the clinical prevention and treatment of gestational infection to avoid adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Chunlei Mei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weina Yang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Wei
- Second Affiliated Hospital of Jinlin University, Changchun, China
| | - Kejia Wu
- Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Donghui Huang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Sureshchandra S, Marshall NE, Messaoudi I. Impact of pregravid obesity on maternal and fetal immunity: Fertile grounds for reprogramming. J Leukoc Biol 2019; 106:1035-1050. [PMID: 31483523 DOI: 10.1002/jlb.3ri0619-181r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022] Open
Abstract
Maternal pregravid obesity results in several adverse health outcomes during pregnancy, including increased risk of gestational diabetes, preeclampsia, placental abruption, and complications at delivery. Additionally, pregravid obesity and in utero exposure to high fat diet have been shown to have detrimental effects on fetal programming, predisposing the offspring to adverse cardiometabolic, endocrine, and neurodevelopmental outcomes. More recently, a deeper appreciation for the modulation of offspring immunity and infectious disease-related outcomes by maternal pregravid obesity has emerged. This review will describe currently available animal models for studying the impact of maternal pregravid obesity on fetal immunity and review the data from clinical and animal model studies. We also examine the burden of pregravid obesity on the maternal-fetal interface and the link between placental and systemic inflammation. Finally, we discuss future studies needed to identify key mechanistic underpinnings that link maternal inflammatory changes and fetal cellular reprogramming events.
Collapse
Affiliation(s)
- Suhas Sureshchandra
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Nicole E Marshall
- Maternal-Fetal Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
36
|
Abstract
Maternal systemic inflammation during pregnancy may restrict embryo−fetal growth, but the extent of this effect remains poorly established in undernourished populations. In a cohort of 653 maternal−newborn dyads participating in a multi-armed, micronutrient supplementation trial in southern Nepal, we investigated associations between maternal inflammation, assessed by serum α1-acid glycoprotein and C-reactive protein, in the first and third trimesters of pregnancy, and newborn weight, length and head and chest circumferences. Median (IQR) maternal concentrations in α1-acid glycoprotein and C-reactive protein in the first and third trimesters were 0.65 (0.53–0.76) and 0.40 (0.33–0.50) g/l, and 0.56 (0.25–1.54) and 1.07 (0.43–2.32) mg/l, respectively. α1-acid glycoprotein was inversely associated with birth size: weight, length, head circumference and chest circumference were lower by 116 g (P = 2.3 × 10−6), and 0.45 (P = 3.1 × 10−5), 0.18 (P = 0.0191) and 0.48 (P = 1.7 × 10−7) cm, respectively, per 50% increase in α1-acid glycoprotein averaged across both trimesters. Adjustment for maternal age, parity, gestational age, nutritional and socio-economic status and daily micronutrient supplementation failed to alter any association. Serum C-reactive protein concentration was largely unassociated with newborn size. In rural Nepal, birth size was inversely associated with low-grade, chronic inflammation during pregnancy as indicated by serum α1-acid glycoprotein.
Collapse
|
37
|
Predictive value of cervical cytokine, antimicrobial and microflora levels for pre-term birth in high-risk women. Sci Rep 2019; 9:11246. [PMID: 31375740 PMCID: PMC6677789 DOI: 10.1038/s41598-019-47756-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/10/2019] [Indexed: 01/25/2023] Open
Abstract
Spontaneous preterm birth (sPTB, delivery <37 weeks gestation), accounts for approximately 10% of births worldwide; the aetiology is multifactorial with intra-amniotic infection being one contributing factor. This study aimed to determine whether asymptomatic women with a history of sPTB or cervical surgery have altered levels of inflammatory/antimicrobial mediators and/or microflora within cervical fluid at 22-24 weeks gestation. External cervical fluid was collected from women with history of previous sPTB and/or cervical surgery at 22-24 weeks gestation (n = 135). Cytokine and antimicrobial peptides were measured on a multiplex platform or by ELISA. qPCR was performed for detection of 7 potentially pathogenic bacterial species. IL-8 and IL-1β levels were lower in women who delivered preterm compared to those who delivered at term (IL-8 P = 0.02; IL-1β P = 0.04). There were no differences in elafin or human beta defensin-1 protein levels between the two groups. Multiple bacterial species were detected in a higher proportion of women who delivered preterm than in those who delivered at term (P = 0.005). Cervical fluid IL-8 and IL-1β and microflora have the potential to be used as biomarkers to predict sPTB in high risk women.
Collapse
|
38
|
Richardson L, Jeong S, Kim S, Han A, Menon R. Amnion membrane organ-on-chip: an innovative approach to study cellular interactions. FASEB J 2019; 33:8945-8960. [PMID: 31039044 DOI: 10.1096/fj.201900020rr] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The amnion membrane that lines the human intrauterine cavity is composed of amnion epithelial cells (AECs) connected to an extracellular matrix containing amnion mesenchymal cells (AMCs) through a basement membrane. Cellular interactions and transitions are mechanisms that facilitate membrane remodeling to maintain its integrity. Dysregulation of cellular remodeling, primarily mediated by oxidative stress (OS), is often associated with preterm birth. However, the mechanisms that maintain membrane homeostasis remain unclear. To understand these mechanisms, we developed an amnion membrane organ-on-chip (AM-OOC) and tested the interactive and transition properties of primary human AECs and AMCs under normal and OS conditions. AM-OOC contained 2 chambers connected by type IV collagen-coated microchannels, allowing independent culture conditions that permitted cellular migration and interactions. Cells grown either independently or coculture were exposed to OS inducing cigarette smoke extract, antioxidant N-acetyl-l-cysteine (NAC), or both. When grown independently, AECs transitioned to AMCs and migrated, whereas AMCs migrated without transition. OS caused AECs' transition but prevented migration, whereas AMCs' migration was unhindered. Coculture of cells facilitated transition, migration, and eventual integration in the contiguous population. OS cotreatment in both chambers facilitated AECs' transition, prevented migration, and increased inflammation, a process that was prevented by NAC. AM-OOC recapitulated cellular mechanisms observed in utero and enabled experimental manipulation of cells to determine their roles during pregnancy and parturition.-Richardson, L., Jeong, S., Kim, S., Han, A., Menon, R. Amnion membrane organ-on-chip: an innovative approach to study cellular interactions.
Collapse
Affiliation(s)
- Lauren Richardson
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA.,Department of Neuroscience, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Sehoon Jeong
- Department of Neuroscience, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Sungjin Kim
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
39
|
Human β-defensin 1 in follicular fluid and semen: impact on fertility. J Assist Reprod Genet 2019; 36:787-797. [PMID: 30712073 DOI: 10.1007/s10815-019-01409-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/16/2019] [Indexed: 10/27/2022] Open
Abstract
PURPOSE β-defensins are antimicrobial peptides expressed at mucosal level of male and female genito-urinary tract, where they exert protective functions against infections, possibly preserving human health and fertility. In our study, we investigated the possible involvement of β-defensins in female and male infertility in Italian infertile couples (i) evaluating the presence of human β-defensin 1 (hBD-1) in follicular fluid (FF) and its correlation with in vitro fertilization (IVF) outcomes; (ii) investigating the relationship between hBD-1 levels in semen and IVF outcomes (comprising correlation with sperm parameters); and (iii) exploring the effect of hBD-1 peptide on spermatozoa motility in vitro. METHODS A perspective observational analytic pilot study was conducted. hBD-1 concentration was measured with ELISA assay in FF and semen from 50 couples that underwent assisted procreation technique procedures due to infertility status. Moreover, hBD-1 exogenous peptide was administered to 29 normozoospermic semen and their motility was recorded. RESULTS hBD-1 was detected in FF and its levels were significantly higher in women with good fertilization rate (≥ 75%), respect to those with a poor fertilization rate (< 75%). The hBD-1 semen concentrations in oligo-asthenozoospermic subjects were significantly lower than that in normozoospermic men. Instead, hBD-1 level in sperm and FF not correlated with pregnancy rate. Finally, incubation of sperm with exogenous hBD-1 significantly increased progressive motility after 1 h and 24 h. CONCLUSIONS Being aware of the relatively small sample size and medium power, our results possibly suggest that hBD-1 could influence oocyte and sperm quality, and could improve, when exogenously added, sperm motility.
Collapse
|
40
|
Kotani H, Matsubara K, Koshizuka T, Nishiyama K, Kaneko H, Tasaka M, Sugiyama T, Suzutani T. Human β-defensin-2 as a biochemical indicator of vaginal environment in pregnant women. HYPERTENSION RESEARCH IN PREGNANCY 2018. [DOI: 10.14390/jsshp.hrp2018-005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hideko Kotani
- Department of Obstetrics and Gynecology, Ehime University School of Medicine
- Department of Obstetrics and Gynecology, NTT West Matsuyama Hospital
| | - Keiichi Matsubara
- Department of Obstetrics and Gynecology, Ehime University School of Medicine
| | | | | | - Hisae Kaneko
- Department of Obstetrics and Gynecology, NTT West Matsuyama Hospital
| | - Mie Tasaka
- Department of Obstetrics and Gynecology, NTT West Matsuyama Hospital
| | - Takashi Sugiyama
- Department of Obstetrics and Gynecology, Ehime University School of Medicine
| | | |
Collapse
|
41
|
Afkham A, Eghbal-Fard S, Heydarlou H, Azizi R, Aghebati-Maleki L, Yousefi M. Toll-like receptors signaling network in pre-eclampsia: An updated review. J Cell Physiol 2018; 234:2229-2240. [PMID: 30221394 DOI: 10.1002/jcp.27189] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/17/2018] [Indexed: 01/07/2023]
Abstract
Toll-like receptors (TLRs) are innate immune cells receptors. They are expressed on leukocytes, epithelial cells, and more particularly on placental immune cells and chorion trophoblast. Upregulation of innate immune response occurs during normal pregnancy, but its excessive activity is involved in the pathology of pregnancy complications including pregnancy-induced hypertension and pre-eclampsia (PE). The recent studies about the overmuch inflammatory responses and aberrant placentation are associated with increased expression of TLRs in PE patients. This review has tried to focus on the relationship between some activities of TLRs and the risk of preeclampsia development.
Collapse
Affiliation(s)
- Amir Afkham
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shadi Eghbal-Fard
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Heydarlou
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramyar Azizi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mehdi Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
42
|
Heerema-McKenney A. Defense and infection of the human placenta. APMIS 2018; 126:570-588. [PMID: 30129129 DOI: 10.1111/apm.12847] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/22/2018] [Indexed: 12/14/2022]
Abstract
The placenta functions as a shield against infection of the fetus. The innate and adaptive immune defenses of the developing fetus are poorly equipped to fight infections. Infection by bacteria, viruses, and protozoa may cause infertility, spontaneous abortion, stillbirth, growth retardation, anomalies of development, premature delivery, neonatal morbidity, and mortality. However, appreciation of the human microbiome and host cell-microbe interactions must be taken into consideration as we try to determine what interactions are pathologic. Infection is typically recognized histologically by the presence of inflammation. Yet, several factors make comparison of the placenta to other human organs difficult. The placenta comprises tissues from two persons, complicating the role of the immune system. The placenta is a temporary organ. It must be eventually expelled; the processes leading to partuition involve maternal inflammation. What is normal or pathologic may be a function of timing or extent of the process. We now must consider whether bacteria, and even some viruses, are useful commensals or pathogens. Still, recognizing infection of the placenta is one of the most important contributions placental pathologic examination can give to care of the mother and neonate. This review provides a brief overview of placental defense against infection, consideration of the placental microbiome, routes of infection, and the histopathology of amniotic fluid infection and TORCH infections.
Collapse
Affiliation(s)
- Amy Heerema-McKenney
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
43
|
Arabian S, Raoofi Z. Effect of serum vitamin D level on endometrial thickness and parameters of follicle growth in infertile women undergoing induction of ovulation. J OBSTET GYNAECOL 2018. [DOI: 10.1080/01443615.2017.1411897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Sahereh Arabian
- Department of Obstetrics and Gynecology, Semnan University of Medical Sciences, Semnan, Iran
| | - Zahra Raoofi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Kenny LC, Kell DB. Immunological Tolerance, Pregnancy, and Preeclampsia: The Roles of Semen Microbes and the Father. Front Med (Lausanne) 2018; 4:239. [PMID: 29354635 PMCID: PMC5758600 DOI: 10.3389/fmed.2017.00239] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/12/2017] [Indexed: 12/18/2022] Open
Abstract
Although it is widely considered, in many cases, to involve two separable stages (poor placentation followed by oxidative stress/inflammation), the precise originating causes of preeclampsia (PE) remain elusive. We have previously brought together some of the considerable evidence that a (dormant) microbial component is commonly a significant part of its etiology. However, apart from recognizing, consistent with this view, that the many inflammatory markers of PE are also increased in infection, we had little to say about immunity, whether innate or adaptive. In addition, we focused on the gut, oral and female urinary tract microbiomes as the main sources of the infection. We here marshall further evidence for an infectious component in PE, focusing on the immunological tolerance characteristic of pregnancy, and the well-established fact that increased exposure to the father's semen assists this immunological tolerance. As well as these benefits, however, semen is not sterile, microbial tolerance mechanisms may exist, and we also review the evidence that semen may be responsible for inoculating the developing conceptus (and maybe the placenta) with microbes, not all of which are benign. It is suggested that when they are not, this may be a significant cause of PE. A variety of epidemiological and other evidence is entirely consistent with this, not least correlations between semen infection, infertility and PE. Our view also leads to a series of other, testable predictions. Overall, we argue for a significant paternal role in the development of PE through microbial infection of the mother via insemination.
Collapse
Affiliation(s)
- Louise C. Kenny
- The Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland
- Department of Obstetrics and Gynecology, University College Cork, Cork, Ireland
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Douglas B. Kell
- School of Chemistry, The University of Manchester, Manchester, United Kingdom
- The Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
45
|
Induction of antimicrobial peptides secretion by IL-1β enhances human amniotic membrane for regenerative medicine. Sci Rep 2017; 7:17022. [PMID: 29208979 PMCID: PMC5717175 DOI: 10.1038/s41598-017-17210-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/15/2017] [Indexed: 01/08/2023] Open
Abstract
Due to antibacterial characteristic, amnion has been frequently used in different clinical situations. Developing an in vitro method to augment endogenous antibacterial ingredient of amniotic epithelial and mesenchymal stem cells is desirable for a higher efficacy of this promising biomaterial. In this study, epithelial or mesenchymal side dependent effect of amniotic membrane (AM) on antibacterial activity against some laboratory and clinical isolated strains was investigated by modified disk diffusion method and colony count assay. The effect of exposure to IL-1β in production and release of antibacterial ingredients was investigated by ELISA assay. The results showed that there is no significant difference between epithelial and mesenchymal sides of amnion in inhibition of bacterial growth. Although the results of disk diffusion showed that the AM inhibitory effect depends on bacterial genus and strain, colony count assay showed that the extract of AM inhibits all investigated bacterial strains. The exposure of AM to IL-1β leads to a higher level of antibacterial peptides secretion including elafin, HBD-2, HBD-3 and cathelicidic LL-37. Based on these results, amniotic cells possess antibacterial activity which can be augmented by inflammatory signal inducers; a process which make amnion and its epithelial and mesenchymal stem cells more suitable for tissue engineering and regenerative medicine.
Collapse
|
46
|
Chin-Smith EC, Hezelgrave NL, Tribe RM. Host Defense Peptide Expression in Human Cervical Cells and Regulation by 1,25-Dihydroxyvitamin D3 in the Presence of Cytokines and Bacterial Endotoxin. Reprod Sci 2017; 25:1208-1217. [DOI: 10.1177/1933719117737847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Evonne C. Chin-Smith
- Department of Women and Children's Health, King’s College London, Women’s Health Academic Centre KHP, St Thomas’ Hospital Campus, London, UK
| | - Natasha L. Hezelgrave
- Department of Women and Children's Health, King’s College London, Women’s Health Academic Centre KHP, St Thomas’ Hospital Campus, London, UK
| | - Rachel M. Tribe
- Department of Women and Children's Health, King’s College London, Women’s Health Academic Centre KHP, St Thomas’ Hospital Campus, London, UK
| |
Collapse
|
47
|
Abstract
Preterm prelabor rupture of the membranes (pPROM) remains a significant obstetric problem that affects 3-4% of all pregnancies and precedes 40-50% of all preterm births. pPROM arises from complex, multifaceted pathways. In this review, we summarize some old concepts and introduce some novel theories related to pPROM pathophysiology. Specifically, we introduce the concept that pPROM is a disease of the fetal membranes where inflammation-oxidative stress axis plays a major role in producing pathways that can lead to membrane weakening through a variety of processes. In addition, we report microfractures in fetal membranes that are likely sites of tissue remodeling during gestation; however, increase in number and morphometry (width and depth) of these microfractures in pPROM membranes suggests reduced remodeling capacity of membranes. Microfractures can act as channels for amniotic fluid leak, and inflammatory cell and microbial migration. Further studies on senescence activation and microfracture formation and their role in maintaining membrane homeostasis are needed to fill the knowledge gaps in our understanding of pPROM as well as provide better screening (biomarker and imaging based) tools for predicting women at high risk for pPROM and subsequent preterm birth.
Collapse
Affiliation(s)
- Ramkumar Menon
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd, MRB, Room 11.138, Galveston, TX 77555-1062.
| | | |
Collapse
|
48
|
Protecting the Newborn and Young Infant from Infectious Diseases: Lessons from Immune Ontogeny. Immunity 2017; 46:350-363. [PMID: 28329702 DOI: 10.1016/j.immuni.2017.03.009] [Citation(s) in RCA: 298] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/20/2016] [Accepted: 03/06/2017] [Indexed: 12/14/2022]
Abstract
Infections in the first year of life are common and often severe. The newborn host demonstrates both quantitative and qualitative differences to the adult in nearly all aspects of immunity, which at least partially explain the increased susceptibility to infection. Here we discuss how differences in susceptibility to infection result not out of a state of immaturity, but rather reflect adaptation to the particular demands placed on the immune system in early life. We review the mechanisms underlying host defense in the very young, and discuss how specific developmental demands increase the risk of particular infectious diseases. In this context, we discuss how this plasticity, i.e. the capacity to adapt to demands encountered in early life, also provides the potential to leverage protection of the young against infection and disease through a number of interventions.
Collapse
|
49
|
Limited Colonization Undermined by Inadequate Early Immune Responses Defines the Dynamics of Decidual Listeriosis. Infect Immun 2017; 85:IAI.00153-17. [PMID: 28507070 DOI: 10.1128/iai.00153-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/08/2017] [Indexed: 12/24/2022] Open
Abstract
The bacterial pathogen Listeria monocytogenes causes foodborne systemic disease in pregnant women, which can lead to preterm labor, stillbirth, or severe neonatal disease. Colonization of the maternal decidua appears to be an initial step in the maternal component of the disease as well as bacterial transmission to the placenta and fetus. Host-pathogen interactions in the decidua during this early stage of infection remain poorly understood. Here, we assessed the dynamics of L. monocytogenes infection in primary human decidual organ cultures and in the murine decidua in vivo A high inoculum was necessary to infect both human and mouse deciduas, and the data support the existence of a barrier to initial colonization of the murine decidua. If successful, however, colonization in both species was followed by significant bacterial expansion associated with an inability of the decidua to mount appropriate innate cellular immune responses. The innate immune deficits included the failure of bacterial foci to attract macrophages and NK cells, cell types known to be important for early defenses against L. monocytogenes in the spleen, as well as a decrease in the tissue density of inflammatory Ly6Chi monocytes in vivo These results suggest that the infectivity of the decidua is not the result of an enhanced recruitment of L. monocytogenes to the gestational uterus but rather is due to compromised local innate cellular immune responses.
Collapse
|
50
|
Stalberg C, Noda N, Polettini J, Jacobsson B, Menon R. Anti-inflammatory Elafin in human fetal membranes. J Perinat Med 2017; 45:237-244. [PMID: 27580179 DOI: 10.1515/jpm-2016-0139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/22/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Elafin is a low molecular weight protein with antileukoproteinase, anti-inflammatory, antibacterial and immunomodulating properties. The profile of Elafin in fetal membranes is not well characterized. This study determined the changes in Elafin expression and concentration in human fetal membrane from patients with preterm prelabor rupture of membranes (PPROM) and in vitro in response to intra-amniotic polymicrobial pathogens. METHOD Elafin messenger RNA (mRNA) expressions were studied in fetal membranes from PPROM, normal term as well as in normal term not in labor membranes in an organ explant system treated (24 h) with lipopolysaccharide (LPS), using quantitative reverse transcription-polymerase chain reaction (RT-PCR). Enzyme-linked immunosorbent assay (ELISA) measured Elafin concentrations in culture supernatants from tissues treated with LPS and polybacterial combinations of heat-inactivated Mycoplasma hominis (MH), Ureaplasma urealyticum (UU) and Gardnerella vaginalis (GV). RESULTS Elafin mRNA expression in fetal membranes from women with PPROM was significantly higher compared to women who delivered at term after normal pregnancy (5.09±3.50 vs. 11.71±2.21; P<0.05). In vitro, LPS-stimulated membranes showed a significantly increased Elafin m-RNA expression (P<0.05). However, the protein levels after LPS stimulation was not changed. Similarly, polymicrobial-treated fetal membranes also showed no changes in Elafin protein concentrations compared to untreated controls. CONCLUSION Higher Elafin expression in PPROM fetal membranes suggests a host response to an inflammatory pathology. However, lack of Elafin response to LPS and polymicrobial treatment is indicative of the minimal anti-inflammatory impact of this molecule in fetal membranes.
Collapse
|