1
|
Panneflek TJR, Kuypers KLAM, Polglase GR, Derleth DP, Dekker J, Hooper SB, van den Akker T, Pas ABT. The influence of chorioamnionitis on respiratory drive and spontaneous breathing of premature infants at birth: a narrative review. Eur J Pediatr 2024; 183:2539-2547. [PMID: 38558311 PMCID: PMC11098929 DOI: 10.1007/s00431-024-05508-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/26/2024] [Accepted: 03/02/2024] [Indexed: 04/04/2024]
Abstract
Most very premature infants breathe at birth but require respiratory support in order to stimulate and support their breathing. A significant proportion of premature infants are affected by chorioamnionitis, defined as an umbrella term for antenatal inflammation of the foetal membranes and umbilical vessels. Chorioamnionitis produces inflammatory mediators that potentially depress the respiratory drive generated in the brainstem. Such respiratory depression could maintain itself by delaying lung aeration, hampering respiratory support at birth and putting infants at risk of hypoxic injury. This inflammatory-mediated respiratory depression may contribute to an association between chorioamnionitis and increased requirement of neonatal resuscitation in premature infants at birth. This narrative review summarises mechanisms on how respiratory drive and spontaneous breathing could be influenced by chorioamnionitis and provides possible interventions to stimulate spontaneous breathing. Conclusion: Chorioamnionitis could possibly depress respiratory drive and spontaneous breathing in premature infants at birth. Interventions to stimulate spontaneous breathing could therefore be valuable. What is Known: • A large proportion of premature infants are affected by chorioamnionitis, antenatal inflammation of the foetal membranes and umbilical vessels. What is New: • Premature infants affected by chorioamnionitis might be exposed to higher concentrations of respiratory drive inhibitors which could depress breathing at birth. • Premature infants affected by chorioamnionitis seem to be associated with a higher and more extensive requirement of resuscitation at birth.
Collapse
Affiliation(s)
- Timothy J R Panneflek
- Division of Neonatology, Department of Paediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, P.O. Box 9600, 2300 RC, Leiden, Netherlands.
| | - Kristel L A M Kuypers
- Division of Neonatology, Department of Paediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, P.O. Box 9600, 2300 RC, Leiden, Netherlands
| | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Douglas P Derleth
- Department of Paediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Janneke Dekker
- Division of Neonatology, Department of Paediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, P.O. Box 9600, 2300 RC, Leiden, Netherlands
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Thomas van den Akker
- Department of Obstetrics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Arjan B Te Pas
- Division of Neonatology, Department of Paediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, P.O. Box 9600, 2300 RC, Leiden, Netherlands
| |
Collapse
|
2
|
Huang S, Chen J, Cui Z, Ma K, Wu D, Luo J, Li F, Xiong W, Rao S, Xiang Q, Shi W, Song T, Deng J, Yin Y, Tan C. Lachnospiraceae-derived butyrate mediates protection of high fermentable fiber against placental inflammation in gestational diabetes mellitus. SCIENCE ADVANCES 2023; 9:eadi7337. [PMID: 37922350 PMCID: PMC10624355 DOI: 10.1126/sciadv.adi7337] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2023]
Abstract
Inflammation-associated insulin resistance is a key trigger of gestational diabetes mellitus (GDM), but the underlying mechanisms and effective interventions remain unclear. Here, we report the association of placental inflammation (tumor necrosis factor-α) and abnormal maternal glucose metabolism in patients with GDM, and a high fermentable dietary fiber (HFDF; konjac) could reduce GDM development through gut flora-short-chain fatty acid-placental inflammation axis in GDM mouse model. Mechanistically, HFDF increases abundances of Lachnospiraceae and butyrate, reduces placental-derived inflammation by enhancing gut barrier and inhibiting the transfer of bacterial-derived lipopolysaccharide, and ultimately resists high-fat diet-induced insulin resistance. Lachnospiraceae and butyrate have similar anti-GDM and anti-placental inflammation effects, and they can ameliorate placental function and pregnancy outcome effects probably by dampening placental immune dysfunction. These findings demonstrate the involvement of important placental inflammation-related mechanisms in the progression of GDM and the great potential of HFDFs to reduce susceptibility to GDM through gut-flora-placenta axis.
Collapse
Affiliation(s)
- Shuangbo Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jianzhao Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhijuan Cui
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Kaidi Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Deyuan Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jinxi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Fuyong Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Department of Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen 518000, China
- Department of Obstetrics and Gynecology, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen 518000, China
- Huazhong Agricultural University, College of Animal Science and Technology, Wuhan 430070, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Wenyu Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Sujuan Rao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Quanhang Xiang
- Department of Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen 518000, China
| | - Wei Shi
- Department of Obstetrics and Gynecology, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen 518000, China
| | - Tongxing Song
- Huazhong Agricultural University, College of Animal Science and Technology, Wuhan 430070, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Zhu Y, Zhang Y, Jin Y, Jin H, Huang K, Tong J, Gan H, Rui C, Lv J, Wang X, Wang Q, Tao F. Identification and prediction model of placenta-brain axis genes associated with neurodevelopmental delay in moderate and late preterm children. BMC Med 2023; 21:326. [PMID: 37633927 PMCID: PMC10464496 DOI: 10.1186/s12916-023-03023-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/07/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Moderate and late preterm (MLPT) birth accounts for the vast majority of preterm births, which is a global public health problem. The association between MLPT and neurobehavioral developmental delays in children and the underlying biological mechanisms need to be further revealed. The "placenta-brain axis" (PBA) provides a new perspective for gene regulation and risk prediction of neurodevelopmental delays in MLPT children. METHODS The authors performed multivariate logistic regression models between MLPT and children's neurodevelopmental outcomes, using data from 129 MLPT infants and 3136 full-term controls from the Ma'anshan Birth Cohort (MABC). Furthermore, the authors identified the abnormally regulated PBA-related genes in MLPT placenta by bioinformatics analysis of RNA-seq data and RT-qPCR verification on independent samples. Finally, the authors established the prediction model of neurodevelopmental delay in children with MLPT using multiple machine learning models. RESULTS The authors found an increased risk of neurodevelopmental delay in children with MLPT at 6 months, 18 months, and 48 months, especially in boys. Further verification showed that APOE and CST3 genes were significantly correlated with the developmental levels of gross-motor domain, fine-motor domain, and personal social domain in 6-month-old male MLPT children. CONCLUSIONS These findings suggested that there was a sex-specific association between MLPT and neurodevelopmental delays. Moreover, APOE and CST3 were identified as placental biomarkers. The results provided guidance for the etiology investigation, risk prediction, and early intervention of neurodevelopmental delays in children with MLPT.
Collapse
Affiliation(s)
- Yumin Zhu
- Medical School, Nanjing University, Nanjing, Jiangsu, China.
- Department of Maternal & Child and Adolescent Health, School of Public Health, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China.
| | - Yimin Zhang
- Department of Maternal & Child and Adolescent Health, School of Public Health, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Yunfan Jin
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Heyue Jin
- Department of Maternal & Child and Adolescent Health, School of Public Health, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Kun Huang
- Department of Maternal & Child and Adolescent Health, School of Public Health, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Juan Tong
- Department of Maternal & Child and Adolescent Health, School of Public Health, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Hong Gan
- Department of Maternal & Child and Adolescent Health, School of Public Health, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Chen Rui
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Jia Lv
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xianyan Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qu'nan Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| | - Fangbiao Tao
- Department of Maternal & Child and Adolescent Health, School of Public Health, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
4
|
Dabbah-Assadi F, Rashid S, Golani I, Rubinstein A, Doron R, Alon D, Palzur E, Beloosesky R, Shamir A. Long-term effects of prophylactic MgSO 4 in maternal immune activation rodent model at adolescence and adulthood. J Neurosci Res 2023; 101:316-326. [PMID: 36434794 PMCID: PMC10100175 DOI: 10.1002/jnr.25148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022]
Abstract
The effects of MgSO4 as an anti-inflammatory agent in pregnant women have been investigated in the last few years. Infections can cause an inflammatory reaction involving the placenta membranes and amniotic cavity. They may have short-term effects on the mother and her fetuses, like preterm birth, cerebral palsy, and developmental delay. Despite the alleged advantages of MgSO4 as a neuroprotective agent in the preterm brain, the long-term molecular and behavioral function of MgSO4 has not been fully elucidated. Here, we investigated the long-term effect of antenatal MgSO4 , during late gestation, on offspring's behavior focusing on cognitive function, motor activity, and social cognition in adolescence and adulthood, and explored its influence on brain gene expression (e.g., ErbB signaling, pro-inflammatory, and dopaminergic markers) in adulthood. A significant abnormal exploratory behavior of offspring of MgSO4 -treated dams was found compared to the control group in both adolescence and adulthood. Furthermore, we found that adult females exposed to MgSO4 under inflammation displayed working and recognition memory impairment. A reduction in IL-6 expression was detected in the prefrontal cortex, and hippocampus specimens derived from LPS-Mg-treated group. In contrast, an imbalanced expression of dopamine 1 and 2 receptors was detected only in prefrontal cortex specimens. Besides, we found that MgSO4 ameliorated the overexpression of the Nrg1 and Erbb4 receptors induced by LPS in the hippocampus. Thus, MgSO4 treatment for preventing brain injuries can adversely affect offspring cognition behavior later in life, depending on the sex and age of the offspring.
Collapse
Affiliation(s)
- Fadwa Dabbah-Assadi
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sally Rashid
- Department of Biotechnology Engineering, ORT Braude College, Karmiel, Israel
| | - Idit Golani
- Department of Biotechnology Engineering, ORT Braude College, Karmiel, Israel
| | - Alon Rubinstein
- Faculty of Medicine in the Galilee, Bar-Ilan University, Zefat, Israel
| | - Ravid Doron
- Department of Education and Psychology, the Open University, Raanana, Israel
| | - David Alon
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel
| | - Eilam Palzur
- The Neuroscience Laboratory, Galilee Medical Center Research Institute, Nahariya, Israel
| | - Ron Beloosesky
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | - Alon Shamir
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
5
|
Wu Y, Kang F, Yang Y, Tao L, Chen Y, Li X. The protective effect of magnesium sulfate on placental inflammation via suppressing the NF-κB pathway in a preeclampsia-like rat model. Pregnancy Hypertens 2023; 31:4-13. [PMID: 36435037 DOI: 10.1016/j.preghy.2022.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Abnormal placental inflammation has a role in the pathophysiology of preeclampsia. Magnesium sulfate (MgSO4) has anti-inflammatory properties and is a fetal neuroprotective agent. MgSO4 is often used to treat severe preeclampsia; however, the specificmechanisms of action underlyingthistherapeutic effect remain unclear. The objective of this study was to investigate the effects of MgSO4 (270 mg/kg) on placental inflammation in a rat model of lipopolysaccharide (LPS; 1.0 µg/kg)-induced preeclampsia. Compared to normal pregnant rats, LPS-treated pregnant rats had higher blood pressure, proteinuria, and expression of the anti-angiogenic factor sFlt-1 and the pro-inflammatory factors interleukin-1β (IL-1β) and IL-12 in placental tissue. LPS-treated pregnant rats had placental insufficiency, poor fetal outcomes, and significantly decreased expression of the anti-inflammatory factors apolipoprotein E (APOE) and IL-10 in placental tissue. MgSO4 treatment had favorable effects on maternal and fetal outcomes. MgSO4 treatment improved placental function by repressing an exaggerated inflammatory response in the placenta and promoting angiogenesis via the NF-κB pathway. These findings suggest MgSO4 has a potential role in the prevention of preeclampsia and in the treatment of mild and moderate preeclampsia.
Collapse
Affiliation(s)
- Yongyuan Wu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Fen Kang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yuanyuan Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Li Tao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yueran Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xiaolan Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
6
|
Jin J, Gao L, Zou X, Zhang Y, Zheng Z, Zhang X, Li J, Tian Z, Wang X, Gu J, Zhang C, Wu T, Wang Z, Zhang Q. Gut Dysbiosis Promotes Preeclampsia by Regulating Macrophages and Trophoblasts. Circ Res 2022; 131:492-506. [PMID: 35950704 DOI: 10.1161/circresaha.122.320771] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Preeclampsia is one of the leading causes of maternal and perinatal morbidity and is characterized by hypertension, inflammation, and placental dysfunction. Gut microbiota plays key roles in inflammation and hypertension. However, its roles and mechanisms in preeclampsia have not been fully elucidated. METHODS 16S rRNA gene sequencing and targeted metabolomics were conducted on stool samples from 92 preeclamptic patients and 86 normal late-pregnant women. Then, fecal microbiota transplantation and in vitro and in vivo functional experiments were performed to explore the roles and mechanisms of gut microbiota in preeclampsia development. RESULTS We revealed the gut microbiota dysbiosis in preeclamptic patients, including significant reductions in short-chain fatty acid-producing bacteria and short-chain fatty acids. The gut microbiota of preeclamptic patients significantly exacerbated pathologies and symptoms of preeclamptic rats, whereas the gut microbiota of healthy pregnant women had significant protective effects. Akkermansia muciniphila, propionate, or butyrate significantly alleviated the symptoms of preeclamptic rats. Mechanistically, they significantly promoted autophagy and M2 polarization of macrophages in placental bed, thereby suppressing inflammation. Propionate also significantly promoted trophoblast invasion, thereby improved spiral arterial remodeling. Additionally, we identified a marker set consisting of Akkermansia, Oscillibacter, and short-chain fatty acids that could accurately diagnose preeclampsia. CONCLUSIONS Our study revealed that gut microbiota dysbiosis is an important etiology of preeclampsia. Gut microbiota and their active metabolites have great potential for the treatment and diagnosis of preeclampsia. Our findings enrich the gut-placenta axis theory and contribute to the development of microecological products for preeclampsia.
Collapse
Affiliation(s)
- Jiajia Jin
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences (J.J., Y.Z., Z.Z., Z.T., X.W., C.Z., Q.Z.).,State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (J.J., Y.Z., Z.Z., Z.T., X.W., C.Z., Q.Z.).,Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (J.J., Y.Z., Z.Z., Z.T., X.W., C.Z., Q.Z.)
| | - Liaomei Gao
- Division of Geriatrics, Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China (L.G., J.L., J.G., Z.W.).,Maternal and child health care hospital of Shandong province, Shandong University, Jinan, China (L.G.)
| | - Xiuli Zou
- Intensive Care Unit, Liaocheng People's Hospital, China (X.Z., T.W.)
| | - Yun Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences (J.J., Y.Z., Z.Z., Z.T., X.W., C.Z., Q.Z.).,State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (J.J., Y.Z., Z.Z., Z.T., X.W., C.Z., Q.Z.).,Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (J.J., Y.Z., Z.Z., Z.T., X.W., C.Z., Q.Z.)
| | - Zhijian Zheng
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences (J.J., Y.Z., Z.Z., Z.T., X.W., C.Z., Q.Z.).,State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (J.J., Y.Z., Z.Z., Z.T., X.W., C.Z., Q.Z.).,Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (J.J., Y.Z., Z.Z., Z.T., X.W., C.Z., Q.Z.)
| | - Xinjie Zhang
- Department of Biology, University College London, United Kingdom (X.Z.)
| | - Jiaxuan Li
- Division of Geriatrics, Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China (L.G., J.L., J.G., Z.W.)
| | - Zhenyu Tian
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences (J.J., Y.Z., Z.Z., Z.T., X.W., C.Z., Q.Z.).,State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (J.J., Y.Z., Z.Z., Z.T., X.W., C.Z., Q.Z.).,Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (J.J., Y.Z., Z.Z., Z.T., X.W., C.Z., Q.Z.)
| | - Xiaowei Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences (J.J., Y.Z., Z.Z., Z.T., X.W., C.Z., Q.Z.).,State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (J.J., Y.Z., Z.Z., Z.T., X.W., C.Z., Q.Z.).,Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (J.J., Y.Z., Z.Z., Z.T., X.W., C.Z., Q.Z.)
| | - Junfei Gu
- Division of Geriatrics, Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China (L.G., J.L., J.G., Z.W.)
| | - Cheng Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences (J.J., Y.Z., Z.Z., Z.T., X.W., C.Z., Q.Z.).,State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (J.J., Y.Z., Z.Z., Z.T., X.W., C.Z., Q.Z.).,Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (J.J., Y.Z., Z.Z., Z.T., X.W., C.Z., Q.Z.)
| | - Tiejun Wu
- Intensive Care Unit, Liaocheng People's Hospital, China (X.Z., T.W.)
| | - Zhe Wang
- Division of Geriatrics, Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China (L.G., J.L., J.G., Z.W.)
| | - Qunye Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences (J.J., Y.Z., Z.Z., Z.T., X.W., C.Z., Q.Z.).,State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine (J.J., Y.Z., Z.Z., Z.T., X.W., C.Z., Q.Z.).,Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (J.J., Y.Z., Z.Z., Z.T., X.W., C.Z., Q.Z.).,Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China (Q.Z.)
| |
Collapse
|
7
|
Yalcin SE, Sezik M, Yavuz A, Savran M, Asci H, Ozmen O. Combined Use of Magnesium Sulfate and Fingolimod for Antenatal Neuroprotection against Inflammation-Mediated Experimental Preterm Brain Injury in a Rat Model. Fetal Pediatr Pathol 2022; 41:603-615. [PMID: 34193008 DOI: 10.1080/15513815.2021.1945174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BackgroundWe compared the neuroprotective effects of Fingolimod (fng), a neuroprotective and anti-inflammatory drug, with that of magnesium sulfate (MgSO4), alone and in combination, in fetal rat whose mothers were exposed to endotoxin.MethodSeven groups of pregnant rats (28 total) were evaluated at 0.8 gestation - Group1 - saline only; 2 - endotoxin only; 3 - endotoxin + MgSO4; 4 - endotoxin + fng; 5 - endotoxin + MgSO4 + fng; 6 - saline + fng; 7 - saline + MgSO4 + fng. Preterm labor was induced 4 h after intraperitoneal endotoxin administration. Fetal brain samples were examined immunohistochemically using S100β, IL-6, and IL-10.ResultsEndotoxin caused increased expression of S100β, IL-6, and IL-10. Compared with MgSO4 alone, combined treatment was associated with lower expression of IL-10, IL-6 and S100 β.ConclusionFng decreases inflammatory markers after in-utero exposure to endotoxin, has a synergistic effect combined with MgSO4, and may be a candidate neuroprotective drug for inflammation-induced preterm brain injury.
Collapse
Affiliation(s)
- Serenat Eris Yalcin
- Department of Obstetrics and Gynecology, University of Health Sciences Antalya Training and Research Hospital, Antalya, Turkey
| | - Mekin Sezik
- Department of Obstetrics and Gynecology, Suleyman Demirel, University School of Medicine, SDU Campus, Cunur, Turkey
| | - And Yavuz
- Department of Obstetrics and Gynecology, University of Health Sciences Antalya Training and Research Hospital, Antalya, Turkey
| | - Mehtap Savran
- Department of Pharmacology, Suleyman Demirel, University School of Medicine, SDU Campus, Cunur, Turkey
| | - Halil Asci
- Department of Pharmacology, Suleyman Demirel, University School of Medicine, SDU Campus, Cunur, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
8
|
Khatib N, Ginsberg Y, Ben David C, Ross MG, Vitner D, Zipori Y, Zamora O, Weiner Z, Beloosesky R. Magnesium sulphate neuroprotection mechanism is placental mediated by inhibition of inflammation, apoptosis and oxidative stress. Placenta 2022; 127:29-36. [DOI: 10.1016/j.placenta.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 07/03/2022] [Accepted: 07/14/2022] [Indexed: 10/17/2022]
|
9
|
Scott H, Martinelli LM, Grynspan D, Bloise E, Connor KL. Preterm Birth Associates With Increased Placental Expression of MDR Transporters Irrespective of Prepregnancy BMI. J Clin Endocrinol Metab 2022; 107:1140-1158. [PMID: 34748636 DOI: 10.1210/clinem/dgab813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Preterm birth (PTB) and suboptimal prepregnancy body mass index (BMI) operate through inflammatory pathways to impair fetoplacental development. Placental efflux transporters mediate fetal protection and nutrition; however, few studies consider the effect of both PTB and BMI on fetal protection. We hypothesized that PTB would alter the expression of placental multidrug resistance (MDR) transporters and selected proinflammatory cytokines, and that maternal underweight and obesity would further impair placental phenotype. OBJECTIVE To determine whether placental MDR transporters P-glycoprotein (P-gp, encoded by ABCB1) and breast cancer resistance protein (BCRP/ABCG2), and proinflammatory cytokine levels are altered by PTB and maternal BMI. METHODS A cross-sectional study was conducted to assess the effect of PTB (with/without chorioamnionitis), or the effect of maternal prepregnancy BMI on placental MDR transporter and interleukin (IL)-6 and -8 expression in 60 preterm and 36 term pregnancies. RESULTS ABCB1 expression was increased in preterm compared to term placentae (P = .04). P-gp (P = .008) and BCRP (P = .01) immunolabeling was increased among all preterm compared to term placentae, with P-gp expression further increased in preterm pregnancies with chorioamnionitis (PTC, P = .007). Placental IL-6 mRNA expression was decreased in PTC compared to term placentae (P = .0005) and PTC associated with the greatest proportion of anti-inflammatory medications administered during pregnancy. Maternal BMI group did not influence placental outcomes. CONCLUSION PTB and infection, but not prepregnancy BMI, alter placental expression of MDR transporters and IL-6. This may have implications for fetal exposure to xenobiotics that may be present in the maternal circulation in pregnancies complicated by PTB.
Collapse
Affiliation(s)
- Hailey Scott
- Department of Health Sciences, Carleton University, Ottawa, Canada
| | - Lilian M Martinelli
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - David Grynspan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Enrrico Bloise
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Kristin L Connor
- Department of Health Sciences, Carleton University, Ottawa, Canada
| |
Collapse
|
10
|
Qiao W, Wong KHM, Shen J, Wang W, Wu J, Li J, Lin Z, Chen Z, Matinlinna JP, Zheng Y, Wu S, Liu X, Lai KP, Chen Z, Lam YW, Cheung KMC, Yeung KWK. TRPM7 kinase-mediated immunomodulation in macrophage plays a central role in magnesium ion-induced bone regeneration. Nat Commun 2021; 12:2885. [PMID: 34001887 PMCID: PMC8128914 DOI: 10.1038/s41467-021-23005-2] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 04/09/2021] [Indexed: 02/03/2023] Open
Abstract
Despite the widespread observations on the osteogenic effects of magnesium ion (Mg2+), the diverse roles of Mg2+ during bone healing have not been systematically dissected. Here, we reveal a previously unknown, biphasic mode of action of Mg2+ in bone repair. During the early inflammation phase, Mg2+ contributes to an upregulated expression of transient receptor potential cation channel member 7 (TRPM7), and a TRPM7-dependent influx of Mg2+ in the monocyte-macrophage lineage, resulting in the cleavage and nuclear accumulation of TRPM7-cleaved kinase fragments (M7CKs). This then triggers the phosphorylation of Histone H3 at serine 10, in a TRPM7-dependent manner at the promoters of inflammatory cytokines, leading to the formation of a pro-osteogenic immune microenvironment. In the later remodeling phase, however, the continued exposure of Mg2+ not only lead to the over-activation of NF-κB signaling in macrophages and increased number of osteoclastic-like cells but also decelerates bone maturation through the suppression of hydroxyapatite precipitation. Thus, the negative effects of Mg2+ on osteogenesis can override the initial pro-osteogenic benefits of Mg2+. Taken together, this study establishes a paradigm shift in the understanding of the diverse and multifaceted roles of Mg2+ in bone healing.
Collapse
Affiliation(s)
- Wei Qiao
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Dental Materials Science, Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR., China
| | - Karen H M Wong
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jie Shen
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Wenhao Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jun Wu
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jinhua Li
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Zhengjie Lin
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Zetao Chen
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
- Zhujiang New Town Clinic, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jukka P Matinlinna
- Dental Materials Science, Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR., China
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, China
| | - Shuilin Wu
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Keng Po Lai
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Zhuofan Chen
- Zhujiang New Town Clinic, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Yun Wah Lam
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
| | - Kenneth M C Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Kelvin W K Yeung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
11
|
PFKFB3 regulates lipopolysaccharide-induced excessive inflammation and cellular dysfunction in HTR-8/Svneo cells: Implications for the role of PFKFB3 in preeclampsia. Placenta 2021; 106:67-78. [PMID: 33684599 DOI: 10.1016/j.placenta.2021.02.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/13/2021] [Accepted: 02/21/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Preeclampsia is characterized by overactive inflammation at the uteroplacental interface, leading to trophoblasts dysfunction. 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 3 (PFKFB3) is a crucial glycolytic regulator which has recently been found to participate in the pathological inflammatory states. This study aimed to investigate the role of PFKFB3 in the inflammation-induced damage in trophoblasts, and elucidate the underlying mechanisms. METHODS Immunohistochemistry, qRT-PCR, and Western blot analysis (WB) were used to detect the expression of PFKFB3 in preeclamptic and normal placentas. Lipopolysaccharide (LPS)-induced HTR8/SVneo cells were established as the in vitro model to simulate the overactive inflammation at the uteroplacental interface of PE, which were subsequently transfected with PFKFB3 siRNA. The expression of PFKFB3, NF-κB-p-p65, phosphorylation states of NF-κB-p65, ICAM-1, Bcl-2, BAX, and MMP2 were detected by WB. qRT-PCR was used to detect the expression of TNF-α and IL-1β. The ICAM-1 expression was also reflected by monocyte adhesion assay. Reactive Oxygen Species (ROS) levels were detected by DCFH-DA (2,7-Dichlorodi-hydrofluorescein diacetate). Apoptosis was detected using Annexin V-FITC staining. Migration and invasion were measured by wound-healing and transwell assays. RESULTS PFKFB3 was up-regulated in the preeclamptic placenta. In LPS-treated HTR-8/Svneo cells, the inhibition of PFKFB3 blocked the NF-κB signal pathway, thereby downregulating the expression of proinflammatory cytokines and adhesion molecules, meanwhile, PFKFB3 knockdown significantly alleviated monocyte adhesion, oxidative stress, apoptosis, and reinstated migration and invasive capacity. DISCUSSION PFKFB3 controls the LPS-induced inflammation via the NF-κB pathway and impacts trophoblasts function such as adhesion, oxidative stress, apoptosis, migration, and invasion, thereby potentially participating in the preeclamptic etiopathogenesis.
Collapse
|
12
|
Rahmati M, Stötzel S, Khassawna TE, Iskhahova K, Florian Wieland DC, Zeller Plumhoff B, Haugen HJ. Early osteoimmunomodulatory effects of magnesium-calcium-zinc alloys. J Tissue Eng 2021; 12:20417314211047100. [PMID: 34589198 PMCID: PMC8474317 DOI: 10.1177/20417314211047100] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/01/2021] [Indexed: 01/04/2023] Open
Abstract
Today, substantial attention is given to biomaterial strategies for bone regeneration, and among them, there is a growing interest in using immunomodulatory biomaterials. The ability of a biomaterial to induce neo vascularization and macrophage polarization is a major factor in defining its success. Magnesium (Mg)-based degradable alloys have attracted significant attention for bone regeneration owing to their biodegradability and potential for avoiding secondary removal surgeries. However, there is insufficient evidence in the literature regarding the early inflammatory responses to these alloys in vivo. In this study, we investigated the early body responses to Mg-0.45wt%Zn-0.45wt%Ca pin-shaped alloy (known as ZX00 alloy) in rat femora 2, 5, and 10 days after implantation. We used 3D micro computed tomography (µCT), histological, immunohistochemical, histomorphometrical, and small angle X-ray scattering (SAXS) analyses to study new bone formation, early macrophage polarization, neo vascularization, and bone quality at the implant bone interface. The expression of macrophage type 2 biological markers increased significantly after 10 days of Mg alloy implantation, indicating its potential in stimulating macrophage polarization. Our biomineralization results using µCT as well as histological stained sections did not indicate any statistically significant differences between different time points for both groups. The activity of alkaline phosphatase (ALP) and Runt-related transcription factor 2 (Runx 2) biological markers decreased significantly for Mg group, indicating less osteoblast activity. Generally, our results supported the potential of ZX00 alloy to enhance the expression of macrophage polarization in vivo; however, we could not observe any statistically significant changes regarding biomineralization.
Collapse
Affiliation(s)
- Maryam Rahmati
- Department of Biomaterials, Institute
for Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Sabine Stötzel
- Experimental Trauma Surgery,
Justus-Liebig University Giessen, Giessen, Germany
| | - Thaqif El Khassawna
- Experimental Trauma Surgery,
Justus-Liebig University Giessen, Giessen, Germany
- Faculty of Health Sciences, University
of Applied Sciences, Giessen, Germany
| | - Kamila Iskhahova
- Institute of Metallic Biomaterials,
Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - DC Florian Wieland
- Institute of Metallic Biomaterials,
Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | | | - Håvard Jostein Haugen
- Department of Biomaterials, Institute
for Clinical Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
13
|
Healing autism spectrum disorder with cannabinoids: a neuroinflammatory story. Neurosci Biobehav Rev 2020; 121:128-143. [PMID: 33358985 DOI: 10.1016/j.neubiorev.2020.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/28/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with a multifactorial etiology. Latest researches are raising the hypothesis of a link between the onset of the main behavioral symptoms of ASD and the chronic neuroinflammatory condition of the autistic brain; increasing evidence of this connection is shedding light on new possible players in the pathogenesis of ASD. The endocannabinoid system (ECS) has a key role in neurodevelopment as well as in normal inflammatory responses and it is not surprising that many preclinical and clinical studies account for alterations of the endocannabinoid signaling in ASD. These findings lay the foundation for a better understanding of the neurochemical mechanisms underlying ASD and for new therapeutic attempts aimed at exploiting the renowned anti-inflammatory properties of cannabinoids to treat pathologies encompassed in the autistic spectrum. This review discusses the current preclinical and clinical evidence supporting a key role of the ECS in the neuroinflammatory state that characterizes ASD, providing hints to identify new biomarkers in ASD and promising therapies for the future.
Collapse
|
14
|
Zarate MA, Wesolowski SR, Nguyen LM, De Dios RK, Wilkening RB, Rozance PJ, Wright CJ. In utero inflammatory challenge induces an early activation of the hepatic innate immune response in late gestation fetal sheep. Innate Immun 2020; 26:549-564. [PMID: 32538259 PMCID: PMC7556190 DOI: 10.1177/1753425920928388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/20/2020] [Accepted: 04/26/2020] [Indexed: 12/15/2022] Open
Abstract
Chorioamnionitis is associated with inflammatory end-organ damage in the fetus. Tissues in direct contact with amniotic fluid drive a pro-inflammatory response and contribute to this injury. However, due to a lack of direct contact with the amniotic fluid, the liver contribution to this response has not been fully characterized. Given its role as an immunologic organ, we hypothesized that the fetal liver would demonstrate an early innate immune response to an in utero inflammatory challenge. Fetal sheep (131 ± 1 d gestation) demonstrated metabolic acidosis and high cortisol and norepinephrine values within 5 h of exposure to intra-amniotic LPS. Likewise, expression of pro-inflammatory cytokines increased significantly at 1 and 5 h of exposure. This was associated with NF-κB activation, by inhibitory protein IκBα degradation, and nuclear translocation of NF-κB subunits (p65/p50). Corroborating these findings, LPS exposure significantly increased pro-inflammatory innate immune gene expression in fetal sheep hepatic macrophages in vitro. Thus, an in utero inflammatory challenge induces an early hepatic innate immune response with systemic metabolic and stress responses. Within the fetal liver, hepatic macrophages respond robustly to LPS exposure. Our results demonstrate that the fetal hepatic innate immune response must be considered when developing therapeutic approaches to attenuate end-organ injury associated with in utero inflammation.
Collapse
Affiliation(s)
- Miguel A Zarate
- Section of Neonatology, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Stephanie R Wesolowski
- Section of Neonatology, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Leanna M Nguyen
- Section of Neonatology, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Robyn K De Dios
- Section of Neonatology, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Randall B Wilkening
- Section of Neonatology, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Paul J Rozance
- Section of Neonatology, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
15
|
Liu G, Chen X, Lu X, Zhao J, Li X. Sunflower head enzymatic hydrolysate relives hyperuricemia by inhibiting crucial proteins (xanthine oxidase, adenosine deaminase, uric acid transporter1) and restoring gut microbiota in mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
16
|
Xiong Y, Wintermark P. Therapeutic interventions for fetal inflammatory response syndrome (FIRS). Semin Fetal Neonatal Med 2020; 25:101112. [PMID: 32303464 DOI: 10.1016/j.siny.2020.101112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fetal inflammatory response syndrome (FIRS) is a condition defined by systemic inflammation in the fetus, a rapid increase of pro-inflammatory cytokines into the fetal circulation (including interleukin-1 and interleukin-6), as well as a cellular response (such as increased neutrophils, monocyte/macrophages, and T cells) and the presence of funisitis. FIRS can lead to death and multisystem organ damage in the fetus and newborn. Brain injuries and subsequent risk of cerebral palsy and cognitive impairments are the most threatening long-term complications. This paper reviews the definition of FIRS, summarizes its associated complications, briefly describes the available methods to study FIRS, and discusses in more detail the potential therapeutic candidates that have been so far studied to protect the fetus/newborn from FIRS and to alleviate its associated complications and sequelae.
Collapse
Affiliation(s)
- Ying Xiong
- Zhongnan Hospital of Wuhan University, Department of Anesthesiology, Wuhan University, Wuhan, China; Research Institute of the McGill University Health Centre, Montreal, Canada.
| | - Pia Wintermark
- Division of Newborn Medicine, Department of Pediatrics, Montreal Children's Hospital, Montreal, Canada; Research Institute of the McGill University Health Centre, Montreal, Canada.
| |
Collapse
|
17
|
Jantzie LL, Maxwell JR, Newville JC, Yellowhair TR, Kitase Y, Madurai N, Ramachandra S, Bakhireva LN, Northington FJ, Gerner G, Tekes A, Milio LA, Brigman JL, Robinson S, Allan A. Prenatal opioid exposure: The next neonatal neuroinflammatory disease. Brain Behav Immun 2020; 84:45-58. [PMID: 31765790 PMCID: PMC7010550 DOI: 10.1016/j.bbi.2019.11.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/29/2019] [Accepted: 11/17/2019] [Indexed: 01/19/2023] Open
Abstract
The rates of opioid use disorder during pregnancy have more than quadrupled in the last decade, resulting in numerous infants suffering exposure to opioids during the perinatal period, a critical period of central nervous system (CNS) development. Despite increasing use, the characterization and definition of the molecular and cellular mechanisms of the long-term neurodevelopmental impacts of opioid exposure commencing in utero remains incomplete. Thus, in consideration of the looming public health crisis stemming from the multitude of infants with prenatal opioid exposure entering school age, we undertook an investigation of the effects of perinatal methadone exposure in a novel preclinical model. Specifically, we examined the effects of opioids on the developing brain to elucidate mechanisms of putative neural cell injury, to identify diagnostic biomarkers and to guide clinical studies of outcome and follow-up. We hypothesized that methadone would induce a pronounced inflammatory profile in both dams and their pups, and be associated with immune system dysfunction, sustained CNS injury, and altered cognition and executive function into adulthood. This investigation was conducted using a combination of cellular, molecular, biochemical, and clinically translatable biomarker, imaging and cognitive assessment platforms. Data reveal that perinatal methadone exposure increases inflammatory cytokines in the neonatal peripheral circulation, and reprograms and primes the immune system through sustained peripheral immune hyperreactivity. In the brain, perinatal methadone exposure not only increases chemokines and cytokines throughout a crucial developmental period, but also alters microglia morphology consistent with activation, and upregulates TLR4 and MyD88 mRNA. This increase in neuroinflammation coincides with reduced myelin basic protein and altered neurofilament expression, as well as reduced structural coherence and significantly decreased fractional anisotropy on diffusion tensor imaging. In addition to this microstructural brain injury, adult rats exposed to methadone in the perinatal period have significant impairment in associative learning and executive control as assessed using touchscreen technology. Collectively, these data reveal a distinct systemic and neuroinflammatory signature associated with prenatal methadone exposure, suggestive of an altered CNS microenvironment, dysregulated developmental homeostasis, complex concurrent neural injury, and imaging and cognitive findings consistent with clinical literature. Further investigation is required to define appropriate therapies targeted at the neural injury and improve the long-term outcomes for this exceedingly vulnerable patient population.
Collapse
Affiliation(s)
- Lauren L. Jantzie
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neurology, Kennedy Krieger Institute, Baltimore, MD.,Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM.,Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM.,Correspondence: Lauren L. Jantzie, PhD, Johns Hopkins University, Department of Pediatrics, Division of Neonatal-Perinatal Medicine, 600 N. Wolfe Street, CMSC Building Room 6-104A, Baltimore, MD 21287,
| | - Jessie R. Maxwell
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM.,Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM
| | - Jessie C. Newville
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM.,Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM
| | - Tracylyn R. Yellowhair
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yuma Kitase
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nethra Madurai
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sindhu Ramachandra
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ludmila N. Bakhireva
- Substance Use Research and Education (SURE) Center, University of New Mexico College of Pharmacy, Albuquerque, NM
| | | | - Gwendolyn Gerner
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Aylin Tekes
- Division of Pediatric Radiology and Pediatric Neuroradiology, Russell Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lorraine A. Milio
- Department of Obstetrics & Gynecology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jonathan L. Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM
| | - Shenandoah Robinson
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Andrea Allan
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM
| |
Collapse
|
18
|
Zhu D, You J, Zhao N, Xu H. Magnesium Regulates Endothelial Barrier Functions through TRPM7, MagT1, and S1P1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901166. [PMID: 31559137 PMCID: PMC6755513 DOI: 10.1002/advs.201901166] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/24/2019] [Indexed: 05/27/2023]
Abstract
Mg2+-deficiency is linked to hypertension, Alzheimer's disease, stroke, migraine headaches, cardiovascular diseases, and diabetes, etc., but its exact role in these pathophysiological conditions remains elusive. Mg2+ can regulate vascular functions, yet the mechanistic insight remains ill-defined. Data show that extracellular Mg2+ enters endothelium mainly through the TRPM7 channel and MagT1 transporter. Mg2+ can act as an antagonist to reduce Ca2+ signaling in endothelium. Mg2+ also reduces the intracellular reactive oxygen species (ROS) level and inflammation. In addition, Mg2+-signaling increases endothelial survival and growth, adhesion, and migration. Endothelial barrier integrity is significantly enhanced with Mg2+-treatment through S1P1-Rac1 pathways and barrier-stabilizing mediators including cAMP, FGF1/2, and eNOS. Mg2+ also promotes cytoskeletal reorganization and junction proteins to tighten up the barrier. Moreover, Mg2+-deficiency enhances endothelial barrier permeability in mice, and Mg2+-treatment rescues histamine-induced transient vessel hyper-permeability in vivo. In summary, Mg2+-deficiency can cause deleterious effects in endothelium integrity, and Mg2+-treatment may be effective in the prevention or treatment of vascular dysfunction.
Collapse
Affiliation(s)
- Donghui Zhu
- Department of Biomedical EngineeringInstitute for Engineering‐Driven MedicineCollege of Engineering and Applied SciencesRenaissance School of MedicineStony Brook UniversityStony BrookNY11794USA
| | - Jing You
- Department of Biomedical EngineeringUniversity of North TexasDentonTX76207USA
| | - Nan Zhao
- Department of Biomedical EngineeringPennsylvania State UniversityState CollegePA16802USA
| | - Huaxi Xu
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCA92037USA
| |
Collapse
|
19
|
Fan M, Li X, Gao X, Dong L, Xin G, Chen L, Qiu J, Xu Y. LPS Induces Preeclampsia-Like Phenotype in Rats and HTR8/SVneo Cells Dysfunction Through TLR4/p38 MAPK Pathway. Front Physiol 2019; 10:1030. [PMID: 31507429 PMCID: PMC6718930 DOI: 10.3389/fphys.2019.01030] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/25/2019] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence has shown that preeclampsia (PE) was associated with an aberrant maternal-fetal inflammatory response. In the present study, we first found that in human PE placentas levels of toll-like receptor 4 (TLR4), phosphorylated p38 mitogen-activated protein kinase (p-p38 MAPK) and inflammatory cytokines IL-6 and MCP-1 were significantly upregulated. Next, we demonstrated a notable increase in systolic blood pressure (SBP) and proteinuria in lipopolysaccharide (LPS)-treated pregnant rats and concomitant high levels of TLR4 and p-p38 in these PE-like rat placentas, which led to aberrant overexpression of both IL-6 and MCP-1, as well as deficient trophoblast invasion and spiral artery (SA) remodeling, and these abnormalities were ameliorated by SB203580, a reported inhibitor of p38. In vitro we further confirmed that LPS triggered the activation of TLR4/p38 signaling pathway, which promoted trophoblast apoptosis and damaged trophoblastic invasion via downstream effectors IL-6 and MCP-1; these mutations were rectified by silencing this signaling pathway. These findings elaborated potential mechanisms that aberrant TLR4/p38 signaling might contribute to PE and LPS-induced PE-like symptom by damaging trophoblast invasion and SA remodeling via activating inflammatory cytokines including IL-6 and MCP-1.
Collapse
Affiliation(s)
- Minghua Fan
- Department of Obstetrics and Gynecology, The Second Hospital of Shandong University, Jinan, China
| | - Xiaobing Li
- Department of Laboratory Medicine, Institute of Basic Medicine, Shandong First Medical University and Academy of Medical Sciences, Jinan, China
| | - Xiaolin Gao
- Department of Obstetrics and Gynecology, The Second Hospital of Shandong University, Jinan, China
| | - Lihua Dong
- Department of Obstetrics and Gynecology, The Second Hospital of Shandong University, Jinan, China
| | - Gang Xin
- Department of Obstetrics and Gynecology, The Second Hospital of Shandong University, Jinan, China
| | - Liqun Chen
- Department of Nephrology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianqing Qiu
- Department of Obstetrics and Gynecology, The Second Hospital of Shandong University, Jinan, China
| | - Yongping Xu
- Department of Obstetrics and Gynecology, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
20
|
Heidari M, Kafi M, Mirzaei A, Asaadi A, Mokhtari A. Effects of follicular fluid of preovulatory follicles of repeat breeder dairy cows with subclinical endometritis on oocyte developmental competence. Anim Reprod Sci 2019; 205:62-69. [PMID: 31005360 DOI: 10.1016/j.anireprosci.2019.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/23/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
Abstract
The aims of the present study were to determine the concentrations of lipopolysaccharide (LPS), hormonal progesterone, estradiol-17β, insulin growth factor (IGF-1) and magnesium in the serum and the preovulatory follicle follicular fluid (FF) in repeat breeder (RB) cows without (nSCE) or with subclinical endometritis (SCE), and further to examine the effects of this FF on developmental competence of cattle oocytes. In Experiment 1, 13 of 23 clinically healthy Holstein RB cows were identified (uterine PMNs) to have SCE. The cows were estrous synchronized, and 6-12 h after detection of standing estrus, FF and blood of the preovulatory follicles were collected. The mean (±SD) LPS (862.3 ± 148.1 compared with 1063.4 ± 262.8 EU/ml, P = 0.04) and estradiol-17β (188.9 ± 15.8 compared with 162.0 ± 31.5 ng/ml, P = 0.02) concentrations of FF was different between nSCE and SCE cows. In Experiment 2, FF of RB cows with relatively lesser (nSCE, n = 4) and greater (SCE, n = 4) percentages of uterine PMNs was separately added to the oocyte maturation medium for in vitro embryo production. Addition of FF from SCE cows to the oocyte maturation medium resulted in a lesser rate of development to the blastocyst stage than that of the nSCE cows (21.9 ± 1.8 compared with 27.8 ± 2.5%, P < 0.05). Results of the present study indicate greater FF LPS concentration may result in a lesser quality microenvironment milieu for the final stages of oocyte maturation in RB dairy cows with subclinical endometritis. In addition, supplementation of oocyte maturation medium with FF of preovulatory follicles from RB cows with subclinical endometritis resulted in a lesser potential of in vitro oocyte developmental competence.
Collapse
Affiliation(s)
- Mahdi Heidari
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mojtaba Kafi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Abdolah Mirzaei
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Aniseh Asaadi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
21
|
Ge J, Han T, Li X, Shan L, Zhang J, Hong Y, Xia Y, Wang J, Hou M. S-adenosyl methionine regulates calcium channels and inhibits uterine smooth muscle contraction in rats with infectious premature delivery through the transient receptor protein 3/protein kinase Cβ/C-kinase-activated protein phosphatase-1 inhibitor of 17 kDa signaling pathway. Exp Ther Med 2018; 16:103-112. [PMID: 29896230 PMCID: PMC5995051 DOI: 10.3892/etm.2018.6164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/09/2018] [Indexed: 12/28/2022] Open
Abstract
The aim of the present study was to investigate the effects of S-adenosyl methionine (SAMe) on infectious premature inflammatory factors and uterine contraction, and to further explore its mechanism of action via the transient receptor protein 3 (TRPC3)/protein kinase Cβ (PKCβ)/C-kinase-activated protein phosphatase-1 inhibitor of 17 kDa (CPI-17) signaling pathway, following intervention by a TRPC3 inhibitor. A rat model of premature delivery induced by lipopolysaccharide (LPS) was established. Following treatment with SAMe and inhibiting TRPC3 expression, rat serum and uterus were isolated. Hematoxylin and eosin staining was used to observe the histopathological changes in the uterus. Uterine muscle strips in vitro were selected to measure the changes in muscle tension. ELISA was utilized to measure the changes in serum inflammatory factor and oxidative stress indexes. Immunohistochemistry, western blot assay and reverse transcription-quantitative polymerase chain reaction were applied to detect calcium channel protein expression in the uterus. Western blot analysis was employed to measure the expression of TRPC3/PKCβ/CPI-17 signaling pathway-related proteins. TRPC3 was highly expressed in the uterus of rat models of premature delivery induced by LPS. Following treatment with SAMe, inflammatory cell infiltration markedly reduced in the uterus and the tension of in vitro uterine muscle strips significantly decreased. SAMe treatment suppressed inflammatory reaction and oxidative stress, and diminished L-type and T-type calcium channel protein expression. TRPC3/PKCβ/CPI-17 signaling pathway-related protein expression was also reduced. When TRPC3 expression was suppressed, the effects of SAMe against inflammation and oxidative stress were diminished. TRPC3/PKCβ/CPI-17 signaling pathway-related protein expression significantly increased. SAMe was able to reduce inflammatory reaction and oxidative stress in the uterus of rat model of infectious premature delivery induced by LPS, prolong delivery time, reduce the mortality rate of offspring rats, and serve a therapeutic role. This effect is likely achieved via the regulation of uterine contractions and childbirth through the TRPC3/PKCβ/CPI-17 signaling pathway.
Collapse
Affiliation(s)
- Jing Ge
- Department of Maternity, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Tao Han
- Department of Oncology, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Xiaoqiu Li
- Department of Neurology, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Lili Shan
- Department of Maternity, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Jinhuan Zhang
- Department of Maternity, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Yan Hong
- Department of Maternity, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Yanqiu Xia
- Department of Maternity, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Jun Wang
- Department of Maternity, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Mingxiao Hou
- Department of Cardiothoracic Surgery, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
22
|
Cross SN, Nelson RA, Potter JA, Norwitz ER, Abrahams VM. Magnesium sulfate differentially modulates fetal membrane inflammation in a time-dependent manner. Am J Reprod Immunol 2018; 80:e12861. [PMID: 29709093 DOI: 10.1111/aji.12861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/27/2018] [Indexed: 12/17/2022] Open
Abstract
PROBLEM Chorioamnionitis and infection-associated inflammation are major causes of preterm birth. Magnesium sulfate (MgSO4 ) is widely used in obstetrics as a tocolytic; however, its mechanism of action is unclear. This study sought to investigate how MgSO4 modulates infection-associated inflammation in fetal membranes (FMs), and whether the response was time dependent. METHOD OF STUDY Human FM explants were treated with or without bacterial lipopolysaccharide (LPS); with or without MgSO4 added either: 1 hour before LPS; at the same time as LPS; 1 hour post-LPS; or 2 hours post-LPS. Explants were also treated with or without viral dsRNA and LPS, alone or in combination; and MgSO4 added 1 hour post-LPS After 24 hours, supernatants were measured for cytokines/chemokines; and tissue lysates measured for caspase-1 activity. RESULTS Lipopolysaccharide-induced FM inflammation by upregulating the secretion of a number of inflammatory cytokines/chemokines. Magnesium sulfate administered 1-hour post-LPS inhibited FM secretion of IL-1β, IL-6, G-CSF, RANTES, and TNFα. Magnesium sulfate administered 2 hours post-LPS augmented FM secretion of these factors as well as IL-8, IFNγ, VEGF, GROα and IP-10. Magnesium sulfate delivered 1- hour post-LPS inhibited LPS-induced caspase-1 activity, and inhibited the augmented IL-1β response triggered by combination viral dsRNA and LPS. CONCLUSION Magnesium sulfate differentially modulates LPS-induced FM inflammation in a time-dependent manner, in part through its modulation of caspase-1 activity. Thus, the timing of MgSO4 administration may be critical in optimizing its anti-inflammatory effects in the clinical setting. MgSO4 might also be useful at preventing FM inflammation triggered by a polymicrobial viral-bacterial infection.
Collapse
Affiliation(s)
- Sarah N Cross
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Rachel A Nelson
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Julie A Potter
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Errol R Norwitz
- Department of Obstetrics & Gynecology, Tufts University School of Medicine, Boston, MA, USA
| | - Vikki M Abrahams
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
23
|
Corradini I, Focchi E, Rasile M, Morini R, Desiato G, Tomasoni R, Lizier M, Ghirardini E, Fesce R, Morone D, Barajon I, Antonucci F, Pozzi D, Matteoli M. Maternal Immune Activation Delays Excitatory-to-Inhibitory Gamma-Aminobutyric Acid Switch in Offspring. Biol Psychiatry 2018; 83:680-691. [PMID: 29146047 DOI: 10.1016/j.biopsych.2017.09.030] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/03/2017] [Accepted: 09/11/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND The association between maternal infection and neurodevelopmental defects in progeny is well established, although the biological mechanisms and the pathogenic trajectories involved have not been defined. METHODS Pregnant dams were injected intraperitoneally at gestational day 9 with polyinosinic:polycytidylic acid. Neuronal development was assessed by means of electrophysiological, optical, and biochemical analyses. RESULTS Prenatal exposure to polyinosinic:polycytidylic acid causes an imbalanced expression of the Na+-K+-2Cl- cotransporter 1 and the K+-Cl- cotransporter 2 (KCC2). This results in delayed gamma-aminobutyric acid switch and higher susceptibility to seizures, which endures up to adulthood. Chromatin immunoprecipitation experiments reveal increased binding of the repressor factor RE1-silencing transcription (also known as neuron-restrictive silencer factor) to position 509 of the KCC2 promoter that leads to downregulation of KCC2 transcription in prenatally exposed offspring. Interleukin-1 receptor type I knockout mice, which display braked immune response and no brain cytokine elevation upon maternal immune activation, do not display KCC2/Na+-K+-2Cl- cotransporter 1 imbalance when implanted in a wild-type dam and prenatally exposed. Notably, pretreatment of pregnant dams with magnesium sulfate is sufficient to prevent the early inflammatory state and the delay in excitatory-to-inhibitory switch associated to maternal immune activation. CONCLUSIONS We provide evidence that maternal immune activation hits a key neurodevelopmental process, the excitatory-to-inhibitory gamma-aminobutyric acid switch; defects in this switch have been unequivocally linked to diseases such as autism spectrum disorder or epilepsy. These data open the avenue for a safe pharmacological treatment that may prevent the neurodevelopmental defects caused by prenatal immune activation in a specific pregnancy time window.
Collapse
Affiliation(s)
- Irene Corradini
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy; Institute of Neuroscience - National Research Council, Milan, Italy
| | - Elisa Focchi
- Institute of Neuroscience - National Research Council, Milan, Italy; Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Marco Rasile
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy; Hunimed University, Rozzano, Italy
| | - Raffaella Morini
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy
| | - Genni Desiato
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy; University of Milano-Bicocca, Milan, Italy
| | - Romana Tomasoni
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy
| | - Michela Lizier
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy; Institute for Genetic and Biomedical Research - National Research Council, Milan, Italy
| | - Elsa Ghirardini
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy; Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Riccardo Fesce
- Hunimed University, Rozzano, Italy; Neuroscience Center, Dipartimento di Scienze Teoriche e Applicate, Insubria University, Busto Arsizio, Italy
| | - Diego Morone
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy
| | | | - Flavia Antonucci
- Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Davide Pozzi
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy; Hunimed University, Rozzano, Italy
| | - Michela Matteoli
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy; Institute of Neuroscience - National Research Council, Milan, Italy.
| |
Collapse
|
24
|
Leviton A, Joseph RM, Allred EN, O’Shea TM, Taylor HG, Kuban KKC. Antenatal and Neonatal Antecedents of Executive Dysfunctions in Extremely Preterm Children. J Child Neurol 2018; 33:198-208. [PMID: 29322860 PMCID: PMC5807158 DOI: 10.1177/0883073817750499] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To find out why children born extremely preterm are at heightened risk of executive dysfunctions, the authors assessed 716 children who were 10 years old born extremely preterm whose IQ was ≥ 70. A working memory dysfunction (n = 169), an inhibition dysfunction (n = 360), a switching dysfunction (355), and all 3 (executive dysfunction; n = 107) were defined on the basis of Z-scores ≤ -1 on the Differential Ability Scales-II Working Memory composite, and/or on the NEPSY-II Inhibition-Inhibition and Inhibition-Switching subtests. All risk profiles include an indicator of socioeconomic disadvantage. The risk profile of each of the 3 individual dysfunctions includes an indicator of the newborn's immaturity, and the risk profiles of the inhibition dysfunction and switching dysfunction also include an indicator of inflammation. Only the switching dysfunction was associated with fetal growth restriction. The risk factors for executive dysfunction can be subsumed under the 4 themes of socioeconomic disadvantage, immaturity/vulnerability, inflammation, and fetal growth restriction.
Collapse
Affiliation(s)
- Alan Leviton
- Boston Children’s Hospital and Harvard Medical School,
Boston MA, USA
| | | | | | - T. Michael O’Shea
- University of North Carolina School of Medicine, Chapel Hill NC,
USA
| | - H. Gerry Taylor
- Nationwide Children’s Hospital and The Ohio State
University, Columbus, OH, USA
| | - Karl KC Kuban
- Boston Medical Center and Boston University School of Medicine,
Boston, MA, USA
| |
Collapse
|
25
|
Solek CM, Farooqi N, Verly M, Lim TK, Ruthazer ES. Maternal immune activation in neurodevelopmental disorders. Dev Dyn 2017; 247:588-619. [PMID: 29226543 DOI: 10.1002/dvdy.24612] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 12/12/2022] Open
Abstract
Converging lines of evidence from basic science and clinical studies suggest a relationship between maternal immune activation (MIA) and neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia. The mechanisms through which MIA increases the risk of neurodevelopmental disorders have become a subject of intensive research. This review aims to describe how dysregulation of microglial function and immune mechanisms may link MIA and neurodevelopmental pathologies. We also summarize the current evidence in animal models of MIA. Developmental Dynamics 247:588-619, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cynthia M Solek
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Nasr Farooqi
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Myriam Verly
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Tony K Lim
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Edward S Ruthazer
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
26
|
Kovo M, Mevorach-Zussman N, Khatib N, Ginsberg Y, Divon M, Weiner Z, Bar J, Beloosesky R. The Effects of Magnesium Sulfate on the Inflammatory Response of Placentas Perfused With Lipopolysaccharide: Using the Ex Vivo Dual-Perfused Human Single-Cotyledon Model. Reprod Sci 2017; 25:1224-1230. [PMID: 29113582 DOI: 10.1177/1933719117737845] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Multiple mechanisms have been proposed for the neuroprotective effects of magnesium sulfate (MgSO4). We aimed to examine the effects of lipopolysaccharide (LPS) and MgSO4 on the placental expression of nuclear factor κ light chain enhancer of activated B cells (NF-κB), interleukin (IL) 6, adrenocorticotropic hormone (ACTH), and nitric oxide synthase (NOS); all known to participate in the inflammatory cascade. METHODS Placentas were obtained and selected cotyledons cannulated and dually perfused ex vivo. Placentas were perfused with 4 perfusion protocols: culture medium (M-199; controls), LPS (1 μg/mL), MgSO4 (6 g/dL), and LPS + MgSO4. Each perfusion experiment continued for 3 hours. Sixteen perfusion experiments were analyzed, 4 separate placentas were studied for each protocol. The protein levels in the perfused cotyledons were studied by Western blot analysis and compared between the groups. Interleukin 6 levels were studied in the maternal and fetal perfusate. RESULTS The expression of NF-κB p65, IL-6, ACTH, and NOS proteins levels were significantly increased in placentas perfused with LPS as compared to placentas perfused with M-199, MgSO4 ( P < .01 for all). Placentas perfused with LPS+ MgSO4 had similar proteins levels as in the controls and MgSO4 groups. Lipopolysaccharide significantly increased IL-6 levels in maternal perfusate. CONCLUSIONS In the human placenta, MgSO4 blocks the increase in the proteins levels of NF-κB, IL-6, ACTH, and NOS in response to inflammatory stimuli. Magnesium sulfate attenuates excessive placental inflammatory response. The decrease in placental ACTH levels following perfusion with MgSO4 may point to an additional non-anti-inflammatory mechanism of MgSO4.
Collapse
Affiliation(s)
- Michal Kovo
- 1 Department of Obstetrics and Gynecology, Edith Wolfson Medical Center, Holon, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noa Mevorach-Zussman
- 1 Department of Obstetrics and Gynecology, Edith Wolfson Medical Center, Holon, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nizar Khatib
- 2 Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | - Yuval Ginsberg
- 2 Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | - Michael Divon
- 3 Department of Obstetrics and Gynecology, New York University School of Medicine, Lenox Hill Hospital, New York, NY, USA
| | - Zeev Weiner
- 2 Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | - Jacob Bar
- 1 Department of Obstetrics and Gynecology, Edith Wolfson Medical Center, Holon, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ron Beloosesky
- 2 Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| |
Collapse
|
27
|
Diaz-Tocados JM, Peralta-Ramirez A, Rodríguez-Ortiz ME, Raya AI, Lopez I, Pineda C, Herencia C, Montes de Oca A, Vergara N, Steppan S, Pendon-Ruiz de Mier MV, Buendía P, Carmona A, Carracedo J, Alcalá-Díaz JF, Frazao J, Martínez-Moreno JM, Canalejo A, Felsenfeld A, Rodriguez M, Aguilera-Tejero E, Almadén Y, Muñoz-Castañeda JR. Dietary magnesium supplementation prevents and reverses vascular and soft tissue calcifications in uremic rats. Kidney Int 2017; 92:1084-1099. [DOI: 10.1016/j.kint.2017.04.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 03/21/2017] [Accepted: 04/06/2017] [Indexed: 01/14/2023]
|
28
|
Ginsberg Y, Khatib N, Weiss B, Arison S, Ross MG, Weiner Z, Beloosesky R. Magnesium sulfate (MG) prevents maternal inflammation induced offspring cerebral injury evident on MRI but not via IL-1β. Neuroscience 2017; 353:98-105. [PMID: 28412496 DOI: 10.1016/j.neuroscience.2017.03.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 01/25/2023]
Abstract
OBJECTIVE As maternal treatment with magnesium sulfate (MG) may protect the fetal brain, we sought to assess the inflammation associated neuroprotective potential of MG and its association to interleukin 1β (IL-1β). METHODS Pregnant Sprague-Dawley rats at 18-day gestation received i.p. lipopolysaccharide (LPS) or saline. Dams were randomized to treatment with s.c. saline (control), or MG prior to or following the i.p. injection, resulting in three groups. At the end of the treatment, fetal brain IL-1β was quantified for 18 pregnant rats (six of each group). Another 18 pregnant rats delivered spontaneously and pups were allowed to mature. At postnatal day 25, female offspring were examined by magnetic resonance imaging (MRI) and analyzed using voxel based analysis. Apparent diffusion coefficient (ADC) and T2 relaxation protocols were performed to assess white and gray matter injury. RESULTS Offspring of LPS-treated dams exhibited (1) significantly increased T2 levels, and (2) increased ADC levels in white and gray matter, consistent with diffuse cerebral injury. Offspring of MG-treated LPS dams demonstrated similar T2 and ADC levels as control dams. Fetal brain IL-1β was significantly increased following maternal LPS compared to control (0.125±0.01 vs 0.100±0.01u, p<0.05). No significant decrease in IL-1β level was observed in response to maternal MG. CONCLUSIONS Maternal LPS-induced neonatal brain injury can be prevented by maternal MG. Maternal MG therapy may be effective in human deliveries associated with maternal/fetal inflammation. The absence of a decrease in fetus brain levels of IL-1β following MG treatment implies that the mechanism of MG is not through inhibition of IL-1β production. SIGNIFICANCE STATEMENT Intrauterine fetal exposure to maternal inflammation and pro-inflammatory cytokines is associated with adverse offspring neurological outcomes. Although its precise mechanism is not elucidated, magnesium sulfate (MG) is commonly used as neuroprotection for white matter brain injuries in preterm fetuses. A proposed mechanism involves the ability of MG to reduce pro-inflammatory cytokine levels. In the current study, we used a rat model of LPS-induced maternal inflammation to investigate the short-term effect of MG on fetal brain IL-1β levels, and its long-term neuroprotective effect on the offspring brain by using MRI. We demonstrated that maternal administration of MG can prevent long-term neonatal brain injury but, since no decrease was observed in fetal brain IL-1β levels, the neuro-protective mechanism of MG is not mediated by inhibition of IL-1β production.
Collapse
Affiliation(s)
- Yuval Ginsberg
- Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel.
| | - Nizar Khatib
- Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | - Boaz Weiss
- Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer, Israel
| | - Shay Arison
- Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | - Michael G Ross
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center and Los Angeles Biomedical Institute, Torrance, CA, United States
| | - Zeev Weiner
- Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | - Ron Beloosesky
- Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
29
|
Brenner M, Laragione T, Gulko PS. Short-term low-magnesium diet reduces autoimmune arthritis severity and synovial tissue gene expression. Physiol Genomics 2017; 49:238-242. [DOI: 10.1152/physiolgenomics.00003.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/13/2017] [Accepted: 02/27/2017] [Indexed: 01/10/2023] Open
Abstract
Magnesium has been suggested to have anti-inflammatory properties in short-term, mostly in vitro studies. To examine the effect of dietary magnesium modifications in arthritis severity and joint damage DA rats were placed on one of three diet regimens before the induction of autoimmune pristane-induced arthritis (PIA): a 4 wk low-magnesium diet, normal diet, and a magnesium-supplemented diet. The diets were switched to a normal diet 14 days after the induction of PIA (typical time of disease onset). Arthritis severity was scored for 38 days, and joints were examined by histology and quantitative PCR for proinflammatory genes. Rats on the low-magnesium diet were significantly and reproducibly protected and had 70% lower median arthritis severity score, with preservation of normal joint histology without erosive changes. Rats on the normal or magnesium-supplemented diets were not protected and developed equally severe and erosive disease. While the dietary modifications were at disease onset ( day 14 postinduction), the protective effect of the short-term low-magnesium diet persisted, suggesting a lasting effect on a critical pathogenic pathway. Rats on the low-magnesium diet had significant reduction in synovial tissue expression of IL-6, RORA, and RORC, which are genes required for the development of Th17 T cells. This study revealed a novel role for dietary magnesium in the regulation of autoimmune arthritis and opens new possibilities for the treatment of autoimmune diseases such as rheumatoid arthritis and psoriatic arthritis with short courses of dietary or drug-induced modulations of magnesium levels.
Collapse
Affiliation(s)
- Max Brenner
- The Feinstein Institute for Medical Research, Manhasset, New York; and
| | - Teresina Laragione
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pércio S. Gulko
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
30
|
Wolf HT, Huusom L, Weber T, Piedvache A, Schmidt S, Norman M, Zeitlin J. Use of magnesium sulfate before 32 weeks of gestation: a European population-based cohort study. BMJ Open 2017; 7:e013952. [PMID: 28132012 PMCID: PMC5278293 DOI: 10.1136/bmjopen-2016-013952] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/19/2016] [Accepted: 01/05/2017] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES The use of magnesium sulfate (MgSO4) in European obstetric units is unknown. We aimed to describe reported policies and actual use of MgSO4 in women delivering before 32 weeks of gestation by indication. METHODS We used data from the European Perinatal Intensive Care in Europe (EPICE) population-based cohort study of births before 32 weeks of gestation in 19 regions in 11 European countries. Data were collected from April 2011 to September 2012 from medical records and questionnaires. The study population comprised 720 women with severe pre-eclampsia, eclampsia or HELLP and 3658 without pre-eclampsia delivering from 24 to 31 weeks of gestation in 119 maternity units with 20 or more very preterm deliveries per year. RESULTS Among women with severe pre-eclampsia, eclampsia or HELLP, 255 (35.4%) received MgSO4 before delivery. 41% of units reported use of MgSO4 whenever possible for pre-eclampsia and administered MgSO4 more often than units reporting use sometimes. In women without pre-eclampsia, 95 (2.6%) received MgSO4. 9 units (7.6%) reported using MgSO4 for fetal neuroprotection whenever possible. In these units, the median rate of MgSO4 use for deliveries without severe pre-eclampsia, eclampsia and HELLP was 14.3%. Only 1 unit reported using MgSO4 as a first-line tocolytic. Among women without pre-eclampsia, MgSO4 use was not higher in women hospitalised before delivery for preterm labour. CONCLUSIONS Severe pre-eclampsia, eclampsia or HELLP are not treated with MgSO4 as frequently as evidence-based medicine recommends. MgSO4 is seldom used for fetal neuroprotection, and is no longer used for tocolysis. To continuously lower morbidity, greater attention to use of MgSO4 is needed.
Collapse
Affiliation(s)
- H T Wolf
- Department of Obstetrics and Gynaecology, Hvidovre Hospital, Copenhagen University Hospital, Denmark
| | - L Huusom
- Department of Obstetrics and Gynaecology, Hvidovre Hospital, Copenhagen University Hospital, Denmark
| | - T Weber
- Department of Obstetrics and Gynaecology, Hvidovre Hospital, Copenhagen University Hospital, Denmark
| | - A Piedvache
- Inserm UMR 1153, Obstetrical, Perinatal and Pediatric Epidemiology Research Team (Epopé), Center for Epidemiology and Statistics Sorbonne Paris Cité, DHU Risks in pregnancy, Paris Descartes University, Paris, France
| | - S Schmidt
- Department of Obstetrics, University Hospital, Philipps University, Marburg, Germany
| | - M Norman
- Department of Clinical Science, Intervention and Technology, Division of Pediatrics, Karolinska Institutet, Stockholm, Sweden
- Department of Neonatal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - J Zeitlin
- Inserm UMR 1153, Obstetrical, Perinatal and Pediatric Epidemiology Research Team (Epopé), Center for Epidemiology and Statistics Sorbonne Paris Cité, DHU Risks in pregnancy, Paris Descartes University, Paris, France
| |
Collapse
|
31
|
Williamson RD, McCarthy C, Kenny LC, O’Keeffe GW. Magnesium sulphate prevents lipopolysaccharide-induced cell death in an in vitro model of the human placenta. Pregnancy Hypertens 2016; 6:356-360. [DOI: 10.1016/j.preghy.2016.08.237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 07/11/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022]
|
32
|
The effects of prenatal metformin on obesogenic diet-induced alterations in maternal and fetal fatty acid metabolism. Nutr Metab (Lond) 2016; 13:55. [PMID: 27555877 PMCID: PMC4994240 DOI: 10.1186/s12986-016-0115-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/13/2016] [Indexed: 12/21/2022] Open
Abstract
Background Maternal obesity may program the fetus and increase the susceptibility of the offspring to adult diseases. Metformin crosses the placenta and has been associated with decreased inflammation and reversal of fatty liver in obese leptin-deficient mice. We investigated the effects of metformin on maternal and fetal lipid metabolism and hepatic inflammation using a rat model of diet-induced obesity during pregnancy. Methods Female Wistar rats (6–7 weeks old) were fed normal or high calorie diets for 5 weeks. After mating with normal-diet fed males, half of the high calorie-fed dams received metformin (300 mg/kg, daily); dams (8 per group) continued diets through gestational day 19. Maternal and fetal livers and fetal brains were analyzed for fatty acids and for fatty acid metabolism-related gene expression. Data were analyzed by ANOVA followed by Dunnett’s post hoc testing. Results When compared to control-lean maternal livers, obesogenic-diet-exposed maternal livers showed significantly higher saturated fatty acids (14:0 and 16:0) and monounsaturated fatty acids (16:1n7 and 18:1n9) and lower polyunsaturated (18:2n6 and 20:4n6 [arachidonic acid]) and anti-inflammatory n3 polyunsaturated fatty acids (18:3n3 and 22:6n3 [docosahexaenoic acid]) (p < 0.05). Metformin did not affect diet-induced changes in maternal livers. Fetal livers exposed to the high calorie diet showed significantly increased saturated fatty acids (18:0) and monounsaturated fatty acids (18:1n9 and 18:1n7) and decreased polyunsaturated fatty acids (18:2n6, 20:4n6 and 22:6n3) and anti-inflammatory n3 polyunsaturated fatty acids, along with increased gene expression of fatty acid metabolism markers (Fasn, D5d, D6d, Scd1, Lxrα). Metformin significantly attenuated diet-induced inflammation and 18:1n9 and 22:6n3 in fetal livers, as well as n3 fatty acids (p < 0.05). Prenatal obesogenic diet exposure significantly increased fetal liver IFNγ levels (p < 0.05), which was reversed by maternal metformin treatment (p < 0.05). Conclusions Consumption of a high calorie diet significantly affected maternal and fetal fatty acid metabolism. It reduced anti-inflammatory polyunsaturated fatty acids in maternal and fetal livers, altered gene expression of fatty acid metabolism markers, and induced inflammation in the fetal livers. Prenatal metformin attenuated some diet-induced fatty acid changes and inflammation in the fetal livers without affecting maternal livers, suggesting that maternal metformin may impact fetal/neonatal fatty acid/lipid metabolism. Electronic supplementary material The online version of this article (doi:10.1186/s12986-016-0115-9) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Liu L, Han X, Huang Q, Zhu X, Yang J, Liu H. Increased neuronal seizure activity correlates with excessive systemic inflammation in a rat model of severe preeclampsia. Hypertens Res 2016; 39:701-708. [DOI: 10.1038/hr.2016.53] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 03/22/2016] [Accepted: 03/29/2016] [Indexed: 12/15/2022]
|
34
|
Abbas AM, Sakr HF. Effect of magnesium sulfate and thyroxine on inflammatory markers in a rat model of hypothyroidism. Can J Physiol Pharmacol 2016; 94:426-32. [PMID: 26854732 DOI: 10.1139/cjpp-2015-0247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammation is a major risk factor for cardiovascular complications. Magnesium sulfate (MgSO4) has anti-inflammatory actions. Therefore we investigated the effects of levothyroxine and MgSO4 on inflammatory markers as C-reactive protein (CRP), interleukin-6, tumor necrosis factor-α (TNF-α), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in hypothyroid rats. Sixty male rats were divided into 6 groups; normal, normal + MgSO4, hypothyroidism, hypothyroidism + levothyroxine, hypothyroidism + MgSO4, and hypothyroidism + levothyroxine + MgSO4. Thyroxine, triiodothyronine, and thyroid-stimulating hormone (TSH), CRP, interleukin-6, TNF-α, ICAM-1, and VCAM-1 were measured in all rats. Hypothyroidism significantly increased TSH, CRP, interleukin-6, TNF-α, ICAM-1, and VCAM-1 and decreased triiodothronine and thyroxine. Treatment of hypothyroid rats with levothyroxine or MgSO4 significantly decreased CRP, interleukin-6, TNF-α, ICAM-1, and VCAM-1. Combined therapy of hypothyroid rats with levothyroxine and MgSO4 significantly decreased CRP, interleukin-6, TNF-α, ICAM-1, and VCAM-1 compared with hypothyroid rats either untreated or treated with levothyroxine or MgSO4. This study demonstrates that hypothyroid rats have chronic low grade inflammation, which may account for increased risk of cardiovascular diseases. Combined levothyroxine and MgSO4 is better than levothyroxine or MgSO4 alone in alleviating the chronic low grade inflammatory status and therefore reducing the risk of cardiovascular diseases in hypothyroid animals.
Collapse
Affiliation(s)
- Amr M Abbas
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, PO Box: 35516, Mansoura, Egypt.,Department of Medical Physiology, Faculty of Medicine, Mansoura University, PO Box: 35516, Mansoura, Egypt
| | - Hussein F Sakr
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, PO Box: 35516, Mansoura, Egypt.,Department of Medical Physiology, Faculty of Medicine, Mansoura University, PO Box: 35516, Mansoura, Egypt
| |
Collapse
|
35
|
McNamara HC, Crowther CA, Brown J, Cochrane Pregnancy and Childbirth Group. Different treatment regimens of magnesium sulphate for tocolysis in women in preterm labour. Cochrane Database Syst Rev 2015; 2015:CD011200. [PMID: 26662716 PMCID: PMC8697562 DOI: 10.1002/14651858.cd011200.pub2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Magnesium sulphate has been used to inhibit preterm labour to prevent preterm birth. There is no consensus as to the safety profile of different treatment regimens with respect to dose, duration, route and timing of administration. OBJECTIVES To assess the efficacy and safety of alternative magnesium sulphate regimens when used as single agent tocolytic therapy during pregnancy. SEARCH METHODS We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (30 September 2015) and reference lists of retrieved studies. SELECTION CRITERIA Randomised trials comparing different magnesium sulphate treatment regimens when used as single agent tocolytic therapy during pregnancy in women in preterm labour. Quasi-randomised trials were eligible for inclusion but none were identified. Cross-over and cluster trials were not eligible for inclusion. Health outcomes were considered at the level of the mother, the infant/child and the health service. INTERVENTION intravenous or oral magnesium sulphate given alone for tocolysis.Comparison: alternative dosing regimens of magnesium sulphate given alone for tocolysis. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial eligibility and quality and extracted data. MAIN RESULTS Three trials including 360 women and their infants were identified as eligible for inclusion in this review. Two trials were rated as low risk of bias for random sequence generation and concealment of allocation. A third trial was assessed as unclear risk of bias for these domains but did not report data for any of the outcomes examined in this review. No trials were rated to be of high quality overall.Intravenous magnesium sulphate was administered according to low-dose regimens (4 g loading dose followed by 2 g/hour continuous infusion and/or increased by 1 g/hour hourly until successful tocolysis or failure of treatment), or high-dose regimens (4 g loading dose followed by 5 g/hour continuous infusion and increased by 1 g/hour hourly until successful tocolysis or failure of treatment, or 6 g loading dose followed by 2 g/hour continuous infusion and increased by 1 g/hour hourly until successful tocolysis or failure of treatment).There were no differences seen between high-dose magnesium sulphate regimens compared with low-dose magnesium sulphate regimens for the primary outcome of fetal, neonatal and infant death (risk ratio (RR) 0.43, 95% confidence interval (CI) 0.12 to 1.56; one trial, 100 infants). Using the GRADE approach, the evidence for fetal, neonatal and infant death was considered to be VERY LOW quality. No data were reported for any of the other primary maternal and infant health outcomes (birth less than 48 hours after trial entry; composite serious infant outcome; composite serious maternal outcome).There were no clear differences seen between high-dose magnesium sulphate regimens compared with low-dose magnesium sulphate regimens for the secondary infant health outcomes of fetal death; neonatal death; and rate of hypocalcaemia, osteopenia or fracture; and secondary maternal health outcomes of rate of caesarean birth; pulmonary oedema; and maternal self-reported adverse effects. Pulmonary oedema was reported in two women given high-dose magnesium sulphate, but not in any of the women given low-dose magnesium sulphate.In a single trial of high and low doses of magnesium sulphate for tocolysis including 100 infants, the risk of respiratory distress syndrome was lower with use of a high-dose regimen compared with a low-dose regimen (RR 0.31, 95% CI 0.11 to 0.88; one trial, 100 infants). Using the GRADE approach, the evidence for respiratory distress syndrome was judged to be LOW quality. No difference was seen in the rate of admission to the neonatal intensive care unit. However, for those babies admitted, a high-dose regimen was associated with a reduction in the length of stay in the neonatal intensive care unit compared with a low-dose regimen (mean difference -3.10 days, 95% confidence interval -5.48 to -0.72).We found no data for the majority of our secondary outcomes. AUTHORS' CONCLUSIONS There are limited data available (three studies, with data from only two studies) comparing different dosing regimens of magnesium sulphate given as single agent tocolytic therapy for the prevention of preterm birth. There is no evidence examining duration of therapy, timing of therapy and the role for repeat dosing.Downgrading decisions for our primary outcome of fetal, neonatal and infant death were based on wide confidence intervals (crossing the line of no effect), lack of blinding and a limited number of studies. No data were available for any of our other important outcomes: birth less than 48 hours after trial entry; composite serious infant outcome; composite serious maternal outcome. The data are limited by volume and the outcomes reported. Only eight of our 45 pre-specified primary and secondary maternal and infant health outcomes were reported on in the included studies. No long-term outcomes were reported. Downgrading decisions for the evidence on the risk of respiratory distress were based on wide confidence intervals (crossing the line of no effect) and lack of blinding.There is some evidence from a single study suggesting a reduction in the length of stay in the neonatal intensive care unit and a reduced risk of respiratory distress syndrome where a high-dose regimen of magnesium sulphate has been used compared with a low-dose regimen. However, given that evidence has been drawn from a single study (with a small sample size), these data should be interpreted with caution.Magnesium sulphate has been shown to be of benefit in a wide range of obstetric settings, although it has not been recommended for tocolysis. In clinical settings where health benefits are established, further trials are needed to address the lack of evidence regarding the optimal dose (loading dose and maintenance dose), duration of therapy, timing of therapy and role for repeat dosing in terms of efficacy and safety for mothers and their children. Ongoing examination of different regimens with respect to important health outcomes is required.
Collapse
Affiliation(s)
- Helen C McNamara
- The Royal Women's Hospital20 Flemington RoadParkvilleMelbourneVictoriaAustralia3052
| | - Caroline A Crowther
- The University of AucklandLiggins InstitutePrivate Bag 9201985 Park RoadAucklandNew Zealand
- The University of AdelaideARCH: Australian Research Centre for Health of Women and Babies, Robinson Research Institute, Discipline of Obstetrics and GynaecologyWomen's and Children's Hospital72 King William RoadAdelaideSouth AustraliaAustralia5006
| | - Julie Brown
- The University of AucklandLiggins InstitutePrivate Bag 9201985 Park RoadAucklandNew Zealand
| | | |
Collapse
|
36
|
Bloise E, Ortiga-Carvalho TM, Reis FM, Lye SJ, Gibb W, Matthews SG. ATP-binding cassette transporters in reproduction: a new frontier. Hum Reprod Update 2015; 22:164-81. [PMID: 26545808 DOI: 10.1093/humupd/dmv049] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/19/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The transmembrane ATP-binding cassette (ABC) transporters actively efflux an array of clinically relevant compounds across biological barriers, and modulate biodistribution of many physiological and pharmacological factors. To date, over 48 ABC transporters have been identified and shown to be directly and indirectly involved in peri-implantation events and fetal/placental development. They efflux cholesterol, steroid hormones, vitamins, cytokines, chemokines, prostaglandins, diverse xenobiotics and environmental toxins, playing a critical role in regulating drug disposition, immunological responses and lipid trafficking, as well as preventing fetal accumulation of drugs and environmental toxins. METHODS This review examines ABC transporters as important mediators of placental barrier functions and key reproductive processes. Expression, localization and function of all identified ABC transporters were systematically reviewed using PubMed and Google Scholar websites to identify relevant studies examining ABC transporters in reproductive tissues in physiological and pathophysiological states. Only reports written in English were incorporated with no restriction on year of publication. While a major focus has been placed on the human, extensive evidence from animal studies is utilized to describe current understanding of the regulation and function of ABC transporters relevant to human reproduction. RESULTS ABC transporters are modulators of steroidogenesis, fertilization, implantation, nutrient transport and immunological responses, and function as 'gatekeepers' at various barrier sites (i.e. blood-testes barrier and placenta) against potentially harmful xenobiotic factors, including drugs and environmental toxins. These roles appear to be species dependent and change as a function of gestation and development. The best-described ABC transporters in reproductive tissues (primarily in the placenta) are the multidrug transporters p-glycoprotein and breast cancer-related protein, the multidrug resistance proteins 1 through 5 and the cholesterol transporters ABCA1 and ABCG1. CONCLUSIONS The ABC transporters have various roles across multiple reproductive tissues. Knowledge of efflux direction, tissue distribution, substrate specificity and regulation of the ABC transporters in the placenta and other reproductive tissues is rapidly expanding. This will allow better understanding of the disposition of specific substrates within reproductive tissues, and facilitate development of novel treatments for reproductive disorders as well as improved approaches to protecting the developing fetus.
Collapse
Affiliation(s)
- E Bloise
- Laboratory of Translational Endocrinology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - T M Ortiga-Carvalho
- Laboratory of Translational Endocrinology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - F M Reis
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - S J Lye
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada M5S 1A8 Department Obstetrics & Gynecology, University of Toronto, Toronto, ON, Canada Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - W Gibb
- Department of Obstetrics & Gynecology, University of Ottawa, Ottawa, ON, Canada Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - S G Matthews
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada M5S 1A8 Department Obstetrics & Gynecology, University of Toronto, Toronto, ON, Canada Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
37
|
The reduction of circulating levels of IL-6 in pregnant women with preeclampsia by magnesium sulphate and nifedipine: In vitro evidence for potential mechanisms. Placenta 2015; 36:661-6. [DOI: 10.1016/j.placenta.2015.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/24/2015] [Accepted: 03/25/2015] [Indexed: 11/23/2022]
|
38
|
Lye P, Bloise E, Javam M, Gibb W, Lye SJ, Matthews SG. Impact of bacterial and viral challenge on multidrug resistance in first- and third-trimester human placenta. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1666-75. [PMID: 25963552 DOI: 10.1016/j.ajpath.2015.02.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/03/2015] [Indexed: 12/22/2022]
Abstract
The ABC transporters P-glycoprotein (P-gp, official gene symbol ABCB1) and breast cancer resistance protein (BCRP, official gene symbol ABCG2) protect the conceptus from exposure to toxins and xenobiotics present in the maternal circulation. Viral or bacterial challenges alter expression of placental multidrug transporters in rodents. We hypothesized that exposure to lipopolysaccharide (LPS, bacterial antigen) and polyinosinic-polycytidylic acid (poly(I:C), viral antigen) would decrease P-gp and BCRP in the human placenta. Placental explants from first and third trimesters were challenged with 0.1 to 10 μg/mL LPS or 1 to 50 μg/mL poly(I:C) for 4 or 24 hours; mRNA levels, protein expression, and localization were assessed by quantitative real-time PCR, Western blot analysis, and immunohistochemistry, respectively. Toll-like receptor (TLR)-3 and TLR-4 mRNA expression increased from the first to third trimester (P < 0.01), and the receptors localized to cytotrophoblasts in the first trimester and to syncytiotrophoblasts in the third trimester. LPS exposure in first-trimester explants decreased (P < 0.001) ABCB1 and ABCG2 mRNA and protein levels. In contrast, poly(I:C) decreased (P < 0.05) ABCB1, TLR-3, and TLR-4 mRNA levels in the third trimester but not first trimester. LPS and poly(I:C) treatments increased (P < 0.01) IL-8 and chemokine ligand 2. Results suggest that bacterial infections likely alter exposure of the conceptus to toxins and drugs during early pregnancy, whereas viral infections may disrupt fetal protection in later stages of pregnancy.
Collapse
Affiliation(s)
- Phetcharawan Lye
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Enrrico Bloise
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Laboratory of Translational Endocrinology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mohsen Javam
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - William Gibb
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, Ontario, Canada
| | - Stephen J Lye
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Stephen G Matthews
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
39
|
|
40
|
Kropach N, Holtzman D, Vitner D, Bar J, Chen A, Kovo M. The effect of magnesium sulfate on the placental corticotropin-releasing factor (CRF) and CRF binding protein mRNA expression in perfused human placental cotyledon. J Matern Fetal Neonatal Med 2015; 29:376-9. [PMID: 25655525 DOI: 10.3109/14767058.2015.1007038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Stress stimuli and inflammation influence the secretion of the placental corticotropin-releasing factor CRF (CRF) that has a significant role in controlling the timing of birth. The CRF-binding protein (CRF-BP) binds CRF with high affinity and inhibits its activity. Magnesium sulfate (MgSO4) has been known to ameliorate maternal, fetal and gestational tissue-associated inflammatory response. We aimed to study the effect of MgSO4 on the CRF and CRF-BP mRNA expression levels in perfused human cotyledon. METHODS Placentas from elective caesarean section were obtained and selected cotyledons were cannulated and dually perfused ex-vivo within 30 min. MgSO4 (7 mg/dl) was added to the maternal reservoir. Each perfusion experiment was conducted for 180 min. At the end of the experiment, RNA was extracted from the perfused cotyledon, and RT-PCR was performed to quantify the expression of CRF and CRF-BP. Human HPRT gene served as a reference gene. RESULTS Perfusion with MgSO4 (n = 3) induced a significantly lower CRF and higher CRF-BP mRNA expression compared to placentas perfused only with medium (n = 3). CONCLUSION In the human placenta, MgSO4 possibly exerts its action through different modulation on the CRF and CRF-BP expression.
Collapse
Affiliation(s)
- Nesia Kropach
- a Department of Obstetrics & Gynecology , The Edith Wolfson Medical Center, Holon Affiliated with Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel and
| | - Dorin Holtzman
- b Department of Neurobiology , Weizmann Institute of Science , Rehovot , Israel
| | - Dana Vitner
- a Department of Obstetrics & Gynecology , The Edith Wolfson Medical Center, Holon Affiliated with Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel and
| | - Jacob Bar
- a Department of Obstetrics & Gynecology , The Edith Wolfson Medical Center, Holon Affiliated with Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel and
| | - Alon Chen
- b Department of Neurobiology , Weizmann Institute of Science , Rehovot , Israel
| | - Michal Kovo
- a Department of Obstetrics & Gynecology , The Edith Wolfson Medical Center, Holon Affiliated with Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel and
| |
Collapse
|
41
|
Gupta M, Solanki MH, Chatterjee PK, Xue X, Roman A, Desai N, Rochelson B, Metz CN. Maternal magnesium deficiency in mice leads to maternal metabolic dysfunction and altered lipid metabolism with fetal growth restriction. Mol Med 2014; 20:332-40. [PMID: 25025397 DOI: 10.2119/molmed.2014.00137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 01/10/2023] Open
Abstract
Inadequate magnesium (Mg) intake is a widespread problem, with over 50% of women of reproductive age consuming less than the Recommended Dietary Allowance (RDA). Because pregnancy increases the requirement for Mg and the beneficial effects of magnesium sulfate for preeclampsia/eclampsia and fetal neuroprotection are well described, we examined the outcomes of Mg deficiency during pregnancy. Briefly, pregnant Swiss Webster mice were fed either control or Mg-deficient diets starting on gestational day (GD) 6 through euthanasia on GD17. Mg-deficient dams had significantly reduced weight gain and higher plasma adipokines, in the absence of inflammation. Livers of Mg-deficient dams had significantly higher saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) and lower polyunsaturated fatty acids (PUFAs), including docosahexaenoic acid (DHA) (P < 0.0001) and arachidonic acid (AA) (P < 0.0001). Mechanistically, Mg deficiency was accompanied by enhanced desaturase and elongase mRNA expression in maternal livers along with higher circulating insulin and glucose concentrations (P < 0.05) and increased mRNA expression of Srebf1 and Chrebp, regulators of fatty acid synthesis (P < 0.05). Fetal pups exposed to Mg deficiency were growth-restricted and exhibited reduced survival. Mg-deficient fetal livers showed lower MUFAs and higher PUFAs, with lower desaturase and elongase mRNA expression than controls. In addition, DHA concentrations were lower in Mg-deficient fetal brains (P < 0.05). These results indicate that Mg deficiency during pregnancy influences both maternal and fetal fatty acid metabolism, fetal growth and fetal survival, and support better understanding maternal Mg status before and during pregnancy.
Collapse
Affiliation(s)
- Madhu Gupta
- Elmezzi Graduate School of Molecular Medicine, Manhasset, New York, United States of America The Feinstein Institute for Medical Research, The Center for Immunology and Inflammation, Manhasset, New York, United States of America
| | - Malvika H Solanki
- Elmezzi Graduate School of Molecular Medicine, Manhasset, New York, United States of America The Feinstein Institute for Medical Research, The Center for Immunology and Inflammation, Manhasset, New York, United States of America
| | - Prodyot K Chatterjee
- The Feinstein Institute for Medical Research, The Center for Immunology and Inflammation, Manhasset, New York, United States of America
| | - Xiangying Xue
- The Feinstein Institute for Medical Research, The Center for Immunology and Inflammation, Manhasset, New York, United States of America
| | - Amanda Roman
- Hofstra North Shore-LIJ School of Medicine, Division of Maternal-Fetal Medicine, Manhasset, New York, United States of America
| | - Neeraj Desai
- Hofstra North Shore-LIJ School of Medicine, Division of Maternal-Fetal Medicine, Manhasset, New York, United States of America
| | - Burton Rochelson
- Hofstra North Shore-LIJ School of Medicine, Division of Maternal-Fetal Medicine, Manhasset, New York, United States of America
| | - Christine N Metz
- Elmezzi Graduate School of Molecular Medicine, Manhasset, New York, United States of America The Feinstein Institute for Medical Research, The Center for Immunology and Inflammation, Manhasset, New York, United States of America Hofstra North Shore-LIJ School of Medicine, Division of Maternal-Fetal Medicine, Manhasset, New York, United States of America
| |
Collapse
|
42
|
Solanki MH, Chatterjee PK, Gupta M, Xue X, Plagov A, Metz MH, Mintz R, Singhal PC, Metz CN. Magnesium protects against cisplatin-induced acute kidney injury by regulating platinum accumulation. Am J Physiol Renal Physiol 2014; 307:F369-84. [PMID: 24944268 DOI: 10.1152/ajprenal.00127.2014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite its success as a potent antineoplastic agent, ∼25% of patients receiving cisplatin experience acute kidney injury (AKI) and must discontinue therapy. Impaired magnesium homeostasis has been linked to cisplatin-mediated AKI, and because magnesium deficiency is widespread, we examined the effect of magnesium deficiency and replacement on cisplatin-induced AKI in physiologically relevant older female mice. Magnesium deficiency significantly increased cisplatin-associated weight loss and markers of renal damage (plasma blood urea nitrogen and creatinine), histological changes, inflammation, and renal cell apoptosis and modulated signaling pathways (e.g., ERK1/2, p53, and STAT3). Conversely, these damaging effects were reversed by magnesium. Magnesium deficiency alone significantly induced basal and cisplatin-mediated oxidative stress, whereas magnesium replacement attenuated these effects. Similar results were observed using cisplatin-treated LLC-PK1 renal epithelial cells exposed to various magnesium concentrations. Magnesium deficiency significantly amplified renal platinum accumulation, whereas magnesium replacement blocked the augmented platinum accumulation after magnesium deficiency. Increased renal platinum accumulation during magnesium deficiency was accompanied by reduced renal efflux transporter expression, which was reversed by magnesium replacement. These findings demonstrate the role of magnesium in regulating cisplatin-induced AKI by enhancing oxidative stress and thus promoting cisplatin-mediated damage. Additional in vitro experiments using ovarian, breast, and lung cancer cell lines showed that magnesium supplementation did not compromise cisplatin's chemotherapeutic efficacy. Finally, because no consistently successful therapy to prevent or treat cisplatin-mediated AKI is available for humans, these results support developing more conservative magnesium replacement guidelines for reducing cisplatin-induced AKI in cancer patients at risk for magnesium deficiency.
Collapse
Affiliation(s)
- Malvika H Solanki
- Elmezzi Graduate School of Molecular Medicine, Manhasset, New York; The Center for Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York; and
| | - Prodyot K Chatterjee
- The Center for Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York; and
| | - Madhu Gupta
- Elmezzi Graduate School of Molecular Medicine, Manhasset, New York; The Center for Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York; and
| | - Xiangying Xue
- The Center for Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York; and
| | - Andrei Plagov
- The Center for Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York; and
| | - Margot H Metz
- The Center for Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York; and
| | - Rachel Mintz
- The Center for Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York; and
| | - Pravin C Singhal
- The Center for Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York; and Hofstra North Shore-LIJ School of Medicine, Manhasset, New York
| | - Christine N Metz
- Elmezzi Graduate School of Molecular Medicine, Manhasset, New York; The Center for Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York; and Hofstra North Shore-LIJ School of Medicine, Manhasset, New York
| |
Collapse
|
43
|
Aryana P, Rajaei S, Bagheri A, Karimi F, Dabbagh A. Acute Effect of Intravenous Administration of Magnesium Sulfate on Serum Levels of Interleukin-6 and Tumor Necrosis Factor-α in Patients Undergoing Elective Coronary Bypass Graft With Cardiopulmonary Bypass. Anesth Pain Med 2014; 4:e16316. [PMID: 25237633 PMCID: PMC4165031 DOI: 10.5812/aapm.16316] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/21/2013] [Accepted: 12/25/2013] [Indexed: 11/18/2022] Open
Abstract
Background: Cardiovascular problems are among the most common health issues. A considerable number of cardiac patients undergo cardiac surgery, and coronary artery disease patients constitute about two-thirds of all these surgeries. The application of cardiopulmonary bypass (CBP) usually results in some untoward effects. Objectives: Studies have suggested magnesium sulfate (MgSO4) as an anti-inflammatory agent in a coronary artery bypass graft (CABG). This study aimed to assess the effect of an IV MgSO4 infusion during elective CABG (with CBP) on the blood levels of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α). Materials and Methods: During a 12 month period, after review board approval and based on inclusion and exclusion criteria, 90 patients were selected and entered randomly into one of the two study groups (MgSO4 or placebo). Anesthesia, surgery and CBP were performed in exactly the same way, except for the use of MgSO4 or a placebo. Both preoperative and postoperative plasma levels of IL-6 and TNF-α were checked and compared between the two groups using an ELISA. Results: There was no difference found between the two groups with regard to; gender, basic variables, Ejection Fraction (EF), CBP time and aortic cross-clamp time. The preoperative levels of IL-6 and TNF-α were not different; however, their postoperative levels were significantly higher in the placebo group (P value = 0.01 for IL-6 and 0.005 for TNF-α). Conclusions: This study showed that MgSO4 infusion could suppress part of the inflammatory response after CABG with CBP. This was demonstrated by decreased levels of interleukin-6 and TNF-α in postoperative serum levels in elective CABG with CBP.
Collapse
Affiliation(s)
- Parastou Aryana
- Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Rajaei
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolhamid Bagheri
- Cardiology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Forouzan Karimi
- Immunology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Dabbagh
- Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding author: Ali Dabbagh, Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Tel: +98-9121972368; Fax: +98-2122074101; , E-mail:
| |
Collapse
|
44
|
Huang Q, Liu L, Hu B, Di X, Brennecke SP, Liu H. Decreased seizure threshold in an eclampsia-like model induced in pregnant rats with lipopolysaccharide and pentylenetetrazol treatments. PLoS One 2014; 9:e89333. [PMID: 24586695 PMCID: PMC3930732 DOI: 10.1371/journal.pone.0089333] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/20/2014] [Indexed: 11/24/2022] Open
Abstract
Objective Eclampsia is a poorly understood but potentially fatal complication of pregnancy. Research to date on this disorder has been hampered by the lack of a suitable animal model. To correct this deficiency, this report describes the generation of a rat eclampsia-like model using pentylenetetrazol (PTZ) in a previously established rat preeclampsia model. Method Rats were administered lipopolysaccharide (1.0 µg/kg) by tail vein injection on gestational day 14 to establish preeclampsia (PE). PE and control rats (non-pregnant, NP; normal-pregnant, P) were injected intraperitoneally (i.p.) with PTZ (40 mg/kg) to induce seizures. In separate experiments, MgSO4 (270 mg/kg IP) was injected in advance of PTZ into PE rats to observe its effect on PTZ-induced seizures. Results PE conditions were verified in rats after LPS administration by significantly higher blood pressure (P<0.01) and urinary albumin excretion (P<0.05), elevated sFlt-1 (P<0.05) and decreased PlGF serum levels (P<0.05), and evidence of hepatic dysfunction compared to control groups. PTZ successfully induced seizure activity in all groups studied. Latency to seizure was significantly (P<0.01) less in the PE-PTZ group (73.2±6.6 sec.) than in PTZ-treated controls (107.0±7.4 sec.). Pretreatment with MgSO4 prolonged (P<0.05) latency to seizure, shortened seizure duration and decreased seizure rates. Significant increased (P<0.05) in the serum levels of the inflammatory cytokines TNF-α and IL-1β in PE and PE-PTZ groups, and decreased (P<0.05) in their levels following MgSO4 administration. Conclusion This PTZ-induced eclampsia-like rat model is comparable to the human condition of eclampsia and may serve as a useful research tool for future studies of this disease. The increased inflammatory cytokines in preeclampsia are coincident with a decreased threshold for PTZ-induced seizures, suggesting that an inflammatory mechanism may contribute to the susceptibility to seizure activity and inflammation might have an important role in eclampsia.
Collapse
Affiliation(s)
- Qian Huang
- Department of Obstetrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lei Liu
- Department of Obstetrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bihui Hu
- Department of Obstetrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaodan Di
- Department of Obstetrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- School of Medicine, Jinan University, Guangzhou, China
| | - Shaun Patrick Brennecke
- Department Perinatal Medicine Pregnancy Research Centre and University of Melbourne Department of Obstetrics and Gynaecology, Royal Women’s Hospital, Parkville, Victoria, Australia
| | - Huishu Liu
- Department of Obstetrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- * E-mail:
| |
Collapse
|
45
|
The role of microbes and autoimmunity in the pathogenesis of neuropsychiatric illness. Curr Opin Rheumatol 2014; 25:488-795. [PMID: 23656715 DOI: 10.1097/bor.0b013e32836208de] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW To illustrate how microbes might participate in the pathogenesis of neuropsychiatric illness by triggering the production of autoantibodies that bind to brain targets. RECENT FINDINGS Some studies link exposure to infectious agents to development of brain disorders; others have identified autoantibodies in individuals with these conditions without finding evidence of pathogens. Neither line of work demonstrates consistent associations between a specific neuropsychiatric disease and a particular environmental trigger or immune marker. Growing evidence suggests that the microbiome conditions host immunity to microbes and xenobiotics, and regulates autoimmune responses that can affect the central nervous system (CNS). The presence of CNS receptors for cytokines and other immune molecules underscores the importance of brain-immune crosstalk in maintaining normal function. An increased prevalence of familial autoimmunity, exposure to pathogens prenatally and postnatally, and findings of antibrain antibodies is common in disorders as diverse as schizophrenia, obsessive-compulsive disorder and autism, and suggests that differences in exposure timing and genetic vulnerability toward autoimmunity are important determinants of neuropsychiatric outcomes. SUMMARY Microbes, both pathogenic and commensal, can induce autoantibodies that bind to brain and affect behavior in susceptible hosts. Interventions that correct the microbial balance or diminish autoantibody binding may be effective in diverse neuropsychiatric conditions mediated by autoimmunity.
Collapse
|
46
|
Roman A, Desai N, Rochelson B, Gupta M, Solanki M, Xue X, Chatterjee PK, Metz CN. Maternal magnesium supplementation reduces intrauterine growth restriction and suppresses inflammation in a rat model. Am J Obstet Gynecol 2013; 208:383.e1-7. [PMID: 23474429 DOI: 10.1016/j.ajog.2013.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/21/2013] [Accepted: 03/01/2013] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Intrauterine growth restriction (IUGR) is associated with increased inflammatory responses. We sought to investigate whether magnesium (Mg) attenuates inflammation and IUGR in a rat model. STUDY DESIGN Pregnant Wistar rats (12 weeks, gestational day 18) were randomly assigned to 1 of 4 groups: normal diet with bilateral uterine artery ligation (BL) (n = 6) or sham surgery (SH) (n = 5); and Mg chloride (MgCl2) 1% (wt/vol) in the drinking water throughout gestation + BL (MgBL) (n = 6) or SH (MgSH) (n = 5). Dams were euthanized 24 hours postsurgery (gestational day 19). Maternal plasma, fetal plasma (pooled), individual amniotic fluid (AF) samples, and placentas (PL) were collected and assessed from live fetal pups only (BL, n = 36; SH, n = 20; MgBL, n = 20; MgSH, n = 20). All samples were analyzed for cytokines/chemokines (interleukin [IL]-6, IL-1β, chemokine [C-X-C motif] ligand 1 [CXCL1], chemokine [C-C motif] ligand 2 [CCL2], and tumor necrosis factor [TNF-α] sensitivity <3 pg/mL) using a multiplex platform. Data were analyzed using Mann Whitney, analysis of variance, and Fisher exact tests. RESULTS The incidence of IUGR (pup weight <10th percentile of SH) in the MgBL group was significantly lower (31%) than the BL group (86.3%) (relative risk, 0.36; 95% confidence interval, 0.2-0.6; P < .0001). BL significantly increased AF levels of IL-6, IL-1β, TNF-α (P < .05), and CCL2 (P < .001) vs SH and PL levels of IL-6, IL-1β, CCL2 and CXCL1 (P < .001), and TNF-α (P < .05) vs SH. Maternal MgCl2 supplementation significantly decreased IL-1β, TNF-α, and CCL2 levels in AF and IL-1β in PL tissues of MgBL vs BL rats (P < .0001). CONCLUSION Maternal oral MgCl2 supplementation reduced BL-induced IUGR by 64% and suppressed cytokine/chemokine levels in the AF and PL.
Collapse
|
47
|
Suzuki-Kakisaka H, Sugimoto J, Tetarbe M, Romani AM, Ramirez Kitchen CM, Bernstein HB. Magnesium Sulfate Increases Intracellular Magnesium Reducing Inflammatory Cytokine Release in Neonates. Am J Reprod Immunol 2013; 70:213-20. [DOI: 10.1111/aji.12118] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/01/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Haruka Suzuki-Kakisaka
- Department of Reproductive Biology; Case Western Reserve University School of Medicine; Cleveland OH USA
| | - Jun Sugimoto
- Department of Reproductive Biology; Case Western Reserve University School of Medicine; Cleveland OH USA
| | - Manas Tetarbe
- Department of Physiology and Biophysics; Case Western Reserve University School of Medicine; Cleveland OH USA
| | - Andrea M. Romani
- Department of Physiology and Biophysics; Case Western Reserve University School of Medicine; Cleveland OH USA
| | | | - Helene B. Bernstein
- Department of Reproductive Biology; Case Western Reserve University School of Medicine; Cleveland OH USA
- Department of Molecular Biology and Microbiology; Case Western Reserve University School of Medicine; Cleveland OH USA
| |
Collapse
|
48
|
Abstract
In adult mammals, leukocyte recruitment follows a well-defined cascade of adhesion events enabling leukocytes to leave the circulatory system and transmigrate into tissue. Currently, it is unclear whether leukocyte recruitment proceeds in a similar fashion during fetal development. Considering the fact that the incidence of neonatal sepsis increases dramatically with decreasing gestational age in humans, we hypothesized that leukocyte recruitment may be acquired only late during fetal ontogeny. To test this, we developed a fetal intravital microscopy model in pregnant mice and, using LysEGFP (neutrophil reporter) mice, investigated leukocyte recruitment during fetal development. We show that fetal blood neutrophils acquire the ability to roll and adhere on inflamed yolk sac vessels during late fetal development, whereas at earlier embryonic stages (before day E15), rolling and adhesion were essentially absent. Accordingly, flow chamber experiments showed that fetal EGFP(+) blood cells underwent efficient adhesion only when they were harvested on or after E15. Fluorescence-activated cell sorter analysis on EGFP(+) fetal blood cells revealed that surface expression of CXCR2 and less pronounced P-selectin glycoprotein ligand-1 (PSGL-1) begin to increase only late in fetal life. Taken together, our findings demonstrate that inflammation-induced leukocyte recruitment is ontogenetically regulated and enables efficient neutrophil trafficking only during late fetal life.
Collapse
|
49
|
Choi JS, Kim HY. Nutritional Treatment: New Strategy for Management of Chronic Pelvic Pain. KOSIN MEDICAL JOURNAL 2013. [DOI: 10.7180/kmj.2013.28.1.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Jong Soon Choi
- Department of Family Medicine, College of Medicine, Kosin University, Busan, Korea
| | - Heung Yeol Kim
- Department of Obstetrics and Gynecology, College of Medicine, Kosin University, Busan, Korea
| |
Collapse
|
50
|
Kuno T, Hatano Y, Tomita H, Hara A, Hirose Y, Hirata A, Mori H, Terasaki M, Masuda S, Tanaka T. Organomagnesium suppresses inflammation-associated colon carcinogenesis in male Crj: CD-1 mice. Carcinogenesis 2012; 34:361-9. [PMID: 23125223 DOI: 10.1093/carcin/bgs348] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Magnesium (Mg) deficiency increases genomic instability and Mg intake has been reported to be inversely associated with a risk of colorectal cancer (CRC). This study was designed to determine whether organo-Mg in drinking water suppresses inflammation-associated colon carcinogenesis in mice. Male Crj: CD-1 mice were initiated with a single i.p. injection of azoxymethane (AOM, 10mg/kg body weight) and followed by a 1 week exposure to dextran sulfate sodium (DSS, 1.5%, w/v) in drinking water to induce colonic neoplasms. They were then given the drinking water containing 7, 35 or 175 p.p.m. organo-Mg for 13 weeks. The chemopreventive efficacy of organo-Mg was determined 16 weeks after the AOM exposure. Administration with organo-Mg at all doses caused a significant inhibition of CRC development (P < 0.01 and P < 0.001). Especially, the highest dose of organo-Mg significantly suppressed the occurrence of all the colonic pathological lesions (mucosal ulcer, dysplasia, adenoma and adenocarcinoma). Organo-Mg also significantly reduced the number of mitoses/anaphase bridging, as well as proliferation of CRC. Additionally, at week 4, organo-Mg lowered the messenger RNA expression of certain proinflammatory cytokines, such as interleukin-1β, interleukin-6, interferon-γ and inducible nitric oxide synthase in the lesion-free colorectal mucosa at week 4 but increased the Nrf-2 messenger RNA expression. Our findings that organo-Mg inhibits inflammation-related mouse colon carcinogenesis by modulating the proliferative activities and chromosomal instability of CRC and suppressing colonic inflammation may suggest potential use of organo-Mg for clinical chemoprevention trials of CRC in the inflamed colon.
Collapse
Affiliation(s)
- Toshiya Kuno
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|