1
|
Yue Y, Zhou FF, Zhang JR, Xu F. Expression and significance of CEMIP and CYP11B2 in serum in women with foetal growth restriction. J OBSTET GYNAECOL 2024; 44:2389169. [PMID: 39218008 DOI: 10.1080/01443615.2024.2389169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Foetal growth restriction (FGR) occurs when a foetus fails to reach its growth potential. This observational study assessed the expression and significance of cell migration-including protein (CEMIP) and aldosterone synthase (CYP11B2) in the serum of pregnant women with FGR. METHODS 40 singleton FGR-suffered pregnant women, as well as 40 normal singleton pregnant women, were enrolled. The expression of CEMIP and CYP11B2 in serum was detected in early pregnancy. The correlations between parameters were evaluated. The predictive variables for FGR were determined. The diagnostic value of CEMIP and CYP11B2 for FGR was analysed. RESULTS CEMIP and CYP11B2 mRNA expression in the serum of pregnant women with FGR decreased (both P < 0.001). CEMIP (95%CI: 0.802-0.921, P < 0.001) and CYP11B2 (95%CI: 0.795-0.907, P < 0.001) mRNA expression in serum and soluble fms like tyrosine kinase-1 (sFLT1)/placental growth factor (PlGF) ratio (95%CI: 0.866-0.974, P < 0.001) were independent predictors of FGR, and CEMIP (r = -0.578, P = 0.001) and CYP11B2 (r = -0.602, P < 0.001) mRNA expression in serum were negatively correlated with sFLT1/PlGF ratio. CEMIP (AUC = 0.741) and CYP11B2 (AUC = 0.764) mRNA expression in serum had good diagnostic value for FGR. CONCLUSION The expression of CEMIP and CYP11B2 is reduced in the serum of pregnant women with FGR and may become new diagnostic markers for FGR.
Collapse
Affiliation(s)
- Yang Yue
- Department of Obstetrics, Longhua District Maternity and Child Health Hospital, Shenzhen City, Guangdong Province, China
| | - Fang Fang Zhou
- Department of Obstetrics, Longhua District Maternity and Child Health Hospital, Shenzhen City, Guangdong Province, China
| | - Jia Rong Zhang
- Department of Obstetrics, Longhua District Maternity and Child Health Hospital, Shenzhen City, Guangdong Province, China
| | - Fu Xu
- Department of Anesthesiology, Longhua District People's Hospital, Shenzhen City, Guangdong Province, China
| |
Collapse
|
2
|
Sundrani D, Karkhanis A, Randhir K, Panchanadikar T, Joshi S. MicroRNAs targeting peroxisome proliferator-activated receptor (PPAR) gene are differentially expressed in low birth weight placentae. Placenta 2023; 139:51-60. [PMID: 37311266 DOI: 10.1016/j.placenta.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/23/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Peroxisome proliferator-activated receptors (PPARs) are activated by natural ligands like fatty acids and influence placental angiogenesis and pregnancy outcome. However, the underlying molecular mechanisms are not clear. This study aims to investigate the association of maternal and placental fatty acid levels with DNA methylation and microRNA regulation of PPARs in the placentae of women delivering low birth weight (LBW) babies. METHODS This study includes 100 women delivering normal birth weight (NBW) baby and 70 women delivering LBW baby. Maternal and placental fatty acids levels were estimated by gas chromatograph. Gene promoter methylation and mRNA expression of PPARs was analyzed using Epitect Methyl-II PCR assay kit and RT-PCR respectively. Expression of miRNAs targeting PPAR mRNA were analyzed using a Qiagen miRCURY LNA PCR Array on RT-PCR. RESULTS Placental docosahexaenoic acid (DHA) levels and placental mRNA expression of PPARα and PPARγ were lower (p < 0.05 for all) in the LBW group. Differential expression of miRNAs (upregulated miR-33a-5p and miR-22-5p; downregulated miR-301a-5p, miR-518d-5p, miR-27b-5p, miR-106a-5p, miR-21-5p, miR-548d-5p, miR-17-5p and miR-20a-5p) (p < 0.05 for all) was observed in the LBW group. Maternal and placental polyunsaturated fatty acids and total omega-3 fatty acids were positively associated while saturated fatty acids were negatively associated with expression of miRNAs (p < 0.05 for all). Placental expression of miRNAs were positively associated with birth weight (p < 0.05 for all). DISCUSSION Our data suggests that maternal fatty acid status is associated with changes in the placental expression of miRNAs targeting PPAR gene in women delivering LBW babies.
Collapse
Affiliation(s)
- Deepali Sundrani
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, 411043, India.
| | - Aishwarya Karkhanis
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, 411043, India
| | - Karuna Randhir
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, 411043, India
| | - Tushar Panchanadikar
- Department of Obstetrics and Gynecology, Bharati Medical College and Hospital, Bharati Vidyapeeth (Deemed to be University), Pune, 411043, India
| | - Sadhana Joshi
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, 411043, India
| |
Collapse
|
3
|
Kannampuzha S, Ravichandran M, Mukherjee AG, Wanjari UR, Renu K, Vellingiri B, Iyer M, Dey A, George A, Gopalakrishnan AV. The mechanism of action of non-coding RNAs in placental disorders. Biomed Pharmacother 2022; 156:113964. [DOI: 10.1016/j.biopha.2022.113964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
|
4
|
Micro-RNAs in Human Placenta: Tiny Molecules, Immense Power. Molecules 2022; 27:molecules27185943. [PMID: 36144676 PMCID: PMC9501247 DOI: 10.3390/molecules27185943] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 12/06/2022] Open
Abstract
Micro-RNAs (miRNAs) are short non-coding single-stranded RNAs that modulate the expression of various target genes after transcription. The expression and distribution of kinds of miRNAs have been characterized in human placenta during different gestational stages. The identified miRNAs are recognized as key mediators in the regulation of placental development and in the maintenance of human pregnancy. Aberrant expression of miRNAs is associated with compromised pregnancies in humans, and dysregulation of those miRNAs contributes to the occurrence and development of related diseases during pregnancy, such as pre-eclampsia (PE), fetal growth restriction (FGR), gestational diabetes mellitus (GDM), recurrent miscarriage, preterm birth (PTB) and small-for-gestational-age (SGA). Thus, having a better understanding of the expression and functions of miRNAs in human placenta during pregnancy and thereby developing novel drugs targeting the miRNAs could be a potentially promising method in the prevention and treatment of relevant diseases in future. Here, we summarize the current knowledge of the expression pattern and function regulation of miRNAs in human placental development and related diseases.
Collapse
|
5
|
Kochhar P, Vukku M, Rajashekhar R, Mukhopadhyay A. microRNA signatures associated with fetal growth restriction: a systematic review. Eur J Clin Nutr 2022; 76:1088-1102. [PMID: 34741137 DOI: 10.1038/s41430-021-01041-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022]
Abstract
Placental-origin microRNA (miRNA) profiles can be useful toward early diagnosis and management of fetal growth restriction (FGR) and associated complications. We conducted a systematic review to identify case-control studies that have examined miRNA signatures associated with human FGR. We systematically searched PubMed and ScienceDirect databases for relevant articles and manually searched reference lists of the relevant articles till May 18th, 2021. Of the 2133 studies identified, 21 were included. FGR-associated upregulation of miR-210 and miR-424 and downregulation of a placenta-specific miRNA cluster miRNA located on C19MC (miR-518b, miR-519d) and miR-221-3p was reported by >1 included studies. Analysis of the target genes of these miRNA as well as pathway analysis pointed to the involvement of angiogenesis and growth signaling pathways, such as the phosphatidylinositol 3-kinase- protein kinase B (PI3K-Akt) pathway. Only 3 out of the 21 included studies reported FGR-associated miRNAs in matched placental and maternal blood samples. We conclude that FGR-associated placental miRNAs could be utilized to inform clinical practice towards early diagnosis of FGR, provided enough evidence from studies on matched placental and maternal blood samples become available.Prospective Register of Systematic Reviews (PROSPERO) registration number: CRD42019136762.
Collapse
Affiliation(s)
- P Kochhar
- Division of Nutrition, St. John's Research Institute, A Recognized Research Centre of University of Mysore, Bangalore, India
| | - M Vukku
- Division of Nutrition, St. John's Research Institute, A Recognized Research Centre of University of Mysore, Bangalore, India
| | - R Rajashekhar
- Division of Nutrition, St. John's Research Institute, A Recognized Research Centre of University of Mysore, Bangalore, India.,Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - A Mukhopadhyay
- Division of Nutrition, St. John's Research Institute, A Recognized Research Centre of University of Mysore, Bangalore, India.
| |
Collapse
|
6
|
Kochhar P, Dwarkanath P, Ravikumar G, Thomas A, Crasta J, Thomas T, Kurpad AV, Mukhopadhyay A. Placental expression of RNU44, RNU48 and miR-16-5p: stability and relations with fetoplacental growth. Eur J Clin Nutr 2021; 76:722-729. [PMID: 34508256 DOI: 10.1038/s41430-021-01003-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 08/04/2021] [Accepted: 08/24/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND/OBJECTIVES The current study aimed to identify suitable reference miRNA for placental miRNA expression analysis in a set of well-characterized and fetal-sex balanced small- (SGA) and appropriate- (AGA) for gestational age full-term singleton pregnancies. SUBJECTS/METHODS In this retrospective study, placental samples (n = 106) from 35 SGA (19 male and 16 female) and 71 AGA (30 male and 41 female) full-term singleton pregnancies were utilized. Placental transcript abundance of three widely used reference miRNAs [miR-16-5p and Small nucleolar RNAs (snoRNAs) RNU44 and RNU48] were assessed by real-time quantitative PCR. Raw cycle threshold (Ct) analysis and RefFinder tool analysis were conducted for evaluating stability of expression of these miRNAs. RESULTS Raw Ct values of miR-16-5p were similar between SGA and AGA births (P = 0.140) and between male and female births within SGA (P = 0.159) and AGA (P = 0.060) births while that of RNU44 and RNU48 were higher in SGA births (P = 0.008 and 0.006 respectively) and in male births within the SGA group (P = 0.005) for RNU44 and in female births within the AGA group (P = 0.048) for RNU48. Across all 106 samples tested using the RefFinder tool, miR-16-5p and RNU44 were equally stable reference miRNAs. CONCLUSION We recommend miR-16-5p and RNU44 as suitable reference miRNAs for placental samples from settings similar to our study.
Collapse
Affiliation(s)
- P Kochhar
- Division of Nutrition, St. John's Research Institute, A recognized research centre of University of Mysore, Bangalore, Karnataka, India
| | - P Dwarkanath
- Division of Nutrition, St. John's Research Institute, A recognized research centre of University of Mysore, Bangalore, Karnataka, India
| | - G Ravikumar
- Department of Pathology, St John's Medical College Hospital, Bangalore, Karnataka, India
| | - A Thomas
- Department of Obstetrics and Gynaecology, St John's Medical College Hospital, Bangalore, Karnataka, India
| | - J Crasta
- Department of Pathology, St John's Medical College Hospital, Bangalore, Karnataka, India
| | - T Thomas
- Department of Biostatistics, St. John's Medical College Hospital, Bangalore, Karnataka, India
| | - A V Kurpad
- Division of Nutrition, St. John's Research Institute, A recognized research centre of University of Mysore, Bangalore, Karnataka, India
| | - A Mukhopadhyay
- Division of Nutrition, St. John's Research Institute, A recognized research centre of University of Mysore, Bangalore, Karnataka, India.
| |
Collapse
|
7
|
Yu L, Sun Y, Chu Z. MiR-212-3p promotes proliferation and migration of trophoblast in fetal growth restriction by targeting placental growth factor. Bioengineered 2021; 12:5655-5663. [PMID: 34470571 PMCID: PMC8806470 DOI: 10.1080/21655979.2021.1967069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The purpose of this study was to evaluate the function and possible mechanism of miR-212-3p in fetal growth restriction (FGR) and to demonstrate the relationship between miR-212-3p and placental growth factor (PGF). First, we used qRT-PCR to detect the expression of miR-212-3p and PGF in placental tissues of normal delivery (HC group) and FGR, as well as in human trophoblast cell HTR-8/Svneo. The results revealed that miR-212-3p expression was significantly upregulated and PGF was significantly downregulated in placental tissue in the FGR group compared with the HC group. In addition, interference with miR-212-3p expression increased the proliferation, invasion, and migration of HTR-8/SVneo cells and decreased apoptosis of cells. Meanwhile, Western blot results showed that miR-212-3p expression downregulation promoted the phosphorylated protein expression of Phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT), which in turn activated the PI3K/AKT signaling pathway. And the results of dual luciferase reporter further showed that miR-212-3p could target PGF, and the expression of both was negatively correlated in FGR group tissues. In addition, downregulation of miR-212-3p expression reversed the inhibitory effect of PGF downregulation on HTR-8/SVneo cells. In conclusion, miR-212-3p can target and inhibit the PGF expression and regulate the PI3K/AKT signaling pathway to regulate trophoblast cell invasion, migration, proliferation and cell apoptosis. This provides a potential biomarker for the development of FGR.
Collapse
Affiliation(s)
- Limin Yu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Layboratory of Female Reproductive Health and Eugenics, Tianjin, China
| | - Yan Sun
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Layboratory of Female Reproductive Health and Eugenics, Tianjin, China
| | - Zanjun Chu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Layboratory of Female Reproductive Health and Eugenics, Tianjin, China
| |
Collapse
|
8
|
Sundrani DP, Karkhanis AR, Joshi SR. Peroxisome Proliferator-Activated Receptors (PPAR), fatty acids and microRNAs: Implications in women delivering low birth weight babies. Syst Biol Reprod Med 2021; 67:24-41. [PMID: 33719831 DOI: 10.1080/19396368.2020.1858994] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Low birth weight (LBW) babies are associated with neonatal morbidity and mortality and are at increased risk for noncommunicable diseases (NCDs) in later life. However, the molecular determinants of LBW are not well understood. Placental insufficiency/dysfunction is the most frequent etiology for fetal growth restriction resulting in LBW and placental epigenetic processes are suggested to be important regulators of pregnancy outcome. Early life exposures like altered maternal nutrition may have long-lasting effects on the health of the offspring via epigenetic mechanisms like DNA methylation and microRNA (miRNA) regulation. miRNAs have been recognized as major regulators of gene expression and are known to play an important role in placental development. Angiogenesis in the placenta is known to be regulated by transcription factor peroxisome proliferator-activated receptor (PPAR) which is activated by ligands such as long-chain-polyunsaturated fatty acids (LCPUFA). In vitro studies in different cell types indicate that fatty acids can influence epigenetic mechanisms like miRNA regulation. We hypothesize that maternal fatty acid status may influence the miRNA regulation of PPAR genes in the placenta in women delivering LBW babies. This review provides an overview of miRNAs and their regulation of PPAR gene in the placenta of women delivering LBW babies.Abbreviations: AA - Arachidonic Acid; Ago2 - Argonaute2; ALA - Alpha-Linolenic Acid; ANGPTL4 - Angiopoietin-Like Protein 4; C14MC - Chromosome 14 miRNA Cluster; C19MC - Chromosome 19 miRNA Cluster; CLA - Conjugated Linoleic Acid; CSE - Cystathionine γ-Lyase; DHA - Docosahexaenoic Acid; EFA - Essential Fatty Acids; E2F3 - E2F transcription factor 3; EPA - Eicosapentaenoic Acid; FGFR1 - Fibroblast Growth Factor Receptor 1; GDM - Gestational Diabetes Mellitus; hADMSCs - Human Adipose Tissue-Derived Mesenchymal Stem Cells; hBMSCs - Human Bone Marrow Mesenchymal Stem Cells; HBV - Hepatitis B Virus; HCC - Hepatocellular Carcinoma; HCPT - Hydroxycamptothecin; HFD - High-Fat Diet; Hmads - Human Multipotent Adipose-Derived Stem; HSCS - Human Hepatic Stellate Cells; IUGR - Intrauterine Growth Restriction; LA - Linoleic Acid; LBW - Low Birth Weight; LCPUFA - Long-Chain Polyunsaturated Fatty Acids; MEK1 - Mitogen-Activated Protein Kinase 1; MiRNA - MicroRNA; mTOR - Mammalian Target of Rapamycin; NCDs - NonCommunicable Diseases; OA - Oleic Acid; PASMC - Pulmonary Artery Smooth Muscle Cell; PLAG1 - Pleiomorphic Adenoma Gene 1; PPAR - Peroxisome Proliferator-Activated Receptor; PPARα - PPAR alpha; PPARγ - PPAR gamma; PPARδ - PPAR delta; pre-miRNA - precursor miRNA; RISC - RNA-Induced Silencing Complex; ROS - Reactive Oxygen Species; SAT - Subcutaneous Adipose Tissue; WHO - World Health Organization.
Collapse
Affiliation(s)
- Deepali P Sundrani
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Aishwarya R Karkhanis
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Sadhana R Joshi
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| |
Collapse
|
9
|
Ali A, Hadlich F, Abbas MW, Iqbal MA, Tesfaye D, Bouma GJ, Winger QA, Ponsuksili S. MicroRNA-mRNA Networks in Pregnancy Complications: A Comprehensive Downstream Analysis of Potential Biomarkers. Int J Mol Sci 2021; 22:2313. [PMID: 33669156 PMCID: PMC7956714 DOI: 10.3390/ijms22052313] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Pregnancy complications are a major cause of fetal and maternal morbidity and mortality in humans. The majority of pregnancy complications initiate due to abnormal placental development and function. During the last decade, the role of microRNAs (miRNAs) in regulating placental and fetal development has become evident. Dysregulation of miRNAs in the placenta not only affects placental development and function, but these miRNAs can also be exported to both maternal and fetal compartments and affect maternal physiology and fetal growth and development. Due to their differential expression in the placenta and maternal circulation during pregnancy complications, miRNAs can be used as diagnostic biomarkers. However, the differential expression of a miRNA in the placenta may not always be reflected in maternal circulation, which makes it difficult to find a reliable biomarker for placental dysfunction. In this review, we provide an overview of differentially expressed miRNAs in the placenta and/or maternal circulation during preeclampsia (PE) and intrauterine growth restriction (IUGR), which can potentially serve as biomarkers for prediction or diagnosis of pregnancy complications. Using different bioinformatics tools, we also identified potential target genes of miRNAs associated with PE and IUGR, and the role of miRNA-mRNA networks in the regulation of important signaling pathways and biological processes.
Collapse
Affiliation(s)
- Asghar Ali
- Leibniz Institute for Farm Animal Biology, Institute of Genome Biology, 18196 Dummerstorf, Germany
- Animal Reproduction and Biomedical Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Frieder Hadlich
- Leibniz Institute for Farm Animal Biology, Institute of Genome Biology, 18196 Dummerstorf, Germany
| | - Muhammad W Abbas
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad A Iqbal
- Leibniz Institute for Farm Animal Biology, Institute of Genome Biology, 18196 Dummerstorf, Germany
| | - Dawit Tesfaye
- Animal Reproduction and Biomedical Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Gerrit J Bouma
- Animal Reproduction and Biomedical Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Quinton A Winger
- Animal Reproduction and Biomedical Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology, Institute of Genome Biology, 18196 Dummerstorf, Germany
| |
Collapse
|
10
|
Wang Q, Zhang F, Lei Y, Liu P, Liu C, Tao Y. microRNA-322/424 promotes liver fibrosis by regulating angiogenesis through targeting CUL2/HIF-1α pathway. Life Sci 2021; 266:118819. [PMID: 33333053 DOI: 10.1016/j.lfs.2020.118819] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022]
Abstract
AIMS To investigate the effects and mechanism of miR-322/424 in liver fibrosis. MAIN METHODS miR-322/424 expression in liver cirrhosis patients, mouse and rat liver fibrosis was determined by qPCR. Mice liver fibrosis was established by CCl4, and intervened by miR-322/424 agomir or antagomir. Liver hydroxyproline content and Sirius red staining were used to evaluate collagen deposition. CD31 expression was used to evaluate liver microvessel density. In vitro, the effects of miR-322/424 mimic or inhibitor on human hepatic sinusoidal endothelial cells (HHSECs) migration and tube formation were investigated. A dual luciferase reporter assay was performed to confirm the direct interaction between miR-322/424 and Cullin2. mRNA expression of elongin B/C, Cullin2, and RBX1 was determined by qPCR. HIF-1α protein expression was determined by Western blotting. KEY FINDINGS miR-322/424 level in liver cirrhosis patients, mouse liver fibrosis induced by CCl4 and BDL, and rat liver fibrosis induced by CCl4 and dimethylnitrosamine was increased. miR-322/424 agomir exacerbated CCl4-induced mouse liver fibrosis, whereas the opposite effect was observed for miR-322/424 antagomir. miR-322/424 agomir significantly upregulated liver CD31 expression; opposite effects occurred with miR-322/424 antagomir. In vitro, miR-322/424 mimic significantly promoted tube formation and cell migration, and increased von Willebrand factor expression, whereas miR-322/424 inhibitor had the opposite effect. Dual-Luciferase Reporter Assay identified Cullin2 as miR-322/424 target. miR-322/424 decreased the mRNA expression of elongin B/C, Cullin2, and RBX1 and increased HIF-1α protein expression in HHSECs. SIGNIFICANCE miR-322/424 plays a central role in the pathogenesis of liver fibrosis by targeting Cullin2, and enhancing HIF-1α-mediated hepatic angiogenesis.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Cullin Proteins/genetics
- Cullin Proteins/metabolism
- Disease Models, Animal
- Hemangioma/genetics
- Hemangioma/metabolism
- Hemangioma/pathology
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Liver Cirrhosis/genetics
- Liver Cirrhosis/metabolism
- Liver Cirrhosis/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred ICR
- MicroRNAs/genetics
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Rats
- Rats, Wistar
Collapse
Affiliation(s)
- Qinglan Wang
- Institute of Liver Diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; E-Institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Zhang
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yang Lei
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ping Liu
- Institute of Liver Diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; E-Institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Chenghai Liu
- Institute of Liver Diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; E-Institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China; Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai, China.
| | - Yanyan Tao
- Institute of Liver Diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China.
| |
Collapse
|
11
|
Gebremedhn S, Ali A, Hossain M, Hoelker M, Salilew-Wondim D, Anthony RV, Tesfaye D. MicroRNA-Mediated Gene Regulatory Mechanisms in Mammalian Female Reproductive Health. Int J Mol Sci 2021; 22:938. [PMID: 33477832 PMCID: PMC7832875 DOI: 10.3390/ijms22020938] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/12/2022] Open
Abstract
Mammalian reproductive health affects the entire reproductive cycle starting with the ovarian function through implantation and fetal growth. Various environmental and physiological factors contribute to disturbed reproductive health status leading to infertility problems in mammalian species. In the last couple of decades a significant number of studies have been conducted to investigate the transcriptome of reproductive tissues and organs in relation to the various reproductive health issues including endometritis, polycystic ovarian syndrome (PCOS), intrauterine growth restriction (IUGR), preeclampsia, and various age-associated reproductive disorders. Among others, the post-transcriptional regulation of genes by small noncoding miRNAs contributes to the observed transcriptome dysregulation associated with reproductive pathophysiological conditions. MicroRNAs as a class of non-coding RNAs are also known to be involved in various pathophysiological conditions either in cellular cytoplasm or they can be released to the extracellular fluid via membrane-bounded extracellular vesicles and proteins. The present review summarizes the cellular and extracellular miRNAs and their association with the etiology of major reproductive pathologies including PCOS, endometritis, IUGR and age-associated disorders in various mammalian species.
Collapse
Affiliation(s)
- Samuel Gebremedhn
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 3051 Rampart Rd, Fort Collins, CO 80523, USA; (S.G.); (A.A.); (R.V.A.)
| | - Asghar Ali
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 3051 Rampart Rd, Fort Collins, CO 80523, USA; (S.G.); (A.A.); (R.V.A.)
| | - Munir Hossain
- Department of Animal Breeding and Genetics, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Michael Hoelker
- Institute of Animal Sciences, Department of Animal Breeding and Husbandry, University of Bonn, 53115 Bonn, Germany; (M.H.); (D.S.-W.)
| | - Dessie Salilew-Wondim
- Institute of Animal Sciences, Department of Animal Breeding and Husbandry, University of Bonn, 53115 Bonn, Germany; (M.H.); (D.S.-W.)
| | - Russell V. Anthony
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 3051 Rampart Rd, Fort Collins, CO 80523, USA; (S.G.); (A.A.); (R.V.A.)
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 3051 Rampart Rd, Fort Collins, CO 80523, USA; (S.G.); (A.A.); (R.V.A.)
| |
Collapse
|
12
|
Jin XX, Ying X, Dong MY. Galectin-1 expression in the serum and placenta of pregnant women with fetal growth restriction and its significance. BMC Pregnancy Childbirth 2021; 21:14. [PMID: 33407212 PMCID: PMC7789211 DOI: 10.1186/s12884-020-03477-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 12/04/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aims to investigate galectin-1 (Gal-1) expression in the serum and placenta of pregnant women with fetal growth restriction (FGR) and its significance. METHODS Thirty-one pregnant women with single-birth FGR but without comorbidities, eight pregnant women with FGR and preeclampsia (PE), and eight pregnant women with FGR and gestational diabetes mellitus (GDM) were enrolled as the study group, while 20 pregnant women with normal singleton pregnancy in the same period were enrolled as the control group. The serum Gal-1 level was detected using an enzyme-linked immunosorbent assay (ELISA), and Gal-1 expression in the placenta was detected by western blot. RESULTS The results revealed that, compared with the control group, the serum Gal-1 level decreased in the women with FGR without comorbidities, and the difference was statistically significant (P < 0.001). Compared with the control group, the difference in serum Gal-1 expression in the FGR-PE group was not statistically significant (P = 0.29). The peripheral serum Gal-1 level decreased in the FGR-GDM group compared with the control group, and the difference was statistically significant (P < 0.001). The serum Gal-1 level was positively correlated with birth weight (r2 = 0.172, P < 0.01). Compared with the control group, the Gal-1 expression level decreased in the placenta of the pregnant women with FGR without comorbidities (P < 0.05). CONCLUSIONS Gal-1 exhibits low expression in the serum and placenta of pregnant women with FGR. In addition, Gal-1 may be involved in the pathogenesis of FGR and could represent a new diagnostic marker of the disease.
Collapse
Affiliation(s)
- Xiao-Xiao Jin
- Department of Reproductive Genetics, Women's Hospital of Zhejiang University, No. 1 of Xueshi Road, Shangcheng District, Hangzhou, 310006, China.,Department of Obstetrics, Taizhou Hospital, Zhejiang University, Taizhou, 317000, China
| | - Xiang Ying
- Department of Obstetrics, Taizhou Hospital, Zhejiang University, Taizhou, 317000, China
| | - Min-Yue Dong
- Department of Reproductive Genetics, Women's Hospital of Zhejiang University, No. 1 of Xueshi Road, Shangcheng District, Hangzhou, 310006, China.
| |
Collapse
|
13
|
Tagliaferri S, Cepparulo P, Vinciguerra A, Campanile M, Esposito G, Maruotti GM, Zullo F, Annunziato L, Pignataro G. miR-16-5p, miR-103-3p, and miR-27b-3p as Early Peripheral Biomarkers of Fetal Growth Restriction. Front Pediatr 2021; 9:611112. [PMID: 33777862 PMCID: PMC7991078 DOI: 10.3389/fped.2021.611112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/15/2021] [Indexed: 12/14/2022] Open
Abstract
Current tests available to diagnose fetal hypoxia in-utero lack sensitivity thus failing to identify many fetuses at risk. Emerging evidence suggests that microRNAs derived from the placenta circulate in the maternal blood during pregnancy and may be used as non-invasive biomarkers for pregnancy complications. With the intent to identify putative markers of fetal growth restriction (FGR) and new therapeutic druggable targets, we examined, in maternal blood samples, the expression of a group of microRNAs, known to be regulated by hypoxia. The expression of microRNAs was evaluated in maternal plasma samples collected from (1) women carrying a preterm FGR fetus (FGR group) or (2) women with an appropriately grown fetus matched at the same gestational age (Control group). To discriminate between early- and late-onset FGR, the study population was divided into two subgroups according to the gestational age at delivery. Four microRNAs were identified as possible candidates for the diagnosis of FGR: miR-16-5p, miR-103-3p, miR-107-3p, and miR-27b-3p. All four selected miRNAs, measured by RT-PCR, resulted upregulated in FGR blood samples before the 32nd week of gestation. By contrast, miRNA103-3p and miRNA107-3p, analyzed between the 32nd and 37th week of gestation, showed lower expression in the FGR group compared to aged matched controls. Our results showed that measurement of miRNAs in maternal blood may form the basis for a future diagnostic test to determine the degree of fetal hypoxia in FGR, thus allowing the start of appropriate therapeutic interventions to alleviate the burden of this disease.
Collapse
Affiliation(s)
- Salvatore Tagliaferri
- Division of Obstetrics and Gynecology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Pasquale Cepparulo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Antonio Vinciguerra
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Marta Campanile
- Division of Obstetrics and Gynecology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Giuseppina Esposito
- Division of Obstetrics and Gynecology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Maria Maruotti
- Division of Obstetrics and Gynecology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Fulvio Zullo
- Division of Obstetrics and Gynecology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | | | - Giuseppe Pignataro
- Division of Obstetrics and Gynecology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy.,Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
14
|
Maternal plasma miRNAs as potential biomarkers for detecting risk of small-for-gestational-age births. EBioMedicine 2020; 62:103145. [PMID: 33260001 PMCID: PMC7708817 DOI: 10.1016/j.ebiom.2020.103145] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Abstract
Background Small-for-gestational-age fetuses (SGA) (birthweight <10th centile) are at high risk for stillbirth or long-term adverse outcomes. Here, we investigate the ability of circulating maternal plasma miRNAs to determine the risk of SGA births. Methods Maternal plasma samples from 29 women of whom 16 subsequently delivered normally grown babies and 13 delivered SGA (birthweight <5th centile) were selected from a total of 511 women recruited to form a discovery cohort in which expression data for a total of 800 miRNAs was determined using the Nanostring nCounter miRNA assay. Validation by RT-qPCR was performed in an independent cohort. Findings Partial least-squares discriminant analysis (PLS-DA) of the Nanostring nCounter miRNA assay initially identified seven miRNAs at 12–14+6 weeks gestation, which discriminated between SGA cases and controls. Four of these were technically validated by RT-qPCR. Differential expression of two miRNA markers; hsa-miR-374a-5p (p = 0•0176) and hsa-let-7d-5p (p = 0•0036), were validated in an independent population of 95 women (SGA n = 12, Control n = 83). In the validation cohort, which was enriched for SGA cases, the ROC AUCs were 0•71 for hsa-miR-374a-5p, and 0•74 for hsa-let-7d-5p, and 0•77 for the two combined. Interpretation Whilst larger population-wide studies are required to validate their performance, these findings highlight the potential of circulating miRNAs to act as biomarkers for early prediction of SGA births. Funding This work was supported by Genesis Research Trust, March of Dimes, and the National Institute for Health Research Biomedical Research Centre (NIHR BRC) based at Imperial Healthcare NHS Trust and Imperial College London.
Collapse
|
15
|
Kennedy EM, Hermetz K, Burt A, Everson TM, Deyssenroth M, Hao K, Chen J, Karagas MR, Pei D, Koestler DC, Marsit CJ. Placental microRNA expression associates with birthweight through control of adipokines: results from two independent cohorts. Epigenetics 2020; 16:770-782. [PMID: 33016211 DOI: 10.1080/15592294.2020.1827704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs are non-coding RNAs that regulate gene expression post-transcriptionally. In the placenta, the master regulator of foetal growth and development, microRNAs shape the basic processes of trophoblast biology and specific microRNA have been associated with foetal growth. To comprehensively assess the role of microRNAs in placental function and foetal development, we have performed small RNA sequencing to profile placental microRNAs from two independent mother-infant cohorts: the Rhode Island Child Health Study (n = 225) and the New Hampshire Birth Cohort Study (n = 317). We modelled microRNA counts on infant birthweight percentile (BWP) in each cohort, while accounting for race, sex, parity, and technical factors, using negative binomial generalized linear models. We identified microRNAs that were differentially expressed (DEmiRs) with BWP at false discovery rate (FDR) less than 0.05 in both cohorts. hsa-miR-532-5p (miR-532) was positively associated with BWP in both cohorts. By integrating parallel whole transcriptome and small RNA sequencing in the RICHS cohort, we identified putative targets of miR-532. These targets are enriched for pathways involved in adipogenesis, adipocytokine signalling, energy metabolism, and hypoxia response, and included Leptin, which we further demonstrated to have a decreasing expression with increasing BWP, particularly in male infants. Overall, we have shown a robust and reproducible association of miR-532 with BWP, which could influence BWP through regulation of adipocytokines Leptin and Adiponectin.
Collapse
Affiliation(s)
- Elizabeth M Kennedy
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Karen Hermetz
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Amber Burt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Todd M Everson
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Maya Deyssenroth
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Ke Hao
- Department of Genetics and Genome Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA.,Dartmouth College, Children's Environmental Health and Disease Prevention Research Center at Dartmouth, Lebanon, NH, USA
| | - Dong Pei
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Devin C Koestler
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
16
|
Xu C, Guo Z, Zhang J, Lu Q, Tian Q, Liu S, Li K, Wang K, Tao Z, Li C, Lv Z, Zhang Z, Yang X, Yang F. Non-invasive prediction of fetal growth restriction by whole-genome promoter profiling of maternal plasma DNA: a nested case-control study. BJOG 2020; 128:458-466. [PMID: 32364311 PMCID: PMC7818264 DOI: 10.1111/1471-0528.16292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2020] [Indexed: 11/28/2022]
Abstract
Objective To predict fetal growth restriction (FGR) by whole‐genome promoter profiling of maternal plasma. Design Nested case–control study. Setting Hospital‐based. Population or Sample 810 pregnancies: 162 FGR cases and 648 controls. Methods We identified gene promoters with a nucleosome footprint that differed between FGR cases and controls based on maternal plasma cell‐free DNA (cfDNA) nucleosome profiling. Optimal classifiers were developed using support vector machine (SVM) and logistic regression (LR) models. Main outcome measures Genes with differential coverages in promoter regions through the low‐coverage whole‐genome sequencing data analysis among FGR cases and controls. Receiver operating characteristic (ROC) analysis (area under the curve [AUC], accuracy, sensitivity and specificity) was used to evaluate the performance of classifiers. Results Through the low‐coverage whole‐genome sequencing data analysis of FGR cases and controls, genes with significantly differential DNA coverage at promoter regions (−1000 to +1000 bp of transcription start sites) were identified. The non‐invasive ‘FGR classifier 1’ (CFGR1) had the highest classification performance (AUC, 0.803; 95% CI 0.767–0.839; accuracy, 83.2%) was developed based on 14 genes with differential promoter coverage using a support vector machine. Conclusions A promising FGR prediction method was successfully developed for assessing the risk of FGR at an early gestational age based on maternal plasma cfDNA nucleosome profiling. Tweetable abstract A promising FGR prediction method was successfully developed, based on maternal plasma cfDNA nucleosome profiling. A promising FGR prediction method was successfully developed, based on maternal plasma cfDNA nucleosome profiling.
Collapse
Affiliation(s)
- C Xu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Z Guo
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - J Zhang
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Q Lu
- Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Q Tian
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - S Liu
- Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - K Li
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - K Wang
- Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Z Tao
- Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - C Li
- Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Z Lv
- Department of Pathology, Cangzhou People's Hospital, Cangzhou, China.,Department of Pharmacy, Cangzhou People's Hospital, Cangzhou, China
| | - Z Zhang
- Department of Pathology, Cangzhou People's Hospital, Cangzhou, China.,Department of Pharmacy, Cangzhou People's Hospital, Cangzhou, China
| | - X Yang
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - F Yang
- Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Nemoto T, Kakinuma Y. Fetal malnutrition-induced catch up failure is caused by elevated levels of miR-322 in rats. Sci Rep 2020; 10:1339. [PMID: 31992823 PMCID: PMC6987214 DOI: 10.1038/s41598-020-58392-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/15/2020] [Indexed: 12/30/2022] Open
Abstract
If sufficient nutrition is not obtained during pregnancy, the fetus changes its endocrine system and metabolism to protect the brain, resulting in a loss of body size. The detailed mechanisms that determine the success or failure of growth catch-up are still unknown. Therefore, we investigated the mechanism by which catch-up growth failure occurs. The body weights of rat pups at birth from dams whose calorie intake during pregnancy was reduced by 40% were significantly lower than those of controls, and some offspring failed to catch up. Short-body-length and low-bodyweight rats showed blood IGF-1 levels and mRNA expression levels of IGF-1 and growth hormone receptor (GHR) in the liver that were lower than those in controls. The next generation offspring from low-bodyweight non-catch-up (LBW-NCG) rats had high expression of miR-322 and low expression of GHR and IGF-1. The expression of miR-322 showed a significant negative correlation with GHR expression and body length, and overexpression of miR-322 suppressed GHR expression. We found that insufficient intake of calories during pregnancy causes catch-up growth failure due to increased expression of miR-322 and decreased expression of GHR in the livers of offspring, and this effect is inherited by the next generation.
Collapse
Affiliation(s)
- Takahiro Nemoto
- Department of Physiology, Nippon Medical School 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Yoshihiko Kakinuma
- Department of Physiology, Nippon Medical School 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| |
Collapse
|
18
|
Hu XQ, Zhang L. MicroRNAs in Uteroplacental Vascular Dysfunction. Cells 2019; 8:E1344. [PMID: 31671866 PMCID: PMC6912833 DOI: 10.3390/cells8111344] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
Pregnancy complications of preeclampsia and intrauterine growth restriction (IUGR) are major causes of maternal and perinatal/neonatal morbidity and mortality. Although their etiologies remain elusive, it is generally accepted that they are secondary to placental insufficiency conferred by both failure in spiral artery remodeling and uteroplacental vascular malfunction. MicroRNAs (miRNAs) are small no-coding RNA molecules that regulate gene expression at the post-transcriptional level. Increasing evidence suggests that miRNAs participate in virtually all biological processes and are involved in numerous human diseases. Differentially expressed miRNAs in the placenta are typical features of both preeclampsia and IUGR. Dysregulated miRNAs target genes of various signaling pathways in uteroplacental tissues, contributing to the development of both complications. In this review, we provide an overview of how aberrant miRNA expression in preeclampsia and IUGR impacts the expression of genes involved in trophoblast invasion and uteroplacental vascular adaptation.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| |
Collapse
|
19
|
Chien CW, Lo YS, Wu HY, Hsuan Y, Lin CK, Chen YJ, Lin W, Han CL. Transcriptomic and Proteomic Profiling of Human Mesenchymal Stem Cell Derived from Umbilical Cord in the Study of Preterm Birth. Proteomics Clin Appl 2019; 14:e1900024. [PMID: 31520560 DOI: 10.1002/prca.201900024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 08/10/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Mesenchymal stem cells (MSCs) hold great therapeutic potential in morbidities associated with preterm birth. However, the molecular expressions of MSCs in preterm birth infants are not systematically evaluated. In this study, the dual-omics analyses of umbilical-cord (UC)-derived MSCs to identify the dysregulated cellular functions are presented. MATERIALS AND METHODS The UC-MSCs are collected from ten full-term and eight preterm birth infants for microarray and iTRAQ-based proteome profiling. RESULTS The integrative analysis of dual-omics data discovered 5615 commonly identified genes/proteins of which 29 genes/proteins show consistent up- or downregulation in preterm birth. The Gene Ontology analysis reveals that dysregulation of mitochondrial translation and cellular response to oxidative stress are mainly enriched in 290 differential expression proteins (DEPs) while the 412 differential expression genes (DEGs) are majorly involved in single-organism biosynthetic process, cellular response to stress, and mitotic cell cycle in preterm birth. Besides, a 13-protein module involving CUL2 and CUL3 is identified, which plays an important role in cullin-RING-based ubiquitin ligase complex, as potential mechanism for preterm birth. CONCLUSION The dual-omics data not only provide new insights to the molecular mechanism but also identify panel of candidate markers associated with preterm birth.
Collapse
Affiliation(s)
- Chih-Wei Chien
- Research and Development Division, Meribank Biotech Co. Ltd., Taipei, 11493, Taiwan
| | - Yu-Shu Lo
- Research and Development Division, Meribank Biotech Co. Ltd., Taipei, 11493, Taiwan
| | - Hsin-Yi Wu
- Instrumentation Center, National Taiwan University, Taipei, 10617, Taiwan
| | - Yogi Hsuan
- Meridigen Biotech Co. Ltd., Taipei, 11493, Taiwan
| | - Chi-Kang Lin
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Willie Lin
- Meridigen Biotech Co. Ltd., Taipei, 11493, Taiwan
| | - Chia-Li Han
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
20
|
Potential role of microRNA-424 in regulating ERRγ to suppress trophoblast proliferation and invasion in fetal growth restriction. Placenta 2019; 83:57-62. [PMID: 31477209 DOI: 10.1016/j.placenta.2019.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/05/2019] [Accepted: 07/01/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Abnormal expression of estrogen-related receptor γ (ERRγ) protein is associated with fetal growth restriction (FGR). The upstream regulators of ERRγ are still unknown. OBJECTIVE To evaluate the placental expression level of microRNA-424 (miR-424) and to demonstrate the relationship between miR-424 and FGR. METHODS The expression levels of miR-424 were detected in FGR and control placentas. HTR-8/SVneo cells were transfected with mimics or inhibitors to increase or decrease the miR-424 expression level, respectively. The transwell and CCK-8 assays were used to determine trophoblast-derived cell line invasion and proliferation. The expression levels of miR-424, ERRγ, and 17 beta-hydroxysteroid dehydrogenase type 1 (HSD17B1) were detected by qRT-PCR and Western blotting. The relationship between miR-424, ERRγ, and HSD17B1 was determined by luciferase reporter assay. RESULTS Compared to the normal pregnancy group, FGR placental tissues showed a significantly higher expression level of miR-424. The up-regulation of miR-424 decreased trophoblast-derived cell line invasion and proliferation. Down-regulation of miR-424 enhanced invasive and proliferative abilities of the cell lines. Over-expression of miR-424 reduced ERRγ protein levels and decreased both mRNA and protein levels of HSD17B1. Thus down-regulation of miR-424 induced protein expression of ERRγ and enhanced the mRNA and protein expressions of HSD17B1. MiR-424 probably mediated the expression of ERRγ via binding to sites other than mRNA 3'UTR. CONCLUSION MiR-424 may be associated with the pathogenesis of FGR by modulating trophoblast-derived cell line proliferation and invasion. MiR-424 may play a role in mediating the protein expressions of ERRγ and HSD17B1.
Collapse
|
21
|
Li L, Huang X, He Z, Xiong Y, Fang Q. miRNA-210-3p regulates trophoblast proliferation and invasiveness through fibroblast growth factor 1 in selective intrauterine growth restriction. J Cell Mol Med 2019; 23:4422-4433. [PMID: 30993882 PMCID: PMC6533475 DOI: 10.1111/jcmm.14335] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/15/2019] [Accepted: 03/30/2019] [Indexed: 12/25/2022] Open
Abstract
Selective intrauterine growth restriction (sIUGR), which affects approximately 10%-15% of monochorionic (MC) twin pregnancies, is highly associated with intrauterine foetal death and neurological impairment in both twins. Data suggest that unequal sharing of the single placenta is the main contributor to birth weight discordance. While MC twins and their placenta derive from a single zygote and harbour almost identical genetic material, the underlying mechanisms of phenotypic discrepancies in MC twins remain unclear. MicroRNAs are small non-coding RNA molecules that regulate gene expression but do not change the DNA sequence. Our preliminary study showed that microRNA-210-3p (miR-210-3p) was significantly upregulated in the placental share of the smaller sIUGR twin. Here, we investigate the potential role of miR-210-3p in placental dysplasia, which generally results from dysfunction of trophoblast cells. Functional analysis revealed that miR-210-3p, induced by hypoxia-inducible factor 1α (HIF1α) under hypoxic conditions, suppressed the proliferation and invasiveness of trophoblast cell lines. Further RNA sequencing analysis and luciferase reporter assays were performed, revealing that fibroblast growth factor 1 (FGF1) is an influential target gene of miR-210-3p. Moreover, correlations among miR-210-3p levels, HIF1α and FGF1 expression and the smaller placental share were validated in sIUGR specimens. These findings suggest that upregulation of miR-210-3p may contribute to impaired placentation of the smaller twin by decreasing FGF1 expression in sIUGR.
Collapse
Affiliation(s)
- Lin Li
- Department of Obstetrics and Gynecology, Fetal Medicine CenterThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xuan Huang
- Department of Obstetrics and Gynecology, Fetal Medicine CenterThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Zhiming He
- Department of Obstetrics and Gynecology, Fetal Medicine CenterThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yuanyan Xiong
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Qun Fang
- Department of Obstetrics and Gynecology, Fetal Medicine CenterThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
22
|
Östling H, Kruse R, Helenius G, Lodefalk M. Placental expression of microRNAs in infants born small for gestational age. Placenta 2019; 81:46-53. [PMID: 31138431 DOI: 10.1016/j.placenta.2019.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 03/22/2019] [Accepted: 05/01/2019] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The molecular mechanisms behind poor foetal growth are not fully known. The aim of this study was to explore global microRNA expression in placentas of infants born small for gestational age (SGA) compared to infants with a normal birth weight (NBW). METHODS Placental biopsies from term infants were identified in a biobank and divided into four groups: infants born SGA with (n = 13) or without (n = 9) exposure to low maternal gestational weight gain (GWG) and infants born with NBWs with (n = 20) or without (n = 26) exposure to low GWG. All women and infants were healthy, and no woman smoked during pregnancy. Only vaginal deliveries were included. Next-generation sequencing was performed with single read sequencing of >9 million reads per sample. Differential microRNA expression was analysed using ANOVA for unequal variances (Welch) with multiple testing corrections through the Benjamini-Hochberg method. A fold change >2 and a corrected p value < 0.05 were considered significant. Adjustments for possible confounding factors were made using a linear regression model. RESULTS A total of 1870 known, mature human microRNAs were detected in the sample. MiR-3679-5p and miR-193b-3p were significantly upregulated, and miR-379-3p, miR-335-3p, miR-4532, miR-519e-3p, miR-3065-5p, and miR-105-5p were significantly downregulated after adjustment for potential confounding factors in SGA infants with normal GWG compared to infants with NBWs and normal GWG. DISCUSSION Infants born unexplained SGA show differential microRNA expression in their placenta. Important pathways for the differentially expressed microRNAs include inflammation and the insulin-IGF system.
Collapse
Affiliation(s)
- H Östling
- Department of Obstetrics and Gynecology, School of Medical Sciences, Örebro University, SE-701 82, Örebro, Sweden
| | - R Kruse
- Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, SE-701 82, Örebro, Sweden
| | - G Helenius
- Department of Laboratory Medicine, Faculty of Medicine and Health, SE-701 82, Örebro University, Örebro, Sweden
| | - M Lodefalk
- Department of Pediatrics, School of Medical Sciences, Örebro University, SE-701 82, Örebro, Sweden; University Health Care Research Center, Faculty of Medicine and Health, Örebro University, SE-701 82, Örebro, Sweden.
| |
Collapse
|
23
|
Wang F, Liang R, Tandon N, Matthews ER, Shrestha S, Yang J, Soibam B, Yang J, Liu Y. H19X-encoded miR-424(322)/-503 cluster: emerging roles in cell differentiation, proliferation, plasticity and metabolism. Cell Mol Life Sci 2019; 76:903-920. [PMID: 30474694 PMCID: PMC6394552 DOI: 10.1007/s00018-018-2971-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
Abstract
miR-424(322)/-503 are mammal-specific members of the extended miR-15/107 microRNA family. They form a co-expression network with the imprinted lncRNA H19 in tetrapods. miR-424(322)/-503 regulate fundamental cellular processes including cell cycle, epithelial-to-mesenchymal transition, hypoxia and other stress response. They control tissue differentiation (cardiomyocyte, skeletal muscle, monocyte) and remodeling (mammary gland involution), and paradoxically participate in tumor initiation and progression. Expression of miR-424(322)/-503 is governed by unique mechanisms involving sex hormones. Here, we summarize current literature and provide a primer for future endeavors.
Collapse
Affiliation(s)
- Fan Wang
- Department of Oncology, The First Affiliated Hospital of Xian Jiaotong University, Xi'an, 710061, Shaanxi, China
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Rui Liang
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Neha Tandon
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Elizabeth R Matthews
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Shreesti Shrestha
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Jiao Yang
- Department of Oncology, The First Affiliated Hospital of Xian Jiaotong University, Xi'an, 710061, Shaanxi, China
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Benjamin Soibam
- Computer Science and Engineering Technology, University of Houston-Downtown, Houston, TX, 77002, USA
| | - Jin Yang
- Department of Oncology, The First Affiliated Hospital of Xian Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Yu Liu
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
24
|
Brennan GP, Vitsios DM, Casey S, Looney AM, Hallberg B, Henshall DC, Boylan GB, Murray DM, Mooney C. RNA-sequencing analysis of umbilical cord plasma microRNAs from healthy newborns. PLoS One 2018; 13:e0207952. [PMID: 30507953 PMCID: PMC6277075 DOI: 10.1371/journal.pone.0207952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs are a class of small non-coding RNA that regulate gene expression at a post-transcriptional level. MicroRNAs have been identified in various body fluids under normal conditions and their stability as well as their dysregulation in disease has led to ongoing interest in their diagnostic and prognostic potential. Circulating microRNAs may be valuable predictors of early-life complications such as birth asphyxia or neonatal seizures but there are relatively few data on microRNA content in plasma from healthy babies. Here we performed small RNA-sequencing analysis of plasma processed from umbilical cord blood in a set of healthy newborns. MicroRNA levels in umbilical cord plasma of four male and four female healthy babies, from two different centres were profiled. A total of 1,004 individual microRNAs were identified, which ranged from 426 to 659 per sample, of which 269 microRNAs were common to all eight samples. Many of these microRNAs are highly expressed and consistent with previous studies using other high throughput platforms. While overall microRNA expression did not differ between male and female cord blood plasma, we did detect differentially edited microRNAs in female plasma compared to male. Of note, and consistent with other studies of this type, adenylation and uridylation were the two most prominent forms of editing. Six microRNAs, miR-128-3p, miR-29a-3p, miR-9-5p, miR-218-5p, 204-5p and miR-132-3p were consistently both uridylated and adenylated in female cord blood plasma. These results provide a benchmark for microRNA profiling and biomarker discovery using umbilical cord plasma and can be used as comparative data for future biomarker profiles from complicated births or those with early-life developmental disorders.
Collapse
Affiliation(s)
- Gary P. Brennan
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Dimitrios M. Vitsios
- European Molecular Biology Laboratory–European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Sophie Casey
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | | | - Boubou Hallberg
- Neonatology, Karolinska University Hospital, Stockholm, Sweden
| | - David C. Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Geraldine B. Boylan
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | - Deirdre M. Murray
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | - Catherine Mooney
- FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
- School of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland
- * E-mail:
| |
Collapse
|
25
|
McCoski SR, Vailes MT, Owens CE, Cockrum RR, Ealy AD. Exposure to maternal obesity alters gene expression in the preimplantation ovine conceptus. BMC Genomics 2018; 19:737. [PMID: 30305020 PMCID: PMC6180665 DOI: 10.1186/s12864-018-5120-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023] Open
Abstract
Background Embryonic and fetal exposure to maternal obesity causes several maladaptive morphological and epigenetic changes in exposed offspring. The timing of these events is unclear, but changes can be observed even after a short exposure to maternal obesity around the time of conception. The hypothesis of this work is that maternal obesity influences the ovine preimplantation conceptus early in pregnancy, and this exposure will affect gene expression in embryonic and extraembryonic tissues. Results Obese and lean ewe groups were established by overfeeding or normal feeding, respectively. Ewes were then bred to genetically similar rams. Conceptuses were collected at day 14 of gestation. Morphological assessments were made, conceptuses were sexed by genomic PCR analysis, and samples underwent RNA-sequencing analysis. While no obvious morphological differences existed between conceptuses, differentially expressed genes (≥ 2-fold; ≥ 0.2 RPKM; ≤ 0.05 FDR) were detected based on maternal obesity exposure (n = 21). Also, differential effects of maternal obesity were noted on each conceptus sex (n = 347). A large portion of differentially expressed genes were associated with embryogenesis and placental development. Conclusions Findings reveal that the preimplantation ovine conceptus genome responds to maternal obesity in a sex-dependent manner. The sexual dimorphism in response to the maternal environment coupled with changes in placental gene expression may explain aberrations in phenotype observed in offspring derived from obese females. Electronic supplementary material The online version of this article (10.1186/s12864-018-5120-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah R McCoski
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, 3430 Litton-Reaves Hall (0306), Virginia, Blacksburg, VA, 24061, USA
| | - McCauley T Vailes
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, 3430 Litton-Reaves Hall (0306), Virginia, Blacksburg, VA, 24061, USA
| | - Connor E Owens
- Department of Dairy Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Rebecca R Cockrum
- Department of Dairy Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Alan D Ealy
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, 3430 Litton-Reaves Hall (0306), Virginia, Blacksburg, VA, 24061, USA.
| |
Collapse
|
26
|
Rahman ML, Liang L, Valeri L, Su L, Zhu Z, Gao S, Mostofa G, Qamruzzaman Q, Hauser R, Baccarelli A, Christiani DC. Regulation of birthweight by placenta-derived miRNAs: evidence from an arsenic-exposed birth cohort in Bangladesh. Epigenetics 2018; 13:573-590. [PMID: 30099960 PMCID: PMC6140906 DOI: 10.1080/15592294.2018.1481704] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/07/2018] [Indexed: 01/01/2023] Open
Abstract
Altered expression of microRNAs (miRNAs) is implicated in fetal growth. However, the mechanisms by which placenta-derived miRNAs regulate birthweight are not well understood. In Phase 1, we compared the expression of 754 miRNAs in the placenta of mothers from two extreme birthweight groups (0.8-2.2 kg vs. 3.3-3.9 kg, n = 77 each) selected from an arsenic-exposed Bangladeshi birth cohort (n = 1,141). We identified 49 miRNAs associated with the extreme birthweight groups and/or gestational age in Phase 1, which were further analyzed in Phase 2 among 364 randomly selected mother-infant pairs. Gestational age was determined by ultrasound. Causal mediation analysis was used to estimate the effect of miRNAs on birthweight considering gestational age a mediator, adjusting for core blood arsenic and other risk factors. miR-1290, miR-195, and let-7g showed significant inverse associations with gestational age, while miR-328 showed significant positive association [false discovery rate (FDR) <0.05]. Via changing gestational age, miR-1290, miR-195, and miR-27a showed significant inverse associations with birthweight, while miR-328 and miR-324-5p showed significant positive associations (FDR <0.05). The effect of miRNAs on birthweight varied by gestational age (for miR-1290, miR-195, miR-328) and in utero arsenic exposure (for miR-1290): stronger effect was observed among infants delivered early in gestation or exposed to higher concentrations of arsenic in cord blood. Gene enrichment analysis with in silico predicted targets identified cell proliferation, inflammation, apoptosis, insulin, and IGF family signaling cascades associated with these miRNAs. Future studies are warranted to replicate these findings and assess these miRNAs as early biomarkers of fetal growth.
Collapse
Affiliation(s)
- Mohammad L. Rahman
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Liming Liang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Linda Valeri
- Department of Psychiatry, McLean Hospital, Laboratory of Psychiatric Biostatistics, Belmont and Harvard Medical School, Boston, MA, USA
| | - Li Su
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zhaozhong Zhu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shangzhi Gao
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Golam Mostofa
- Department of Medicine, Dhaka Community Hospital Trust, Dhaka, Bangladesh
| | - Qazi Qamruzzaman
- Department of Medicine, Dhaka Community Hospital Trust, Dhaka, Bangladesh
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrea Baccarelli
- Department of Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - David C. Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
27
|
Effect of early postnatal nutrition on chronic kidney disease and arterial hypertension in adulthood: a narrative review. J Dev Orig Health Dis 2018; 9:598-614. [PMID: 30078383 DOI: 10.1017/s2040174418000454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intrauterine growth restriction (IUGR) has been identified as a risk factor for adult chronic kidney disease (CKD), including hypertension (HTN). Accelerated postnatal catch-up growth superimposed to IUGR has been shown to further increase the risk of CKD and HTN. Although the impact of excessive postnatal growth without previous IUGR is less clear, excessive postnatal overfeeding in experimental animals shows a strong impact on the risk of CKD and HTN in adulthood. On the other hand, food restriction in the postnatal period seems to have a protective effect on CKD programming. All these effects are mediated at least partially by the activation of the renin-angiotensin system, leptin and neuropeptide Y (NPY) signaling and profibrotic pathways. Early nutrition, especially in the postnatal period has a significant impact on the risk of CKD and HTN at adulthood and should receive specific attention in the prevention of CKD and HTN.
Collapse
|
28
|
Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev 2018; 98:1241-1334. [PMID: 29717932 PMCID: PMC6088145 DOI: 10.1152/physrev.00043.2017] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.
Collapse
Affiliation(s)
- Charles A. Ducsay
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ravi Goyal
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William J. Pearce
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
29
|
Lim JH, Han YJ, Kim HJ, Kim MY, Park SY, Cho YH, Ryu HM. Integrative analyses of genes and microRNA expressions in human trisomy 21 placentas. BMC Med Genomics 2018; 11:46. [PMID: 29739397 PMCID: PMC5941645 DOI: 10.1186/s12920-018-0361-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 04/19/2018] [Indexed: 11/26/2022] Open
Abstract
Background The most frequent chromosomal aneuploidy is trisomy 21 (T21) that is caused by an extra copy of chromosome 21. The imbalance of whole genome including genes and microRNAs contributes to the various phenotypes of T21. However, the integrative association between genes and microRNAs in the T21 placenta has yet to be determined. Methods We analyzed the expressions of genes and microRNAs in the whole genomes of chorionic villi cells from normal and T21 human fetal placentas based on our prior studies. The functional significances and interactions of the genes and microRNAs were predicted using bioinformatics tools. Results Among 110 genes and 34 microRNAs showing significantly differential expression between the T21 and normal placentas, the expression levels of 17 genes were negatively correlated with those of eight microRNAs in the T21 group. Of these 17 genes, 10 with decreased expression were targeted by five up-regulated microRNAs, whereas seven genes with increased expression were targeted by three down-regulated microRNAs. These genes were significantly associated with hydrogen peroxide-mediated programmed cell death, cell chemotaxis, and protein self-association. They were also associated with T21 and its accompanying abnormalities. The constructed interactive signaling network showed that seven genes (three increased and four decreased expressions) were essential components of a dynamic signaling complex (P = 7.77e-16). Conclusions In this study, we have described the interplay of genes and microRNAs in the T21 placentas and their modulation in biological pathways related to T21 pathogenesis. These results may therefore contribute to further research about the interaction of genes and microRNAs in disease pathogenesis.
Collapse
Affiliation(s)
- Ji Hyae Lim
- Laboratory of Medical Genetics, Medical Research Institute, Cheil General Hospital and Women's Healthcare Center, Seoul, South Korea.,Department of Medical Genetics, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - You Jung Han
- Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, 1-19, Mookjung-dong, Chung-gu, Seoul, 100-380, South Korea
| | - Hyun Jin Kim
- Laboratory of Medical Genetics, Medical Research Institute, Cheil General Hospital and Women's Healthcare Center, Seoul, South Korea
| | - Moon Young Kim
- Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, 1-19, Mookjung-dong, Chung-gu, Seoul, 100-380, South Korea
| | - So Yeon Park
- Laboratory of Medical Genetics, Medical Research Institute, Cheil General Hospital and Women's Healthcare Center, Seoul, South Korea
| | - Youl-Hee Cho
- Department of Medical Genetics, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea.
| | - Hyun Mee Ryu
- Laboratory of Medical Genetics, Medical Research Institute, Cheil General Hospital and Women's Healthcare Center, Seoul, South Korea. .,Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, 1-19, Mookjung-dong, Chung-gu, Seoul, 100-380, South Korea.
| |
Collapse
|
30
|
Tang L, He G, Liu X, Xu W. Progress in the understanding of the etiology and predictability of fetal growth restriction. Reproduction 2018; 153:R227-R240. [PMID: 28476912 DOI: 10.1530/rep-16-0287] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 02/21/2017] [Accepted: 03/14/2017] [Indexed: 12/12/2022]
Abstract
Fetal growth restriction (FGR) is defined as the failure of fetus to reach its growth potential for various reasons, leading to multiple perinatal complications and adult diseases of fetal origins. Shallow extravillous trophoblast (EVT) invasion-induced placental insufficiency and placental dysfunction are considered the main reasons for idiopathic FGR. In this review, first we discuss the major characteristics of anti-angiogenic state and the pro-inflammatory bias in FGR. We then elaborate major abnormalities in placental insufficiency at molecular levels, including the interaction between decidual leukocytes and EVT, alteration of miRNA expression and imprinted gene expression pattern in FGR. Finally, we review current animal models used in FGR, an experimental intervention based on animal models and the progress of predictive biomarker studies in FGR.Free Chinese abstract: A Chinese translation of this abstract is freely available at http://www.reproduction-online.org/content/153/6/R215/suppl/DC1.
Collapse
Affiliation(s)
- Li Tang
- Joint Laboratory of Reproductive MedicineSCU-CUHK, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education.,Department of Obstetric and Gynecologic DiseasesWest China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Guolin He
- Department of Obstetric and Gynecologic DiseasesWest China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinghui Liu
- Department of Obstetric and Gynecologic DiseasesWest China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Wenming Xu
- Joint Laboratory of Reproductive MedicineSCU-CUHK, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education .,Department of Obstetric and Gynecologic DiseasesWest China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
31
|
Cirillo F, Lazzeroni P, Catellani C, Sartori C, Amarri S, Street ME. MicroRNAs link chronic inflammation in childhood to growth impairment and insulin-resistance. Cytokine Growth Factor Rev 2018; 39:1-18. [DOI: 10.1016/j.cytogfr.2017.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
|
32
|
Involvement of Noncoding RNAs in Stress-Related Neuropsychiatric Diseases Caused by DOHaD Theory : ncRNAs and DOHaD-Induced Neuropsychiatric Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1012:49-59. [PMID: 29956194 DOI: 10.1007/978-981-10-5526-3_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
According to the DOHaD theory, low birth weight is a risk factor for various noncommunicable chronic diseases that develop later in life. Noncoding RNAs (ncRNAs), including miRNAs, siRNAs, piRNAs, and lncRNAs, are functional RNA molecules that are transcribed from DNA but that are not translated into proteins. In general, miRNAs, siRNAs, and piRNAs function to regulate gene expression at the transcriptional and posttranscriptional levels. Studying ncRNAs has provided opportunities for new diagnosis and therapeutic knowledge in the endocrinological and metabolic fields as well as cancer biology. In this review, we focus on the roles of miRNAs and lncRNAs in the pathophysiology of stress-related neuropsychiatric diseases, which show abnormal blood hormone levels due to loss of feedback control and/or decreased sensitivity. Numerous recent studies have begun to unveil the importance of ncRNAs in regulation of stress-related hormone levels and functions. We summarize the involvement of abnormal ncRNA expression in the development of stress-related neuropsychiatric diseases based on the DOHaD theory.
Collapse
|
33
|
Cimino L, Salemi M, Cannarella R, Condorelli RA, Giurato G, Marchese G, La Vignera S, Calogero AE. Decreased miRNA expression in Klinefelter syndrome. Sci Rep 2017; 7:16672. [PMID: 29192217 PMCID: PMC5709391 DOI: 10.1038/s41598-017-16892-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/13/2017] [Indexed: 01/18/2023] Open
Abstract
The widelyvariable phenotypic spectrum and the different severity of symptoms in men with Klinefelter syndrome (KS) suggest a role for epigenetic mediators. Therefore, the aim of this study is to evaluate the possible involvement of miRNAs in the clinical manifestations of KS. To accomplish this, we performed a transcriptome analysis in peripheral blood mononuclear cells (PBMCs) of 10 non-mosaic KS patients, 10 aged-matched healthy men and 10 aged-matched healthy female controls with normal karyotype. After RNA extraction from PBMC and the preparation of RNA libraries, the samples were sequenced using next generation high-throughput sequencing technology. Expression profiling analysis revealed a significant differential expression of 2 miRNAs in KS compared to male controls. In particular, MIR3648 resulted significantly (q-value < 0.0001) down-regulated by -19.084- fold, while MIR3687was strongly down-regulated (q-value < 0.0001) considering KS patients. These results were confirmed by qRT-PCR. The functional analysis of the two transcripts showed that they seem to play a role in breast cancer, hemopoietic abnormalities, immune defects and adipocyte differentiation and fat cell maturation. Therefore, we speculate that both miRNAs may play a role in the immune and metabolic disorders and in the risk of breast cancer development in men with KS.
Collapse
Affiliation(s)
- Laura Cimino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, 95123, Italy
| | - Michele Salemi
- Oasi Institute for Research on Mental Retardation and Brain Aging (IRCCS), Troina, 94018, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, 95123, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, 95123, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, 84081, Italy
- Genomix4Life Srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi (SA), 84081, Italy
| | - Giovanna Marchese
- Genomix4Life Srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi (SA), 84081, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, 95123, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, 95123, Italy.
| |
Collapse
|
34
|
Cirillo F, Lazzeroni P, Sartori C, Street ME. Inflammatory Diseases and Growth: Effects on the GH-IGF Axis and on Growth Plate. Int J Mol Sci 2017; 18:E1878. [PMID: 28858208 PMCID: PMC5618527 DOI: 10.3390/ijms18091878] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/23/2017] [Accepted: 08/29/2017] [Indexed: 02/08/2023] Open
Abstract
This review briefly describes the most common chronic inflammatory diseases in childhood, such as cystic fibrosis (CF), inflammatory bowel diseases (IBDs), juvenile idiopathic arthritis (JIA), and intrauterine growth restriction (IUGR) that can be considered, as such, for the changes reported in the placenta and cord blood of these subjects. Changes in growth hormone (GH) secretion, GH resistance, and changes in the insulin-like growth factor (IGF) system are described mainly in relationship with the increase in nuclear factor-κB (NF-κB) and pro-inflammatory cytokines. Changes in the growth plate are also reported as well as a potential role for microRNAs (miRNAs) and thus epigenetic changes in chronic inflammation. Many mechanisms leading to growth failure are currently known; however, it is clear that further research in the field is still warranted.
Collapse
Affiliation(s)
- Francesca Cirillo
- Division of Paediatric Endocrinology and Diabetology, Department of Obstetrics, Gynaecology and Paediatrics, Azienda AUSL-IRCCS, Viale Risorgimento, 80, 42123 Reggio Emilia, Italy.
| | - Pietro Lazzeroni
- Division of Paediatric Endocrinology and Diabetology, Department of Obstetrics, Gynaecology and Paediatrics, Azienda AUSL-IRCCS, Viale Risorgimento, 80, 42123 Reggio Emilia, Italy.
| | - Chiara Sartori
- Division of Paediatric Endocrinology and Diabetology, Department of Obstetrics, Gynaecology and Paediatrics, Azienda AUSL-IRCCS, Viale Risorgimento, 80, 42123 Reggio Emilia, Italy.
| | - Maria Elisabeth Street
- Division of Paediatric Endocrinology and Diabetology, Department of Obstetrics, Gynaecology and Paediatrics, Azienda AUSL-IRCCS, Viale Risorgimento, 80, 42123 Reggio Emilia, Italy.
| |
Collapse
|
35
|
Zhu Y, Wang W, Yuan T, Fu L, Zhou L, Lin G, Zhao S, Zhou H, Wu G, Wang J. MicroRNA-29a mediates the impairment of intestinal epithelial integrity induced by intrauterine growth restriction in pig. Am J Physiol Gastrointest Liver Physiol 2017; 312:G434-G442. [PMID: 28280141 DOI: 10.1152/ajpgi.00020.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/22/2017] [Accepted: 03/06/2017] [Indexed: 01/31/2023]
Abstract
An important characteristic of intrauterine growth restricted (IUGR) neonate is the impaired intestinal barrier function. With the use of a pig model, this study was conducted to identify the responsible microRNA (miRNA) for the intestinal damage in IUGR neonates through comparing the miRNA profile of IUGR and normal porcine neonates and to investigate the regulation mechanism. Compared with the normal ones, we identified 83 upregulated and 76 downregulated miRNAs in the jejunum of IUGR pigs. Notably, IUGR is associated with profoundly increasesd miR-29 family and decreased expression of extracellular matrix (ECM) and tight junction (TJ) proteins in the jejunum. Furthermore, in vitro study using theporcine intestinal epithelial cell line (IPEC-1) showed that inhibition of miR-29a expression could improve the monolayer integrity by increasing cell proliferation and transepithelial resistance. Also, overexpression/inhibition of miR-29a in IPEC-1 cells can suppress/increase the expression of integrin-β1, collagen I, collagen IV, fibronectin, and claudin 1, both at transcriptional and translational levels. Subsequent luciferase reporter assay confirmed a direct interaction between miR-29a and the 3'-untranslated regions of these genes. In conclusion, this study reveals that IUGR-impaired intestinal barrier function is associated with downregulated ECM and TJ protein expression mediated by the upregulation of miR-29a.NEW & NOTEWORTHY Intrauterine growth restricted (IUGR) remains a major problem for both human health and animal production due to its association with high rates of preweaning morbidity and mortality. We have identified the abnormal expression of microRNA-29a (miR-29a) in the small intestine of IUGR neonates, as well as its targets and mechanisms. These results provide new information about biological characteristics of IUGR-affected intestinal dysfunction and can lead to the development of potentially solution for preventing and treating IUGR in the future.
Collapse
Affiliation(s)
- Yuhua Zhu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China, Agricultural University, Beijing, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China, Agricultural University, Beijing, China
| | - Taolin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China, Agricultural University, Beijing, China
| | - Liangliang Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lian Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Gang Lin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China, Agricultural University, Beijing, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, California; and
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China, Agricultural University, Beijing, China.,Department of Animal Science, Texas A&M University, College Station, Texas
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China, Agricultural University, Beijing, China;
| |
Collapse
|
36
|
Do miRNAs Play a Role in Fetal Growth Restriction? A Fresh Look to a Busy Corner. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6073167. [PMID: 28466013 PMCID: PMC5390605 DOI: 10.1155/2017/6073167] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/20/2017] [Indexed: 12/22/2022]
Abstract
Placenta is the crucial organ for embryo and fetus development and plays a critical role in the development of fetal growth restriction (FGR). There are increasing evidences on the role of microRNAs (miRNAs) in a variety of pregnancy-related complications such as preeclampsia and FGR. More than 1880 miRNAs have been reported in humans and most of them are expressed in placenta. In this paper, we aimed to review the current evidence about the topic. According to retrieved data, controversial results about placental expression of miRNAs could be due (at least in part) to the different experimental methods used by different groups. Despite the fact that several authors have demonstrated a relatively easy and feasible detection of some miRNAs in maternal whole peripheral blood, costs of these tests should be reduced in order to increase cohorts and have stronger evidence. In this regard, we take the opportunity to solicit future studies on large cohort and adequate statistical power, in order to identify a panel of biomarkers on maternal peripheral blood for early diagnosis of FGR.
Collapse
|
37
|
Analysis of circulating human and viral microRNAs in patients with congenital cytomegalovirus infection. J Perinatol 2016; 36:1101-1105. [PMID: 27684416 DOI: 10.1038/jp.2016.157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Cytomegalovirus (CMV) is the most common cause of congenital infection and can cause neurodevelopmental disabilities, although a majority of patients are asymptomatic. Biomarkers associated with disease severity would be desirable to distinguish asymptomatic from mildly symptomatic patients who may benefit from antiviral treatment. MicroRNAs (miRNAs) are noncoding RNAs that may have the potential to serve as biomarkers. STUDY DESIGN Thirteen infants with congenital CMV infection were enrolled, and plasma levels of 11 human- and 3 CMV-encoded miRNAs were quantitated by real-time PCR. Plasma levels of miRNAs and their associations with clinical features were evaluated. RESULTS The levels of miR-183-5p and miR-210-3p were significantly higher in patients with congenital CMV infection than in control infants, whereas no significant associations between levels of miRNAs and clinical features of congenital CMV infection were observed. CONCLUSION Plasma miRNAs could be associated with the pathogenesis of congenital CMV infection and could be used as disease biomarkers.
Collapse
|
38
|
Sharma D, Sharma P, Shastri S. Genetic, metabolic and endocrine aspect of intrauterine growth restriction: an update. J Matern Fetal Neonatal Med 2016; 30:2263-2275. [DOI: 10.1080/14767058.2016.1245285] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Deepak Sharma
- Consultant Neonatologist, Department of Neonatology, NEOCLINIC, TN Mishra Marg, Everest Vihar, Nirman Nagar, Jaipur, Rajasthan, India,
| | - Pradeep Sharma
- Department of Medicine, Mahatma Gandhi Medical College, Jaipur, Rajasthan, India, and
| | - Sweta Shastri
- Department of Pathology, N.K.P Salve Medical College, Nagpur, Maharashtra, India
| |
Collapse
|
39
|
HLA-G expression is regulated by miR-365 in trophoblasts under hypoxic conditions. Placenta 2016; 45:37-41. [PMID: 27577708 DOI: 10.1016/j.placenta.2016.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/11/2016] [Accepted: 07/19/2016] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Hypoxia occurs in the first trimester of placental development and is implicated in the regulation of trophoblast differentiation. Prolonged hypoxic conditions in the placenta are related to the development of preeclampsia. MicroRNAs (miRNAs) are noncoding, single-stranded RNAs that modulate gene expression by targeting messenger RNA. We hypothesized that, under hypoxic conditions, trophoblasts may have a unique miRNA profile that may play a critical role in placental development. METHODS Total RNA was extracted from human trophoblast, HChEpC1b, exposed to normoxia (20% O2) or hypoxia (2% O2) for 24 h, and the miRNA expression profiles were investigated using a microRNA array. Several differential miRNAs were selected and validated using real-time reverse transcription PCR. We identified potential targets of these miRNAs using in silico analysis. We confirmed a potential target protein by western blot analysis and luciferase assays. RESULTS The expression of miR-365 was significantly upregulated under hypoxic conditions. In silico analysis showed that miR-365 targeted human leukocyte antigen (HLA)-G. Both hypoxic conditions and overexpression of miR-365 inhibited the expression of HLA-G proteins. The overexpression of miR-365 also decreased the activity of the luciferase reporter containing the 3'-untranslated region (UTR) of HLA-G with the predicted miR-365-binding site. DISCUSSION HLA-G is a non-classical HLA class-Ib molecule that is expressed mainly in extravillous trophoblasts and which plays a key role in maintaining immune tolerance at the maternal-fetal interface. Our results indicate that miR-365 targets the HLA-G 3' UTR to repress its expression. The expression of miR-365 may play an important role in human placental development and in immunoprotection of the semiallogenic embryo.
Collapse
|
40
|
Sharma D, Shastri S, Farahbakhsh N, Sharma P. Intrauterine growth restriction - part 1. J Matern Fetal Neonatal Med 2016; 29:3977-87. [PMID: 26856409 DOI: 10.3109/14767058.2016.1152249] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Intrauterine growth restriction (IUGR) is a major and silent cause of various morbidity and mortality for the fetal and neonatal population. It is defined as a rate of fetal growth that is less than normal for the growth potential of that specific infant. The terms IUGR and small for gestational age (SGA) are often used interchangeably, although there exists subtle differences between the two. IUGR/SGA is an end result of various etiologies that includes maternal, placental and fetal factors and recently added genetic factors too, also contribute to IUGR. In this review article we will cover the antenatal aspect of IUGR and management with proven preventive intervention.
Collapse
Affiliation(s)
- Deepak Sharma
- a Department of Pediatrics , Pt. B.D. Sharma PGIMS , Rohtak , India
| | - Sweta Shastri
- b Department of Pathology , N.K.P Salve Medical College , Nagpur , India
| | - Nazanin Farahbakhsh
- c Department of Pediatrics , Shiraz University of Medicine , Shiraz , Iran , and
| | | |
Collapse
|
41
|
AngiomiRs: Potential Biomarkers of Pregnancy's Vascular Pathologies. J Pregnancy 2015; 2015:320386. [PMID: 26550492 PMCID: PMC4621355 DOI: 10.1155/2015/320386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/27/2015] [Indexed: 12/29/2022] Open
Abstract
In recent years, microRNAs (miRNAs) have been the focus of research for their role in posttranscriptional regulation and as potential biomarkers of risk for disease development. Their identification in specific physiological processes, like angiogenesis, a key pathway in placental vascular development in pregnancy, suggests an important role of miRNAs that regulate angiogenesis (angiomiRs). Many complications of pregnancy have in common placental vascular alterations, involving an imbalance in the angiogenesis process in the development of conditions such as preeclampsia, intrauterine growth restriction, and gestational diabetes, complications with the highest rates of morbimortality in pregnancy. Many studies have identified angiomiRs with differential expression profiles in each of these diseases; however, this evidence requires further studies focused on evaluating their potential as biomarkers of risk for the angiomiRs detected, to establish correlations between placental tissue and serum/plasma expression profiles. Therefore, the objective of this review is to highlight the best angiomiRs detected in placental tissue and serum/plasma in each of these three pathologies to show the current data available for potential biomarkers and to propose future research strategies on this topic.
Collapse
|
42
|
Lycoudi A, Mavreli D, Mavrou A, Papantoniou N, Kolialexi A. miRNAs in pregnancy-related complications. Expert Rev Mol Diagn 2015; 15:999-1010. [PMID: 26051307 DOI: 10.1586/14737159.2015.1053468] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) constitute a highly conserved class of small non-coding RNAs, involved in post-transcriptional regulation processes by modifying the expression of specific mRNAs. During placental development, cell differentiation, adhesion, migration, apoptosis and angiogenesis are regulated by specific miRNAs and aberrant expression has been associated with the pathogenesis of pregnancy-related complications. Recent studies focusing on placental and maternal peripheral blood miRNA profiling showed different expression between normal and complicated pregnancies, providing valuable information about the pathophysiological role of miRNAs and identifying potential biomarkers for monitoring pregnancy complications. This review summarizes the current knowledge in the field and presents the possible use of miRNAs as biomarkers for early detection and monitoring of these complications.
Collapse
|
43
|
Sadovsky Y, Mouillet JF, Ouyang Y, Bayer A, Coyne CB. The Function of TrophomiRs and Other MicroRNAs in the Human Placenta. Cold Spring Harb Perspect Med 2015; 5:a023036. [PMID: 25877393 DOI: 10.1101/cshperspect.a023036] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In eutherian organisms, the placenta interfaces the fetal and maternal environments. Located at the placental villous surface, in direct contact with maternal blood, is the trophoblast layer, which mediates the crucial maternal-fetal exchange of gases, nutrients, and waste products, produces hormones that support the pregnancy, and provides immunologic defense. Discovery of microRNAs (miRNAs) and their role in development, differentiation, and homeostatic resilience has increased our understanding of genomic and epigenomic networks that regulate placental function. Moreover, unique miRNA species, which are expressed by human trophoblasts and are termed "trophomiRs," may show specialized functions during normal and pathological pregnancies. Placental miRNAs, packaged within exosomes and other vesicles or bound in protein complexes, are capable of communicating distinctive signals to maternal and/or fetal tissues. Additional research may usher in the use of circulating miRNAs as pregnancy-related disease biomarkers, providing new diagnostic and therapeutic options during pregnancy.
Collapse
Affiliation(s)
- Yoel Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - Jean-Francois Mouillet
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Yingshi Ouyang
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Avraham Bayer
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Carolyn B Coyne
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| |
Collapse
|
44
|
MicroRNAs as potential biomarkers for noninvasive detection of fetal trisomy 21. J Assist Reprod Genet 2015; 32:827-37. [PMID: 25749789 DOI: 10.1007/s10815-015-0429-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/06/2015] [Indexed: 02/01/2023] Open
Abstract
PURPOSE The objective of this study was to discover a panel of microRNAs (miRNAs) as potential biomarkers for noninvasive prenatal testing (NIPT) of trisomy 21 (T21) and to predict the biological functions of identified biomarkers using bioinformatics tools. METHODS Using microarray-based genome-wide expression profiling, we compared the expression levels of miRNAs in whole blood samples from non-pregnant women, whole blood samples from pregnant women with euploid or T21 fetuses, and placenta samples from euploid or T21 fetuses. We analyzed the differentially expressed miRNAs according to disease and tissue type (P value <0.05 and two-fold expression change). To predict functions of target genes of miRNAs, the functional annotation tools were used. RESULTS We identified 299 miRNAs which reasonably separate the whole blood from the placenta. Among the identified miRNAs, 150 miRNAs were up-regulated in the placenta, and 149 miRNAs were down-regulated. Most of the up-regulated miRNAs in the placenta were members of the mir-498, mir-379, and mir-127 clusters. Among the up-regulated miRNAs in the placenta, mir-1973 and mir-3196 were expressed at higher levels in the T21 placenta than in the euploid placenta. The two miRNAs potentially regulate 203 target genes that are involved in development of brain, central nervous system, and nervous system. The genes are significantly associated with T21-related disorder such as congenital abnormalities, mental disorders, and nervous system diseases. CONCLUSIONS Our study indicates placenta-specific miRNAs that may be potential biomarkers for NIPT of fetal T21 and provides new insights into the molecular mechanisms of T21 via regulation of miRNAs.
Collapse
|
45
|
Lim J, Kim D, Lee D, Han J, Chung J, Ahn H, Lee S, Lim D, Lee Y, Park S, Ryu H. Genome-wide microRNA expression profiling in placentas of fetuses with Down syndrome. Placenta 2015; 36:322-8. [DOI: 10.1016/j.placenta.2014.12.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/11/2014] [Accepted: 12/28/2014] [Indexed: 10/24/2022]
|
46
|
Circulating microRNAs as clinical biomarkers in the predictions of pregnancy complications. BIOMED RESEARCH INTERNATIONAL 2015; 2015:294954. [PMID: 25699269 PMCID: PMC4325204 DOI: 10.1155/2015/294954] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/30/2014] [Accepted: 10/07/2014] [Indexed: 01/08/2023]
Abstract
Predicting pregnancy complications is a major topic for clinicians and biologists for maternal and fetal monitoring. Noninvasive biomarkers in maternal blood such as circulating microRNAs (miRNAs) are promising molecules to predict pregnancy disorders. miRNAs are noncoding short RNAs that regulate mRNA expression by repressing the translation or cleaving the transcript. miRNAs are released to the extracellular systemic circulation via exosomes. The discovery of plasma- or serum-derived miRNAs and of free-circulating exosomes that contain miRNAs provides useful information about the physiological or pathophysiological roles of the miRNAs. Specific placental miRNAs are present in maternal plasma in different ways depending on whether the pregnancy is normal or pathological or if there is no pregnancy. This paper focuses on placental miRNAs and extracellular miRNAs to the placenta whose misregulation could lead to pregnancy complications.
Collapse
|
47
|
Bidarimath M, Khalaj K, Wessels JM, Tayade C. MicroRNAs, immune cells and pregnancy. Cell Mol Immunol 2014; 11:538-47. [PMID: 24954225 DOI: 10.1038/cmi.2014.45] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 05/13/2014] [Accepted: 05/15/2014] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) are a recently discovered class of non-coding RNAs that are expressed in many cell types, where they regulate the expression of complementary RNAs, thus modulating the stability and translation of mRNAs. miRNAs are predicted to regulate the expression of ∼50% of all protein coding genes in mammals. Therefore, they participate in virtually all cellular processes investigated so far. Altered miRNAs expressions are associated with both physiological (pregnancy) and pathological processes (cancer). As the dynamic maternal-fetal interface plays a critical role in the maintenance of successful pregnancy, it is not surprising that the miRNAs that are unique to reproductive tissues are abundantly expressed. Research in this field has demonstrated the presence and dysregulation of a distinct set of pregnancy-associated miRNAs; however, most studies have centered on localizing various miRNAs in reproductive microdomains associated with normal or complicated pregnancies. Although several independent miRNA regulatory mechanisms associated with endometrial receptivity, immune cells, angiogenesis and placental development have been studied, miRNA-mediated regulation of pregnancy remains poorly understood. This review provides a summary of the current data on miRNA regulation as well as functional profiles of miRNAs that are found in the uterus, in immune cells associated with maternal tolerance to the fetus, and those involved in angiogenesis and placental development.
Collapse
Affiliation(s)
- Mallikarjun Bidarimath
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ont., Canada
| | - Kasra Khalaj
- 1] Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ont., Canada [2] Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ont., Canada
| | - Jocelyn M Wessels
- 1] Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ont., Canada [2] Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ont., Canada
| | - Chandrakant Tayade
- 1] Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ont., Canada [2] Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ont., Canada
| |
Collapse
|