1
|
Sun W, Shahrajabian MH, Ma K, Wang S. Advances in Molecular Function and Recombinant Expression of Human Collagen. Pharmaceuticals (Basel) 2025; 18:430. [PMID: 40143206 PMCID: PMC11945623 DOI: 10.3390/ph18030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/02/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Collagen is the main protein found in skin, bone, cartilage, ligaments, tendons and connective tissue, and it can exhibit properties ranging from compliant to rigid or form gradients between these states. The collagen family comprises 28 members, each containing at least one triple-helical domain. These proteins play critical roles in maintaining mechanical characteristics, tissue organization, and structural integrity. Collagens regulate cellular processes such as proliferation, migration, and differentiation through interactions with cell surface receptors. Fibrillar collagens, the most abundant extracellular matrix (ECM) proteins, provide organs and tissues with structural stability and connectivity. In the mammalian myocardial interstitium, types I and III collagens are predominant: collagen I is found in organs, tendons, and bones; collagen II is found in cartilage; collagen III is found in reticular fibers; collagen IV is found in basement membranes; and collagen V is found in nails and hair. Recombinant human collagens, particularly in sponge-like porous formats combined with bone morphogenetic proteins, serve as effective scaffolds for bone repair. Due to their biocompatibility and low immunogenicity, collagens are pivotal in tissue engineering applications for skin, bone, and wound regeneration. Recombinant technology enables the production of triple-helical collagens with amino acid sequences identical to human tissue-derived collagens. This review summarizes recent advances in the molecular functions and recombinant expression of human collagens, with a focus on their biomedical applications.
Collapse
Affiliation(s)
- Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China;
| | - Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China;
| | - Kun Ma
- Hantide Biomedical Group Co., Ltd., Zibo 256300, China;
| | - Shubin Wang
- Hantide Biomedical Group Co., Ltd., Zibo 256300, China;
| |
Collapse
|
2
|
Mikkelsen E, Huppertz B, Singh R, Ravn K, Hatt L, Kruhøffer M, Urrabaz-Garza R, Uldbjerg N, Menon R, Steiniche T. mRNA and Protein Expression in Human Fetal Membrane Cells: Potential Biomarkers for Preterm Prelabor Rupture of the Fetal Membranes? Int J Mol Sci 2023; 24:15826. [PMID: 37958809 PMCID: PMC10650701 DOI: 10.3390/ijms242115826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Clinically, unique markers in fetal membrane cells may contribute to the search for biomarkers for preterm prelabor rupture of the fetal membranes (pPROM) in maternal blood. pPROM is associated with overwhelming inflammation and premature cellular senescence causing "biological microfractures" of the fetal membranes. We hypothesize that these pathological processes are associated with the shedding of fetal membrane cells into the maternal circulation. The aim of this study was to identify markers expressed exclusively in fetal membrane cells to facilitate their isolation, characterization, and determination of biomarker potential in maternal blood. We have (1), by their transcriptomic profile, identified markers that are upregulated in amnion and chorion tissue compared to maternal white blood cells, and (2), by immunohistochemistry, confirmed the localization of the differentially expressed proteins in fetal membranes, placenta, and the placental bed of the uterus. RNA sequencing revealed 31 transcripts in the amnion and 42 transcripts in the chorion that were upregulated. Among these, 22 proteins were evaluated by immunohistochemistry. All but two transcripts were expressed both on mRNA and protein level in at least one fetal membrane cell type. Among these remaining 20 proteins, 9 proteins were not significantly expressed in the villous and extravillous trophoblasts of the placenta.
Collapse
Affiliation(s)
- Emmeli Mikkelsen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Blvd. 11, 8200 Aarhus, Denmark; (E.M.); (N.U.)
- Department of Obstetrics and Gynaecology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus, Denmark
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria;
| | - Ripudaman Singh
- ARCEDI Biotech Aps, Tabletvej 1, 7100 Vejle, Denmark; (R.S.); (K.R.); (L.H.)
| | - Katarina Ravn
- ARCEDI Biotech Aps, Tabletvej 1, 7100 Vejle, Denmark; (R.S.); (K.R.); (L.H.)
| | - Lotte Hatt
- ARCEDI Biotech Aps, Tabletvej 1, 7100 Vejle, Denmark; (R.S.); (K.R.); (L.H.)
| | | | - Rheanna Urrabaz-Garza
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555, USA (R.M.)
| | - Niels Uldbjerg
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Blvd. 11, 8200 Aarhus, Denmark; (E.M.); (N.U.)
- Department of Obstetrics and Gynaecology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus, Denmark
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555, USA (R.M.)
| | - Torben Steiniche
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Blvd. 11, 8200 Aarhus, Denmark; (E.M.); (N.U.)
- Department of Histopathology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus, Denmark
| |
Collapse
|
3
|
Phillips JD, Hwang ES, Morgan DJ, Creveling CJ, Coats B. Structure and mechanics of the vitreoretinal interface. J Mech Behav Biomed Mater 2022; 134:105399. [PMID: 35963021 PMCID: PMC9552593 DOI: 10.1016/j.jmbbm.2022.105399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/17/2022] [Accepted: 07/24/2022] [Indexed: 12/24/2022]
Abstract
Vitreoretinal mechanics plays an important role in retinal trauma and many sight-threatening diseases. In age-related pathologies, such as posterior vitreous detachment and vitreomacular traction, lingering vitreoretinal adhesions can lead to macular holes, epiretinal membranes, retinal tears and detachment. In age-related macular degeneration, vitreoretinal traction has been implicated in the acceleration of the disease due to the stimulation of vascular growth factors. Despite this strong mechanobiological influence on trauma and disease in the eye, fundamental understanding of the mechanics at the vitreoretinal interface is limited. Clarification of adhesion mechanisms and the role of vitreoretinal mechanics in healthy eyes and disease is necessary to develop innovative treatments for these pathologies. In this review, we evaluate the existing literature on the structure and function of the vitreoretinal interface to gain insight into age- and region-dependent mechanisms of vitreoretinal adhesion. We explore the role of vitreoretinal adhesion in ocular pathologies to identify knowledge gaps and future research areas. Finally, we recommend future mechanics-based studies to address the critical needs in the field, increase fundamental understanding of vitreoretinal mechanisms and disease, and inform disease treatments.
Collapse
Affiliation(s)
- Joseph D Phillips
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Eileen S Hwang
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| | - Denise J Morgan
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| | | | - Brittany Coats
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
4
|
Montero A, Quílez C, Valencia L, Girón P, Jorcano JL, Velasco D. Effect of Fibrin Concentration on the In Vitro Production of Dermo-Epidermal Equivalents. Int J Mol Sci 2021; 22:ijms22136746. [PMID: 34201667 PMCID: PMC8269027 DOI: 10.3390/ijms22136746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 01/18/2023] Open
Abstract
Human plasma-derived bilayered skin substitutes were successfully used by our group to produce human-based in vitro skin models for toxicity, cosmetic, and pharmaceutical testing. However, mechanical weakness, which causes the plasma-derived fibrin matrices to contract significantly, led us to attempt to improve their stability. In this work, we studied whether an increase in fibrin concentration from 1.2 to 2.4 mg/mL (which is the useful fibrinogen concentration range that can be obtained from plasma) improves the matrix and, hence, the performance of the in vitro skin cultures. The results show that this increase in fibrin concentration indeed affected the mechanical properties by doubling the elastic moduli and the maximum load. A structural analysis indicated a decreased porosity for the 2.4 mg/mL hydrogels, which can help explain this mechanical behavior. The contraction was clearly reduced for the 2.4 mg/mL matrices, which also allowed for the growth and proliferation of primary fibroblasts and keratinocytes, although at a somewhat reduced rate compared to the 1.2 mg/mL gels. Finally, both concentrations of fibrin gave rise to organotypic skin cultures with a fully differentiated epidermis, although their lifespans were longer (25–35%) in cultures with more concentrated matrices, which improves their usefulness. These systems will allow the generation of much better in vitro skin models for the testing of drugs, cosmetics and chemicals, or even to “personalized” skin for the diagnosis or determination of the most effective treatment possible.
Collapse
Affiliation(s)
- Andrés Montero
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28903 Madrid, Spain; (A.M.); (C.Q.); (L.V.); (P.G.)
| | - Cristina Quílez
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28903 Madrid, Spain; (A.M.); (C.Q.); (L.V.); (P.G.)
| | - Leticia Valencia
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28903 Madrid, Spain; (A.M.); (C.Q.); (L.V.); (P.G.)
| | - Paula Girón
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28903 Madrid, Spain; (A.M.); (C.Q.); (L.V.); (P.G.)
| | - José Luis Jorcano
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28903 Madrid, Spain; (A.M.); (C.Q.); (L.V.); (P.G.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Correspondence: (J.L.J.); (D.V.)
| | - Diego Velasco
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28903 Madrid, Spain; (A.M.); (C.Q.); (L.V.); (P.G.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Correspondence: (J.L.J.); (D.V.)
| |
Collapse
|
5
|
Menon R, Moore JJ. Fetal Membranes, Not a Mere Appendage of the Placenta, but a Critical Part of the Fetal-Maternal Interface Controlling Parturition. Obstet Gynecol Clin North Am 2019; 47:147-162. [PMID: 32008665 DOI: 10.1016/j.ogc.2019.10.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Fetal membranes (FMs) play a role in pregnancy maintenance and promoting parturition at term. The FMs are not just part of the placenta, structurally or functionally. Although attached to the placenta, the amnion has a separate embryologic origin, and the chorion deviates from the placenta by the first month of pregnancy. Other than immune protection, these FM functions are not those of the placenta. FM dysfunction is associated with and may cause adverse pregnancy outcomes. Ongoing research may identify biomarkers for pending preterm premature rupture of the FMs as well as therapeutic agents, to prevent it and resulting preterm birth.
Collapse
Affiliation(s)
- Ramkumar Menon
- Department of Obstetrics and Gynecology, Perinatal Research Division, The University of Texas Medical Branch, MRB 11.138, 301 University Boulevard, Galveston, TX 77555, USA
| | - John J Moore
- Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, OH 44109, USA.
| |
Collapse
|
6
|
Verbruggen SW, Oyen ML, Phillips ATM, Nowlan NC. Function and failure of the fetal membrane: Modelling the mechanics of the chorion and amnion. PLoS One 2017; 12:e0171588. [PMID: 28350838 PMCID: PMC5370055 DOI: 10.1371/journal.pone.0171588] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/22/2017] [Indexed: 12/31/2022] Open
Abstract
The fetal membrane surrounds the fetus during pregnancy and is a thin tissue composed of two layers, the chorion and the amnion. While rupture of this membrane normally occurs at term, preterm rupture can result in increased risk of fetal mortality and morbidity, as well as danger of infection in the mother. Although structural changes have been observed in the membrane in such cases, the mechanical behaviour of the human fetal membrane in vivo remains poorly understood and is challenging to investigate experimentally. Therefore, the objective of this study was to develop simplified finite element models to investigate the mechanical behaviour and rupture of the fetal membrane, particularly its constituent layers, under various physiological conditions. It was found that modelling the chorion and amnion as a single layer predicts remarkably different behaviour compared with a more anatomically-accurate bilayer, significantly underestimating stress in the amnion and under-predicting the risk of membrane rupture. Additionally, reductions in chorion-amnion interface lubrication and chorion thickness (reported in cases of preterm rupture) both resulted in increased membrane stress. Interestingly, the inclusion of a weak zone in the fetal membrane that has been observed to develop overlying the cervix would likely cause it to fail at term, during labour. Finally, these findings support the theory that the amnion is the dominant structural component of the fetal membrane and is required to maintain its integrity. The results provide a novel insight into the mechanical effect of structural changes in the chorion and amnion, in cases of both normal and preterm rupture.
Collapse
Affiliation(s)
| | - Michelle L. Oyen
- Engineering Department, University of Cambridge, Trumpington Street, Cambridge, United Kingdom
| | - Andrew T. M. Phillips
- Structural Biomechanics, Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom
| | - Niamh C. Nowlan
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
7
|
Adamowicz J, Pokrywczyńska M, Tworkiewicz J, Kowalczyk T, van Breda SV, Tyloch D, Kloskowski T, Bodnar M, Skopinska-Wisniewska J, Marszałek A, Frontczak-Baniewicz M, Kowalewski TA, Drewa T. New Amniotic Membrane Based Biocomposite for Future Application in Reconstructive Urology. PLoS One 2016; 11:e0146012. [PMID: 26766636 PMCID: PMC4713072 DOI: 10.1371/journal.pone.0146012] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 12/12/2015] [Indexed: 02/07/2023] Open
Abstract
Objective Due to the capacity of the amniotic membrane (Am) to support re-epithelisation and inhibit scar formation, Am has a potential to become a considerable asset for reconstructive urology i.e., reconstruction of ureters and urethrae. The application of Am in reconstructive urology is limited due to a poor mechanical characteristic. Am reinforcement with electrospun nanofibers offers a new strategy to improve Am mechanical resistance, without affecting its unique bioactivity profile. This study evaluated biocomposite material composed of Am and nanofibers as a graft for urinary bladder augmentation in a rat model. Material and Methods Sandwich-structured biocomposite material was constructed from frozen Am and covered on both sides with two-layered membranes prepared from electrospun poly-(L-lactide-co-E-caprolactone) (PLCL). Wistar rats underwent hemicystectomy and bladder augmentation with the biocomposite material. Results Immunohistohemical analysis (hematoxylin and eosin [H&E], anti-smoothelin and Masson’s trichrome staining [TRI]) revealed effective regeneration of the urothelial and smooth muscle layers. Anti-smoothelin staining confirmed the presence of contractile smooth muscle within a new bladder wall. Sandwich-structured biocomposite graft material was designed to regenerate the urinary bladder wall, fulfilling the requirements for normal bladder tension, contraction, elasticity and compliance. Mechanical evaluation of regenerated bladder wall conducted based on Young’s elastic modulus reflected changes in the histological remodeling of the augmented part of the bladder. The structure of the biocomposite material made it possible to deliver an intact Am to the area for regeneration. An unmodified Am surface supported regeneration of the urinary bladder wall and the PLCL membranes did not disturb the regeneration process. Conclusions Am reinforcement with electrospun nanofibers offers a new strategy to improve Am mechanical resistance without affecting its unique bioactivity profile.
Collapse
Affiliation(s)
- Jan Adamowicz
- Chair of Urology, Department of Regenerative Medicine, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
- Department of General, Oncologic and Pediatric Urology, Nicolaus Copernicus University, Bydgoszcz, Poland
- * E-mail:
| | - Marta Pokrywczyńska
- Chair of Urology, Department of Regenerative Medicine, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Jakub Tworkiewicz
- Chair of Urology, Department of Regenerative Medicine, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
- Department of Urology, Nicolaus Copernicus Hospital Batory, Torun, Poland
| | - Tomasz Kowalczyk
- Laboratory of Modeling in Biology and Medicine, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Shane V. van Breda
- Department of Internal Medicine, Division of Infectious Diseases, University of Pretoria, Pretoria, South Africa
| | - Dominik Tyloch
- Chair of Urology, Department of Regenerative Medicine, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
- Department of General, Oncologic and Pediatric Urology, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Kloskowski
- Chair of Urology, Department of Regenerative Medicine, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Magda Bodnar
- Department of Clinical Pathomorphology, Faculty of Medicine, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Joanna Skopinska-Wisniewska
- Department of Chemistry of Biomaterials and Cosmetics, Faculty of Chemistry, Nicolaus Copernicus University, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Andrzej Marszałek
- Department of Clinical Pathomorphology, Faculty of Medicine, Nicolaus Copernicus University, Bydgoszcz, Poland
| | | | - Tomasz A. Kowalewski
- Department of Mechanics and Physics of Fluids, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland, Poland
| | - Tomasz Drewa
- Chair of Urology, Department of Regenerative Medicine, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
- Department of General, Oncologic and Pediatric Urology, Nicolaus Copernicus University, Bydgoszcz, Poland
- Department of Urology, Nicolaus Copernicus Hospital Batory, Torun, Poland
| |
Collapse
|
8
|
Wullink B, Pas HH, Van der Worp RJ, Kuijer R, Los LI. Type VII Collagen Expression in the Human Vitreoretinal Interface, Corpora Amylacea and Inner Retinal Layers. PLoS One 2015; 10:e0145502. [PMID: 26709927 PMCID: PMC4692387 DOI: 10.1371/journal.pone.0145502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 12/04/2015] [Indexed: 11/18/2022] Open
Abstract
Type VII collagen, as a major component of anchoring fibrils found at basement membrane zones, is crucial in anchoring epithelial tissue layers to their underlying stroma. Recently, type VII collagen was discovered in the inner human retina by means of immunohistochemistry, while proteomic investigations demonstrated type VII collagen at the vitreoretinal interface of chicken. Because of its potential anchoring function at the vitreoretinal interface, we further assessed the presence of type VII collagen at this site. We evaluated the vitreoretinal interface of human donor eyes by means of immunohistochemistry, confocal microscopy, immunoelectron microscopy, and Western blotting. Firstly, type VII collagen was detected alongside vitreous fibers6 at the vitreoretinal interface. Because of its known anchoring function, it is likely that type VII collagen is involved in vitreoretinal attachment. Secondly, type VII collagen was found within cytoplasmic vesicles of inner retinal cells. These cells resided most frequently in the ganglion cell layer and inner plexiform layer. Thirdly, type VII collagen was found in astrocytic cytoplasmic inclusions, known as corpora amylacea. The intraretinal presence of type VII collagen was confirmed by Western blotting of homogenized retinal preparations. These data add to the understanding of vitreoretinal attachment, which is important for a better comprehension of common vitreoretinal attachment pathologies.
Collapse
Affiliation(s)
- Bart Wullink
- Department of Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- W.J. Kolff Institute, Graduate School of Medical Sciences, University of Groningen, Groningen, the Netherlands
- * E-mail:
| | - Hendri H. Pas
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Roelofje J. Van der Worp
- Department of Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- W.J. Kolff Institute, Graduate School of Medical Sciences, University of Groningen, Groningen, the Netherlands
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Roel Kuijer
- W.J. Kolff Institute, Graduate School of Medical Sciences, University of Groningen, Groningen, the Netherlands
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Leonoor I. Los
- Department of Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- W.J. Kolff Institute, Graduate School of Medical Sciences, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
9
|
Bannazadeh Baghi H, Nauwynck HJ. Effect of equine herpesvirus type 1 (EHV-1) infection of nasal mucosa epithelial cells on integrin alpha 6 and on different components of the basement membrane. Arch Virol 2015; 161:103-10. [PMID: 26497179 DOI: 10.1007/s00705-015-2643-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/08/2015] [Indexed: 02/03/2023]
Abstract
The respiratory mucosa is the common port of entry of equine herpesvirus type 1 (EHV-1) and several other alphaherpesviruses. An important prerequisite for successful host invasion of the virus is to cross the epithelial cell layer and the underlying basement membrane barrier. In the present study, an analysis was performed to see if an EHV-1 infection of nasal mucosa epithelial cells leads to damage of the underlying extracellular matrix proteins. Nasal mucosa explants were inoculated with EHV-1 and collected at 0, 24 and 48 hours post-inoculation (hpi). Then, double immunofluorescence staining was performed to detect viral-antigen-positive cells on the one hand and integrin alpha 6, laminin, collagen IV and collagen VII on the other hand. The area of these extracellular matrix proteins was measured in regions of interest (ROIs) at a magnification of 200X by means of the software imaging system ImageJ. ROIs were defined beneath uninfected and infected regions. In uninfected regions, 22-28 % of the ROI was stained for integrin alpha 6, 18-37 % for laminin, 14-38 % for collagen IV and 18-26 % for collagen VII. In infected regions, the percentage positive for integrin alpha 6 was significantly decreased to 0.1-9 % and 0.1-6 % after 24 and 48 hours of inoculation, respectively. Infection did not alter the percentages for laminin and collagen IV. For collagen VII, an increase in the percentage (from 18-26 % to 28-39 %) could be observed underneath EHV-1-infected plaques at 48 hours of inoculation. In conclusion, the results revealed a substantial impact of EHV-1 infection on integrin alpha 6 and collagen VII, two important components of the extracellular matrix, which are associated with the basement membrane and may facilitate virus penetration via hijacked leukocytes to underlying tissues.
Collapse
Affiliation(s)
- Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Laboratory of Virology, Department of Virology, Parasitology and Immunology, Ghent University, Merelbeke, Belgium.
| | - Hans J Nauwynck
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Ghent University, Merelbeke, Belgium
| |
Collapse
|
10
|
Snadecki H, Criscione V, Jaquith A, Hay B, Deng A, Wiss K. Dystrophic epidermolysis bullosa associated with amniotic band syndrome. Pediatr Dermatol 2014; 31:212-6. [PMID: 24383893 DOI: 10.1111/pde.12285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amniotic band syndrome (ABS) is a term used to describe congenital anomalies that result from the entrapment of a fetus in fibrous bands. We describe two male infants born with features of dystrophic epidermolysis bullosa (DEB) and ABS. These cases add to the few previous reports of simultaneous DEB and ABS. Abnormal type VII collagen in anchoring structures of the amniotic epithelium is a proposed mechanism for loose amniotic bands that entangle the fetus, with an abnormality in the gene that encodes for type VII collagen.
Collapse
Affiliation(s)
- Haley Snadecki
- Division of Dermatology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | | | | | | | | | | |
Collapse
|
11
|
Mauri A, Perrini M, Mateos JM, Maake C, Ochsenbein-Koelble N, Zimmermann R, Ehrbar M, Mazza E. Second harmonic generation microscopy of fetal membranes under deformation: normal and altered morphology. Placenta 2013; 34:1020-6. [PMID: 24070621 DOI: 10.1016/j.placenta.2013.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/02/2013] [Accepted: 09/05/2013] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Insight into the microstructure of fetal membrane and its response to deformation is important for understanding causes of preterm premature rupture of the membrane. However, the microstructure of fetal membranes under deformation has not been visualized yet. Second harmonic generation microscopy, combined with an in-situ stretching device, can provide this valuable information. METHODS Eight fetal membranes were marked over the cervix with methylene blue during elective caesarean section. One sample per membrane of reflected tissue, between the placenta and the cervical region, was cyclically stretched with a custom built inflation device. Samples were mounted on an in-situ stretching device and imaged with a multiphoton microscope at different deformation levels. Microstructural parameters such as thickness and collagen orientation were determined. Image entropy was evaluated for the spongy layer. RESULTS The spongy layer consistently shows an altered collagen structure in the cervical and cycled tissue compared with the reflected membrane, corresponding to a significantly higher image entropy. An increased thickness of collagenous layers was found in cervical and stretched samples in comparison to the reflected tissue. Significant collagen fibre alignment was found to occur already at moderate deformation in all samples. CONCLUSIONS For the first time, second harmonic generation microscopy has been used to visualize the microstructure of fetal membranes. Repeated mechanical loading was shown to affect the integrity of the amnion-chorion interface which might indicate an increased risk of premature rupture of fetal membrane. Moreover, mechanical loading might contribute to morphological alterations of the fetal membrane over the cervical region.
Collapse
Affiliation(s)
- A Mauri
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|