1
|
Cao C, Chen W, Chen B, Wang X, Lu Y, Zou X, Kang X, Chen L. Lingguizhugan decoction alleviates gestational diabetes mellitus by modulating the PI3K-AKT pathway and oxidative stress: Network pharmacology and experimental evidence. Biomed Chromatogr 2025; 39:e6042. [PMID: 39532679 DOI: 10.1002/bmc.6042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The Lingguizhugan decoction (LGZGD) is a promising traditional Chinese medicine for the treatment of gestational diabetes mellitus (GDM). However, its bioactive compounds and therapeutic mechanisms remain unknown. The main chemical composition of LGZGD was analyzed by high-performance liquid chromatography-mass spectrometry (HPLC-MS). Furthermore, the underlying mechanisms of LGZGD against GDM were elucidated through network pharmacology and molecular docking. The therapeutic efficacy and targets of LGZGD were further confirmed via an in vitro GDM model (high glucose [HG]-treated HTR-8/SVneo cells). Four compounds of LGZGD, namely, cinnamaldehyde, glycyrrhizic acid, 2-atractylenolide, and pachymic acid, were detected. A total of 26 targets for LGZGD treating GDM were obtained, which were mainly involved in oxidative stress and the PI3K-AKT signaling pathway. The protein-protein interaction (PPI) network unveiled that AKT1, TLR4, TP53, and NOS3 were hub therapeutic targets. Molecular docking showed that these targets had strong affinity with key compounds. In vitro experiments confirmed that LGZGD treatment promoted HG-induced cell viability, migration, and invasion ability while inhibited the apoptosis rate and oxidative stress. Mechanically, western blot revealed that LGZGD may protect HG-treated cells by activating the PI3K-AKT pathway and suppressing TLR4 expression. Our study preliminarily explored the mechanism of LGZGD in GDM treatment, providing a scientific basis for the clinical application of LGZGD.
Collapse
Affiliation(s)
- Chenyue Cao
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Weiqin Chen
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Bin Chen
- Traditional Chinese Medicine Department, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaoyu Wang
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yiling Lu
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xueqin Zou
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xinyi Kang
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Liping Chen
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
2
|
Roy D, Ghosh M, Rangra NK. Herbal Approaches to Diabetes Management: Pharmacological Mechanisms and Omics-Driven Discoveries. Phytother Res 2024. [PMID: 39688013 DOI: 10.1002/ptr.8410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024]
Abstract
Diabetes mellitus is a chronic metabolic disorder marked by hyperglycemia, resistance to insulin, and impaired function of the pancreatic β-cells; it advances into more serious complications like nephropathy, neuropathy, cardiovascular disease, and retinopathy; herbal medicine has indicated promise in not just mitigating the symptoms but also in managing the complications. This review would aim to evaluate the pharmacological aspect of the botanical therapies Anacardium occidentale, Allium sativum, Urtica dioica, and Cinnamomum zeylanicum, as well as their bioactive phytochemicals, quercetin, resveratrol, berberine, and epigallocatechin gallate (EGCG). In this review, we discuss their mechanisms for secreting the insulin sensitizers, carbohydrate-hydrolyzing enzymes, reduction in oxidative stress and effectiveness against diabetic complications-all through sensitivity to insulin. Great emphasis is laid on the integration of multi-omics technologies such as genomics, proteomics, metabolomics, and transcriptomics in the discovery of bioactive compounds. The nature of the technologies can evaluate the intrinsic complexities of herbal pharmacology and even identify therapeutic candidates. Finally, the review refers to the meagre clinical trials on the efficiency of these compounds in the metabolism of humans. High-quality future research, such as human large-scale trials, would be emphasized; improvement in the clinical validity of a drug might come from improved study design, better selection of potentially usable biomarkers, and enhanced safety profiles to guarantee efficacy with lessened risks.
Collapse
Affiliation(s)
- Debajyoti Roy
- Faculty of Pharmacy, CV Raman Global University, Bhubaneswar, Odisha, India
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Maitrayee Ghosh
- Faculty of Pharmacy, CV Raman Global University, Bhubaneswar, Odisha, India
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Naresh Kumar Rangra
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh, India
| |
Collapse
|
3
|
Xu J, Zhang F, Li H, Li P, Zeng J, Wu X, Zhou R, Yang C, Zhang J. Total Water-Soluble Flavonoids From Lithocarpus litseifolius (Hance) Chun (Sweet Tea) Improve Glucose Homeostasis Through Multitarget Signalling in GDM Mice. J Diabetes Res 2024; 2024:1518080. [PMID: 39568571 PMCID: PMC11578658 DOI: 10.1155/2024/1518080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024] Open
Abstract
Background: The oral safety of Lithocarpus litseifolius (Hance) Chun (sweet tea) that has antihyperglycemic potential has been verified. However, its specific application and action mechanism in the treatment of gestational diabetes mellitus (GDM) are still unclear. Methods: Total water-soluble flavonoids extracted from L. litseifolius (Hance) Chun (sweet tea) were applied to GDM mice. The glucose tolerance, insulin sensitivity, and histopathology of the GDM mice were evaluated through an intraperitoneal glucose tolerance test (IPGTT), an intraperitoneal insulin tolerance test (IPITT), and histochemistry. The possible mechanism was analysed through network pharmacology. Results: Compared with those in GDM model mice (MD group), blood glucose levels indicating both glucose tolerance and insulin sensitivity were improved in GDM mice treated with total water-soluble flavonoids (LLHC group) but were greater than those in normal control mice (NC group). The number of apoptotic liver cells was significantly lower in the LLHC group than in the MD group, but greater than that in the NC group. Multiple targets and signalling pathways that were acted by eight main active ingredients were involved in the process by which total water-soluble flavonoids protect against GDM. The main mechanism involved quercetin (10 targets) and luteolin (8 targets), which acted on the effector target of GAA through six main signalling pathways around the AKT1 core axis. Conclusion: Oral administration of total water-soluble flavonoids can alleviate glucose intolerance and insulin resistance via the inhibition of liver cell apoptosis. The main active ingredients act on GAA through the signalling pathways of the AKT1 core axis.
Collapse
Affiliation(s)
- Junfei Xu
- College of Biological and Food Engineering/Key Laboratory of Research and Utilization of Ethnicinal Plant Resources of Hunan Province/Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Huaihua University, Huaihua 418000, China
| | - Fenfang Zhang
- College of Biological and Food Engineering/Key Laboratory of Research and Utilization of Ethnicinal Plant Resources of Hunan Province/Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Huaihua University, Huaihua 418000, China
| | - Huanhuan Li
- College of Biological and Food Engineering/Key Laboratory of Research and Utilization of Ethnicinal Plant Resources of Hunan Province/Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Huaihua University, Huaihua 418000, China
| | - Pan Li
- College of Biological and Food Engineering/Key Laboratory of Research and Utilization of Ethnicinal Plant Resources of Hunan Province/Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Huaihua University, Huaihua 418000, China
| | - Junying Zeng
- College of Biological and Food Engineering/Key Laboratory of Research and Utilization of Ethnicinal Plant Resources of Hunan Province/Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Huaihua University, Huaihua 418000, China
| | - Xianjin Wu
- College of Biological and Food Engineering/Key Laboratory of Research and Utilization of Ethnicinal Plant Resources of Hunan Province/Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Huaihua University, Huaihua 418000, China
| | - Rong Zhou
- College of Biological and Food Engineering/Key Laboratory of Research and Utilization of Ethnicinal Plant Resources of Hunan Province/Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Huaihua University, Huaihua 418000, China
| | - Chunyan Yang
- Department of Obstetrics and Gynecology, Huaihua Second People's Hospital/Huaihua Cancer Hospital, Huaihua 418000, China
| | - Juzuo Zhang
- College of Biological and Food Engineering/Key Laboratory of Research and Utilization of Ethnicinal Plant Resources of Hunan Province/Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Huaihua University, Huaihua 418000, China
| |
Collapse
|
4
|
Wang S, Huang Y, Sun Y, Wang J, Tang X. Physiological, transcriptomic, and metabolomic analyses reveal that Pantoea sp. YSD J2 inoculation improves the accumulation of flavonoids in Cyperus esculentus L. var. sativus. Heliyon 2024; 10:e35966. [PMID: 39224290 PMCID: PMC11367128 DOI: 10.1016/j.heliyon.2024.e35966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/01/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Plant growth-promoting microorganisms (PGPMs), such as Pantoea sp. YSD J2, promote plant development and stress resistance, while their role in flavonoids accumulation still needs to be further understood. To investigate the complex flavonoid biosynthesis pathway of Cyperus esculentus L. var. sativus (tigernut), we compared Pantoea sp. YSD J2 inoculation (YSD J2) and water inoculation (CK) groups. YSD J2 significantly elevated the content of indole-3-acetic acid (IAA) and orientin. Furthermore, when analyzing flavonoid metabolome, YSD J2 caused increased levels of uralenol, petunidin-3-O-glucoside-5-O-arabinoside, luteolin-7-O-glucuronide-(2 → 1)-glucuronide, kaempferol-3-O-neohesperidoside, cyanidin-3-O-(2″-O-glucosyl)glucoside, kaempferol-3-O-glucuronide-7-O-glucoside, quercetin-3-O-glucoside, luteolin-7-O-glucuronide-(2 → 1)-(2″-sinapoyl)glucuronide, and quercetin-4'-O-glucoside, which further enhanced antioxidant activity. We then performed RNA-seq and LC-MS/MS, aiming to validate key genes and related flavonoid metabolites under YSD J2 inoculation, and rebuild the gene-metabolites regulatory subnetworks. Furthermore, the expression patterns of the trans cinnamate 4-monooxygenase (CYP73A), flavonol-3-O-L-rhamnoside-7-O-glucosyltransferase (UGT73C6), shikimate O-hydroxycinnamoyltransferase (HCT), chalcone isomerase (CHI), flavonol synthase (FLS), and anthocyanidin synthase (ANS) genes were confirmed by qRT-PCR. Additionally, 4 transcription factors (TF) (especially bHLH34, Cluster-37505.3) under YSD J2 inoculation are also engaged in regulating flavonoid accumulation. Moreover, the current work sheds new light on studying the regulatory effect of Pantoea sp. YSD J2 on tigernut development and flavonoid biosynthesis.
Collapse
Affiliation(s)
- Saisai Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, 200240, PR China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Dongchuan Road 800, Minhang District, Shanghai, 200240, PR China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Dongchuan Road 800, Minhang District, Shanghai, 200240, PR China
| | - Yanna Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, 200240, PR China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Dongchuan Road 800, Minhang District, Shanghai, 200240, PR China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Dongchuan Road 800, Minhang District, Shanghai, 200240, PR China
| | - Yu Sun
- Biotechnology Research Institute Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Beidi Road 2901, Minhang District, Shanghai, 201106, PR China
| | - Jinbin Wang
- Biotechnology Research Institute Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Beidi Road 2901, Minhang District, Shanghai, 201106, PR China
| | - Xueming Tang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, 200240, PR China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Dongchuan Road 800, Minhang District, Shanghai, 200240, PR China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Dongchuan Road 800, Minhang District, Shanghai, 200240, PR China
| |
Collapse
|
5
|
Roy D, Kaur P, Ghosh M, Choudhary D, Rangra NK. The therapeutic potential of typical plant-derived compounds for the management of metabolic disorders. Phytother Res 2024. [PMID: 38864713 DOI: 10.1002/ptr.8238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 06/13/2024]
Abstract
Obesity and Type 2 diabetes are prevalent metabolic dysfunctions that present significant health challenges worldwide. Available cures for these ailments have constraints with accompanying unwanted effects that persistently exist. Compounds originated from plants have recently been introduced as hopeful remedies to treat metabolic disorders because of their diverse pharmacological activities. This detailed observation gives an introduction into the treatment capacity of plant-derived compounds regarding metabolic syndromes while analyzing various groups alongside their performance in this field despite unique mechanisms designed by nature itself. Interestingly, this study provides some examples including curcumin, resveratrol, quercetin, berberine, epigallocatechin gallate (EGCG), and capsaicin, which highlights potential therapeutic impacts for future testing. However, current clinical trials inspecting human studies investigating efficacies concerning metabolism challenge present limitations. Finally, the review weighs up bad reactions possibly inflicted after administering plant-originated materials though suggestive insights will be provided later. Above all, it outlines the chance to identify novel therapies encapsulated within natural substances based upon recent developments could hold significant promise toward managing misplaced metabolisms globally.
Collapse
Affiliation(s)
- Debajyoti Roy
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
- Department of Pharmacy, CV Raman Global University, Bhubaneswar, Odisha, India
| | - Prabhjot Kaur
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Maitrayee Ghosh
- Department of Pharmacy, CV Raman Global University, Bhubaneswar, Odisha, India
| | - Deepika Choudhary
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Naresh Kumar Rangra
- Chitkara School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| |
Collapse
|
6
|
Dawid M, Pich K, Mlyczyńska E, Respekta-Długosz N, Wachowska D, Greggio A, Szkraba O, Kurowska P, Rak A. Adipokines in pregnancy. Adv Clin Chem 2024; 121:172-269. [PMID: 38797542 DOI: 10.1016/bs.acc.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Reproductive success consists of a sequential events chronology, starting with the ovum fertilization, implantation of the embryo, placentation, and cellular processes like proliferation, apoptosis, angiogenesis, endocrinology, or metabolic changes, which taken together finally conduct the birth of healthy offspring. Currently, many factors are known that affect the regulation and proper maintenance of pregnancy in humans, domestic animals, or rodents. Among the determinants of reproductive success should be distinguished: the maternal microenvironment, genes, and proteins as well as numerous pregnancy hormones that regulate the most important processes and ensure organism homeostasis. It is well known that white adipose tissue, as the largest endocrine gland in our body, participates in the synthesis and secretion of numerous hormones belonging to the adipokine family, which also may regulate the course of pregnancy. Unfortunately, overweight and obesity lead to the expansion of adipose tissue in the body, and its excess in both women and animals contributes to changes in the synthesis and release of adipokines, which in turn translates into dramatic changes during pregnancy, including those taking place in the organ that is crucial for the proper progress of pregnancy, i.e. the placenta. In this chapter, we are summarizing the current knowledge about levels of adipokines and their role in the placenta, taking into account the physiological and pathological conditions of pregnancy, e.g. gestational diabetes mellitus, preeclampsia, or intrauterine growth restriction in humans, domestic animals, and rodents.
Collapse
Affiliation(s)
- Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Natalia Respekta-Długosz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Dominka Wachowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Aleksandra Greggio
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Oliwia Szkraba
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
7
|
Khazaeel K, Hussein HA, Ranjbar R, Tabandeh MR, Alahmed JAS. Modulatory effects of quercetin on histological changes, biochemical and oxidative stress of rat placenta induced by inhalation exposure to crude oil vapor. Reprod Toxicol 2024; 125:108560. [PMID: 38387710 DOI: 10.1016/j.reprotox.2024.108560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
The inhalation exposure to crude oil vapor (COV) has been shown to have adverse effects on the placenta and fetal development. The modulatory effects of quercetin (QUE) as a natural phenolic compound with antioxidant properties are promising for the protection of placental structure. This study aimed to investigate the modulatory role of QUE in mitigating histopathological damage, oxidative stress, and biochemical alteration in the placenta of COV-exposed pregnant rats. Forty-eight pregnant rats were divided into eight groups (days 15 and 20) as follows: 1-2) Control groups, 3-4) COV groups, 5-6) COV+QUE groups, and 7-8) QUE-treated groups (50 mg/kg). The inhalation method was used to expose pregnant rats to COV, and QUE was administered orally. On the 15th and 20th days of gestation, placental tissue was analyzed using PAS and H&E staining and immunohistochemistry. The expression of the caspase-3 gene and oxidative stress biomarkers including TAC, CAT, MDA, GPx, and SOD were investigated in the placental tissue. The COV significantly decreased the weight, diameter, and thickness of the placenta as well as the thickness of the junctional zone and labyrinth and the number of trophoblast giant cells in 15- and 20-day-old placentas (P<0.05). Also, COV significantly increased placental expression of caspase-3 and the oxidative stress biomarkers (P<0.05). The administration of QUE along with exposure to COV reduced morphometric and histological alteration, oxidative stress, and caspase-3 expression (P<0.05). Our findings indicated that QUE in COV-exposed pregnant rats can prevent placental histopathological alternations by increasing the activity of the antioxidant system.
Collapse
Affiliation(s)
- Kaveh Khazaeel
- Department of Basic Sciences, Division of Anatomy and Embryology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran; Stem Cells and Transgenic Technology Research Center (STTRC), Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Haifa Ali Hussein
- Department of Basic Sciences, Division of Anatomy and Embryology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Reza Ranjbar
- Department of Basic Sciences, Division of Anatomy and Embryology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Reza Tabandeh
- Stem Cells and Transgenic Technology Research Center (STTRC), Shahid Chamran University of Ahvaz, Ahvaz, Iran; Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Jala Amir Salman Alahmed
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Basrah, Iraq
| |
Collapse
|
8
|
García-Montero C, Fraile-Martinez O, De Leon-Oliva D, Boaru DL, Garcia-Puente LM, De León-Luis JA, Bravo C, Diaz-Pedrero R, Lopez-Gonzalez L, Álvarez-Mon M, García-Honduvilla N, Saez MA, Ortega MA. Exploring the Role of Mediterranean and Westernized Diets and Their Main Nutrients in the Modulation of Oxidative Stress in the Placenta: A Narrative Review. Antioxidants (Basel) 2023; 12:1918. [PMID: 38001771 PMCID: PMC10669105 DOI: 10.3390/antiox12111918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Oxidative stress is a major cellular event that occurs in the placenta, fulfilling critical physiological roles in non-pathological pregnancies. However, exacerbated oxidative stress is a pivotal feature of different obstetric complications, like pre-eclampsia, fetal growth restriction, and other diseases. Compelling evidence supports the relevant role of diet during pregnancy, with pleiotropic consequences for maternal well-being. The present review aims to examine the complex background between oxidative stress and placental development and function in physiological conditions, also intending to understand the relationship between different dietary patterns and the human placenta, particularly how this could influence oxidative stress processes. The effects of Westernized diets (WDs) and high-fat diets (HFDs) rich in ultra-processed foods and different additives are compared with healthy patterns such as a Mediterranean diet (MedDiet) abundant in omega 3 polyunsaturated fatty acids, monounsaturated fatty acids, polyphenols, dietary fiber, and vitamins. Although multiple studies have focused on the role of specific nutrients, mostly in animal models and in vitro, further observational and intervention studies focusing on the placental structure and function in women with different dietary patterns should be conducted to understand the precise influence of diet on this organ.
Collapse
Affiliation(s)
- Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Luis M. Garcia-Puente
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Juan A. De León-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.D.L.-L.); (C.B.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.D.L.-L.); (C.B.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Prince of Asturias, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28806 Alcalá de Henares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
- Pathological Anatomy Service, University Hospital Gómez-Ulla, 28806 Alcalá de Henares, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| |
Collapse
|
9
|
Zhao L, Chang Q, Cong Z, Zhang Y, Liu Z, Zhao Y. Effects of dietary polyphenols on maternal and fetal outcomes in maternal diabetes. Food Funct 2023; 14:8692-8710. [PMID: 37724008 DOI: 10.1039/d3fo02048g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The incidences of short-term or long-term adverse maternal and fetal outcomes caused by maternal diabetes are increasing. Due to toxicity or side effects, economic pressures, and other problems associated with injections or oral hypoglycemic drugs, many researchers have investigated natural treatment methods. Polyphenols can protect against chronic pathologies by regulating numerous physiological processes and provide many health benefits. Moreover, polyphenols have anti-diabetic properties and can be used to treat diabetic complications. Diets rich in polyphenols are beneficial to pregnant women with diabetes. Here, we review the epidemiological and experimental evidence on the impact of dietary polyphenols on maternal and fetal outcomes in pregnant women with diabetes, and the effects of polyphenols on biological changes and possible mechanisms. Previous data (mainly from in vitro and animal experiments) showed that polyphenols can alleviate gestational diabetes mellitus and diabetic embryopathy by reducing maternal hyperglycemia and insulin resistance, alleviating inflammation and oxidative stress, and regulating related signaling pathways. Although polyphenols have shown many health benefits, further research is needed to better understand the complex interactions between polyphenols and maternal diabetes.
Collapse
Affiliation(s)
- Lu Zhao
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qing Chang
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhangzhao Cong
- Department of Teaching Affairs, China Medical University, Shenyang, China
| | - Yalin Zhang
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Zhuxi Liu
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yuhong Zhao
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Deckmann I, Santos-Terra J, Martel F, Vieira Carletti J. Common pregnancy complications and polyphenols intake: an overview. Crit Rev Food Sci Nutr 2023; 64:5924-5957. [PMID: 36597650 DOI: 10.1080/10408398.2022.2160960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
During pregnancy, the body undergoes a great amount of changes in order to support a healthy developing fetus. In this context, maternal dietary supplementation is widely encouraged to provide adequate nutrition for the newborn. In the past few years, studies have emerged highlighting the benefits of polyphenols intake during pregnancy. Indeed, despite differences among reports, such as experimental model, polyphenol employed, dosage and regimen of administration, there is no doubt that the ingestion of these molecules has a protective effect in relation to three pregnancy-associated diseases or conditions: preeclampsia, gestational diabetes and fetal growth restriction. In this review, we describe the effects of different polyphenols and polyphenol-rich extracts or juices on the main outcomes of these common pregnancy-associated complications, obtained in human, animal and in vitro studies. Therefore, this work provides a critical analysis of the literature, and a summary of evidences, from which future research using polyphenols can be designed and evaluated.
Collapse
Affiliation(s)
- Iohanna Deckmann
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Júlio Santos-Terra
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Jaqueline Vieira Carletti
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
11
|
Bankole T, Winn H, Li Y. Dietary Impacts on Gestational Diabetes: Connection between Gut Microbiome and Epigenetic Mechanisms. Nutrients 2022; 14:nu14245269. [PMID: 36558427 PMCID: PMC9786016 DOI: 10.3390/nu14245269] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common obstetric complications due to an increased level of glucose intolerance during pregnancy. The prevalence of GDM increases due to the obesity epidemic. GDM is also associated with an increased risk of gestational hypertension and preeclampsia resulting in elevated maternal and perinatal morbidity and mortality. Diet is one of the most important environmental factors associated with etiology of GDM. Studies have shown that the consumption of certain bioactive diets and nutrients before and during pregnancy might have preventive effects against GDM leading to a healthy pregnancy outcome as well as beneficial metabolic outcomes later in the offspring's life. Gut microbiome as a biological ecosystem bridges the gap between human health and diseases through diets. Maternal diets affect maternal and fetal gut microbiome and metabolomics profiles, which consequently regulate the host epigenome, thus contributing to later-life metabolic health in both mother and offspring. This review discusses the current knowledge regarding how epigenetic mechanisms mediate the interaction between maternal bioactive diets, the gut microbiome and the metabolome leading to improved metabolic health in both mother and offspring.
Collapse
Affiliation(s)
- Taiwo Bankole
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Hung Winn
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO 65212, USA
| | - Yuanyuan Li
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
- Correspondence:
| |
Collapse
|
12
|
Nacka-Aleksić M, Pirković A, Vilotić A, Bojić-Trbojević Ž, Jovanović Krivokuća M, Giampieri F, Battino M, Dekanski D. The Role of Dietary Polyphenols in Pregnancy and Pregnancy-Related Disorders. Nutrients 2022; 14:nu14245246. [PMID: 36558404 PMCID: PMC9782043 DOI: 10.3390/nu14245246] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Polyphenols are a group of phytochemicals with extensive biological functions and health-promoting potential. These compounds are present in most foods of plant origin and their increased widespread availability through the intake of nutritional supplements, fortified foods, and beverages, has also led to increased exposure throughout gestation. In this narrative review, we focus on the role of polyphenols in both healthy and pathological pregnancy. General information related to their classification and function is followed by an overview of their known effects in early-pregnancy events, including the current insights into molecular mechanisms involved. Further, we provide an overview of their involvement in some of the most common pregnancy-associated pathological conditions, such as preeclampsia and gestational diabetes mellitus. Additionally, we also discuss the estimated possible risk of polyphenol consumption on pregnancy outcomes. The consumption of dietary polyphenols during pregnancy needs particular attention considering the possible effects of polyphenols on the mechanisms involved in maternal adaptation and fetal development. Further studies are strongly needed to unravel the in vivo effects of polyphenol metabolites during pregnancy, as well as their role on advanced maternal age, prenatal nutrition, and metabolic risk of the offspring.
Collapse
Affiliation(s)
- Mirjana Nacka-Aleksić
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Andrea Pirković
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Aleksandra Vilotić
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Žanka Bojić-Trbojević
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Milica Jovanović Krivokuća
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maurizio Battino
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
- Dipartimento di Scienze Cliniche Specialistiche, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Dragana Dekanski
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| |
Collapse
|
13
|
Shabir I, Kumar Pandey V, Shams R, Dar AH, Dash KK, Khan SA, Bashir I, Jeevarathinam G, Rusu AV, Esatbeyoglu T, Pandiselvam R. Promising bioactive properties of quercetin for potential food applications and health benefits: A review. Front Nutr 2022; 9:999752. [PMID: 36532555 PMCID: PMC9748429 DOI: 10.3389/fnut.2022.999752] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/05/2022] [Indexed: 07/22/2023] Open
Abstract
Naturally occurring phytochemicals with promising biological properties are quercetin and its derivatives. Quercetin has been thoroughly studied for its antidiabetic, antibacterial, anti-inflammatory, anti-Alzheimer's, anti-arthritic, antioxidant, cardiovascular, and wound-healing properties. Anticancer activity of quercetin against cancer cell lines has also recently been revealed. The majority of the Western diet contains quercetin and its derivatives, therefore consuming them as part of a meal or as a food supplement may be sufficient for people to take advantage of their preventive effects. Bioavailability-based drug-delivery systems of quercetin have been heavily studied. Fruits, seeds, vegetables, bracken fern, coffee, tea, and other plants all contain quercetin, as do natural colors. One naturally occurring antioxidant is quercetin, whose anticancer effects have been discussed in detail. It has several properties that could make it an effective anti-cancer agent. Numerous researches have shown that quercetin plays a substantial part in the suppression of cancer cells in the breast, colon, prostate, ovary, endometrial, and lung tumors. The current study includes a concise explanation of quercetin's action mechanism and potential health applications.
Collapse
Affiliation(s)
- Irtiqa Shabir
- Department of Food Technology, Islamic University of Science and Technology Kashmir, Pulwama, India
| | - Vinay Kumar Pandey
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
- Department of Biotechnology, Axis Institute of Higher Education, Kanpur, Uttar Pradesh, India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology Kashmir, Pulwama, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology (GKCIET), Malda, West Bengal, India
| | - Shafat Ahmad Khan
- Department of Food Technology, Islamic University of Science and Technology Kashmir, Pulwama, India
| | - Iqra Bashir
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Kashmir, India
| | - G. Jeevarathinam
- Department of Food Technology, Hindusthan College of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Alexandru Vasile Rusu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Animal Science and Biotechnology Faculty, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - R. Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod, Kerala, India
| |
Collapse
|
14
|
da Costa PCT, de Souza EL, Lacerda DC, Cruz Neto JPR, de Sales LCS, Silva Luis CC, Pontes PB, Cavalcanti Neto MP, de Brito Alves JL. Evidence for Quercetin as a Dietary Supplement for the Treatment of Cardio-Metabolic Diseases in Pregnancy: A Review in Rodent Models. Foods 2022; 11:foods11182772. [PMID: 36140900 PMCID: PMC9497971 DOI: 10.3390/foods11182772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
Quercetin supplementation during pregnancy and lactation has been linked to a lower risk of maternal cardio-metabolic disorders such as gestational diabetes mellitus (GDM), dyslipidemia, preeclampsia, attenuation of malnutrition-related conditions, and gestational obesity in animal studies. Pre-clinical studies have shown that maternal supplementation with quercetin reduces cardio-metabolic diseases in dams and rodents’ offspring, emphasizing its role in modifying phenotypic plasticity. In this sense, it could be inferred that quercetin administration during pregnancy and lactation is a viable strategy for changing cardio-metabolic parameters throughout life. Epigenetic mechanisms affecting the AMP-activated protein kinase (AMPK), nuclear factor-kappa B (NF-κB), and phosphoinositide 3-kinase (PI3 K) pathways could be associated with these changes. To highlight these discoveries, this review outlines the understanding from animal studies investigations about quercetin supplementation and its capacity to prevent or decrease maternal and offspring cardio-metabolic illnesses and associated comorbidities.
Collapse
Affiliation(s)
- Paulo César Trindade da Costa
- Postgraduation Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Evandro Leite de Souza
- Postgraduation Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Diego Cabral Lacerda
- Postgraduation Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | | | | | - Cristiane Cosmo Silva Luis
- Postgraduation Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Paula Brielle Pontes
- Postgraduation Program in Neuropsychiatry and Health Sciences Behavior, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Marinaldo Pacífico Cavalcanti Neto
- Integrated Laboratory of Morphofunctional Sciences, Institute of Biodiversity and Sustainability (NUPEM), Federal University of Rio de Janeiro, Macaé 21941-901, Brazil
| | - José Luiz de Brito Alves
- Postgraduation Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraiba, João Pessoa 58051-900, Brazil
- Correspondence: or ; Tel./Fax: +55-81-998-455-485
| |
Collapse
|
15
|
Zhou Y, Suo W, Zhang X, Lv J, Liu Z, Liu R. Roles and mechanisms of quercetin on cardiac arrhythmia: A review. Biomed Pharmacother 2022; 153:113447. [DOI: 10.1016/j.biopha.2022.113447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/02/2022] Open
|
16
|
Meng R, Gao Q, Liang R, Guan L, Liu S, Zhu Q, Su D, Xia Y, Ma X. Changes in gene expression in rat placenta at gestational day 16.5 in response to hyperglycemia. Gen Comp Endocrinol 2022; 320:113999. [PMID: 35217063 DOI: 10.1016/j.ygcen.2022.113999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/26/2022]
Abstract
Gestational diabetes mellitus (GDM) is a serious pregnancy complication. Hyperglycemia induces abnormal placental development and function. However, the mechanism is unclear. Previous research showed streptozocin (STZ) injection sustained hyperglycemia throughout pregnancy in rodents. Our current results showed that the placenta from hyperglycemic STZ-treated rats was about 20% heavier than that of controls. The relative thickness of each layer of the placenta was also significantly different on gestational day (GD) 16.5. Gene expression was analyzed by RNA sequencing to explore reasons for the abnormal placenta. In total, 2100 differential expressed genes (DEGs), including 1327 up-regulated and 773 down-regulated genes, were identified. Gene ontogeny (GO) analysis revealed DEGs involved in developmental process, growth, metabolic process, cell junction, molecular transducer activity and signaling. By KEGG analysis, DEGs were mainly related to the endocrine system, development, signal transduction and cell growth and death. The KEGG results were partly consistent with GO results, with DEGs mainly focused on biochemical signal pathways such as cell growth and death (e.g., Abl1, Bbc3 and Camk2d), and signal transduction (e.g., Abl1, Ceacam1 and Arnt). These genes may play a dominant role in abnormal cell proliferation and signaling disorders. These results suggest that DEGs play a role in diabetic-induced placental abnormalities. One or more of these DEGs may be involved in the etiology of placental weight increase caused by hyperglycemia.
Collapse
Affiliation(s)
- Rui Meng
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing 100081, China
| | - Qianqian Gao
- Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Ranran Liang
- College of Life Science, Dezhou University, Dezhou, Shandong, China
| | - Lina Guan
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shanhe Liu
- Mudanjiang Medical College, Mudanjiang, Heilongjiang, China
| | - Qinghua Zhu
- College of Life Science, Dezhou University, Dezhou, Shandong, China
| | - Dongmei Su
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing 100081, China.
| | - Yixin Xia
- Obstetrics and Gynecology, Peking University Shougang Hospital,Beijing, China.
| | - Xu Ma
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing 100081, China.
| |
Collapse
|
17
|
Health Benefits of Quercetin in Age-Related Diseases. Molecules 2022; 27:molecules27082498. [PMID: 35458696 PMCID: PMC9032170 DOI: 10.3390/molecules27082498] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
Polyphenols are the known group of phytochemicals that essentially consists of phenolic rings. These are the plant product present in varied fruits and vegetables. These secondary metabolites perform a protective function in plants from environmental and biological stress. When consumed as a human diet these are also known to prevent various age-associated diseases. Polyphenols are known to possess antioxidant properties and protect against oxidative stress. The literature survey was carried out using databases such as PubMed, Science direct and Springer. The research articles from last 10–12 years were selected for this review based on its relevancy with the topic. The articles selected was mainly focused on quercetin and its health benefits. The present review highlights the main functions of a flavonoid, quercetin. Quercetin is among the widely occurring polyphenol, found abundantly in nature. It is commonly present in different plant products. Onion is known to have the highest quantity of quercetin. This plant compound is possessed antioxidant properties and is considered to have a protective function against aging. It is known to be present in both free and conjugated forms. Quercetin has anti-oxidative, anti-inflammatory, anti-proliferative, anti-carcinogenic, anti-diabetic, and anti-viral properties. The molecule is lipophilic and can easily cross the BBB (Blood-Brain Barrier) and hence protects from neurodegenerative diseases. Various in vivo and in vitro studies have demonstrated the role of quercetin and here a detailed review of quercetin as a curative agent in neurodegeneration, diabetes, cancer, and inflammation has been carried out. Studies have proved that quercetin plays a crucial role in the prevention of age-related disorders. Quercetin is a potent antioxidant which is currently being used in various pharmaceuticals. Properties of quercetin can be further explored in various other disorders. Nanoformulations and liposomal formulations of quercetin can be made to treat other age associated diseases.
Collapse
|
18
|
Soliman MM, Gaber A, Alsanie WF, Mohamed WA, Metwally MMM, Abdelhadi AA, Elbadawy M, Shukry M. Gibberellic acid-induced hepatorenal dysfunction and oxidative stress: Mitigation by quercetin through modulation of antioxidant, anti-inflammatory, and antiapoptotic activities. J Food Biochem 2022; 46:e14069. [PMID: 34984688 DOI: 10.1111/jfbc.14069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 12/30/2022]
Abstract
The plant growth regulator gibberellic acid (GA3) is widely used in agriculture in many countries. However, little is known about its danger to human health or its physiologic and biochemical pathways. Our study examined the effect of GA3 on liver and kidney function and the effect of quercetin on the hepatorenal toxicity induced by GA3 in four groups of male albino rats. For 4 weeks, the control group (CNT) received saline, the quercetin group (QR) received daily intraperitoneal injections of quercetin (50 mg/kg/BW) dissolved in saline, the gibberellic acid group (GA3) received GA3 (55 mg/kg/BW) via oral gavage, and the protective group (QR) was injected with quercetin and gavaged with GA3 in the same doses used in the QR and GA3 groups (50 mg/kg/BW +GA3 and 55 mg/kg/BW). GA3 induced liver and kidney injury, as shown by elevated serum glutamic pyruvic transaminase, glutamic oxaloacetic transaminase, and gamma-glutamyl transferase (GPT, GOT, and GGT) as well as increased levels of creatinine, urea, and uric acid. Hepatorenal toxicity was demonstrated by a significant increase in levels of serum and tissue malondialdehyde (MDA) and decreased antioxidant enzyme activity, such as catalase (CAT) and superoxide dismutase (SOD), accompanied by a subsequent decrease in glutathione peroxidase (GPx) levels in liver and kidney tissue of GA3-treated rats. Administration of quercetin (QR) significantly protected hepatorenal tissue against the toxic effect of GA3 through normalization of the hepatic and renal function markers. It also retrieved the antioxidant ability by modulating the hepatorenal toxic effect at the molecular level through upregulation of antiapoptotic genes and downregulation of transforming growth factor-β1 (TFG-β1), cyclooxygenase-2 (COX-2), and nuclear factor-kappa B (NF-κB). Impairment of liver and kidney function was confirmed by histologic and immunohistochemical analyses. Pretreatment with quercetin was effective at attenuating histopathologic changes in hepatic and renal tissues by regulating the immunoexpression of caspase-3 and Bcl-2 to return them to more normal values. PRACTICAL APPLICATIONS: The confirmed hepatorenal dysfunction caused by GA3 was ameliorated by quercetin administration. Moreover, quercetin demonstrated the potential to reverse hepatorenal dysfunction by regulating inflammatory and antioxidant properties, inhibiting the production of free radicals and inflammation-associated cytokines, and modulating antioxidants and antiapoptotic activity.
Collapse
Affiliation(s)
- Mohamed M Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Ahmed Gaber
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
- Center of Biomedical Sciences Research, Taif University, Taif, Saudi Arabia
| | - Walaa F Alsanie
- Center of Biomedical Sciences Research, Taif University, Taif, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif, Saudi Arabia
| | - Wafaa A Mohamed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | | | - Mohamed Elbadawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Mustafa Shukry
- Physiology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
19
|
Yuan J, Zhang D, Wang Y, Zhu Z, Lin Q, Li M, Zhong W, Han J, Xu F, Dong J. Angiopoietin-Like 8 in Gestational Diabetes Mellitus: Reduced Levels in Third Trimester Maternal Serum and Placenta, Increased Levels in Cord Blood Serum. Int J Endocrinol 2022; 2022:1113811. [PMID: 35529083 PMCID: PMC9072024 DOI: 10.1155/2022/1113811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
Gestational diabetes mellitus (GDM) poses a significant health risk to pregnant women, and thus exploring the potential underlying mechanism is highly desirable. The aim of the study was to compare maternal serum, cord blood serum, and placental angiopoietin-like 8 (ANGPTL8) levels in the third trimester of pregnancy in women with and without gestational diabetes and explore the potential underlying mechanism. A total of 42 pregnant women (23 with GDM and 19 with normal glucose tolerance (NGT)) along with 29 age-matched non-pregnant healthy females were enrolled. All pregnant subjects were in the late third trimester. Maternal serum and cord blood serum ANGPTL8 levels were measured with an enzyme-linked immunosorbent assay and the protein levels of ANGPTL8 in placentas were assessed with western blotting. The associations between maternal serum and cord blood serum ANGPTL8 levels and metabolic parameters were investigated with the Spearman correlation analysis. Significantly lower levels of maternal serum and placental ANGPTL8 levels were observed in GDM patients compared to NGT pregnant women, while remarkably higher ANGPTL8 levels were present in the cord blood serum samples. The maternal serum ANGPTL8 level was positively correlated with BMI, total cholesterol, triglycerides, and AUC for OGTT and birthweight. Additionally, the cord blood serum ANGPTL8 level was positively correlated with insulin and the homeostatic model assessment for insulin resistance. Both maternal serum and cord blood serum ANGPTL8 levels seemed to correlate with GDM and has the potential to be used as a biomarker for GDM and birthweight prediction.
Collapse
Affiliation(s)
- Junhua Yuan
- Special Medicine Department, School of Basic Medicine, Qingdao University, Qingado, China
| | - Di Zhang
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Shandong, China
| | - Yunyang Wang
- Department of Endocrinology & Metabolism, Affiliated Hospital of Qingdao University, Qingado, China
| | - Zhen Zhu
- Department of Gynecology and Obstetrics, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Qian Lin
- Special Medicine Department, School of Basic Medicine, Qingdao University, Qingado, China
| | - Manwen Li
- Special Medicine Department, School of Basic Medicine, Qingdao University, Qingado, China
| | - Weizhen Zhong
- Human functional laboratory, School of Basic Medicine, Qingdao University, Qingado, China
| | - Jing Han
- Special Medicine Department, School of Basic Medicine, Qingdao University, Qingado, China
| | - Fengsen Xu
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao University, Qingado, China
| | - Jing Dong
- Special Medicine Department, School of Basic Medicine, Qingdao University, Qingado, China
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingado, China
| |
Collapse
|