1
|
Yang D, Peng D, Zhou Y, Qiang Z, Wan L, Fan X, Meng Y, Xu G, Meng Y. Alpha-Momorcharin, a type I ribosome inactivating protein, induced apoptosis of hepatocellular carcinoma SK-HEP-1 cells through mitochondrial pathway. Nat Prod Res 2025; 39:1128-1138. [PMID: 38126176 DOI: 10.1080/14786419.2023.2295915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Alpha-Momorcharin (α-MMC), as one of the most important type I RIPs, has been reported to exert inhibitory effects against various tumour cells through its N-glycosidase activity. The present study was designed to propose an efficient purification strategy and explored its mechanism of apoptosis signalling pathway against human liver cancer cells SK-Hep-1. α-MMC can be successfully obtained by our purification strategy combining ion-exchange and gel-filtration chromatography. The functional studies revealed that α-MMC obviously increased the level of ROS and apoptosis rate, induced cell cycle arrest in the G1 phase, and depolarised MMP of SK-Hep-1 cells. To further confirm whether α-MMC could induce mitochondria involved apoptosis, we found that PARP-1, Caspase-3, Caspase-9, and BCL-2 were downregulated upon α-MMC. Taken together, these results suggested that this natural purified α-MMC can induce apoptosis involved mitochondria and may serve as a potential novel therapeutic drug in the treatment of human liver cancer in the future.
Collapse
Affiliation(s)
- Di Yang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Di Peng
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yiping Zhou
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Provincial People's Hospital Jinniu Hospital, Chengdu, Sichuan, China
| | - Zihao Qiang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Li Wan
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiang Fan
- Key Laboratory of Bio-resources and Eco-environment Ministry of Education/Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan, China
| | - Yanfa Meng
- Key Laboratory of Bio-resources and Eco-environment Ministry of Education/Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan, China
| | - Ge Xu
- The 3rd Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital, Chengdu, Sichuan, China
| | - Yao Meng
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Iglesias R, Citores L, Gay CC, Ferreras JM. Antifungal Activity of Ribosome-Inactivating Proteins. Toxins (Basel) 2024; 16:192. [PMID: 38668617 PMCID: PMC11054410 DOI: 10.3390/toxins16040192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
The control of crop diseases caused by fungi remains a major problem and there is a need to find effective fungicides that are environmentally friendly. Plants are an excellent source for this purpose because they have developed defense mechanisms to cope with fungal infections. Among the plant proteins that play a role in defense are ribosome-inactivating proteins (RIPs), enzymes obtained mainly from angiosperms that, in addition to inactivating ribosomes, have been studied as antiviral, fungicidal, and insecticidal proteins. In this review, we summarize and discuss the potential use of RIPs (and other proteins with similar activity) as antifungal agents, with special emphasis on RIP/fungus specificity, possible mechanisms of antifungal action, and the use of RIP genes to obtain fungus-resistant transgenic plants. It also highlights the fact that these proteins also have antiviral and insecticidal activity, which makes them very versatile tools for crop protection.
Collapse
Affiliation(s)
- Rosario Iglesias
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (R.I.); (L.C.)
| | - Lucía Citores
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (R.I.); (L.C.)
| | - Claudia C. Gay
- Laboratory of Protein Research, Institute of Basic and Applied Chemistry of Northeast Argentina (UNNE-CONICET), Faculty of Exact and Natural Sciences and Surveying, Av. Libertad 5470, Corrientes 3400, Argentina;
| | - José M. Ferreras
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (R.I.); (L.C.)
| |
Collapse
|
3
|
Huang Q, Chen C, Wu X, Qin Y, Tan X, Zhang D, Liu Y, Li W, Chen Y. Overexpression of ATP Synthase Subunit Beta (Atp2) Confers Enhanced Blast Disease Resistance in Transgenic Rice. J Fungi (Basel) 2023; 10:5. [PMID: 38276021 PMCID: PMC10820023 DOI: 10.3390/jof10010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Previous research has shown that the pathogenicity and appressorium development of Magnaporthe oryzae can be inhibited by the ATP synthase subunit beta (Atp2) present in the photosynthetic bacterium Rhodopseudomonas palustris. In the present study, transgenic plants overexpressing the ATP2 gene were generated via genetic transformation in the Zhonghua11 (ZH11) genetic background. We compared the blast resistance and immune response of ATP2-overexpressing lines and wild-type plants. The expression of the Atp2 protein and the physiology, biochemistry, and growth traits of the mutant plants were also examined. The results showed that, compared with the wild-type plant ZH11, transgenic rice plants heterologously expressing ATP2 had no significant defects in agronomic traits, but the disease lesions caused by the rice blast fungus were significantly reduced. When infected by the rice blast fungus, the transgenic rice plants exhibited stronger antioxidant enzyme activity and a greater ratio of chlorophyll a to chlorophyll b. Furthermore, the immune response was triggered stronger in transgenic rice, especially the increase in reactive oxygen species (ROS), was more strongly triggered in plants. In summary, the expression of ATP2 as an antifungal protein in rice could improve the ability of rice to resist rice blast.
Collapse
Affiliation(s)
- Qiang Huang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (Q.H.)
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China (D.Z.); (Y.L.)
| | - Chunyan Chen
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (Q.H.)
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China (D.Z.); (Y.L.)
| | - Xiyang Wu
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China (D.Z.); (Y.L.)
| | - Yingfei Qin
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China (D.Z.); (Y.L.)
| | - Xinqiu Tan
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China (D.Z.); (Y.L.)
| | - Deyong Zhang
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China (D.Z.); (Y.L.)
| | - Yong Liu
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China (D.Z.); (Y.L.)
| | - Wei Li
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (Q.H.)
| | - Yue Chen
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (Q.H.)
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China (D.Z.); (Y.L.)
| |
Collapse
|
4
|
Narayanan Z, Glick BR. Biotechnologically Engineered Plants. BIOLOGY 2023; 12:biology12040601. [PMID: 37106801 PMCID: PMC10135915 DOI: 10.3390/biology12040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
The development of recombinant DNA technology during the past thirty years has enabled scientists to isolate, characterize, and manipulate a myriad of different animal, bacterial, and plant genes. This has, in turn, led to the commercialization of hundreds of useful products that have significantly improved human health and well-being. Commercially, these products have been mostly produced in bacterial, fungal, or animal cells grown in culture. More recently, scientists have begun to develop a wide range of transgenic plants that produce numerous useful compounds. The perceived advantage of producing foreign compounds in plants is that compared to other methods of producing these compounds, plants seemingly provide a much less expensive means of production. A few plant-produced compounds are already commercially available; however, many more are in the production pipeline.
Collapse
Affiliation(s)
- Zareen Narayanan
- Division of Biological Sciences, School of STEM, University of Washington, Bothell, WA 98011, USA
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L3G1, Canada
| |
Collapse
|
5
|
Yang T, Peng Q, Lin H, Xi D. Alpha-momorcharin preserves catalase activity to inhibit viral infection by disrupting the 2b-CAT interaction in Solanum lycopersicum. MOLECULAR PLANT PATHOLOGY 2023; 24:107-122. [PMID: 36377585 PMCID: PMC9831283 DOI: 10.1111/mpp.13279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Many host factors of plants are used by viruses to facilitate viral infection. However, little is known about how alpha-momorcharin (αMMC) counters virus-mediated attack strategies in tomato. Our present research revealed that the 2b protein of cucumber mosaic virus (CMV) directly interacted with catalases (CATs) and inhibited their activities. Further analysis revealed that transcription levels of catalase were induced by CMV infection and that virus accumulation increased in CAT-silenced or 2b-overexpressing tomato plants compared with that in control plants, suggesting that the interaction between 2b and catalase facilitated the accumulation of CMV in hosts. However, both CMV accumulation and viral symptoms were reduced in αMMC transgenic tomato plants, indicating that αMMC engaged in an antiviral role in the plant response to CMV infection. Molecular experimental analysis demonstrated that αMMC interfered with the interactions between catalases and 2b in a competitive manner, with the expression of αMMC inhibited by CMV infection. We further demonstrated that the inhibition of catalase activity by 2b was weakened by αMMC. Accordingly, αMMC transgenic plants exhibited a greater ability to maintain redox homeostasis than wild-type plants when infected with CMV. Altogether, these results reveal that αMMC retains catalase activity to inhibit CMV infection by subverting the interaction between 2b and catalase in tomato.
Collapse
Affiliation(s)
- Ting Yang
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life SciencesJianghan UniversityWuhanChina
| | - Qiding Peng
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Honghui Lin
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Dehui Xi
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| |
Collapse
|
6
|
Integrated Transcriptome and Proteome Analysis Provides Insight into the Ribosome Inactivating Proteins in Plukenetia volubilis Seeds. Int J Mol Sci 2022; 23:ijms23179562. [PMID: 36076961 PMCID: PMC9455912 DOI: 10.3390/ijms23179562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
Plukenetia volubilis is a highly promising plant with high nutritional and economic values. In our previous studies, the expression levels of ricin encoded transcripts were the highest in the maturation stage of P. volubilis seeds. The present study investigated the transcriptome and proteome profiles of seeds at two developmental stages (Pv-1 and Pv-2) using RNA-Seq and iTRAQ technologies. A total of 53,224 unigenes and 6026 proteins were identified, with functional enrichment analyses, including GO, KEGG, and KOG annotations. At two development stages of P. volubilis seeds, 8815 unique differentially expressed genes (DEGs) and 4983 unique differentially abundant proteins (DAPs) were identified. Omics-based association analysis showed that ribosome-inactivating protein (RIP) transcripts had the highest expression and abundance levels in Pv-2, and those DEGs/DAPs of RIPs in the GO category were involved in hydrolase activity. Furthermore, 21 RIP genes and their corresponding amino acid sequences were obtained from libraries produced with transcriptome analysis. The analysis of physicochemical properties showed that 21 RIPs of P. volubilis contained ricin, the ricin_B_lectin domain, or RIP domains and could be divided into three subfamilies, with the largest number for type II RIPs. The expression patterns of 10 RIP genes indicated that they were mostly highly expressed in Pv-2 and 4 transcripts encoding ricin_B_like lectins had very low expression levels during the seed development of P. volubilis. This finding would represent valuable evidence for the safety of oil production from P. volubilis for human consumption. It is also notable that the expression level of the Unigene0030485 encoding type I RIP was the highest in roots, which would be related to the antiviral activity of RIPs. This study provides a comprehensive analysis of the physicochemical properties and expression patterns of RIPs in different organs of P. volubilis and lays a theoretical foundation for further research and utilization of RIPs in P. volubilis.
Collapse
|
7
|
Mishra V, Mishra R, Shamra RS. Ribosome inactivating proteins - An unfathomed biomolecule for developing multi-stress tolerant transgenic plants. Int J Biol Macromol 2022; 210:107-122. [PMID: 35525494 DOI: 10.1016/j.ijbiomac.2022.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/10/2022] [Accepted: 05/01/2022] [Indexed: 11/15/2022]
Abstract
Transgenic crops would serve as a tool to overcome the forthcoming crisis in food security and environmental safety posed by degrading land and changing global climate. Commercial transgenic crops developed so far focus on single stress; however, sustaining crop yield to ensure food security requires transgenics tolerant to multiple environmental stresses. Here we argue and demonstrate the untapped potential of ribosome inactivating proteins (RIPs), translation inhibitors, as potential transgenes in developing transgenics to combat multiple stresses in the environment. Plant RIPs target the fundamental processes of the cell with very high specificity to the infecting pests. While controlling pathogens, RIPs also cause ectopic expression of pathogenesis-related proteins and trigger systemic acquired resistance. On the other hand, during abiotic stress, RIPs show antioxidant activity and trigger both enzyme-dependent and enzyme-independent metabolic pathways, alleviating abiotic stress such as drought, salinity, temperature, etc. RIPs express in response to specific environmental signals; therefore, their expression obviates additional physiological load on the transgenic plants instead of the constitutive expression. Based on evidence from its biological significance, ecological roles, laboratory- and controlled-environment success of its transgenics, and ethical merits, we unravel the potential of RIPs in developing transgenic plants showing co-tolerance to multiple environmental stresses.
Collapse
Affiliation(s)
- Vandana Mishra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India.
| | - Ruchi Mishra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India; Jesus and Mary College, University of Delhi, Chanakyapuri, Delhi 110021, India.
| | - Radhey Shyam Shamra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India; Delhi School of Climate Change & Sustainability, Institute of Eminence, University of Delhi, Delhi 110007, India.
| |
Collapse
|
8
|
Rezaei-Moshaei M, Dehestani A, Bandehagh A, Pakdin-Parizi A, Golkar M, Heidari-Japelaghi R. Recombinant pebulin protein, a type 2 ribosome-inactivating protein isolated from dwarf elder (Sambucus ebulus L.) shows anticancer and antifungal activities in vitro. Int J Biol Macromol 2021; 174:352-361. [PMID: 33497693 DOI: 10.1016/j.ijbiomac.2021.01.129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 12/28/2022]
Abstract
In this study, encoding sequence of a new type 2 RIP (pebulin) was isolated and cloned from dwarf elder (Sambucus ebulus L.) native to the northern regions of Iran. The nucleotide sequence of pebulin was ligated to the pET-28a(+) expression plasmid and cloned into the E. coli strain BL21 (DE3) in order to express heterologously of recombinant protein. The recombinant pebulin protein was mainly produced in the form of insoluble inclusion bodies probably because to absence of N-glycosylation process in E. coli. Therefore, in order to increase the expression of recombinant protein in soluble form, co-expression of the target protein with the pG-Tf2 chaperone plasmid and incubation of bacterial culture under low temperature were used to enhance solubility and accumulation of recombinant protein. After purification of the recombinant protein using affinity chromatography method, the bioactivity of pebulin was analyzed by hemagglutination, anticancer, and antifungal assays. The results of the hemagglutination assay showed that purified pebulin agglutinated erythrocytes in all human blood groups. In addition, pebulin considerably inhibited the proliferation of cancer cell lines MCF-7 and HT-29 in a time- and dose-dependent manner and indicated remarkably growth-inhibiting effect against the plant pathogenic fungi such as Alternaria solani and Fusarium oxysporum.
Collapse
Affiliation(s)
| | - Ali Dehestani
- Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
| | - Ali Bandehagh
- Department of Plant Breeding and Biotechnology, the University of Tabriz, Tabriz, Iran
| | - Ali Pakdin-Parizi
- Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | | | | |
Collapse
|
9
|
Choudhary N, Lodha ML, Baranwal VK. The role of enzymatic activities of antiviral proteins from plants for action against plant pathogens. 3 Biotech 2020; 10:505. [PMID: 33184592 PMCID: PMC7642053 DOI: 10.1007/s13205-020-02495-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/19/2020] [Indexed: 11/25/2022] Open
Abstract
Antiviral proteins (AVPs) from plants possess multiple activities, such as N-glycosidase, RNase, DNase enzymatic activity, and induce pathogenesis-related proteins, salicylic acid, superoxide dismutase, peroxidase, and catalase. The N-glycosidase activity releases the adenine residues from sarcin/ricin (S/R) loop of large subunit of ribosomes and interfere the host protein synthesis process and this activity has been attributed for antiviral activity in plant. It has been shown that AVP binds directly to viral genome-linked protein of plant viruses and interfere with protein synthesis of virus. AVPs also possess the RNase and DNase like activity and may be targeting nucleic acid of viruses directly. Recently, the antifungal, antibacterial, and antiinsect properties of AVPs have also been demonstrated. Gene encoding for AVPs has been used for the development of transgenic resistant crops to a broad range of plant pathogens and insect pests. However, the cytotoxicity has been observed in transgenic crops using AVP gene in some cases which can be a limiting factor for its application in agriculture. In this review, we have reviewed various aspects of AVPs particularly their characteristics, possible mode of action and application.
Collapse
Affiliation(s)
- Nandlal Choudhary
- Amity Institute of Virology & Immunology, Amity University Uttar Pradesh, Noida, 201313 India
| | - M. L. Lodha
- Division of Biochemistry, Indian Agricultural Research Institute, Pusa, New Delhi, 110012 India
| | - V. K. Baranwal
- Division of Plant Pathology, Indian Agricultural Research Institute, Pusa, New Delhi, 110012 India
| |
Collapse
|
10
|
Zhu F, Zhu P, Xu F, Che Y, Ma Y, Ji Z. Alpha-momorcharin enhances Nicotiana benthamiana resistance to tobacco mosaic virus infection through modulation of reactive oxygen species. MOLECULAR PLANT PATHOLOGY 2020; 21:1212-1226. [PMID: 32713165 PMCID: PMC7411664 DOI: 10.1111/mpp.12974] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 05/21/2023]
Abstract
Alpha-momorcharin (α-MMC), a member of the plant ribosomal inactivating proteins (RIPs) family, has been proven to exhibit important biological properties in animals, including antiviral, antimicrobial, and antitumour activities. However, the mechanism by which α-MMC increases plant resistance to viral infections remains unclear. To study the effect of α-MMC on plant viral defence and how α-MMC increases plant resistance to viruses, recombinant DNA and transgenic technologies were employed to investigate the role of α-MMC in Nicotiana benthamiana resistance to tobacco mosaic virus (TMV) infection. Treatment with α-MMC produced through DNA recombinant technology or overexpression of α-MMC mediated by transgenic technology alleviated TMV-induced oxidative damage and reduced the accumulation of reactive oxygen species (ROS) during TMV-green fluorescent protein infection of N. benthamiana. There was a significant decrease in TMV replication in the upper leaves following local α-MMC treatment and in α-MMC-overexpressing plants relative to control plants. These results suggest that application or overexpression of α-MMC in N. benthamiana increases resistance to TMV infection. Finally, our results showed that overexpression of α-MMC up-regulated the expression of ROS scavenging-related genes. α-MMC confers resistance to TMV infection by means of modulating ROS homeostasis through controlling the expression of antioxidant enzyme-encoding genes. Overall, our study revealed a new crosstalk mechanism between α-MMC and ROS during resistance to viral infection and provides a framework to understand the molecular mechanisms of α-MMC in plant defence against viral pathogens.
Collapse
Affiliation(s)
- Feng Zhu
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Peng‐Xiang Zhu
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Fei Xu
- Applied Biotechnology CenterWuhan Institute of BioengineeringWuhanChina
| | - Yan‐Ping Che
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Yi‐Ming Ma
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Zhao‐Lin Ji
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| |
Collapse
|
11
|
Fan X, Wang Y, Guo F, Zhang Y, Jin T. Atomic-resolution structures of type I ribosome inactivating protein alpha-momorcharin with different substrate analogs. Int J Biol Macromol 2020; 164:265-276. [PMID: 32653369 DOI: 10.1016/j.ijbiomac.2020.07.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/26/2020] [Accepted: 07/03/2020] [Indexed: 10/23/2022]
Abstract
Alpha-momorcharin (Alpha-MMC) from the seed of bitter melon is a type I ribosome inactivating protein (RIP) that removes a specific adenine from 28S rRNA and inhibits protein biosynthesis. Here, we report seven crystal complex structures of alpha-MMC with different substrate analogs (adenine, AMP, cAMP, dAMP, ADP, GMP, and xanthosine) at 1.08 Å to 1.52 Å resolution. These structures reveal that not only adenine, but also guanine and their analogs can effectively bind to alpha-MMC. The side chain of Tyr93 adopts two conformations, serving as a switch to open and close the substrate binding pocket of alpha-MMC. Although adenine, AMP, GMP, and guanine are located in a similar active site in different RIPs, residues involved in the interaction between RIPs and substrate analogs are slightly different. Complex structures of alpha-MMC with different substrate analogs solved in this study provide useful information on its enzymatic mechanisms and may enable the development of new inhibitors to treat the poisoning of alpha-MMC.
Collapse
Affiliation(s)
- Xiaojiao Fan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Yang Wang
- Department of Biology, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL 60616, USA
| | - Feng Guo
- Department of Biology, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL 60616, USA
| | - Yuzhu Zhang
- Department of Biology, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL 60616, USA; Processed Foods Research Unit, USDA-ARS, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA.
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China; Department of Biology, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL 60616, USA.
| |
Collapse
|
12
|
Chen YJ, Zhu JQ, Fu XQ, Su T, Li T, Guo H, Zhu PL, Lee SKW, Yu H, Tse AKW, Yu ZL. Ribosome-Inactivating Protein α-Momorcharin Derived from Edible Plant Momordica charantia Induces Inflammatory Responses by Activating the NF-kappaB and JNK Pathways. Toxins (Basel) 2019; 11:toxins11120694. [PMID: 31779275 PMCID: PMC6949964 DOI: 10.3390/toxins11120694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/17/2019] [Accepted: 11/25/2019] [Indexed: 01/25/2023] Open
Abstract
Alpha-momorcharin (α-MMC), a member of the ribosome-inactivating protein (RIP) family, has been found in the seeds of Momordica charantia (bitter melon). α-MMC contributes a number of pharmacological activities; however, its inflammatory properties have not been well studied. Here, we aim to determine the inflammatory responses induced by recombinant α-MMC and identify the underlying mechanisms using cell culture and animal models. Recombinant α-MMC was generated in Rosetta™(DE3)pLysS and purified by the way of nitrilotriacetic acid (NTA) chromatography. Treatment of recombinant α-MMC at 40 μg/mL exerted sub-lethal cytotoxic effect on THP-1 monocytic cells. Transcriptional profiling revealed that various genes coding for cytokines and other proinflammatory proteins were upregulated upon recombinant α-MMC treatment in THP-1 cells, including MCP-1, IL-8, IL-1β, and TNF-α. Recombinant α-MMC was shown to activate IKK/NF-κB and JNK pathways and the α-MMC-induced inflammatory gene expression could be blocked by IKKβ and JNK inhibitors. Furthermore, murine inflammatory models further demonstrated that α-MMC induced inflammatory responses in vivo. We conclude that α-MMC stimulates inflammatory responses in human monocytes by activating of IKK/NF-κB and JNK pathways, raising the possibility that consumption of α-MMC-containing food may lead to inflammatory-related diseases.
Collapse
Affiliation(s)
- Ying-Jie Chen
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jia-Qian Zhu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Xiu-Qiong Fu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Tao Su
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Ting Li
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Hui Guo
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Pei-Li Zhu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Sally Kin-Wah Lee
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Anfernee Kai-Wing Tse
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China
- Correspondence: (A.K.-W.T.); (Z.-L.Y.); Tel.: +86-0756-3620147 (A.K.-W.T.); +852-3411-2465 (Z.-L.Y.)
| | - Zhi-Ling Yu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Correspondence: (A.K.-W.T.); (Z.-L.Y.); Tel.: +86-0756-3620147 (A.K.-W.T.); +852-3411-2465 (Z.-L.Y.)
| |
Collapse
|
13
|
Wong JH, Ng TB, Wang H, Cheung RCF, Ng CCW, Ye X, Yang J, Liu F, Ling C, Chan K, Ye X, Chan WY. Antifungal Proteins with Antiproliferative Activity on Cancer Cells and HIV-1 Enzyme Inhibitory Activity from Medicinal Plants and Medicinal Fungi. Curr Protein Pept Sci 2019; 20:265-276. [PMID: 29895244 DOI: 10.2174/1389203719666180613085704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/10/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022]
Abstract
A variety of fungi, plants, and their different tissues are used in Traditional Chinese Medicine to improve health, and some of them are recommended for dietary therapy. Many of these plants and fungi contain antifungal proteins and peptides which suppress spore germination and hyphal growth in phytopathogenic fungi. The aim of this article is to review antifungal proteins produced by medicinal plants and fungi used in Chinese medicine which also possess anticancer and human immunodeficiency virus-1 (HIV-1) enzyme inhibitory activities.
Collapse
Affiliation(s)
- Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing, China
| | - Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Charlene Cheuk Wing Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiuyun Ye
- National Engineering Laboratory for High-Efficiency Enzyme Expression and College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China
| | - Jie Yang
- National Engineering Laboratory for High-Efficiency Enzyme Expression and College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China
| | - Fang Liu
- Department of Microbiology, Nankai University, Tianjin, China
| | - Chen Ling
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida 32611, FL, United States
| | - Ki Chan
- Biomedical and Tissue Engineering Research Group, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, China
| | - Xiujuan Ye
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, and Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wai Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
14
|
Zhu F, Zhou YK, Ji ZL, Chen XR. The Plant Ribosome-Inactivating Proteins Play Important Roles in Defense against Pathogens and Insect Pest Attacks. FRONTIERS IN PLANT SCIENCE 2018; 9:146. [PMID: 29479367 PMCID: PMC5811460 DOI: 10.3389/fpls.2018.00146] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/25/2018] [Indexed: 05/20/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are toxic N-glycosidases that depurinate eukaryotic and prokaryotic rRNAs, thereby arresting protein synthesis during translation. RIPs are widely found in various plant species and within different tissues. It is demonstrated in vitro and in transgenic plants that RIPs have been connected to defense by antifungal, antibacterial, antiviral, and insecticidal activities. However, the mechanism of these effects is still not completely clear. There are a number of reviews of RIPs. However, there are no reviews on the biological functions of RIPs in defense against pathogens and insect pests. Therefore, in this report, we focused on the effect of RIPs from plants in defense against pathogens and insect pest attacks. First, we summarize the three different types of RIPs based on their physical properties. RIPs are generally distributed in plants. Then, we discuss the distribution of RIPs that are found in various plant species and in fungi, bacteria, algae, and animals. Various RIPs have shown unique bioactive properties including antibacterial, antifungal, antiviral, and insecticidal activity. Finally, we divided the discussion into the biological roles of RIPs in defense against bacteria, fungi, viruses, and insects. This review is focused on the role of plant RIPs in defense against bacteria, fungi, viruses, and insect attacks. The role of plant RIPs in defense against pathogens and insects is being comprehended currently. Future study utilizing transgenic technology approaches to study the mechanisms of RIPs will undoubtedly generate a better comprehending of the role of plant RIPs in defense against pathogens and insects. Discovering additional crosstalk mechanisms between RIPs and phytohormones or reactive oxygen species (ROS) against pathogen and insect infections will be a significant subject in the field of biotic stress study. These studies are helpful in revealing significance of genetic control that can be beneficial to engineer crops tolerance to biotic stress.
Collapse
|
15
|
Yang T, Meng Y, Chen LJ, Lin HH, Xi DH. The Roles of Alpha-Momorcharin and Jasmonic Acid in Modulating the Response of Momordica charantia to Cucumber Mosaic Virus. Front Microbiol 2016; 7:1796. [PMID: 27881976 PMCID: PMC5101195 DOI: 10.3389/fmicb.2016.01796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/25/2016] [Indexed: 01/25/2023] Open
Abstract
Alpha-momorcharin (α-MMC) is a type-I ribosome inactivating protein with a molecular weight of 29 kDa that is found in Momordica charantia, and has been shown to be effective against a broad range of human viruses as well as having anti-tumor activities. However, the role of endogenous α-MMC under viral infection and the mechanism of the anti-viral activities of α-MMC in plants are still unknown. To study the effect of α-MMC on plant viral defense and how α-MMC increases plant resistance to virus, the M. charantia–cucumber mosaic virus (CMV) interaction system was investigated. The results showed that the α-MMC level was positively correlated with the resistance of M. charantia to CMV. α-MMC treatment could alleviate photosystem damage and enhance the ratio of glutathione/glutathione disulfide in M. charantia under CMV infection. The relationship of α-MMC and defense related phytohormones, and their roles in plant defense were further investigated. α-MMC treatment led to a significant increase of jasmonic acid (JA) and vice versa, while there was no obvious relevance between salicylic acid and α-MMC. In addition, reactive oxygen species (ROS) were induced in α-MMC-pretreated plants, in a similar way to the ROS burst in JA-pretreated plants. The production of ROS in both ibuprofen (JA inhibitor) and (α-MMC+ibuprofen)-pretreated plants was reduced markedly, leading to a greater susceptibility of M. charantia to CMV. Our results indicate that the anti-viral activities of α-MMC in M. charantia may be accomplished through the JA related signaling pathway.
Collapse
Affiliation(s)
- Ting Yang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University Chengdu, China
| | - Yao Meng
- School of Medical Laboratory Science, Chengdu Medical College Chengdu, China
| | - Li-Juan Chen
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University Chengdu, China
| | - Hong-Hui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University Chengdu, China
| | - De-Hui Xi
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University Chengdu, China
| |
Collapse
|
16
|
Mei J, Ding Y, Li Y, Tong C, Du H, Yu Y, Wan H, Xiong Q, Yu J, Liu S, Li J, Qian W. Transcriptomic comparison between Brassica oleracea and rice (Oryza sativa) reveals diverse modulations on cell death in response to Sclerotinia sclerotiorum. Sci Rep 2016; 6:33706. [PMID: 27647523 PMCID: PMC5028746 DOI: 10.1038/srep33706] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 09/01/2016] [Indexed: 11/08/2022] Open
Abstract
Sclerotinia stem rot caused by Sclerotinia sclerotiorum is a devastating disease of Brassica crops, but not in rice. The leaves of a rice line, a partial resistant (R) and a susceptible (S) Brassica oleracea pool that bulked from a resistance-segregating F2 population were employed for transcriptome sequencing before and after inoculation by S. sclerotiorum for 6 and 12 h. Distinct transcriptome profiles were revealed between B. oleracea and rice in response to S. sclerotiorum. Enrichment analyses of GO and KEGG indicated an enhancement of antioxidant activity in the R B. oleracea and rice, and histochemical staining exhibited obvious lighter reactive oxygen species (ROS) accumulation and cell death in rice and the R B. oleracea as compared to that in the S B. oleracea. Significant enhancement of Ca(2+) signalling, a positive regulator of ROS and cell death, were detected in S B. oleracea after inoculation, while it was significantly repressed in the R B. oleracea group. Obvious difference was detected between two B. oleracea groups for WRKY transcription factors, particularly for those regulating cell death. These findings suggest diverse modulations on cell death in host in response to S. sclerotiorum. Our study provides useful insight into the resistant mechanism to S. sclerotiorum.
Collapse
Affiliation(s)
- Jiaqin Mei
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Yijuan Ding
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Yuehua Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Chaobo Tong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, P.R. China
| | - Hai Du
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Yang Yu
- College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Huafan Wan
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Qing Xiong
- School of Computer and Information Science, Southwest University, Chongqing 400716, China
| | - Jingyin Yu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, P.R. China
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, P.R. China
| | - Jiana Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Wei Qian
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| |
Collapse
|
17
|
Biological and antipathogenic activities of ribosome-inactivating proteins from Phytolacca dioica L. Biochim Biophys Acta Gen Subj 2016; 1860:1256-64. [DOI: 10.1016/j.bbagen.2016.03.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/16/2016] [Accepted: 03/07/2016] [Indexed: 12/30/2022]
|
18
|
Citores L, Iglesias R, Gay C, Ferreras JM. Antifungal activity of the ribosome-inactivating protein BE27 from sugar beet (Beta vulgaris L.) against the green mould Penicillium digitatum. MOLECULAR PLANT PATHOLOGY 2016; 17:261-271. [PMID: 25976013 PMCID: PMC6638414 DOI: 10.1111/mpp.12278] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The ribosome-inactivating protein BE27 from sugar beet (Beta vulgaris L.) leaves is an apoplastic protein induced by signalling compounds, such as hydrogen peroxide and salicylic acid, which has been reported to be involved in defence against viruses. Here, we report that, at a concentration much lower than that present in the apoplast, BE27 displays antifungal activity against the green mould Penicillium digitatum, a necrotrophic fungus that colonizes wounds and grows in the inter- and intracellular spaces of the tissues of several edible plants. BE27 is able to enter into the cytosol and kill fungal cells, thus arresting the growth of the fungus. The mechanism of action seems to involve ribosomal RNA (rRNA) N-glycosylase activity on the sarcin-ricin loop of the major rRNA which inactivates irreversibly the fungal ribosomes, thus inhibiting protein synthesis. We compared the C-terminus of the BE27 structure with antifungal plant defensins and hypothesize that a structural motif composed of an α-helix and a β-hairpin, similar to the γ-core motif of defensins, might contribute to the specific interaction with the fungal plasma membranes, allowing the protein to enter into the cell.
Collapse
Affiliation(s)
- Lucía Citores
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, 47011, Valladolid, Spain
| | - Rosario Iglesias
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, 47011, Valladolid, Spain
| | - Carolina Gay
- Laboratory of Research on Proteins, Faculty of Exact and Natural Sciences and Surveying, National University of the Northeast (UNNE), 3400, Corrientes, Argentina
| | - José Miguel Ferreras
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, 47011, Valladolid, Spain
| |
Collapse
|
19
|
Wang S, Li Z, Li S, Di R, Ho CT, Yang G. Ribosome-inactivating proteins (RIPs) and their important health promoting property. RSC Adv 2016. [DOI: 10.1039/c6ra02946a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Ribosome-inactivating proteins (RIPs), widely present in plants, certain fungi and bacteria, can inhibit protein synthesis by removing one or more specific adenine residues from the large subunit of ribosomal RNAs (rRNAs).
Collapse
Affiliation(s)
- Shuzhen Wang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains
- College of Life Science
- Huanggang Normal University
- Huanggang
| | - Zhiliang Li
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains
- College of Life Science
- Huanggang Normal University
- Huanggang
| | - Shiming Li
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains
- College of Life Science
- Huanggang Normal University
- Huanggang
| | - Rong Di
- Department of Plant Biology and Pathology
- Rutgers University
- New Brunswick
- USA
| | - Chi-Tang Ho
- Department of Food Science
- Rutgers University
- New Brunswick
- USA
| | - Guliang Yang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains
- College of Life Science
- Huanggang Normal University
- Huanggang
| |
Collapse
|
20
|
Akkouh O, Ng TB, Cheung RCF, Wong JH, Pan W, Ng CCW, Sha O, Shaw PC, Chan WY. Biological activities of ribosome-inactivating proteins and their possible applications as antimicrobial, anticancer, and anti-pest agents and in neuroscience research. Appl Microbiol Biotechnol 2015; 99:9847-63. [PMID: 26394859 DOI: 10.1007/s00253-015-6941-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/10/2015] [Accepted: 08/13/2015] [Indexed: 02/06/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are enzymes which depurinate ribosomal RNA (rRNA), thus impeding the process of translation resulting in inhibition of protein synthesis. They are produced by various organisms including plants, fungi and bacteria. RIPs from plants are linked to plant defense due to their antiviral, antifungal, antibacterial, and insecticidal activities in which they can be applied in agriculture to combat microbial pathogens and pests. Their anticancer, antiviral, embryotoxic, and abortifacient properties may find medicinal applications. Besides, conjugation of RIPs with antibodies or other carriers to form immunotoxins has been found useful to research in neuroscience and anticancer therapy.
Collapse
Affiliation(s)
- Ouafae Akkouh
- Department of Biology and Medical Laboratory Research, Faculty of Technology, University of Applied Sciences Leiden, Zernikdreef 11, 2333 CK, Leiden, The Netherlands.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Wenliang Pan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Charlene Cheuk Wing Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Ou Sha
- School of Medicine, Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China.
| | - Pang Chui Shaw
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Wai Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| |
Collapse
|
21
|
Yan J, Yuan SS, Jiang LL, Ye XJ, Ng TB, Wu ZJ. Plant antifungal proteins and their applications in agriculture. Appl Microbiol Biotechnol 2015; 99:4961-81. [PMID: 25971197 DOI: 10.1007/s00253-015-6654-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/26/2015] [Accepted: 04/27/2015] [Indexed: 11/24/2022]
Abstract
Fungi are far more complex organisms than viruses or bacteria and can develop numerous diseases in plants that cause loss of a substantial portion of the crop every year. Plants have developed various mechanisms to defend themselves against these fungi which include the production of low-molecular-weight secondary metabolites and proteins and peptides with antifungal activity. In this review, families of plant antifungal proteins (AFPs) including defensins, lectins, and several others will be summarized. Moreover, the application of AFPs in agriculture will also be analyzed.
Collapse
Affiliation(s)
- Juan Yan
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China,
| | | | | | | | | | | |
Collapse
|
22
|
Iglesias R, Citores L, Di Maro A, Ferreras JM. Biological activities of the antiviral protein BE27 from sugar beet (Beta vulgaris L.). PLANTA 2015; 241:421-433. [PMID: 25326773 DOI: 10.1007/s00425-014-2191-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/12/2014] [Indexed: 06/04/2023]
Abstract
The ribosome inactivating protein BE27 displays several biological activities in vitro that could result in a broad action against several types of pathogens. Beetin 27 (BE27), a ribosome-inactivating protein (RIP) from sugar beet (Beta vulgaris L.) leaves, is an antiviral protein induced by virus and signaling compounds such as hydrogen peroxide and salicylic acid. Its role as a defense protein has been attributed to its RNA polynucleotide:adenosine glycosidase activity. Here we tested other putative activities of BE27 that could have a defensive role against pathogens finding that BE27 displays rRNA N-glycosidase activity against yeast and Agrobacterium tumefaciens ribosomes, DNA polynucleotide:adenosine glycosidase activity against herring sperm DNA, and magnesium-dependent endonuclease activity against the supercoiled plasmid PUC19 (nicking activity). The nicking activity could be a consequence of an unusual conformation of the BE27 active site, similar to that of PD-L1, a RIP from Phytolacca dioica L. leaves. Additionally, BE27 possesses superoxide dismutase activity, thus being able to produce the signal compound hydrogen peroxide. BE27 is also toxic to COLO 320 cells, inducing apoptosis in these cells by either activating the caspase pathways and/or inhibiting protein synthesis. The combined effect of these biological activities could result in a broad action against several types of pathogens such as virus, bacteria, fungi or insects.
Collapse
Affiliation(s)
- Rosario Iglesias
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, 47011, Valladolid, Spain
| | | | | | | |
Collapse
|