1
|
Groover A, Holbrook NM, Polle A, Sala A, Medlyn B, Brodersen C, Pittermann J, Gersony J, Sokołowska K, Bogar L, McDowell N, Spicer R, David-Schwartz R, Keller S, Tschaplinski TJ, Preisler Y. Tree drought physiology: critical research questions and strategies for mitigating climate change effects on forests. THE NEW PHYTOLOGIST 2025; 245:1817-1832. [PMID: 39690524 DOI: 10.1111/nph.20326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
Droughts of increasing severity and frequency are a primary cause of forest mortality associated with climate change. Yet, fundamental knowledge gaps regarding the complex physiology of trees limit the development of more effective management strategies to mitigate drought effects on forests. Here, we highlight some of the basic research needed to better understand tree drought physiology and how new technologies and interdisciplinary approaches can be used to address them. Our discussion focuses on how trees change wood development to mitigate water stress, hormonal responses to drought, genetic variation underlying adaptive drought phenotypes, how trees 'remember' prior stress exposure, and how symbiotic soil microbes affect drought response. Next, we identify opportunities for using research findings to enhance or develop new strategies for managing drought effects on forests, ranging from matching genotypes to environments, to enhancing seedling resilience through nursery treatments, to landscape-scale monitoring and predictions. We conclude with a discussion of the need for co-producing research with land managers and extending research to forests in critical ecological regions beyond the temperate zone.
Collapse
Affiliation(s)
- Andrew Groover
- USDA Forest Service Northern Research Station, Burlington, VT, 05446, USA
- Institute of Forest Genetics, USDA Forest Service Pacific Southwest Research Station, Placerville, CA, 95667, USA
| | - N Michele Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Anna Sala
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Belinda Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Jarmila Pittermann
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95060, USA
| | - Jessica Gersony
- Department of Biological Sciences, Smith College, Northampton, MA, 01060, USA
| | - Katarzyna Sokołowska
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328, Wrocław, Poland
| | - Laura Bogar
- Department of Plant Biology, University of California Davis, Davis, CA, 95616, USA
| | - Nate McDowell
- Atmospheric, Climate, and Earth Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Rachel Spicer
- Department of Botany, Connecticut College, New London, CT, 06320, USA
| | - Rakefet David-Schwartz
- Institute of Plant Sciences, Agricultural Research Organization - Volcani Institute, 68 HaMaccabim Road, Rishon Lezion, 7505101, Israel
| | - Stephen Keller
- Department of Plant Biology, University of Vermont, Burlington, VT, 05405, USA
| | | | - Yakir Preisler
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Agriculture Research Organization - Volcani Institute, 68 HaMaccabim Road, Rishon Lezion, 7505101, Israel
| |
Collapse
|
2
|
Li S, Yan J, Chen LG, Meng G, Zhou Y, Wang CM, Jiang L, Luo J, Jiang Y, Li QF, Tang W, He JX. Brassinosteroid regulates stomatal development in etiolated Arabidopsis cotyledons via transcription factors BZR1 and BES1. PLANT PHYSIOLOGY 2024; 195:1382-1400. [PMID: 38345866 DOI: 10.1093/plphys/kiae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/19/2023] [Indexed: 06/02/2024]
Abstract
Brassinosteroids (BRs) are phytohormones that regulate stomatal development. In this study, we report that BR represses stomatal development in etiolated Arabidopsis (Arabidopsis thaliana) cotyledons via transcription factors BRASSINAZOLE RESISTANT 1 (BZR1) and bri1-EMS SUPPRESSOR1 (BES1), which directly target MITOGEN-ACTIVATED PROTEIN KINASE KINASE 9 (MKK9) and FAMA, 2 important genes for stomatal development. BZR1/BES1 bind MKK9 and FAMA promoters in vitro and in vivo, and mutation of the BZR1/BES1 binding motif in MKK9/FAMA promoters abolishes their transcription regulation by BZR1/BES1 in plants. Expression of a constitutively active MKK9 (MKK9DD) suppressed overproduction of stomata induced by BR deficiency, while expression of a constitutively inactive MKK9 (MKK9KR) induced high-density stomata in bzr1-1D. In addition, bzr-h, a sextuple mutant of the BZR1 family of proteins, produced overabundant stomata, and the dominant bzr1-1D and bes1-D mutants effectively suppressed the stomata-overproducing phenotype of brassinosteroid insensitive 1-116 (bri1-116) and brassinosteroid insensitive 2-1 (bin2-1). In conclusion, our results revealed important roles of BZR1/BES1 in stomatal development, and their transcriptional regulation of MKK9 and FAMA expression may contribute to BR-regulated stomatal development in etiolated Arabidopsis cotyledons.
Collapse
Affiliation(s)
- Shuo Li
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 00000, China
- Ministry of Education Key Laboratory of Plant Development and Environmental Adaptation Biology, School of Life Sciences, Shandong University, Qingdao 266237, Shandong, China
| | - Jin Yan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Lian-Ge Chen
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Guanghua Meng
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 00000, China
| | - Yuling Zhou
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 00000, China
| | - Chun-Ming Wang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 00000, China
| | - Lei Jiang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 00000, China
| | - Juan Luo
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 00000, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, Guangdong, China
| | - Qian-Feng Li
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 00000, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Wenqiang Tang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Jun-Xian He
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 00000, China
| |
Collapse
|
3
|
da Silva Cunha LF, de Oliveira VP, do Nascimento AWS, da Silva BRS, Batista BL, Alsahli AA, Lobato AKDS. Leaf application of 24-epibrassinolide mitigates cadmium toxicity in young Eucalyptus urophylla plants by modulating leaf anatomy and gas exchange. PHYSIOLOGIA PLANTARUM 2021; 173:67-87. [PMID: 32767360 DOI: 10.1111/ppl.13182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/25/2020] [Accepted: 08/04/2020] [Indexed: 05/08/2023]
Abstract
Cadmium (Cd2+) soil pollution is a global environmental problem caused by the high toxicity of Cd. 24-Epibrassinolide (EBR) is a biodegradable plant steroid involved in response modulation to biotic and abiotic stresses. The aim of this study was to evaluate if the leaf-application of EBR improves the gas exchange and possible repercussions on leaf anatomy in young Eucalyptus urophylla plants exposed to Cd toxicity. The experiment involved six treatments, which included three Cd concentrations (0, 450, and 900 μM) and two EBR concentrations (0 and 100 nM, described as - EBR and + EBR, respectively). Plants exposed to Cd toxicity suffered decreases in leaf anatomical and gas exchange parameters. However, the plants treated with EBR + 900 μM Cd showed an increase of 46%, 40%, and 54% in the net photosynthetic rate, water-use efficiency, and instantaneous carboxylation efficiency, respectively. The EBR application-induced improvements in gas exchange parameters, causing beneficial effects on the photosynthetic apparatus, mainly the effective quantum yield of photosystem II (PSII) photochemistry and electron transport rate. Furthermore, this steroid mitigated the effect of Cd toxicity on leaf anatomical variables, more specifically palisade and spongy parenchyma, which are intrinsically related to stomatal density, and stimulated the net photosynthetic rate of plants.
Collapse
Affiliation(s)
- Luiz Felipe da Silva Cunha
- Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazônia. Paragominas, Pará, Brazil
| | - Victor Pereira de Oliveira
- Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazônia. Paragominas, Pará, Brazil
| | | | | | - Bruno Lemos Batista
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil
| | - Abdulaziz Abdullah Alsahli
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | | |
Collapse
|
4
|
Jiang H, Tang B, Xie Z, Nolan T, Ye H, Song GY, Walley J, Yin Y. GSK3-like kinase BIN2 phosphorylates RD26 to potentiate drought signaling in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:923-937. [PMID: 31357236 DOI: 10.1111/tpj.14484] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 07/14/2019] [Accepted: 07/16/2019] [Indexed: 05/28/2023]
Abstract
Plant steroid hormones brassinosteroids (BRs) regulate plant growth and development at many different levels. Recent research has revealed that stress-responsive NAC (petunia NAM and Arabidopsis ATAF1, ATAF2, and CUC2) transcription factor RD26 is regulated by BR signaling and antagonizes BES1 in the interaction between growth and drought stress signaling. However, the upstream signaling transduction components that activate RD26 during drought are still unknown. Here, we demonstrate that the function of RD26 is modulated by GSK3-like kinase BIN2 and protein phosphatase 2C ABI1. We show that ABI1, a negative regulator in abscisic acid (ABA) signaling, dephosphorylates and destabilizes BIN2 to inhibit BIN2 kinase activity. RD26 protein is stabilized by ABA and dehydration in a BIN2-dependent manner. BIN2 directly interacts and phosphorylates RD26 in vitro and in vivo. BIN2 phosphorylation of RD26 is required for RD26 transcriptional activation on drought-responsive genes. RD26 overexpression suppressed the brassinazole (BRZ) insensitivity of BIN2 triple mutant bin2 bil1 bil2, and BIN2 function is required for the drought tolerance of RD26 overexpression plants. Taken together, our data suggest a drought signaling mechanism in which drought stress relieves ABI1 inhibition of BIN2, allowing BIN2 activation. Sequentially, BIN2 phosphorylates and stabilizes RD26 to promote drought stress response.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Buyun Tang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Zhouli Xie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Trevor Nolan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Huaxun Ye
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Gao-Yuan Song
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, 50011, USA
| | - Justin Walley
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, 50011, USA
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, 50011, USA
| |
Collapse
|
5
|
Stomatal Response of Maize (Zea mays L.) to Crude Oil Contamination in Soils. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9194074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this study, maize plant was cultured in soil contaminated with different levels of crude oil. The purpose was to investigate the change of soil properties, leaf physiological and chemical parameters, and phenanthrene content in the leaf. Results showed that soil water content significantly increased when the levels of total petroleum hydrocarbons were 3700–17,800 mg/kg in soil, and soil electrical conductivity significantly increased compared with the control. In maize leaf, stomatal length and density, as well as K and Na contents decreased in contaminated treatments compared with the control. Stomatal length has a significant positive correlation with K content in leaf (r = 0.92, p < 0.01), while stomatal density was negatively correlated to the crude oil level in soil (r = −0.91, p < 0.05). Accumulation of phenanthrene in maize leaf was mainly through the foliar uptake pathway. Phenanthrene concentrations of maize leaf in oil-treated soil were less than that of the control, which exhibited a significant positive relationship with stomatal length (r = 0.98, p < 0.01). This study demonstrated that the stomata structure of maize could be influenced by crude oil and thus possibly controlling the accumulation of polycyclic aromatic hydrocarbons in aerial tissues. Based on these results, controlling stomata movement will be beneficial to phytoremediation of contaminated soil.
Collapse
|
6
|
Suzuki T, Matsushima C, Nishimura S, Higashiyama T, Sasabe M, Machida Y. Identification of Phosphoinositide-Binding Protein PATELLIN2 as a Substrate of Arabidopsis MPK4 MAP Kinase during Septum Formation in Cytokinesis. PLANT & CELL PHYSIOLOGY 2016; 57:1744-55. [PMID: 27335345 PMCID: PMC4970614 DOI: 10.1093/pcp/pcw098] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 05/05/2016] [Indexed: 05/19/2023]
Abstract
The phosphorylation of proteins by protein kinases controls many cellular and physiological processes, which include intracellular signal transduction. However, the underlying molecular mechanisms of such controls and numerous substrates of protein kinases remain to be characterized. The mitogen-activated protein kinase (MAPK) cascade is of particular importance in a variety of extracellular and intracellular signaling processes. In plant cells, the progression of cytokinesis is an excellent example of an intracellular phenomenon that requires the MAPK cascade. However, the way in which MAPKs control downstream processes during cytokinesis in plant cells remains to be fully determined. We show here that comparisons, by two-dimensional difference gel electrophoresis, of phosphorylated proteins from wild-type Arabidopsis thaliana and mutant plants defective in a MAPK cascade allow identification of substrates of a specific MAPK. Using this method, we identified the PATELLIN2 (PATL2) protein, which has a SEC14 domain, as a substrate of MPK4 MAP kinase. PATL2 was concentrated at the cell division plane, as is MPK4, and had binding affinity for phosphoinositides. This binding affinity was altered after phosphorylation of PATL2 by MPK4, suggesting a role for the MAPK cascade in the formation of cell plates via regeneration of membranes during cytokinesis.
Collapse
Affiliation(s)
- Takamasa Suzuki
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan JST, ERATO, Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan Present address: College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Chiyuki Matsushima
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Shingo Nishimura
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan
| | - Tetsuya Higashiyama
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan JST, ERATO, Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan
| | - Michiko Sasabe
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, 036-8561 Japan
| | - Yasunori Machida
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan
| |
Collapse
|
7
|
Xu F, Xi ZM, Zhang H, Zhang CJ, Zhang ZW. Brassinosteroids are involved in controlling sugar unloading in Vitis vinifera 'Cabernet Sauvignon' berries during véraison. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 94:197-208. [PMID: 26760954 DOI: 10.1016/j.plaphy.2015.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/25/2015] [Accepted: 06/08/2015] [Indexed: 05/02/2023]
Abstract
Sugar unloading in grape berries is a crucial step in the long-distance transport of carbohydrates from grapevine leaves to berries. Brassinosteroids (BRs) mediate many physiological processes in plants including carbohydrate metabolism. Here, 'Cabernet Sauvignon' (Vitis vinifera L.) grape berries cultivated in clay loam fields were treated with an exogenous BR (24-epibrassinolide; EBR), a BR synthesis inhibitor (brassinazole; Brz), Brz + EBR (sprayed with EBR 24 h after a Brz treatment), and deionized water (control) at the onset of véraison. The EBR treatment sharply increased the soluble sugars content in the berries, but decreased it in the skins. The EBR and Brz + EBR treatments significantly promoted the activities of both invertases (acidic and neutral) and sucrose synthase (sucrolytic) at various stages of ripening. The mRNA levels of genes encoding sucrose metabolic invertase (VvcwINV), and monosaccharide (VvHT3, 4, 5 and 6) and disaccharide (VvSUC12 and 27) transporters were increased by the EBR and/or Brz + EBR treatments. Generally, the effects of the Brz treatment on the measured targets contrasted with the effects of the EBR treatments. The EBR and Brz treatments inhibited the biosynthesis of the endogenous BRs 6-deoxocastastarone and castasterone. Both EBR and Brz + EBR treatments increased the brassinolide contents, down-regulated the expression of genes encoding BRs biosynthetic enzymes BRASSINOSTEROID-6-OXIDASE and DWARF1, (VvBR6OX1 and VvDWF1) and induced BR receptor gene BRASSINOSTEROID INSENSITIVE 1 (VvBRI1) expression in deseeded berries. Together, these results show that BRs are involved in controlling sugar unloading in grape berries during véraison.
Collapse
Affiliation(s)
- Fan Xu
- College of Enology, Northwest A&F University, Yangling 712100, China.
| | - Zhu-Mei Xi
- College of Enology, Northwest A&F University, Yangling 712100, China; Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, China.
| | - Hui Zhang
- College of Enology, Northwest A&F University, Yangling 712100, China.
| | - Cheng-Jun Zhang
- College of Enology, Northwest A&F University, Yangling 712100, China.
| | - Zhen-Wen Zhang
- College of Enology, Northwest A&F University, Yangling 712100, China; Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, China.
| |
Collapse
|