1
|
Tariq TB, Munir F, Jabeen I, Gul A, Amir R. Molecular modelling and gene expression analysis to probe the GT-γ trihelix transcription factors in Solanum tuberosum under drought stress. Sci Rep 2025; 15:12471. [PMID: 40216884 PMCID: PMC11992213 DOI: 10.1038/s41598-025-96485-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
GT-γ transcription factors, a subfamily known for their involvement in stress responses, remain uncharacterized in Solanum tuberosum under drought stress. This study employed in-silico approaches and in-vitro expression profiling in differential tissues to investigate StGTγ-1, StGTγ-2, StGTγ-3, and StGTγ-4 potential role in the potato's drought tolerance mechanisms. Analysis of cis-regulatory elements showed complex networks controlling stress response. Alpha helices were prevalent in their structures, possibly aiding protein stability and interaction. Additionally, intrinsically disordered regions were observed in some StGT-γ proteins, suggesting their role in stress adaptation through flexibility. Protein structure modeling and validation revealed structural diversity within the GT-γ family, potentially reflecting variations in functionalities. Physicochemical analysis highlighted differences in protein properties that could influence their nuclear function. Post-translational modifications further diversified their functionalities. Subcellular localization prediction and topology analysis confirmed their nuclear localization, aligning with the anticipated role in transcriptional regulation. GT-γ proteins likely regulate genes due to structural variations. This is based on the presence of DNA-binding domains and functional annotation suggesting roles in metabolism, gene expression, and stress response. Molecular docking predicted partners involved in drought response, indicating GT-γ proteins' role in drought tolerance networks. Identified StGT-γ genes were highly expressed in leaves after 14 days of drought stress, indicating their key role in protecting this vulnerable tissue during drought. This study enhances understanding of GT-γ factors and provides a foundation for the functional characterization and in-depth exploration of the role and regulatory mechanisms of GT-γ genes in potato's response to drought stress.
Collapse
Affiliation(s)
- Tayyaba Bint Tariq
- Department of Agricultural Sciences and Technology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Faiza Munir
- Department of Agricultural Sciences and Technology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| | - Ishrat Jabeen
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Alvina Gul
- Department of Agricultural Sciences and Technology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rabia Amir
- Department of Agricultural Sciences and Technology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
2
|
Safari M, Majidi MM. Role of genetic diversity and salicylic acid in drought stress memory of tall fescue. Sci Rep 2025; 15:7932. [PMID: 40050334 PMCID: PMC11885612 DOI: 10.1038/s41598-025-92155-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/25/2025] [Indexed: 03/09/2025] Open
Abstract
Understanding the concequence of drought stress memory and its interaction with genetic diversity and pollination system is critical for improving resilience in turf and forage grasses like tall fescue. With global warming and the predicted occurrence of frequent drought stresses in the future, little is known about these effects, especially on morphological traits, physiological responses, root characteristics, and spectral reflectance indices (SRIs). This study addresses the knowledge gap by evaluating the effects of drought memory in tall fescue using four parental clones (two drought-sensitive and two drought-tolerant), which were manually controlled to produce four selfed (S1) and four open-pollinated (OP) genotypes. Over two years, these genotypes were exposed to five moisture treatments: control (C), two treatments with twice applications of drought stress (primary mild drought stress in two different stages and secondary at the end stage, D1t1D2 and D1t2D2), one severe drought stress treatment (secondary only, D2), and foliar spray of salicylic acid (SA) under end-stage drought stress (H2D2). Selfing induced inbreeding depression, reducing relative water content (RWC), growth, chlorophyll, carotenoid content, catalase activity and root length. Alterations in natural plant mating systems can modify the genetic structure of tall fescue germplasm. Drought memory (D1t1D2 and D1t2D2) improved RWC, root-to-shoot ratio, and most physiological traits, especially pigment content, particularly in drought-tolerant and OP genotypes. SA treatment was more effective in mitigating drought effects in S1 than OP. Significant genetic variation in SRIs was observed, indicating their potential as predictive tools physiological traits. These findings provide insights into breeding strategies and highlight the importance of leveraging drought memory and genetic diversity to enhance drought resilience in tall fescue.
Collapse
Affiliation(s)
- Maryam Safari
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohammad Mahdi Majidi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| |
Collapse
|
3
|
Zheng S, Zhao W, Liu Z, Geng Z, Li Q, Liu B, Li B, Bai J. Establishment and Maintenance of Heat-Stress Memory in Plants. Int J Mol Sci 2024; 25:8976. [PMID: 39201662 PMCID: PMC11354667 DOI: 10.3390/ijms25168976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Among the rich repertoire of strategies that allow plants to adapt to high-temperature stress is heat-stress memory. The mechanisms underlying the establishment and maintenance of heat-stress memory are poorly understood, although the chromatin opening state appears to be an important structural basis for maintaining heat-stress memory. The chromatin opening state is influenced by epigenetic modifications, making DNA and histone modifications important entry points for understanding heat-shock memory. Current research suggests that traditional heat-stress signaling pathway components might be involved in chromatin opening, thereby promoting the establishment of heat-stress memory in plants. In this review, we discuss the relationship between chromatin structure-based maintenance and the establishment of heat-stress memory. We also discuss the association between traditional heat-stress signals and epigenetic modifications. Finally, we discuss potential research ideas for exploring plant adaptation to high-temperature stress in the future.
Collapse
Affiliation(s)
- Shuzhi Zheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Weishuang Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zimeng Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Ziyue Geng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Qiang Li
- Dryland Farming Institute of Hebei Academy of Agricultural and Forestry Science, Key Laboratory of Crop Drought Tolerance Research of Hebei Province, Hengshui 053000, China
| | - Binhui Liu
- Dryland Farming Institute of Hebei Academy of Agricultural and Forestry Science, Key Laboratory of Crop Drought Tolerance Research of Hebei Province, Hengshui 053000, China
| | - Bing Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Jiaoteng Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
4
|
Zhang L, Wang X, Zu Y, He Y, Li Z, Li Y. Effects of UV-B Radiation Exposure on Transgenerational Plasticity in Grain Morphology and Proanthocyanidin Content in Yuanyang Red Rice. Int J Mol Sci 2024; 25:4766. [PMID: 38731985 PMCID: PMC11084601 DOI: 10.3390/ijms25094766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The effect of UV-B radiation exposure on transgenerational plasticity, the phenomenon whereby the parental environment influences both the parent's and the offspring's phenotype, is poorly understood. To investigate the impact of exposing successive generations of rice plants to UV-B radiation on seed morphology and proanthocyanidin content, the local traditional rice variety 'Baijiaolaojing' was planted on terraces in Yuanyang county and subjected to enhanced UV-B radiation treatments. The radiation intensity that caused the maximum phenotypic plasticity (7.5 kJ·m-2) was selected for further study, and the rice crops were cultivated for four successive generations. The results show that in the same generation, enhanced UV-B radiation resulted in significant decreases in grain length, grain width, spike weight, and thousand-grain weight, as well as significant increases in empty grain percentage and proanthocyanidin content, compared with crops grown under natural light conditions. Proanthocyanidin content increased as the number of generations of rice exposed to radiation increased, but in generation G3, it decreased, along with the empty grain ratio. At the same time, biomass, tiller number, and thousand-grain weight increased, and rice growth returned to control levels. When the offspring's radiation memory and growth environment did not match, rice growth was negatively affected, and seed proanthocyanidin content was increased to maintain seed activity. The correlation analysis results show that phenylalanine ammonialyase (PAL), cinnamate-4-hydroxylase (C4H), dihydroflavonol 4-reductase (DFR), and 4-coumarate:CoA ligase (4CL) enzyme activity positively influenced proanthocyanidin content. Overall, UV-B radiation affected transgenerational plasticity in seed morphology and proanthocyanidin content, showing that rice was able to adapt to this stressor if previous generations had been continuously exposed to treatment.
Collapse
Affiliation(s)
- Lin Zhang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Xiupin Wang
- College of Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yanqun Zu
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Yongmei He
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Zuran Li
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China
| | - Yuan Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
5
|
Nourbakhsh V, Majidi MM, Mirmohammady Maibody SAM, Abtahi M. Drought stress memory in orchard grass and the role of marker-based parental selection for physiological and antioxidant responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108061. [PMID: 37847971 DOI: 10.1016/j.plaphy.2023.108061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/04/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023]
Abstract
Drought stress memory occurring in some plants plays a crucial role in their adaptation to unfavorable conditions. However, in open-pollinated plants, this phenomenon is assumed to be affected by population plasticity resulting from kind and level of diversity and inbreeding depression. Physiological perspectives of drought stress memory in four synthetic poly-crossed populations (groups) of orchard grass (Dactylis glomerata) constructed from parental genotypes with contrasting levels (narrow and wide) of molecular and morphological genetic variation were assessed. Populations of two generations (Syn1 and Syn2) were developed and were subjected to three moisture treatments, including normal irrigation (C), primary mild stress-secondary intense stress (D1D2), and secondary intense stress (D2). Pre-exposure to drought significantly improved the mean values of leaf water, chlorophyll, proline, and ascorbate peroxidase compared to intense stress, leading to more effective memory responses. Superiority of groups with high levels of molecular diversity for most traits, suggesting that the molecular genetic distance among parents is an effective predictor of progeny performance. The results indicated that the fitness of progenies of the four polycross groups declines significantly from Syn1 to Syn2, however the magnitude of observed inbreeding depends on the level of diversity and moisture conditions. We propose a hypothesis that underscores the interplay between genetic diversity among parents and drought stress memory providing valuable insights for developing new synthetic varieties in open-pollinated grasses. Specifically, we posit that higher molecular diversity among parental genotypes enhances the potential for robust drought stress memory, thereby contributing to improved progeny fitness under unfavorable conditions.
Collapse
Affiliation(s)
- Venus Nourbakhsh
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohammad Mahdi Majidi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | | | - Mozhgan Abtahi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
6
|
Kumar R, Adhikary A, Saini R, Khan SA, Yadav M, Kumar S. Drought priming induced thermotolerance in wheat (Triticum aestivum L.) during reproductive stage; a multifaceted tolerance approach against terminal heat stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107840. [PMID: 37379659 DOI: 10.1016/j.plaphy.2023.107840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/18/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023]
Abstract
In wheat (Triticum aestivum L.), terminal heat stress obstructs reproductive functioning eventually leading to yield loss. Drought priming during the vegetative stage can trigger a quicker and effective defense response against impending high temperature stress and improve crop production. In the present study, two contrasting wheat cultivars (PBW670 and C306) were subjected to moderate drought stress of 50-55% field capacity for eight days during the jointing stage to generate drought priming (DP) response. Fifteen days after anthesis heat stress (36 °C) was imposed for three days and physiological response of primed, and non-primed plants was assessed by analyzing membrane damage, water status and antioxidative enzymes. Heat shock transcription factors (14 TaHSFs), calmodulin (TaCaM5), antioxidative genes (TaSOD, TaPOX), polyamine biosynthesis genes and glutathione biosynthesis genes were analyzed. GC-MS based untargeted metabolite profiling was carried out to underpin the associated metabolic changes. Yield related parameters were recorded at maturity to finally assess the priming response. Heat stress response was visible from day one of exposure in terms of membrane damage and elevated antioxidative enzymes activity. DP reduced the impact of heat stress by lowering the membrane damage (ELI, MDA & LOX) and enhancing antioxidative enzyme activity except APX in both the cultivars. Drought priming upregulated the expression of HSFs, calmodulin, antioxidative genes, polyamines, and the glutathione biosynthesis genes. Drought priming altered key amino acids, carbohydrate, and fatty acid metabolism in PBW670 but also promoted thermotolerance in C306. Overall, DP provided a multifaceted approach against heat stress and positive association with yield.
Collapse
Affiliation(s)
- Rashpal Kumar
- Centre for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Arindam Adhikary
- Centre for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Rashmi Saini
- Centre for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Shahied Ahmed Khan
- Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Manisha Yadav
- Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Sanjeev Kumar
- Centre for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India; Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
7
|
Huang B, Wang P, Jin L, Yv X, Wen M, Wu S, Liu F, Xu J. Methylome and transcriptome analysis of flowering branches building of Citrus plants induced by drought stress. Gene 2023:147595. [PMID: 37385391 DOI: 10.1016/j.gene.2023.147595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Citrus plants exhibit positive floral response under water stress conditions, however, the mechanistic understanding of floral induction remains largely unexplored in water deficit. In this study, DNA methylomic and transcriptomic analyses were integrated to explore the flowering bud formation as well as branches building after light drought stress. While comparing with the conventional watering group (CK), the light drought group treated with five months (LD) showed a significant increase in the flowering branches, whereas an apparent decrease in vegetative branches. Global DNA methylation analysis showed that the LD Group acquired DNA methylation in more than 70090 genomic regions and lost DNA methylation in about 18421 genomic regions compared with normal watering group, this indicates that water deficiency leads to a global increase in the expression of DNA methylation in citrus. In the same time, we verified that the increase of DNA methylation level in LD group was correlated with the decrease of DNA demethylase related gene expression. Interestingly, in transcription analysis, it was found that the promoting flower genes of the LD group did not increase but decreased similarly with repressing genes, which is contrary to the intended result. Thus, we thought the lower expression of suppressors FLC and BFT were the key influencing factor to stimulate the flowering branches formation after LD treatment. Moreover, there was a strong negative correlation between the genes expression level and methylation level of the flowering induction/flower development genes. In general, we thought high global DNA methylation level induced by water deficit regulate the flowering branches building by reducing FLC and BFT genes expression.
Collapse
Affiliation(s)
- Bei Huang
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China
| | - Peng Wang
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China
| | - Longfei Jin
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China
| | - Xiaofeng Yv
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Mingxia Wen
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China
| | - Shaohui Wu
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China
| | - Feng Liu
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China
| | - Jianguo Xu
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China; National Center for Citrus Variety Improvement, Zhejiang Branches, Taizhou 318026, China
| |
Collapse
|
8
|
Kumar S, Seem K, Mohapatra T. Biochemical and Epigenetic Modulations under Drought: Remembering the Stress Tolerance Mechanism in Rice. Life (Basel) 2023; 13:life13051156. [PMID: 37240801 DOI: 10.3390/life13051156] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
A plant, being a sessile organism, needs to modulate biochemical, physiological, and molecular responses to the environment in a quick and efficient manner to be protected. Drought stress is a frequently occurring abiotic stress that severely affects plant growth, development, and productivity. Short- and long-term memories are well-known phenomena in animals; however, the existence of such remembrance in plants is still being discovered. In this investigation, different rice genotypes were imposed with drought stress just before flowering and the plants were re-watered for recovery from the stress. Seeds collected from the stress-treated (stress-primed) plants were used to raise plants for the subsequent two generations under a similar experimental setup. Modulations in physio-biochemical (chlorophyll, total phenolics and proline contents, antioxidant potential, lipid peroxidation) and epigenetic [5-methylcytosine (5-mC)] parameters were analyzed in the leaves of the plants grown under stress as well as after recovery. There was an increase in proline (>25%) and total phenolic (>19%) contents, antioxidant activity (>7%), and genome-wide 5-mC level (>56%), while a decrease (>9%) in chlorophyll content was recorded to be significant under the stress. Interestingly, a part of the increased proline content, total phenolics content, antioxidant activity, and 5-mC level was retained even after the withdrawal of the stress. Moreover, the increased levels of biochemical and epigenetic parameters were observed to be transmitted/inherited to the subsequent generations. These might help in developing stress-tolerant crops and improving crop productivity under the changing global climate for sustainable food production and global food security.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | | |
Collapse
|
9
|
Kambona CM, Koua PA, Léon J, Ballvora A. Stress memory and its regulation in plants experiencing recurrent drought conditions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:26. [PMID: 36788199 PMCID: PMC9928933 DOI: 10.1007/s00122-023-04313-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Developing stress-tolerant plants continues to be the goal of breeders due to their realized yields and stability. Plant responses to drought have been studied in many different plant species, but the occurrence of stress memory as well as the potential mechanisms for memory regulation is not yet well described. It has been observed that plants hold on to past events in a way that adjusts their response to new challenges without altering their genetic constitution. This ability could enable training of plants to face future challenges that increase in frequency and intensity. A better understanding of stress memory-associated mechanisms leading to alteration in gene expression and how they link to physiological, biochemical, metabolomic and morphological changes would initiate diverse opportunities to breed stress-tolerant genotypes through molecular breeding or biotechnological approaches. In this perspective, this review discusses different stress memory types and gives an overall view using general examples. Further, focusing on drought stress, we demonstrate coordinated changes in epigenetic and molecular gene expression control mechanisms, the associated transcription memory responses at the genome level and integrated biochemical and physiological responses at cellular level following recurrent drought stress exposures. Indeed, coordinated epigenetic and molecular alterations of expression of specific gene networks link to biochemical and physiological responses that facilitate acclimation and survival of an individual plant during repeated stress.
Collapse
Affiliation(s)
- Carolyn Mukiri Kambona
- Department of Plant Breeding, Institut Für Nutzpflanzenwissenschaften Und Ressourcenschutz (INRES), RheinischeFriedrich-Wilhelms-University, Bonn, Germany
| | - Patrice Ahossi Koua
- Department of Plant Breeding, Institut Für Nutzpflanzenwissenschaften Und Ressourcenschutz (INRES), RheinischeFriedrich-Wilhelms-University, Bonn, Germany
- Deutsche Saatveredelung AG, Thüler Str. 30, 33154, Salzkotten-Thüle, Germany
| | - Jens Léon
- Department of Plant Breeding, Institut Für Nutzpflanzenwissenschaften Und Ressourcenschutz (INRES), RheinischeFriedrich-Wilhelms-University, Bonn, Germany
- Field Lab Campus Klein-Altendorf, Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Agim Ballvora
- Department of Plant Breeding, Institut Für Nutzpflanzenwissenschaften Und Ressourcenschutz (INRES), RheinischeFriedrich-Wilhelms-University, Bonn, Germany.
| |
Collapse
|
10
|
Jacques C, Girodet S, Leroy F, Pluchon S, Salon C, Prudent M. Memory or acclimation of water stress in pea rely on root system's plasticity and plant's ionome modulation. FRONTIERS IN PLANT SCIENCE 2023; 13:1089720. [PMID: 36762182 PMCID: PMC9905705 DOI: 10.3389/fpls.2022.1089720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Peas, as legume crops, could play a major role in the future of food security in the context of worldwide human nutrient deficiencies coupled with the growing need to reduce consumption of animal products. However, pea yields, in terms of quantity and quality (i.e. grain content), are both susceptible to climate change, and more specifically to water deficits, which nowadays occur more frequently during crop growth cycles and tend to last longer. The impact of soil water stress on plant development and plant growth is complex, as its impact varies depending on soil water availability (through the modulation of elements available in the soil), and by the plant's ability to acclimate to continuous stress or to memorize previous stress events. METHOD To identify the strategies underlying these plant responses to water stress events, pea plants were grown in controlled conditions under optimal water treatment and different types of water stress; transient (during vegetative or reproductive periods), recurrent, and continuous (throughout the plant growth cycle). Traits related to water, carbon, and ionome uptake and uses were measured and allowed the identification typical plant strategies to cope with water stress. CONCLUSION Our results highlighted (i) the common responses to the three types of water stress in shoots, involving manganese (Mn) in particular, (ii) the potential implications of boron (B) for root architecture modification under continuous stress, and (iii) the establishment of an "ecophysiological imprint" in the root system via an increase in nodule numbers during the recovery period.
Collapse
Affiliation(s)
- Cécile Jacques
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Sylvie Girodet
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Fanny Leroy
- Plateforme PLATIN’, US EMerode, Normandie Université, Unicaen, Caen, France
| | - Sylvain Pluchon
- Laboratoire de Nutrition Végétale, Centre Mondial de l’Innovation Roullier, TIMAC AGRO, Saint Malo, France
| | - Christophe Salon
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Marion Prudent
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
11
|
Petrik P, Petek-Petrik A, Kurjak D, Mukarram M, Klein T, Gömöry D, Střelcová K, Frýdl J, Konôpková A. Interannual adjustments in stomatal and leaf morphological traits of European beech (Fagus sylvatica L.) demonstrate its climate change acclimation potential. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1287-1296. [PMID: 35238138 DOI: 10.1111/plb.13401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The current projections of climate change might exceed the ability of European forest trees to adapt to upcoming environmental conditions. However, stomatal and leaf morphological traits could greatly influence the acclimation potential of forest tree species subjected to global warming, including the single most important forestry species in Europe, European beech. We analysed stomatal (guard cell length, stomatal density and potential conductance index) and leaf (leaf area, leaf dry weight and leaf mass per area) morphological traits of ten provenances from two provenance trials with contrasting climates between 2016 and 2020. The impact of meteorological conditions of the current and preceding year on stomatal and leaf traits was tested by linear and quadratic regressions. Ecodistance was used to capture the impact of adaptation after the transfer of provenances to new environments. Interactions of trial-provenance and trial-year factors were significant for all measured traits. Guard cell length was lowest and stomatal density was highest across beech provenances in the driest year, 2018. Adaptation was also reflected in a significant relationship between aridity ecodistance and measured traits. Moreover, the meteorological conditions of the preceding year affected the interannual variability of stomatal and leaf traits more than the meteorological conditions of the spring of the current year, suggesting the existence of plant stress memory. High intraspecific variability of stomatal and leaf traits controlled by the interaction of adaptation, acclimation and plant memory suggests a high acclimation potential of European beech provenances under future conditions of global climate change.
Collapse
Affiliation(s)
- P Petrik
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| | - A Petek-Petrik
- Department of Vegetation Ecology, Institute of Botany CAS, Brno, Czech Republic
| | - D Kurjak
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - M Mukarram
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - T Klein
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - D Gömöry
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - K Střelcová
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - J Frýdl
- Forestry and Game Management Research Institute, Jíloviště, Czech Republic
| | - A Konôpková
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| |
Collapse
|
12
|
Nguyen NH, Vu NT, Cheong JJ. Transcriptional Stress Memory and Transgenerational Inheritance of Drought Tolerance in Plants. Int J Mol Sci 2022; 23:12918. [PMID: 36361708 PMCID: PMC9654142 DOI: 10.3390/ijms232112918] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2023] Open
Abstract
Plants respond to drought stress by producing abscisic acid, a chemical messenger that regulates gene expression and thereby expedites various physiological and cellular processes including the stomatal operation to mitigate stress and promote tolerance. To trigger or suppress gene transcription under drought stress conditions, the surrounding chromatin architecture must be converted between a repressive and active state by epigenetic remodeling, which is achieved by the dynamic interplay among DNA methylation, histone modifications, loop formation, and non-coding RNA generation. Plants can memorize chromatin status under drought conditions to enable them to deal with recurrent stress. Furthermore, drought tolerance acquired during plant growth can be transmitted to the next generation. The epigenetically modified chromatin architectures of memory genes under stressful conditions can be transmitted to newly developed cells by mitotic cell division, and to germline cells of offspring by overcoming the restraints on meiosis. In mammalian cells, the acquired memory state is completely erased and reset during meiosis. The mechanism by which plant cells overcome this resetting during meiosis to transmit memory is unclear. In this article, we review recent findings on the mechanism underlying transcriptional stress memory and the transgenerational inheritance of drought tolerance in plants.
Collapse
Affiliation(s)
- Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City 700000, Vietnam
| | - Nam Tuan Vu
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
| | - Jong-Joo Cheong
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
13
|
Sun C, Zhou J, Ma Y, Xu Y, Pan B, Zhang Z. A review of remote sensing for potato traits characterization in precision agriculture. FRONTIERS IN PLANT SCIENCE 2022; 13:871859. [PMID: 35923874 PMCID: PMC9339983 DOI: 10.3389/fpls.2022.871859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Potato is one of the most significant food crops globally due to its essential role in the human diet. The growing demand for potato, coupled with severe environmental losses caused by extensive farming activities, implies the need for better crop protection and management practices. Precision agriculture is being well recognized as the solution as it deals with the management of spatial and temporal variability to improve agricultural returns and reduce environmental impact. As the initial step in precision agriculture, the traditional methods of crop and field characterization require a large input in labor, time, and cost. Recent developments in remote sensing technologies have facilitated the process of monitoring crops and quantifying field variations. Successful applications have been witnessed in the area of precision potato farming. Thus, this review reports the current knowledge on the applications of remote sensing technologies in precision potato trait characterization. We reviewed the commonly used imaging sensors and remote sensing platforms with the comparisons of their strengths and limitations and summarized the main applications of the remote sensing technologies in potato. As a result, this review could update potato agronomists and farmers with the latest approaches and research outcomes, as well as provide a selective list for those who have the intentions to apply remote sensing technologies to characterize potato traits for precision agriculture.
Collapse
Affiliation(s)
- Chen Sun
- Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, United States
- Key Laboratory of Spectral Imaging Technology, Xi’an Institute of Optics and Precision Mechanics, Xi’an, China
| | - Jing Zhou
- Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Yuchi Ma
- Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Yijia Xu
- Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Bin Pan
- School of Statistics and Data Science, Nankai University, Tianjin, China
| | - Zhou Zhang
- Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
14
|
Quan J, Münzbergová Z, Latzel V. Time dynamics of stress legacy in clonal transgenerational effects: A case study on
Trifolium repens. Ecol Evol 2022; 12:e8959. [PMID: 35646308 PMCID: PMC9130644 DOI: 10.1002/ece3.8959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 12/26/2022] Open
Abstract
Stress can be remembered by plants in a form of stress legacy that can alter future phenotypes of previously stressed plants and even phenotypes of their offspring. DNA methylation belongs among the mechanisms mediating the stress legacy. It is however not known for how long the stress legacy is carried by plants. If the legacy is long‐lasting, it can become maladaptive in situations when parental–offspring environment do not match. We investigated for how long after the last exposure of a parental plant to drought can the phenotype of its clonal offspring be altered. We grew parental plants of three genotypes of Trifolium repens for five months either in control conditions or in control conditions that were interrupted with intense drought periods applied for two months in four different time slots. We also treated half of the parental plants with a demethylating agent (5‐azacytidine, 5‐azaC) to test for the potential role of DNA methylation in the stress memory. Then, we transplanted parental cuttings (ramets) individually to control environment and allowed them to produce offspring ramets for two months. The drought stress experienced by parents affected phenotypes of offspring ramets. The stress legacy resulted in enhanced number of offspring ramets originating from plants that experienced drought stress even 56 days before their transplantation to the control environment. 5‐azaC altered transgenerational effects on offspring ramets. We confirmed that drought stress can trigger transgenerational effects in T. repens that is very likely mediated by DNA methylation. Most importantly, the stress legacy in parental plants persisted for at least 8 weeks suggesting that the stress legacy can persist in a clonal plant Trifolium repens for relatively long period. We suggest that the stress legacy should be considered in future ecological studies on clonal plants.
Collapse
Affiliation(s)
- Jiaxin Quan
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education Northwest University Xi’an China
- Institute of Botany Czech Academy of Sciences Průhonice Czech Republic
| | - Zuzana Münzbergová
- Institute of Botany Czech Academy of Sciences Průhonice Czech Republic
- Department of Botany Faculty of Science Charles University Prague Czech Republic
| | - Vít Latzel
- Institute of Botany Czech Academy of Sciences Průhonice Czech Republic
| |
Collapse
|
15
|
Liu X, Quan W, Bartels D. Stress memory responses and seed priming correlate with drought tolerance in plants: an overview. PLANTA 2022; 255:45. [PMID: 35066685 PMCID: PMC8784359 DOI: 10.1007/s00425-022-03828-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/08/2022] [Indexed: 05/08/2023]
Abstract
Environmental-friendly techniques based on plant stress memory, cross-stress tolerance, and seed priming help sustainable agriculture by mitigating negative effects of dehydration stress. The frequently uneven rainfall distribution caused by global warming will lead to more irregular and multiple abiotic stresses, such as heat stress, dehydration stress, cold stress or the combination of these stresses. Dehydration stress is one of the major environmental factors affecting the survival rate and productivity of plants. Hence, there is an urgent need to develop improved resilient varieties. Presently, technologies based on plant stress memory, cross-stress tolerance and priming of seeds represent fruitful and promising areas of future research and applied agricultural science. In this review, we will provide an overview of plant drought stress memory from physiological, biochemical, molecular and epigenetic perspectives. Drought priming-induced cross-stress tolerance to cold and heat stress will be discussed and the application of seed priming will be illustrated for different species.
Collapse
Affiliation(s)
- Xun Liu
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong, 643000, China
| | - Wenli Quan
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000, Hubei, China
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
16
|
Ling Y, Mahfouz MM, Zhou S. Pre-mRNA alternative splicing as a modulator for heat stress response in plants. TRENDS IN PLANT SCIENCE 2021; 26:1153-1170. [PMID: 34334317 DOI: 10.1016/j.tplants.2021.07.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 05/11/2023]
Abstract
The molecular responses of plants to the important abiotic stress, heat stress (HS), have been extensively studied at the transcriptional level. Alternative splicing (AS) is a post-transcriptional regulatory process in which an intron-containing gene can generate more than one mRNA variant. The impact of HS on the pre-mRNA splicing process has been reported in various eukaryotes but seldom discussed in-depth, especially in plants. Here, we review AS regulation in response to HS in different plant species. We discuss potential molecular mechanisms controlling heat-inducible AS regulation in plants and hypothesize that AS regulation participates in heat-priming establishment and HS memory maintenance. We propose that the pre-mRNA splicing variation is an important regulator of plant HS responses (HSRs).
Collapse
Affiliation(s)
- Yu Ling
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China; Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, 524088, PR China.
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Shuangxi Zhou
- New Zealand Institute for Plant and Food Research Limited, Hawke's Bay 4130, New Zealand
| |
Collapse
|
17
|
Jacques C, Salon C, Barnard RL, Vernoud V, Prudent M. Drought Stress Memory at the Plant Cycle Level: A Review. PLANTS (BASEL, SWITZERLAND) 2021; 10:1873. [PMID: 34579406 PMCID: PMC8466371 DOI: 10.3390/plants10091873] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 05/25/2023]
Abstract
Plants are sessile organisms whose survival depends on their strategy to cope with dynamic, stressful conditions. It is urgent to improve the ability of crops to adapt to recurrent stresses in order to alleviate the negative impacts on their productivity. Although our knowledge of plant adaptation to drought has been extensively enhanced during the last decades, recent studies have tackled plant responses to recurrent stresses. The present review synthesizes the major findings from studies addressing plant responses to multiple drought events, and demonstrates the ability of plants to memorize drought stress. Stress memory is described as a priming effect allowing a different response to a reiterated stress when compared to a single stress event. Here, by specifically focusing on water stress memory at the plant cycle level, we describe the different underlying processes at the molecular, physiological and morphological levels in crops as well as in the model species Arabidopsis thaliana. Moreover, a conceptual analysis framework is proposed to study drought stress memory. Finally, the essential role of interactions between plants and soil microorganisms is emphasized during reiterated stresses because their plasticity can play a key role in supporting overall plant resilience.
Collapse
Affiliation(s)
| | | | | | | | - Marion Prudent
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne, Université Bourgogne Franche-Comté, F-21000 Dijon, France; (C.J.); (C.S.); (R.L.B.); (V.V.)
| |
Collapse
|
18
|
Öztürk Gökçe ZN, Aksoy E, Bakhsh A, Demirel U, Çalışkan S, Çalışkan ME. Combined drought and heat stresses trigger different sets of miRNAs in contrasting potato cultivars. Funct Integr Genomics 2021; 21:489-502. [PMID: 34241734 DOI: 10.1007/s10142-021-00793-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022]
Abstract
MicroRNAs are small, non-coding RNAs that are responsible for regulation of gene expression during plant growth and development. Although there are many studies on miRNAs in other plants, little work has been done to understand the role of miRNAs in abiotic stress tolerance in potatoes. This study investigates changes in miRNA profiles of two different potato cultivars (tolerant, Unica and susceptible, Russet Burbank) in response to heat, drought and their combination. Transcriptomic studies revealed that miRNA profiles depend on the susceptibility and tolerance of the cultivar and also the stress conditions. Large number of miRNAs were expressed in Unica, whereas Russet Burbank indicated lesser number of changes in miRNA expression. Physiological and transcriptional results clearly supported that Unica cultivar is tolerant to combined drought and heat stress compared to Russet Burbank. Moreover, psRNATarget analysis predicted that major miRNAs identified were targeting genes playing important roles in response to drought and heat stress and their important roles in genetic and post-transcriptional regulation, root development, auxin responses and embryogenesis were also observed. This study focused on eight miRNAs (Novel_8, Novel_9, Novel_105, miR156d-3p, miR160a-5p, miR162a-3p, miR172b-3p and miR398a-5p) and their putative targets where results indicate that they may play a vital role at different post-transcriptional levels against drought and heat stresses. We suggest that miRNA overexpression in plants can lead to increased tolerance against abiotic stresses; furthermore, there should be more emphasis on the studies to investigate the role of miRNAs in combined abiotic stress in plants.
Collapse
Affiliation(s)
- Zahide Neslihan Öztürk Gökçe
- Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Department of Agricultural Genetic Engineering, Niğde Ömer Halisdemir University, 51240, Niğde, Turkey.
| | - Emre Aksoy
- Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Department of Agricultural Genetic Engineering, Niğde Ömer Halisdemir University, 51240, Niğde, Turkey
| | - Allah Bakhsh
- Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Department of Agricultural Genetic Engineering, Niğde Ömer Halisdemir University, 51240, Niğde, Turkey
| | - Ufuk Demirel
- Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Department of Agricultural Genetic Engineering, Niğde Ömer Halisdemir University, 51240, Niğde, Turkey
| | - Sevgi Çalışkan
- Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Department of Agricultural Genetic Engineering, Niğde Ömer Halisdemir University, 51240, Niğde, Turkey
| | - Mehmet Emin Çalışkan
- Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Department of Agricultural Genetic Engineering, Niğde Ömer Halisdemir University, 51240, Niğde, Turkey
| |
Collapse
|
19
|
Zhang X, Li C, Tie D, Quan J, Yue M, Liu X. Epigenetic memory and growth responses of the clonal plant Glechoma longituba to parental recurrent UV-B stress. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:827-838. [PMID: 33820599 DOI: 10.1071/fp20303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
The responses of plants to recurrent stress may differ from their responses to a single stress event. In this study, we investigated whether clonal plants can remember past environments. Parental ramets of Glechoma longituba (Nakai) Kuprian were exposed to UV-B stress treatments either once or repeatedly (20 and 40 repetitions). Differences in DNA methylation levels and growth parameters among parents, offspring ramets and genets were analysed. Our results showed that UV-B stress reduced the DNA methylation level of parental ramets, and the reduction was enhanced by increasing the number of UV-B treatments. The epigenetic variation exhibited by recurrently stressed parents was maintained for a long time, but that of singly stressed parents was only short-term. Moreover, clonal plants responded to different UV-B stress treatments with different growth strategies. The one-time stress was a eustress that increased genet biomass by increasing offspring leaf allocation and defensive allocation in comparison to the older offspring. In contrast, recurring stress was a distress that reduced genet biomass, increased the biomass of storage stolons, and allocated more defensive substances to the younger ramets. This study demonstrated that the growth of offspring and genets was clearly affected by parental experience, and parental epigenetic memory and the transgenerational effect may play important roles in this effect.
Collapse
Affiliation(s)
- Xiaoyin Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Cunxia Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Dan Tie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Jiaxin Quan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Xiao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China; and Corresponding author.
| |
Collapse
|
20
|
Ibañez VN, Kozub PC, González CV, Jerez DN, Masuelli RW, Berli FJ, Marfil CF. Response to water deficit of semi-desert wild potato Solanum kurtzianum genotypes collected from different altitudes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 308:110911. [PMID: 34034868 DOI: 10.1016/j.plantsci.2021.110911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Drought-sensitive crops are threatened as a consequence of limited available water due to climate change. The cultivated potato (Solanum tuberosum) is susceptible to drought and within its wild relative species, Solanum kurtzianum is the Argentinian wild potato species best adapted to arid conditions. However, its physiological responses to water deficit (WD) are still missing. Within the distribution of S. kurtzianum, genotypes could be adapted to differential precipitation regimes. The aim of this work was to evaluate responses of three S. kurtzianum genotypes collected at 1100 (G1), 1900 (G2) and 2100 m a.s.l. (G3) to moderate and severe WD. Treatments were imposed since flowering and lasted 36 days. Yield components, morpho-physiological and biochemical responses; and phenotypic plasticity were evaluated. The three genotypes presented mechanisms to tolerate both WD treatments. G1 presented the lowest yield reduction under moderate WD, mainly through a rapid stomatal closure and a modest vegetative growth. The differences among genotypes suggest that local adaptation is taking place within its natural habitat. Also, G2 presented environmentally induced shifts in plasticity for stomatal length and carotenoids, suggesting that phenotypic plasticity has a role in acclimation of plants to WD until selection works.
Collapse
Affiliation(s)
- Verónica Noé Ibañez
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Alte. Brown 500, M5505, Chacras de Coria, Mendoza, Argentina.
| | - Perla Carolina Kozub
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Alte. Brown 500, M5505, Chacras de Coria, Mendoza, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, M5505, Chacras de Coria, Mendoza, Argentina
| | - Carina Verónica González
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Alte. Brown 500, M5505, Chacras de Coria, Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Contreras 1300, Mendoza, Argentina
| | - Damián Nicolás Jerez
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Alte. Brown 500, M5505, Chacras de Coria, Mendoza, Argentina
| | - Ricardo Williams Masuelli
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Alte. Brown 500, M5505, Chacras de Coria, Mendoza, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, M5505, Chacras de Coria, Mendoza, Argentina
| | - Federico Javier Berli
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Alte. Brown 500, M5505, Chacras de Coria, Mendoza, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, M5505, Chacras de Coria, Mendoza, Argentina
| | - Carlos Federico Marfil
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Alte. Brown 500, M5505, Chacras de Coria, Mendoza, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, M5505, Chacras de Coria, Mendoza, Argentina
| |
Collapse
|
21
|
Exploration of Epigenetics for Improvement of Drought and Other Stress Resistance in Crops: A Review. PLANTS 2021; 10:plants10061226. [PMID: 34208642 PMCID: PMC8235456 DOI: 10.3390/plants10061226] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/01/2023]
Abstract
Crop plants often have challenges of biotic and abiotic stresses, and they adapt sophisticated ways to acclimate and cope with these through the expression of specific genes. Changes in chromatin, histone, and DNA mostly serve the purpose of combating challenges and ensuring the survival of plants in stressful environments. Epigenetic changes, due to environmental stress, enable plants to remember a past stress event in order to deal with such challenges in the future. This heritable memory, called "plant stress memory", enables plants to respond against stresses in a better and efficient way, not only for the current plant in prevailing situations but also for future generations. Development of stress resistance in plants for increasing the yield potential and stability has always been a traditional objective of breeders for crop improvement through integrated breeding approaches. The application of epigenetics for improvements in complex traits in tetraploid and some other field crops has been unclear. An improved understanding of epigenetics and stress memory applications will contribute to the development of strategies to incorporate them into breeding for complex agronomic traits. The insight in the application of novel plant breeding techniques (NPBTs) has opened a new plethora of options among plant scientists to develop germplasms for stress tolerance. This review summarizes and discusses plant stress memory at the intergenerational and transgenerational levels, mechanisms involved in stress memory, exploitation of induced and natural epigenetic changes, and genome editing technologies with their future possible applications, in the breeding of crops for abiotic stress tolerance to increase the yield for zero hunger goals achievement on a sustainable basis in the changing climatic era.
Collapse
|
22
|
Choudhary M, Singh A, Rakshit S. Coping with low moisture stress: Remembering and responding. PHYSIOLOGIA PLANTARUM 2021; 172:1162-1169. [PMID: 33496015 DOI: 10.1111/ppl.13343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/01/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Low-moisture stress, also referred to as drought, is one of the major factors that negatively impact the agricultural yield. The present scenario of climate change is expected to aggravate it further. Considering the extended time required to develop resistant crops, it is important to prioritize research efforts for coping with low moisture, prevalent in arid and semi-arid regions of the world. While agricultural yield is a tradeoff between many choices, tolerance to biotic and abiotic stresses comes with yield penalties. To balance the tradeoffs and maximize productivity, the use of region-specific cultivars and/or introgression of precise genetic proportions in an elite variety may prove useful. Stress memory is an emerging approach that helps plants to record and respond to repeated stress in an effective manner. In this context, we discuss the role of "stress memory" in imparting drought tolerance in plants. Future research efforts for its effective deployment for "drought hardening" in agricultural settings, along with a discussion on the yield tradeoff involved, is implicated.
Collapse
Affiliation(s)
- Mukesh Choudhary
- ICAR-Indian Institute of Maize Research, P.A.U. Campus, Ludhiana, India
| | - Alla Singh
- ICAR-Indian Institute of Maize Research, P.A.U. Campus, Ludhiana, India
| | - Sujay Rakshit
- ICAR-Indian Institute of Maize Research, P.A.U. Campus, Ludhiana, India
| |
Collapse
|
23
|
Physiological, Biochemical and Yield-Component Responses of Solanum tuberosum L. Group Phureja Genotypes to a Water Deficit. PLANTS 2021; 10:plants10040638. [PMID: 33801743 PMCID: PMC8065493 DOI: 10.3390/plants10040638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 11/18/2022]
Abstract
Water deficits are the major constraint in some potato-growing areas of the world. The effect is most severe at the tuberization stage, resulting in lower yield. Therefore, an assessment of genetic and phenotypic variations resulting from water deficits in Colombia germplasm is required to accelerate breeding efforts. Phenotypic variations in response to a water deficit were studied in a collection of Solanum tuberosum Group Phureja. A progressive water deficit experiment on the tuberization stage was undertaken using 104 genotypes belonging to the Working Collection of the Potato Breeding Program at the Universidad Nacional de Colombia. The response to water deficit conditions was assessed with the relative chlorophyll content (CC), maximum quantum efficiency of PSII (Fv/Fm), relative water content (RWC), leaf sugar content, tuber number per plant (TN) and tuber fresh weight per plant (TW). Principal Component Analysis (PCA) and cluster analysis were used, and the Drought Tolerance Index (DTI) was calculated for the variables and genotypes. The soluble sugar contents increased significantly under the deficit conditions in the leaves, with a weak correlation with yield under both water treatments. The PCA results revealed that the physiological, biochemical and yield-component variables had broad variation, while the yield-component variables more powerfully distinguished between the tolerant and susceptible genotypes than the physiological and biochemical variables. The PCA and cluster analysis based on the DTI revealed different levels of water deficit tolerance for the 104 genotypes. These results provide a foundation for future research directed at understanding the molecular mechanisms underlying potato tolerance to water deficits.
Collapse
|
24
|
Jung C, Nguyen NH, Cheong JJ. Transcriptional Regulation of Protein Phosphatase 2C Genes to Modulate Abscisic Acid Signaling. Int J Mol Sci 2020; 21:ijms21249517. [PMID: 33327661 PMCID: PMC7765119 DOI: 10.3390/ijms21249517] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/04/2020] [Accepted: 12/12/2020] [Indexed: 01/04/2023] Open
Abstract
The plant hormone abscisic acid (ABA) triggers cellular tolerance responses to osmotic stress caused by drought and salinity. ABA controls the turgor pressure of guard cells in the plant epidermis, leading to stomatal closure to minimize water loss. However, stomatal apertures open to uptake CO2 for photosynthesis even under stress conditions. ABA modulates its signaling pathway via negative feedback regulation to maintain plant homeostasis. In the nuclei of guard cells, the clade A type 2C protein phosphatases (PP2Cs) counteract SnRK2 kinases by physical interaction, and thereby inhibit activation of the transcription factors that mediate ABA-responsive gene expression. Under osmotic stress conditions, PP2Cs bind to soluble ABA receptors to capture ABA and release active SnRK2s. Thus, PP2Cs function as a switch at the center of the ABA signaling network. ABA induces the expression of genes encoding repressors or activators of PP2C gene transcription. These regulators mediate the conversion of PP2C chromatins from a repressive to an active state for gene transcription. The stress-induced chromatin remodeling states of ABA-responsive genes could be memorized and transmitted to plant progeny; i.e., transgenerational epigenetic inheritance. This review focuses on the mechanism by which PP2C gene transcription modulates ABA signaling.
Collapse
Affiliation(s)
- Choonkyun Jung
- Department of International Agricultural Technology and Crop Biotechnology, Institute/Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea;
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City 700000, Vietnam;
| | - Jong-Joo Cheong
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
- Correspondence: ; Tel.: +82-2-880-4888; Fax: +82-2-873-5260
| |
Collapse
|
25
|
Kim YK, Chae S, Oh NI, Nguyen NH, Cheong JJ. Recurrent Drought Conditions Enhance the Induction of Drought Stress Memory Genes in Glycine max L. Front Genet 2020; 11:576086. [PMID: 33193691 PMCID: PMC7581891 DOI: 10.3389/fgene.2020.576086] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/21/2020] [Indexed: 01/16/2023] Open
Abstract
Plants remember what they have experienced and are thereby able to confront repeated stresses more promptly and strongly. A subset of the drought responsive genes, called stress memory genes, displayed greatly elevated levels under recurrent drought conditions. To screen for a set of drought stress memory genes in soybean (Glycine max L.), we designed a 180K DNA chip comprising 60-bp probes synthesized in situ to examine 55,589 loci. Through microarray analysis using the DNA chip, we identified 2,162 and 2,385 genes with more than fourfold increases or decreases in transcript levels, respectively, under initial (first) drought stress conditions, when compared with the non-treated control. The transcript levels of the drought-responsive genes returned to basal levels during recovery (watered) states, and 392 and 613 genes displayed more than fourfold elevated or reduced levels, respectively, under subsequent (second) drought conditions, when compared to those observed under the first drought stress conditions. Gene Ontology and MapMan analyses classified the drought-induced memory genes exhibiting elevated levels of transcripts into several functional categories, including those involved in tolerance responses to abiotic stresses, which encode transcription factors, protein phosphatase 2Cs, and late embryogenesis abundant proteins. The drought-repressed memory genes exhibiting reduced levels of transcripts were classified into categories including photosynthesis and primary metabolism. Co-expression network analysis revealed that the soybean drought-induced and -repressed memory genes were equivalent to 172 and 311 Arabidopsis genes, respectively. The soybean drought stress memory genes include genes involved in the dehydration memory responses of Arabidopsis.
Collapse
Affiliation(s)
- Yeon-Ki Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, South Korea
| | - Songhwa Chae
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, South Korea
| | - Nam-Iee Oh
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Nguyen Hoai Nguyen
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Jong-Joo Cheong
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| |
Collapse
|
26
|
Alves RDFB, Menezes-Silva PE, Sousa LF, Loram-Lourenço L, Silva MLF, Almeida SES, Silva FG, Perez de Souza L, Fernie AR, Farnese FS. Evidence of drought memory in Dipteryx alata indicates differential acclimation of plants to savanna conditions. Sci Rep 2020; 10:16455. [PMID: 33020558 PMCID: PMC7536413 DOI: 10.1038/s41598-020-73423-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/21/2020] [Indexed: 11/16/2022] Open
Abstract
The remarkable phytogeographic characteristics of the Brazilian savanna (Cerrado) resulted in a vegetation domain composed of plants with high structural and functional diversity to tolerate climate extremes. Here we used a key Cerrado species (Dipteryx alata) to evaluate if species of this domain present a mechanism of stress memory, responding more quickly and efficiently when exposed to recurrent drought episodes. The exposure of D. alata seedlings to drought resulted in several changes, mainly in physiological and biochemical traits, and these changes differed substantially when the water deficit was imposed as an isolated event or when the plants were subjected to drought cycles, suggesting the existence of a drought memory mechanism. Plants submitted to recurrent drought events were able to maintain essential processes for plant survival when compared to those submitted to drought for the first time. This differential acclimation to drought was the result of orchestrated changes in several metabolic pathways, involving differential carbon allocation for defense responses and the reprogramming and coordination of primary, secondary and antioxidant metabolism. The stress memory in D. alata is probably linked the evolutionary history of the species and reflects the environment in which it evolved.
Collapse
Affiliation(s)
| | | | - Leticia F Sousa
- Instituto Federal Goiano, Campus Rio Verde, Rio Verde, GO, 75.901-970, Brazil
| | | | - Maria L F Silva
- Instituto Federal Goiano, Campus Rio Verde, Rio Verde, GO, 75.901-970, Brazil
| | - Sabrina E S Almeida
- Instituto Federal Goiano, Campus Rio Verde, Rio Verde, GO, 75.901-970, Brazil
| | - Fabiano G Silva
- Instituto Federal Goiano, Campus Rio Verde, Rio Verde, GO, 75.901-970, Brazil
| | | | - Alisdair R Fernie
- Max-Planck-Institute for Molecular Plant Physiology, 14476, Potsdam-Gölm, Germany
| | - Fernanda S Farnese
- Instituto Federal Goiano, Campus Rio Verde, Rio Verde, GO, 75.901-970, Brazil.
| |
Collapse
|
27
|
Guerrero-Zurita F, Ramírez DA, Rinza J, Ninanya J, Blas R, Heider B. Potential Short-Term Memory Induction as a Promising Method for Increasing Drought Tolerance in Sweetpotato Crop Wild Relatives [ Ipomoea series Batatas (Choisy) D. F. Austin]. FRONTIERS IN PLANT SCIENCE 2020; 11:567507. [PMID: 33013990 PMCID: PMC7494806 DOI: 10.3389/fpls.2020.567507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Crop wild relatives of sweetpotato [Ipomoea series Batatas (Choisy) D. F. Austin] are a group of species with potential for use in crop improvement programs seeking to breed for drought tolerance. Stress memory in this group could enhance these species' physiological response to drought, though no studies have yet been conducted in this area. In this pot experiment, drought tolerance, determined using secondary traits, was tested in 59 sweetpotato crop wild relative accessions using potential short-term memory induction. For this purpose, accessions were subjected to two treatments, i) non-priming: full irrigation (up to field capacity, 0.32 w/w) from transplanting to harvest and ii) priming: full irrigation from transplanting to flowering onset (FO) followed by a priming process from FO to harvest. The priming process consisted of three water restriction periods of increasing length (8, 11, and 14 days) followed each by a recovery period of 14 days with full irrigation. Potential stress memory induction was calculated for each accession based on ecophysiological indicators such as senescence, foliar area, leaf-minus-air temperature, and leaf 13C discrimination. Based on total biomass production, resilience and production capacity were calculated per accession to evaluate drought tolerance. Increase in foliar area, efficient leaf thermoregulation, improvement of leaf photosynthetic performance, and delayed senescence were identified in 23.7, 28.8, 50.8, and 81.4% of the total number of accessions, respectively. It was observed that under a severe drought scenario, a resilient response included more long-lived green leaf area while a productive response was related to optimized leaf thermoregulation and gas exchange. Our preliminary results suggest that I. triloba and I. trifida have the potential to improve sweetpotato resilience in dry environments and should be included in introgression breeding programs of this crop. Furthermore, I. splendor-sylvae, I. ramosissima, I. tiliacea, and wild I. batatas were the most productive species studied but given the genetic barriers to interspecific hybridization between these species and sweetpotato, we suggest that further genetic and metabolic studies be conducted on them. Finally, this study proposes a promising method for improving drought tolerance based on potential stress-memory induction, which is applicable both for wild species and crops.
Collapse
Affiliation(s)
| | - David A. Ramírez
- Latin American & Caribbean Regional Program, International Potato Center, Lima, Peru
| | - Javier Rinza
- Crop and Systems Science Division, International Potato Center, Lima, Peru
| | - Johan Ninanya
- Crop and Systems Science Division, International Potato Center, Lima, Peru
| | - Raúl Blas
- Crop Husbandry Department, Universidad Nacional Agraria La Molina, Lima, Peru
| | - Bettina Heider
- Genetics, Genomics and Crop Improvement Division, International Potato Center, Lima, Peru
| |
Collapse
|
28
|
Vincent C, Rowland D, Schaffer B, Bassil E, Racette K, Zurweller B. Primed acclimation: A physiological process offers a strategy for more resilient and irrigation-efficient crop production. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 295:110240. [PMID: 32534621 DOI: 10.1016/j.plantsci.2019.110240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 06/11/2023]
Abstract
Optimizing plant physiological function is essential to maintaining crop yields under water scarcity and in developing more water-efficient production practices. However, the most common strategies in addressing water conservation in agricultural production have focused on water-efficient technologies aimed at managing water application or on improving crop water-use efficiency through breeding. Few management strategies explicitly consider the management or manipulation of plant physiological processes, but one which does is termed primed acclimation (PA). The PA strategy uses the physiological processes involved in priming to pre-acclimate plants to water deficits while reducing irrigation. It has been shown to evoke multi-mechanistic responses across numerous crop species. A combination of existing literature and emerging studies find that mechanisms for pre-acclimating plants to water deficit stress include changes in root:shoot partitioning, root architecture, water use, photosynthetic characteristics, osmotic adjustment and anti-oxidant production. In many cases, PA reduces agricultural water use by improving plant access to existing soil water. Implementing PA in seasonally water-limited environments can mitigate yield losses to drought. Genotypic variation in PA responses offers the potential to screen for crop varieties with the greatest potential for beneficial priming responses and to identify specific priming and acclimation mechanisms. In this review we: 1) summarize the concept of priming within the context of plant stress physiology; 2) review the development of a PA management system that utilizes priming for water conservation in agroecosystems; and 3) address the future of PA, how it should be evaluated across crop species, and its utility in managing crop stress tolerance.
Collapse
Affiliation(s)
- Christopher Vincent
- Horticultural Sciences Department, Citrus Research and Education Center, University of Florida, 700 Old Lee Jackson Road, Lake Alfred, FL, USA.
| | - Diane Rowland
- Agronomy Department, University of Florida, P.O. Box 110500, Gainesville, FL, 32611, USA.
| | - Bruce Schaffer
- Horticultural Sciences Department, Tropical Research and Education Center, University of Florida, 18905 S.W. 280 Street, Homestead, FL, 33031, USA
| | - Elias Bassil
- Horticultural Sciences Department, Tropical Research and Education Center, University of Florida, 18905 S.W. 280 Street, Homestead, FL, 33031, USA.
| | - Kelly Racette
- Agronomy Department, University of Florida, P.O. Box 110500, Gainesville, FL, 32611, USA
| | - Brendan Zurweller
- Department of Plant and Soil Sciences, Mississippi State University, P.O. Box 9555, Mississippi State, MS, 39762, USA.
| |
Collapse
|
29
|
Cucho-Padin G, Rinza J, Ninanya J, Loayza H, Quiroz R, Ramírez DA. Development of an Open-Source Thermal Image Processing Software for Improving Irrigation Management in Potato Crops ( Solanum tuberosum L.). SENSORS (BASEL, SWITZERLAND) 2020; 20:E472. [PMID: 31947632 PMCID: PMC7013904 DOI: 10.3390/s20020472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/07/2020] [Accepted: 01/11/2020] [Indexed: 11/24/2022]
Abstract
Accurate determination of plant water status is mandatory to optimize irrigation scheduling and thus maximize yield. Infrared thermography (IRT) can be used as a proxy for detecting stomatal closure as a measure of plant water stress. In this study, an open-source software (Thermal Image Processor (TIPCIP)) that includes image processing techniques such as thermal-visible image segmentation and morphological operations was developed to estimate the crop water stress index (CWSI) in potato crops. Results were compared to the CWSI derived from thermocouples where a high correlation was found ( r P e a r s o n = 0.84). To evaluate the effectiveness of the software, two experiments were implemented. TIPCIP-based canopy temperature was used to estimate CWSI throughout the growing season, in a humid environment. Two treatments with different irrigation timings were established based on CWSI thresholds: 0.4 (T2) and 0.7 (T3), and compared against a control (T1, irrigated when soil moisture achieved 70% of field capacity). As a result, T2 showed no significant reduction in fresh tuber yield (34.5 ± 3.72 and 44.3 ± 2.66 t ha - 1 ), allowing a total water saving of 341.6 ± 63.65 and 515.7 ± 37.73 m 3 ha - 1 in the first and second experiment, respectively. The findings have encouraged the initiation of experiments to automate the use of the CWSI for precision irrigation using either UAVs in large settings or by adapting TIPCIP to process data from smartphone-based IRT sensors for applications in smallholder settings.
Collapse
Affiliation(s)
- Gonzalo Cucho-Padin
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
| | - Javier Rinza
- International Potato Center, Apartado 1558, Lima 12, Peru; (J.R.); (J.N.); (H.L.)
| | - Johan Ninanya
- International Potato Center, Apartado 1558, Lima 12, Peru; (J.R.); (J.N.); (H.L.)
| | - Hildo Loayza
- International Potato Center, Apartado 1558, Lima 12, Peru; (J.R.); (J.N.); (H.L.)
| | - Roberto Quiroz
- CATIE-Tropical Agricultural Research and Higher Education Center, Cartago Turrialba 30501, Costa Rica;
| | - David A. Ramírez
- International Potato Center, Apartado 1558, Lima 12, Peru; (J.R.); (J.N.); (H.L.)
| |
Collapse
|
30
|
Thuy Quynh Nguyen T, Thanh Huyen Trinh L, Bao Vy Pham H, Vien Le T, Kim Hue Phung T, Lee SH, Cheong JJ. Evaluation of proline, soluble sugar and ABA content in soybean Glycine max (L.) under drought stress memory. AIMS BIOENGINEERING 2020. [DOI: 10.3934/bioeng.2020011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
31
|
Godwin J, Farrona S. Plant Epigenetic Stress Memory Induced by Drought: A Physiological and Molecular Perspective. Methods Mol Biol 2020; 2093:243-259. [PMID: 32088901 DOI: 10.1007/978-1-0716-0179-2_17] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Drought stress is one of the most common stresses encountered by crops and other plants and leads to significant productivity losses. It commonly happens that drought stress occurs more than once during the plant's life cycle. Plants suffering from drought stress can adapt their life strategies to acclimate and survive in many different ways. Interestingly, some plants have evolved a stress response strategy referred to as stress memory which leads to an enhanced response the next time the stress is encountered. The acquisition of stress memory leads to a reprogrammed transcriptional response during subsequent stress and subsequent changes both at the physiological and molecular level. Recent advances in understanding chromatin dynamics have demonstrated the involvement of chromatin modifications, especially histone marks, associated with drought stress-responsive memory genes and subsequent enhanced transcriptional responses to repeated drought stress. In this chapter, we describe recent progress in this area and summarize techniques for the study of plant epigenetic responses to stress, including the roles of ABA and transcription factors in superinduced transcriptional activation during recurrent drought stress. We also review the possible use of seed priming to induce stress memory later in the plant life cycle. Finally, we discuss the potential implications of understanding the epigenetic mechanisms involved in plant stress memory for future applications in crop improvement and drought resistance.
Collapse
Affiliation(s)
- James Godwin
- Plant and AgriBiosciences Research Centre, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Sara Farrona
- Plant and AgriBiosciences Research Centre, Ryan Institute, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
32
|
Kim YK, Chae S, Oh NI, Nguyen NH, Cheong JJ. Recurrent Drought Conditions Enhance the Induction of Drought Stress Memory Genes in Glycine max L. Front Genet 2020. [PMID: 33193691 DOI: 10.3389/fgene.2020.576086/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Plants remember what they have experienced and are thereby able to confront repeated stresses more promptly and strongly. A subset of the drought responsive genes, called stress memory genes, displayed greatly elevated levels under recurrent drought conditions. To screen for a set of drought stress memory genes in soybean (Glycine max L.), we designed a 180K DNA chip comprising 60-bp probes synthesized in situ to examine 55,589 loci. Through microarray analysis using the DNA chip, we identified 2,162 and 2,385 genes with more than fourfold increases or decreases in transcript levels, respectively, under initial (first) drought stress conditions, when compared with the non-treated control. The transcript levels of the drought-responsive genes returned to basal levels during recovery (watered) states, and 392 and 613 genes displayed more than fourfold elevated or reduced levels, respectively, under subsequent (second) drought conditions, when compared to those observed under the first drought stress conditions. Gene Ontology and MapMan analyses classified the drought-induced memory genes exhibiting elevated levels of transcripts into several functional categories, including those involved in tolerance responses to abiotic stresses, which encode transcription factors, protein phosphatase 2Cs, and late embryogenesis abundant proteins. The drought-repressed memory genes exhibiting reduced levels of transcripts were classified into categories including photosynthesis and primary metabolism. Co-expression network analysis revealed that the soybean drought-induced and -repressed memory genes were equivalent to 172 and 311 Arabidopsis genes, respectively. The soybean drought stress memory genes include genes involved in the dehydration memory responses of Arabidopsis.
Collapse
Affiliation(s)
- Yeon-Ki Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, South Korea
| | - Songhwa Chae
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, South Korea
| | - Nam-Iee Oh
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Nguyen Hoai Nguyen
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Jong-Joo Cheong
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| |
Collapse
|
33
|
Chen Y, Li C, Yi J, Yang Y, Lei C, Gong M. Transcriptome Response to Drought, Rehydration and Re-Dehydration in Potato. Int J Mol Sci 2019; 21:E159. [PMID: 31881689 PMCID: PMC6981527 DOI: 10.3390/ijms21010159] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 12/28/2022] Open
Abstract
Potato is an important food crop and its production is susceptible to drought. Drought stress in crop growth is usually multiple- or long-term. In this study, the drought tolerant potato landrace Jancko Sisu Yari was treated with drought stress, rehydration and re-dehydration, and RNA-seq was applied to analyze the characteristics of gene regulation during these treatments. The results showed that drought-responsive genes mainly involved photosynthesis, signal transduction, lipid metabolism, sugar metabolism, wax synthesis, cell wall regulation, osmotic adjustment. Potato also can be recovered well in the re-emergence of water through gene regulation. The recovery of rehydration mainly related to patatin, lipid metabolism, sugar metabolism, flavonoids metabolism and detoxification besides the reverse expression of the most of drought-responsive genes. The previous drought stress can produce a positive responsive ability to the subsequent drought by drought hardening. Drought hardening was not only reflected in the drought-responsive genes related to the modified structure and cell components, but also in the hardening of gene expression or the "memory" of drought-responsive genes. Abundant genes involved photosynthesis, signal transduction, sugar metabolism, protease and protease inhibitors, flavonoids metabolism, transporters and transcription factors were subject to drought hardening or memorized drought in potato.
Collapse
Affiliation(s)
- Yongkun Chen
- School of Life Sciences, Yunnan Normal University, Kunming 650550, China
| | - Canhui Li
- Joint Academy of Potato Science, Yunnan Normal University, Kunming 650550, China
| | - Jing Yi
- School of Life Sciences, Yunnan Normal University, Kunming 650550, China
| | - Yu Yang
- School of Life Sciences, Yunnan Normal University, Kunming 650550, China
| | - Chunxia Lei
- School of Life Sciences, Yunnan Normal University, Kunming 650550, China
| | - Ming Gong
- School of Life Sciences, Yunnan Normal University, Kunming 650550, China
| |
Collapse
|
34
|
Handayani T, Gilani SA, Watanabe KN. Climatic changes and potatoes: How can we cope with the abiotic stresses? BREEDING SCIENCE 2019; 69:545-563. [PMID: 31988619 PMCID: PMC6977456 DOI: 10.1270/jsbbs.19070] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/10/2019] [Indexed: 05/06/2023]
Abstract
Climate change triggers increases in temperature, drought, and/or salinity that threaten potato production, because they necessitate specific amounts and quality of water, meanwhile lower temperatures generally support stable crop yields. Various cultivation techniques have been developed to reduce the negative effects of drought, heat and/or salinity stresses on potato. Developing innovative varieties with relevant tolerance to abiotic stress is absolutely necessary to guarantee competitive production under sub-optimal environments. Commercial varieties are sensitive to abiotic stresses, and substantial changes to their higher tolerance levels are not easily achieved because their genetic base is narrow. Nonetheless, there are several other possibilities for genetic enhancement using landraces and wild relatives. The complexity of polysomic genetics and heterozygosity in potato hamper the phenotype evaluation over abiotic stresses and consequent conventional introgression of tolerance traits, which are more challenging than previous successes shown over diseases and insects resistances. Today, potatoes face more challenges with severe abiotic stresses. Potato wild relatives can be explored further using innovative genomic, transcriptomic, proteomic, and metabolomic approaches. At the field level, appropriate cultivation techniques must be applied along with precision farming technology and tolerant varieties developed from various breeding techniques, in order to realize high yield under multiple stresses.
Collapse
Affiliation(s)
- Tri Handayani
- Graduate School of Life & Environmental Sciences, University of Tsukuba,
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572,
Japan
- Indonesian Vegetable Research Institute,
Jl. Tangkuban Perahu 517, Lembang, West Bandung, West Java, 40391,
Indonesia
| | - Syed Abdullah Gilani
- Department of Biological Sciences and Chemistry, University of Nizwa,
P. O. Box 33, PC 616, Birkat Al Mouz, Nizwa,
Sultanate of Oman
| | - Kazuo N. Watanabe
- Tsukuba-Plant Innovation Research Center, University of Tsukuba,
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572,
Japan
- Corresponding author (e-mail: )
| |
Collapse
|
35
|
Hinojosa L, Sanad MNME, Jarvis DE, Steel P, Murphy K, Smertenko A. Impact of heat and drought stress on peroxisome proliferation in quinoa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:1144-1158. [PMID: 31108001 DOI: 10.1111/tpj.14411] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/07/2019] [Accepted: 05/13/2019] [Indexed: 05/21/2023]
Abstract
Although peroxisomes play a key role in plant metabolism under both normal and stressful growth conditions, the impact of drought and heat stress on the peroxisomes remains unknown. Quinoa represents an informative system for dissecting the impact of abiotic stress on peroxisome proliferation because it is adapted to marginal environments. Here we determined the correlation of peroxisome abundance with physiological responses and yield under heat, drought and heat plus drought stresses in eight genotypes of quinoa. We found that all stresses caused a reduction in stomatal conductance and yield. Furthermore, H2 O2 content increased under drought and heat plus drought. Principal component analysis demonstrated that peroxisome abundance correlated positively with H2 O2 content in leaves and correlated negatively with yield. Pearson correlation coefficient for yield and peroxisome abundance (r = -0.59) was higher than for commonly used photosynthetic efficiency (r = 0.23), but comparable to those for classical stress indicators such as soil moisture content (r = 0.51) or stomatal conductance (r = 0.62). Our work established peroxisome abundance as a cellular sensor for measuring responses to heat and drought stress in the genetically diverse populations. As heat waves threaten agricultural productivity in arid climates, our findings will facilitate identification of genetic markers for improving yield of crops under extreme weather patterns.
Collapse
Affiliation(s)
- Leonardo Hinojosa
- Department of Crop and Soil Sciences, Washington State University, PO Box 646340, Pullman, WA, 99164, USA
| | - Marwa N M E Sanad
- Institute of Biological Chemistry, Washington State University, PO Box 646340, Pullman, WA, 99164, USA
- Department of Genetics and Cytology, National Research Centre, Giza, Egypt
| | - David E Jarvis
- Plant & Wildlife Sciences, Brigham Young University, Provo, UT, 84602, USA
| | - Patrick Steel
- Department of Chemistry, Durham University, Durham, UK
| | - Kevin Murphy
- Department of Crop and Soil Sciences, Washington State University, PO Box 646340, Pullman, WA, 99164, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, PO Box 646340, Pullman, WA, 99164, USA
| |
Collapse
|
36
|
Liu X, Challabathula D, Quan W, Bartels D. Transcriptional and metabolic changes in the desiccation tolerant plant Craterostigma plantagineum during recurrent exposures to dehydration. PLANTA 2019; 249:1017-1035. [PMID: 30498957 DOI: 10.1007/s00425-018-3058-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/22/2018] [Indexed: 05/22/2023]
Abstract
Multiple dehydration/rehydration treatments improve the adaptation of Craterostigma plantagineum to desiccation by accumulating stress-inducible transcripts, proteins and metabolites. These molecules serve as stress imprints or memory and can lead to increased stress tolerance. It has been reported that repeated exposure to dehydration may generate stronger reactions during a subsequent dehydration treatment in plants. This stimulated us to address the question whether the desiccation tolerant resurrection plant Craterostigma plantagineum has a stress memory. The expression of four representative stress-related genes gradually increased during four repeated dehydration/rehydration treatments in C. plantagineum. These genes reflect a transcriptional memory and are trainable genes. In contrast, abundance of chlorophyll synthesis/degradation-related transcripts did not change during dehydration and remained at a similar level as in the untreated tissues during the recovery phase. During the four dehydration/rehydration treatments the level of ROS pathway-related transcripts, superoxide dismutase (SOD) activity, proline, and sucrose increased, whereas H2O2 content and electrolyte leakage decreased. Malondialdehyde (MDA) content did not change during the dehydration, which indicates a gain of stress tolerance. At the protein level, increased expression of four representative stress-related proteins showed that the activated stress memory can persist over several days. The phenomenon described here could be a general feature of dehydration stress memory responses in resurrection plants.
Collapse
Affiliation(s)
- Xun Liu
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Dinakar Challabathula
- Department of Life Sciences, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Wenli Quan
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000, Hubei, China
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
37
|
Schneider S, Turetschek R, Wedeking R, Wimmer MA, Wienkoop S. A Protein-Linger Strategy Keeps the Plant On-Hold After Rehydration of Drought-Stressed Beta vulgaris. FRONTIERS IN PLANT SCIENCE 2019; 10:381. [PMID: 30984226 PMCID: PMC6449722 DOI: 10.3389/fpls.2019.00381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Most crop plants are exposed to intermittent drought periods. To cope with these continuous changes, plants need strategies to prevent themselves from exhaustive adjustment maneuvers. Drought stress recovery has been shown to be an active process, possibly involved in a drought memory effect allowing plants to better cope with recurrent aridity. An integrated understanding of the molecular processes of enhanced drought tolerance is required to tailor key networks for improved crop protection. During summer, prolonged periods of drought are the major reason for economic yield losses of sugar beet (Beta vulgaris) in Europe. A drought stress and recovery time course experiment was carried out under controlled environmental conditions. In order to find regulatory key mechanisms enabling plants to rapidly react to periodic stress events, beets were either subjected to 11 days of progressive drought, or were drought stressed for 9 days followed by gradual rewatering for 14 days. Based on physiological measurements of leaf water relations and changes in different stress indicators, plants experienced a switch from moderate to severe water stress between day 9 and 11 of drought. The leaf proteome was analyzed, revealing induced protein pre-adjustment (prior to severe stress) and putative stress endurance processes. Three key protein targets, regulatory relevant during drought stress and with lingering levels of abundance upon rewatering were further exploited through their transcript performance. These three targets consist of a jasmonate induced, a salt-stress enhanced and a phosphatidylethanolamine-binding protein. The data demonstrate delayed protein responses to stress compared to their transcripts and indicate that the lingering mechanism is post-transcriptionally regulated. A set of lingering proteins is discussed with respect to a possible involvement in drought stress acclimation and memory effects.
Collapse
Affiliation(s)
- Sebastian Schneider
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Reinhard Turetschek
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Rita Wedeking
- Institute of Crop Science and Resource Conservation – Plant Nutrition, University of Bonn, Bonn, Germany
- Environmental Safety/Ecotoxicology, Bayer AG, Crop Science Division, Monheim am Rhein, Germany
| | - Monika A. Wimmer
- Institute of Crop Science – Quality of Plant Products, University of Hohenheim, Stuttgart, Germany
| | - Stefanie Wienkoop
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
38
|
Neves DM, Santana-Vieira DDS, Dória MS, Freschi L, Ferreira CF, Soares Filho WDS, Costa MGC, Coelho Filho MA, Micheli F, Gesteira ADS. Recurrent water deficit causes alterations in the profile of redox proteins in citrus plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:497-507. [PMID: 30292982 DOI: 10.1016/j.plaphy.2018.09.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
Plant acclimation to recurrent stress involves profound alterations in multiple genetic, metabolic and physiological processes. Stressful conditions usually implicate imbalance in reactive oxygen species (ROS) production and removal rates, which may lead to oxidative stress. However, the primary cellular targets of oxidative stress and their relevance in plant acclimation to abiotic stresses remains poorly characterized. By comparing redox proteomic and sugar profiles in citrus Valencia (VO) scions grafted onto two rootstocks with different soil water extraction capacities - Rangpur Lime (RL) and Sunki Maravilha (SM) - here we demonstrate that both ROS-mediated post-translational protein modification and changes in sugar composition are associated with acclimation to recurrent drought in citrus. The redox proteomic analysis of the distinct scion/rootstock combinations exposed to one (WD1), two (WD2) or three (WD3) water deficit episodes revealed a total of 32 and 55 redox protein spots present in VO/RL and VO/SM plants, respectively. Mass spectrometry analysis of these protein spots revealed essential targets of ROS-mediated posttranslational protein modification in citrus plants challenged by recurrent drought. The oxidation of cysteine thiol groups into glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was shown to increase in WD3 samples of the VO/RL combination, whereas the opposite was observed for the VO/SM combination. Similarly, recurrent drought promoted the oxidation of catalase thiol groups in VO/SM, but not in VO/RL. Carbohydrate profiling revealed that glucose, fructose and galactose may also contribute to the phenotypic differences observed between the citrus genotypes exposed to drought. These findings reveal for the first time that recurrent drought differentially affects the profile of redox proteomics of citrus, suggesting that this alteration may be part of the stress memory in perennial plants.
Collapse
Affiliation(s)
- Diana Matos Neves
- Departamento de Ciências Biológicas, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | | | - Milena Santos Dória
- Departamento de Ciências Biológicas, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Marcio Gilberto Cardoso Costa
- Departamento de Ciências Biológicas, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | | | - Fabienne Micheli
- Departamento de Ciências Biológicas, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil; CIRAD -UMR AGAP, Montpellier, France
| | - Abelmon da Silva Gesteira
- Departamento de Ciências Biológicas, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil; Embrapa - Mandioca e Fruticultura, Cruz das Almas, Bahia, Brazil.
| |
Collapse
|
39
|
Zhang C, Tang G, Peng X, Sun F, Liu S, Xi Y. Long non-coding RNAs of switchgrass (Panicum virgatum L.) in multiple dehydration stresses. BMC PLANT BIOLOGY 2018; 18:79. [PMID: 29728055 PMCID: PMC5936019 DOI: 10.1186/s12870-018-1288-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/22/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play important roles in plant growth and stress responses. Studies of lncRNAs in non-model plants are quite limited, especially those investigating multiple dehydration stresses. In this study, we identified novel lncRNAs and analyzed their functions in dehydration stress memory in switchgrass, an excellent biofuel feedstock and soil-conserving plant in the Gramineae family. RESULTS We analyzed genome-wide transcriptional profiles of leaves of 5-week-old switchgrass plantlets grown via tissue culture after primary and secondary dehydration stresses (D1 and D2) and identified 16,551 novel lncRNAs, including 4554 annotated lncRNAs (targeting 3574 genes), and 11,997 unknown lncRNAs. Gene ontology and pathway enrichment analysis of annotated genes showed that the differentially expressed lncRNAs were related to abscisic acid (ABA) and ethylene (ETH) biosynthesis and signal transduction, and to starch and sucrose metabolism. The upregulated lncRNAs and genes were related to ABA synthesis and its signal transduction, and to trehalose synthesis. Meanwhile, lncRNAs and genes related to ETH biosynthesis and signal transduction were suppressed. LncRNAs and genes involved in ABA metabolism were verified using quantitative real-time PCR, and the endogenous ABA content was determined via high performance liquid chromatography mass spectrometry (HPLC-MS). These results showed that ABA accumulated significantly during dehydration stress, especially in D2. Furthermore, we identified 307 dehydration stress memory lncRNAs, and the ratios of different memory types in switchgrass were similar to those in Arabidopsis and maize. CONCLUSIONS The molecular responses of switchgrass lncRNAs to multiple dehydration stresses were researched systematically, revealing novel information about their transcriptional regulatory behavior. This study provides new insights into the response mechanism to dehydration stress in plants. The lncRNAs and pathways identified in this study provide valuable information for genetic modification of switchgrass and other crops.
Collapse
Affiliation(s)
- Chao Zhang
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Wheat Biology and Genetic Breeding, Ministry of Agriculture, Yangling, 712100 Shaanxi China
| | - Gaijuan Tang
- College of Plant Protection, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Xi Peng
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Fengli Sun
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Wheat Biology and Genetic Breeding, Ministry of Agriculture, Yangling, 712100 Shaanxi China
| | - Shudong Liu
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Wheat Biology and Genetic Breeding, Ministry of Agriculture, Yangling, 712100 Shaanxi China
| | - Yajun Xi
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Wheat Biology and Genetic Breeding, Ministry of Agriculture, Yangling, 712100 Shaanxi China
| |
Collapse
|
40
|
Zhang C, Peng X, Guo X, Tang G, Sun F, Liu S, Xi Y. Transcriptional and physiological data reveal the dehydration memory behavior in switchgrass ( Panicum virgatum L.). BIOTECHNOLOGY FOR BIOFUELS 2018; 11:91. [PMID: 29619087 PMCID: PMC5879616 DOI: 10.1186/s13068-018-1088-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 03/21/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Switchgrass (Panicum virgatum L.) is a model biofuel plant because of its high biomass, cellulose-richness, easy degradation to ethanol, and the availability of extensive genomic information. However, a little is currently known about the molecular responses of switchgrass plants to dehydration stress, especially multiple dehydration stresses. RESULTS Studies on the transcriptional profiles of 35-day-old tissue culture plants revealed 741 dehydration memory genes. Gene Ontology and pathway analysis showed that these genes were enriched in phenylpropanoid biosynthesis, starch and sucrose metabolism, and plant hormone signal transduction. Further analysis of specific pathways combined with physiological data suggested that switchgrass improved its dehydration resistance by changing various aspects of its responses to secondary dehydration stress (D2), including the regulation of abscisic acid (ABA) and jasmonic acid (JA) biosynthesis and signal transduction, the biosynthesis of osmolytes (l-proline, stachyose and trehalose), energy metabolism (i.e., metabolic process relating to photosynthetic systems, glycolysis, and the TCA cycle), and lignin biosynthesis. The transcriptional data and chemical substance assays showed that ABA was significantly accumulated during both primary (D1) and secondary (D2) dehydration stresses, whereas JA accumulated during D1 but became significantly less abundant during D2. This suggests the existence of a complicated signaling network of plant hormones in response to repeated dehydration stresses. A homology analysis focusing on switchgrass, maize, and Arabidopsis revealed the conservation and species-specific distribution of dehydration memory genes. CONCLUSIONS The molecular responses of switchgrass plants to successive dehydration stresses have been systematically characterized, revealing a previously unknown transcriptional memory behavior. These results provide new insights into the mechanisms of dehydration stress responses in plants. The genes and pathways identified in this study will be useful for the genetic improvement of switchgrass and other crops.
Collapse
Affiliation(s)
- Chao Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xi Peng
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xiaofeng Guo
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Gaijuan Tang
- College of Plant Protection, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Fengli Sun
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Shudong Liu
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yajun Xi
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
41
|
Neves DM, Almeida LADH, Santana-Vieira DDS, Freschi L, Ferreira CF, Soares Filho WDS, Costa MGC, Micheli F, Coelho Filho MA, Gesteira ADS. Recurrent water deficit causes epigenetic and hormonal changes in citrus plants. Sci Rep 2017; 7:13684. [PMID: 29057930 PMCID: PMC5651809 DOI: 10.1038/s41598-017-14161-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/06/2017] [Indexed: 11/09/2022] Open
Abstract
The present study evaluated the physiological, molecular and hormonal parameters from scion/rootstock interaction of citrus plants during recurrent water deficit. Responses of the Valencia (VO) scion variety grafted on two rootstocks with different soil water extraction capacities, Rangpur Lime (RL) and Sunki Maravilha (SM), during three successive periods of water deficit: plants exposed to a single episode of water deficit (WD1) and plants exposed to two (WD2) and three (WD3) recurrent periods of WD were compared. The combinations VO/RL and VO/SM presented polymorphic alterations of epigenetic marks and hormonal (i.e. abscisic acid, auxins and salicylicacid) profiles, which were particularly prominent when VO/SM plantswere exposed toWD3 treatment. Upon successive drought events, the VO/SM combination presented acclimatization characteristics that enable higher tolerance to water deficit by increasing transpiration (E), stomatal conductance (g s ) and photosynthetic rate (A), which in turn may have facilitated the whole plant survival. Besides providing comprehensive data on the scion/rootstock interactions upon successive stress events, this study brings the first dataset suggesting that epigenetic alterations in citrus plants triggered by recurrent water deficit lead to improved drought tolerance in this crop species.
Collapse
Affiliation(s)
- Diana Matos Neves
- Departamento de Biologia, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus-Bahia, 45662-900, Brazil
| | | | - Dayse Drielly Souza Santana-Vieira
- Departamento de Ciências Exatas e Tecnológicas, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista-Bahia, 45083-900, Brazil.,Departamento de Ciências Agrárias, Universidade Federal do Recôncavo da Bahia, Cruz das Almas-Bahia, 44380-000, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, Brazil
| | | | | | - Marcio Gilberto Cardoso Costa
- Departamento de Biologia, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus-Bahia, 45662-900, Brazil
| | - Fabienne Micheli
- Departamento de Biologia, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus-Bahia, 45662-900, Brazil.,CIRAD -UMR AGAP, F-34398, Montpellier, France
| | | | - Abelmon da Silva Gesteira
- Departamento de Biologia, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus-Bahia, 45662-900, Brazil. .,Embrapa-Mandioca e Fruticultura, Cruz das Almas-Bahia, 44380-000, Brazil.
| |
Collapse
|
42
|
Drapal M, Farfan-Vignolo ER, Gutierrez OR, Bonierbale M, Mihovilovich E, Fraser PD. Identification of metabolites associated with water stress responses in Solanum tuberosum L. clones. PHYTOCHEMISTRY 2017; 135:24-33. [PMID: 27964835 DOI: 10.1016/j.phytochem.2016.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 05/25/2023]
Abstract
Water deficiency has become a major issue for modern agriculture as its effects on crop yields and tuber quality have become more pronounced. Potato genotypes more tolerant to water shortages have been identified through assessment of yield and dry matter. In the present study, a combination of metabolite profiling and physiological/agronomical measurements has been used to explore complex system level responses to non-lethal water restriction. The metabolites identified were associated with physiological responses in three different plant tissues (leaf, root and tuber) of five different potato genotypes varying in susceptibility/tolerance to drought. This approach explored the potential of metabolite profiling as a tool to unravel sectors of metabolism that react to stress conditions and could mirror the changes in the plant physiology. The metabolite results showed different responses of the three plant tissues to the water deficit, resulting either in different levels of the metabolites detected or different metabolites expressed. The leaf material displayed the most changes to drought as reported in literature. The results highlighted genotype-specific signatures to water restriction over all three plant tissues suggesting that the genetics can predominate over the environmental conditions. This will have important implications for future breeding approaches.
Collapse
Affiliation(s)
- M Drapal
- School of Biological Sciences, Royal Holloway University of London, CGIAR Research Program on Roots, Tubers and Bananas, Egham Hill, Egham, Surrey TW20 0EX, UK
| | - E R Farfan-Vignolo
- International Potato Center (CIP), CGIAR Research Program on Roots, Tubers and Bananas, Lima, 12, Peru
| | - O R Gutierrez
- International Potato Center (CIP), CGIAR Research Program on Roots, Tubers and Bananas, Lima, 12, Peru
| | - M Bonierbale
- International Potato Center (CIP), CGIAR Research Program on Roots, Tubers and Bananas, Lima, 12, Peru
| | - E Mihovilovich
- International Potato Center (CIP), CGIAR Research Program on Roots, Tubers and Bananas, Lima, 12, Peru
| | - P D Fraser
- School of Biological Sciences, Royal Holloway University of London, CGIAR Research Program on Roots, Tubers and Bananas, Egham Hill, Egham, Surrey TW20 0EX, UK.
| |
Collapse
|