1
|
Carrillo-Bermejo EA, Brito-Argáez L, Galaz-Ávalos RM, Barredo-Pool F, Loyola-Vargas VM, Aguilar-Hernández V. Protein profile changes during priming explants to embryogenic response in Coffea canephora: identification of the RPN12 proteasome subunit involved in the protein degradation. PeerJ 2024; 12:e18372. [PMID: 39544425 PMCID: PMC11562780 DOI: 10.7717/peerj.18372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/30/2024] [Indexed: 11/17/2024] Open
Abstract
Plant somatic embryogenesis encompasses somatic cells switch into embryogenic cells that can later produce somatic embryos with the ability to produce plantlets. Previously, we defined in vitro culture settings for the somatic embryogenesis process of Coffea canephora that comprise adequate plantlets with auxin plus cytokinin followed by cut-leaf explant cultivation with cytokinin, producing embryos with the ability to regenerate plantlets. Here, we confirmed that cultivating cut-leaf explants with cytokinin is sufficient to promote somatic embryos proliferation and the high yield of somatic embryos in the protocol requires adequate plantlets with auxin plus cytokinin. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels reveal auxin-plus cytokinin-dependent regulated proteins in plantlets with up and down abundance. Chitinase A class III, proteins involved in the metabolism and folding of proteins, photosynthesis, antioxidant activity, and chromatin organization were identified. The RPN12 protein, which is a subunit of the proteasome 26S, has an abundance that is not associated with transcript changes, suggesting post-translational regulation.
Collapse
Affiliation(s)
- Evelyn A. Carrillo-Bermejo
- Unidad de Biología Integrativa, Centro de Investigacion Cientifica de Yucatan (CICY), Mérida, Yucatán, Mexico
| | - Ligia Brito-Argáez
- Unidad de Biología Integrativa, Centro de Investigacion Cientifica de Yucatan (CICY), Mérida, Yucatán, Mexico
| | - Rosa M. Galaz-Ávalos
- Unidad de Biología Integrativa, Centro de Investigacion Cientifica de Yucatan (CICY), Mérida, Yucatán, Mexico
| | - Felipe Barredo-Pool
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán (CICY), Mérida, Yucatán, Mexico
| | - Víctor M. Loyola-Vargas
- Unidad de Biología Integrativa, Centro de Investigacion Cientifica de Yucatan (CICY), Mérida, Yucatán, Mexico
| | - Victor Aguilar-Hernández
- Unidad de Biología Integrativa, Centro de Investigacion Cientifica de Yucatan (CICY), Mérida, Yucatán, Mexico
| |
Collapse
|
2
|
Loyola-Vargas VM, Ochoa-Alejo N. An Introduction to Plant Cell, Tissue, and Organ Culture: Current Status and Perspectives. Methods Mol Biol 2024; 2827:1-13. [PMID: 38985259 DOI: 10.1007/978-1-0716-3954-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Plant cell, tissue, and organ cultures (PCTOC) have been used as experimental systems in basic research, allowing gene function demonstration through gene overexpression or repression and investigating the processes involved in embryogenesis and organogenesis or those related to the potential production of secondary metabolites, among others. On the other hand, PCTOC has also been applied at the commercial level for the vegetative multiplication (micropropagation) of diverse plant species, mainly ornamentals but also horticultural crops such as potato or fruit and tree species, and to produce high-quality disease-free plants. Moreover, PCTOC protocols are important auxiliary systems in crop breeding crops to generate pure lines (homozygous) to produce hybrids for the obtention of polyploid plants with higher yields or better performance. PCTOC has been utilized to preserve and conserve the germplasm of different crops or threatened species. Plant genetic improvement through genetic engineering and genome editing has been only possible thanks to the establishment of efficient in vitro plant regeneration protocols. Different companies currently focus on commercializing plant secondary metabolites with interesting biological activities using in vitro PCTOC. The impact of omics on PCTOC is discussed.
Collapse
Affiliation(s)
- Víctor M Loyola-Vargas
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, Mexico.
| | - Neftalí Ochoa-Alejo
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
3
|
Ojosnegros S, Alvarez JM, Grossmann J, Gagliardini V, Quintanilla LG, Grossniklaus U, Fernández H. Proteome and Interactome Linked to Metabolism, Genetic Information Processing, and Abiotic Stress in Gametophytes of Two Woodferns. Int J Mol Sci 2023; 24:12429. [PMID: 37569809 PMCID: PMC10419320 DOI: 10.3390/ijms241512429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Ferns and lycophytes have received scant molecular attention in comparison to angiosperms. The advent of high-throughput technologies allowed an advance towards a greater knowledge of their elusive genomes. In this work, proteomic analyses of heart-shaped gametophytes of two ferns were performed: the apomictic Dryopteris affinis ssp. affinis and its sexual relative Dryopteris oreades. In total, a set of 218 proteins shared by these two gametophytes were analyzed using the STRING database, and their proteome associated with metabolism, genetic information processing, and responses to abiotic stress is discussed. Specifically, we report proteins involved in the metabolism of carbohydrates, lipids, and nucleotides, the biosynthesis of amino acids and secondary compounds, energy, oxide-reduction, transcription, translation, protein folding, sorting and degradation, and responses to abiotic stresses. The interactome of this set of proteins represents a total network composed of 218 nodes and 1792 interactions, obtained mostly from databases and text mining. The interactions among the identified proteins of the ferns D. affinis and D. oreades, together with the description of their biological functions, might contribute to a better understanding of the function and development of ferns as well as fill knowledge gaps in plant evolution.
Collapse
Affiliation(s)
- Sara Ojosnegros
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071 Oviedo, Spain; (S.O.); (J.M.A.)
| | - José Manuel Alvarez
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071 Oviedo, Spain; (S.O.); (J.M.A.)
| | - Jonas Grossmann
- Functional Genomic Center Zurich, University and ETH Zurich, 8092 Zurich, Switzerland;
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Valeria Gagliardini
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland; (V.G.); (U.G.)
| | - Luis G. Quintanilla
- Department of Biology and Geology, Physics and Inorganic Chemistry, University Rey Juan Carlos, 28933 Móstoles, Spain;
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland; (V.G.); (U.G.)
| | - Helena Fernández
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071 Oviedo, Spain; (S.O.); (J.M.A.)
| |
Collapse
|
4
|
Ojosnegros S, Alvarez JM, Grossmann J, Gagliardini V, Quintanilla LG, Grossniklaus U, Fernández H. The Shared Proteome of the Apomictic Fern Dryopteris affinis ssp. affinis and Its Sexual Relative Dryopteris oreades. Int J Mol Sci 2022; 23:ijms232214027. [PMID: 36430514 PMCID: PMC9693225 DOI: 10.3390/ijms232214027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Ferns are a diverse evolutionary lineage, sister to the seed plants, which is of great ecological importance and has a high biotechnological potential. Fern gametophytes represent one of the simplest autotrophic, multicellular plant forms and show several experimental advantages, including a simple and space-efficient in vitro culture system. However, the molecular basis of fern growth and development has hardly been studied. Here, we report on a proteomic study that identified 417 proteins shared by gametophytes of the apogamous fern Dryopteris affinis ssp. affinis and its sexual relative Dryopteris oreades. Most proteins are predicted to localize to the cytoplasm, the chloroplast, or the nucleus, and are linked to enzymatic, binding, and structural activities. A subset of 145 proteins are involved in growth, reproduction, phytohormone signaling and biosynthesis, and gene expression, including homologs of SHEPHERD (SHD), HEAT SHOCK PROTEIN 90-5 (CR88), TRP4, BOBBER 1 (BOB1), FLAVONE 3'-O-METHYLTRANSFERASE 1 (OMT1), ZEAXANTHIN EPOXIDASE (ABA1), GLUTAMATE DESCARBOXYLASE 1 (GAD), and dsRNA-BINDING DOMAIN-LIKE SUPERFAMILY PROTEIN (HLY1). Nearly 25% of the annotated proteins are associated with responses to biotic and abiotic stimuli. As for biotic stress, the proteins PROTEIN SGT1 HOMOLOG B (SGT1B), SUPPRESSOR OF SA INSENSITIVE2 (SSI2), PHOSPHOLIPASE D ALPHA 1 (PLDALPHA1), SERINE/THREONINE-PROTEIN KINASE SRK2E (OST1), ACYL CARRIER PROTEIN 4 (ACP4), and NONHOST RESISTANCE TO P. S. PHASEOLICOLA1 (GLPK) are worth mentioning. Regarding abiotic stimuli, we found proteins associated with oxidative stress: SUPEROXIDE DISMUTASE[CU-ZN] 1 (CSD1), and GLUTATHIONE S-TRANSFERASE U19 (GSTU19), light intensity SERINE HYDROXYMETHYLTRANSFERASE 1 (SHM1) and UBIQUITIN-CONJUGATING ENZYME E2 35 (UBC35), salt and heavy metal stress included MITOCHONDRIAL PHOSPHATE CARRIER PROTEIN 3 (PHT3;1), as well as drought and thermotolerance: LEA7, DEAD-BOX ATP-DEPENDENT RNA HELICASE 38 (LOS4), and abundant heat-shock proteins and other chaperones. In addition, we identified interactomes using the STRING platform, revealing protein-protein associations obtained from co-expression, co-occurrence, text mining, homology, databases, and experimental datasets. By focusing on ferns, this proteomic study increases our knowledge on plant development and evolution, and may inspire future applications in crop species.
Collapse
Affiliation(s)
- Sara Ojosnegros
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071 Oviedo, Spain
| | - José Manuel Alvarez
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071 Oviedo, Spain
| | - Jonas Grossmann
- Functional Genomic Center Zurich, University and ETH Zurich, 8092 Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Valeria Gagliardini
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8006 Zurich, Switzerland
| | - Luis G. Quintanilla
- Department of Biology and Geology, Physics and Inorganic Chemistry, University Rey Juan Carlos, 28933 Móstoles, Spain
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8006 Zurich, Switzerland
| | - Helena Fernández
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071 Oviedo, Spain
- Correspondence: ; Tel.: +34-985-104-811
| |
Collapse
|
5
|
Duarte-Aké F, Márquez-López RE, Monroy-González Z, Borbolla-Pérez V, Loyola-Vargas VM. The source, level, and balance of nitrogen during the somatic embryogenesis process drive cellular differentiation. PLANTA 2022; 256:113. [PMID: 36367589 DOI: 10.1007/s00425-022-04009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Since the discovery of somatic embryogenesis (SE), it has been evident that nitrogen (N) metabolism is essential during morphogenesis and cell differentiation. Usually, N is supplied to cultures in vitro in three forms, ammonium (NH4+), nitrate (NO3-), and amino N from amino acids (AAs). Although most plants prefer NO3- to NH4+, NH4+ is the primary form route to be assimilated. The balance of NO3- and NH4+ determines if the morphological differentiation process will produce embryos. That the N reduction of NO3- is needed for both embryo initiation and maturation is well-established in several models, such as carrot, tobacco, and rose. It is clear that N is indispensable for SE, but the mechanism that triggers the signal for embryo formation remains unknown. Here, we discuss recent studies that suggest an optimal endogenous concentration of auxin and cytokinin is closely related to N supply to plant tissue. From a molecular and biochemical perspective, we explain N's role in embryo formation, hypothesizing possible mechanisms that allow cellular differentiation by changing the nitrogen source.
Collapse
Affiliation(s)
- Fátima Duarte-Aké
- Centro de Investigación Científica de Yucatán, Unidad de Bioquímica y Biología Molecular de Plantas, Mérida, Yucatán, Mexico
| | - Ruth E Márquez-López
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Oaxaca, Santa Cruz Xoxocotlán, C.P., 71230, Oaxaca, Oaxaca, Mexico
| | - Zurisadai Monroy-González
- Centro de Investigación Científica de Yucatán, Unidad de Bioquímica y Biología Molecular de Plantas, Mérida, Yucatán, Mexico
| | - Verónica Borbolla-Pérez
- Centro de Investigación Científica de Yucatán, Unidad de Bioquímica y Biología Molecular de Plantas, Mérida, Yucatán, Mexico
| | - Víctor M Loyola-Vargas
- Centro de Investigación Científica de Yucatán, Unidad de Bioquímica y Biología Molecular de Plantas, Mérida, Yucatán, Mexico.
| |
Collapse
|
6
|
Borges Araujo AJ, Cerruti GV, Zuccarelli R, Rodriguez Ruiz M, Freschi L, Singh R, Moerschbacher BM, Floh EIS, Wendt dos Santos AL. Proteomic Analysis of S-Nitrosation Sites During Somatic Embryogenesis in Brazilian Pine, Araucaria angustifolia (Bertol.) Kuntze. FRONTIERS IN PLANT SCIENCE 2022; 13:902068. [PMID: 35845673 PMCID: PMC9280032 DOI: 10.3389/fpls.2022.902068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Cysteine S-nitrosation is a redox-based post-translational modification that mediates nitric oxide (NO) regulation of various aspects of plant growth, development and stress responses. Despite its importance, studies exploring protein signaling pathways that are regulated by S-nitrosation during somatic embryogenesis have not been performed. In the present study, endogenous cysteine S-nitrosation site and S-nitrosated proteins were identified by iodo-TMT labeling during somatic embryogenesis in Brazilian pine, an endangered native conifer of South America. In addition, endogenous -S-nitrosothiol (SNO) levels and S-nitrosoglutathione reductase (GSNOR) activity were determined in cell lines with contrasting embryogenic potential. Overall, we identified an array of proteins associated with a large variety of biological processes and molecular functions with some of them already described as important for somatic embryogenesis (Class IV chitinase, pyruvate dehydrogenase E1 and dehydroascorbate reductase). In total, our S-nitrosoproteome analyses identified 18 endogenously S-nitrosated proteins and 50 in vitro S-nitrosated proteins (after GSNO treatment) during cell culture proliferation and embryo development. Furthermore, SNO levels and GSNOR activity were increased during embryo formation. These findings expand our understanding of the Brazilian pine proteome and shed novel insights into the potential use of pharmacological manipulation of NO levels by using NO inhibitors and donors during somatic embryogenesis.
Collapse
Affiliation(s)
| | | | - Rafael Zuccarelli
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Marta Rodriguez Ruiz
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Ratna Singh
- Department of Plant Biology and Biotechnology, WWU Münster, Münster, Germany
| | | | - Eny Iochevet Segal Floh
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
7
|
Rybczyński JJ, Kaźmierczak A, Dos Santos Szewczyk K, Tomaszewicz W, Miazga-Karska M, Mikuła A. Biotechnology of the Tree Fern Cyathea smithii (J.D. Hooker; Soft Tree Fern, Katote) II Cell Suspension Culture: Focusing on Structure and Physiology in the Presence of 2,4-D and BAP. Cells 2022; 11:1396. [PMID: 35563701 PMCID: PMC9100639 DOI: 10.3390/cells11091396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/21/2022] Open
Abstract
The aim of our research was to describe the structure and growth potential of a cell suspension of the tree fern Cyathea smithii. Experiments were performed on an established cell suspension with ½ MS medium supplemented with 9.05 µM 2,4-D + 0.88 µM BAP. In the experiments, attention was paid to the microscopic description of cell suspension, evaluation of cell growth dependent on the initial mass of cells and organic carbon source in the medium, the length of the passage, the content of one selected flavonoid in the post-culture medium, nuclear DNA content, ethylene production, and the antimicrobial value of the extract. For a better understanding of the cell changes that occurred during the culture of the suspension, the following structures of the cell were observed: nucleus, lipid bodies, tannin deposits, starch grains, cell walls, primary lamina, and the filaments of metabolites released into the medium. The nuclear DNA content (acriflavine-Feulgen staining) of cell aggregates distinctly indicated a lack of changes in the sporophytic origin of the cultured cell suspension. The physiological activity of the suspension was found to be high because of kinetics, intensive production of ethylene, and quercetin production. The microbiological studies suggested that the cell suspension possessed a bactericidal character against microaerobic Gram-positive bacteria. A sample of the cell suspension showed bacteriostatic activity against aerobic bacteria.
Collapse
Affiliation(s)
- Jan J. Rybczyński
- Polish Academy of Sciences, Botanical Garden-Center for Biology Diversity Conservation in Powsin, 2 Prawdziwka Str., 02-973 Warsaw, Poland; (W.T.); (A.M.)
| | | | - Katarzyna Dos Santos Szewczyk
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland;
| | - Wojciech Tomaszewicz
- Polish Academy of Sciences, Botanical Garden-Center for Biology Diversity Conservation in Powsin, 2 Prawdziwka Str., 02-973 Warsaw, Poland; (W.T.); (A.M.)
| | - Małgorzata Miazga-Karska
- Department of Biochemistry and Biotechnology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Anna Mikuła
- Polish Academy of Sciences, Botanical Garden-Center for Biology Diversity Conservation in Powsin, 2 Prawdziwka Str., 02-973 Warsaw, Poland; (W.T.); (A.M.)
| |
Collapse
|
8
|
Elnaggar A, Mosa KA, Ramamoorthy K, El-Keblawy A, Navarro T, Soliman SSM. De novo transcriptome sequencing, assembly, and gene expression profiling of a salt-stressed halophyte (Salsola drummondii) from a saline habitat. PHYSIOLOGIA PLANTARUM 2021; 173:1695-1714. [PMID: 34741316 DOI: 10.1111/ppl.13591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 09/30/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Salsola drummondii is a perennial habitat-indifferent halophyte growing in saline and nonsaline habitats of the Arabian hyperarid deserts. It offers an invaluable opportunity to examine the molecular mechanisms of salt tolerance. The present study was conducted to elucidate these mechanisms through transcriptome profiling of seedlings grown from seeds collected in a saline habitat. The Illumina Hiseq 2500 platform was employed to sequence cDNA libraries prepared from shoots and roots of nonsaline-treated plants (controls) and plants treated with 1200 mM NaCl. Transcriptomic comparison between salt-treated and control samples resulted in 17,363 differentially expressed genes (DEGs), including 12,000 upregulated genes (7870 in roots, 4130 in shoots) and 5363 downregulated genes (4258 in roots and 1105 in shoots). The majority of identified DEGs are known to be involved in transcription regulation (79), signal transduction (82), defense metabolism (101), transportation (410), cell wall metabolism (27), regulatory processes (392), respiration (85), chaperoning (9), and ubiquitination (98) during salt tolerance. This study identified potential genes associated with the salt tolerance of S. drummondii and demonstrated that this tolerance may depend on the induction of certain genes in shoot and root tissues. These gene expressions were validated using reverse-transcription quantitative PCR, the results of which were consistent with transcriptomics results. To the best of our knowledge, this is the first study providing genetic information on salt tolerance mechanisms in S. drummondii.
Collapse
Affiliation(s)
- Attiat Elnaggar
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, UAE
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
- Departmento de Botanica y Fisiologia Vegetal, Universidad de Málaga, Málaga, Spain
| | - Kareem A Mosa
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, UAE
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Kalidoss Ramamoorthy
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, UAE
| | - Ali El-Keblawy
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, UAE
- Department of Biology, Faculty of Science, Al-Arish University, Egypt
| | - Teresa Navarro
- Departmento de Botanica y Fisiologia Vegetal, Universidad de Málaga, Málaga, Spain
| | - Sameh S M Soliman
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, UAE
| |
Collapse
|
9
|
Fernández H, Grossmann J, Gagliardini V, Feito I, Rivera A, Rodríguez L, Quintanilla LG, Quesada V, Cañal MJ, Grossniklaus U. Sexual and Apogamous Species of Woodferns Show Different Protein and Phytohormone Profiles. FRONTIERS IN PLANT SCIENCE 2021; 12:718932. [PMID: 34868105 PMCID: PMC8633544 DOI: 10.3389/fpls.2021.718932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The gametophyte of ferns reproduces either by sexual or asexual means. In the latter, apogamy represents a peculiar case of apomixis, in which an embryo is formed from somatic cells. A proteomic and physiological approach was applied to the apogamous fern Dryopteris affinis ssp. affinis and its sexual relative D. oreades. The proteomic analysis compared apogamous vs. female gametophytes, whereas the phytohormone study included, in addition to females, three apogamous stages (filamentous, spatulate, and cordate). The proteomic profiles revealed a total of 879 proteins and, after annotation, different regulation was found in 206 proteins of D. affinis and 166 of its sexual counterpart. The proteins upregulated in D. affinis are mostly associated to protein metabolism (including folding, transport, and proteolysis), ribosome biogenesis, gene expression and translation, while in the sexual counterpart, they account largely for starch and sucrose metabolism, generation of energy and photosynthesis. Likewise, ultra-performance liquid chromatography-tandem spectrometry (UHPLC-MS/MS) was used to assess the levels of indol-3-acetic acid (IAA); the cytokinins: 6-benzylaminopurine (BA), trans-Zeatine (Z), trans-Zeatin riboside (ZR), dyhidrozeatine (DHZ), dyhidrozeatin riboside (DHZR), isopentenyl adenine (iP), isopentenyl adenosine (iPR), abscisic acid (ABA), the gibberellins GA3 and GA4, salicylic acid (SA), and the brassinosteroids: brassinolide (BL) and castasterone (CS). IAA, the cytokinins Z, ZR, iPR, the gibberellin GA4, the brassinosteoids castasterone, and ABA accumulated more in the sexual gametophyte than in the apogamous one. When comparing the three apogamous stages, BA and SA peaked in filamentous, GA3 and BL in spatulate and DHRZ in cordate gametophytes. The results point to the existence of large metabolic differences between apogamous and sexual gametophytes, and invite to consider the fern gametophyte as a good experimental system to deepen our understanding of plant reproduction.
Collapse
Affiliation(s)
- Helena Fernández
- Area of Plant Physiology, Department of Organisms and Systems Biology, Oviedo University, Oviedo, Spain
| | - Jonas Grossmann
- Functional Genomics Center, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Valeria Gagliardini
- Department of Plant and Microbial Biology & Zurich and Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Isabel Feito
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Finca Experimental La Mata, Grado, Spain
| | - Alejandro Rivera
- Area of Plant Physiology, Department of Organisms and Systems Biology, Oviedo University, Oviedo, Spain
| | - Lucía Rodríguez
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Finca Experimental La Mata, Grado, Spain
| | - Luis G. Quintanilla
- Department of Biology and Geology, Physics and Inorganic Chemistry, Rey Juan Carlos University, Móstoles, Spain
| | - Víctor Quesada
- Department of Biochemistry and Molecular Biology, Institute of Oncology of the Principality of Asturias, Oviedo University, Móstoles, Spain
| | - Mª Jesús Cañal
- Area of Plant Physiology, Department of Organisms and Systems Biology, Oviedo University, Oviedo, Spain
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich and Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Nawaz G, Usman B, Peng H, Zhao N, Yuan R, Liu Y, Li R. Knockout of Pi21 by CRISPR/Cas9 and iTRAQ-Based Proteomic Analysis of Mutants Revealed New Insights into M. oryzae Resistance in Elite Rice Line. Genes (Basel) 2020; 11:E735. [PMID: 32630695 PMCID: PMC7396999 DOI: 10.3390/genes11070735] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 01/27/2023] Open
Abstract
Rice blast (Magnaporthe oryzae) is a devastating disease affecting rice production globally. The development of cultivars with host resistance has been proved to be the best strategy for disease management. Several rice-resistance genes (R) have been recognized which induce resistance to blast in rice but R gene-mediated mechanisms resulting in defense response still need to be elucidated. Here, mutant lines generated through CRISPR/Cas9 based targeted mutagenesis to investigate the role of Pi21 against blast resistance and 17 mutant plants were obtained in T0 generation with the mutation rate of 66% including 26% bi-allelic, 22% homozygous, 12% heterozygous, and 3% chimeric and 17 T-DNA-free lines in T1 generation. The homozygous mutant lines revealed enhanced resistance to blast without affecting the major agronomic traits. Furthermore, comparative proteome profiling was adopted to study the succeeding proteomic regulations, using iTRAQ-based proteomic analysis. We identified 372 DEPs, among them 149 up and 223 were down-regulated, respectively. GO analysis revealed that the proteins related to response to stimulus, photosynthesis, carbohydrate metabolic process, and small molecule metabolic process were up-regulated. The most of DEPs were involved in metabolic, ribosomal, secondary metabolites biosynthesis, and carbon metabolism pathways. 40S ribosomal protein S15 (P31674), 50S ribosomal protein L4, L5, L6 (Q10NM5, Q9ZST0, Q10L93), 30S ribosomal protein S5, S9 (Q6YU81, Q850W6, Q9XJ28), and succinate dehydrogenase (Q9S827) were hub-proteins. The expression level of genes related to defense mechanism, involved in signaling pathways of jasmonic acid (JA), salicylic acid (SA), and ethylene metabolisms were up-regulated in mutant line after the inoculation of the physiological races of M. oryzae as compared to WT. Our results revealed the fundamental value of genome editing and expand knowledge about fungal infection avoidance in rice.
Collapse
Affiliation(s)
- Gul Nawaz
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (G.N.); (B.U.); (H.P.); (N.Z.); (R.Y.)
| | - Babar Usman
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (G.N.); (B.U.); (H.P.); (N.Z.); (R.Y.)
| | - Haowen Peng
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (G.N.); (B.U.); (H.P.); (N.Z.); (R.Y.)
| | - Neng Zhao
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (G.N.); (B.U.); (H.P.); (N.Z.); (R.Y.)
| | - Ruizhi Yuan
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (G.N.); (B.U.); (H.P.); (N.Z.); (R.Y.)
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Rongbai Li
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China; (G.N.); (B.U.); (H.P.); (N.Z.); (R.Y.)
| |
Collapse
|
11
|
Grzyb M, Wróbel-Marek J, Kurczyńska E, Sobczak M, Mikuła A. Symplasmic Isolation Contributes to Somatic Embryo Induction and Development in the Tree Fern Cyathea delgadii Sternb. PLANT & CELL PHYSIOLOGY 2020; 61:1273-1284. [PMID: 32374847 PMCID: PMC7377347 DOI: 10.1093/pcp/pcaa058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
In this report, we describe studies on symplasmic communication and cellular rearrangement during direct somatic embryogenesis (SE) in the tree fern Cyathea delgadii. We analyzed changes in the symplasmic transport of low-molecular-weight fluorochromes, such as 8-hydroxypyrene-1,3,6-trisulfonic acid, trisodium salt (HPTS) and fluorescein (delivered to cells as fluorescein diacetate, FDA), within stipe explants and somatic embryos originating from single epidermal cells and developing during 16-d long culture. Induction of SE is preceded by a restriction in fluorochrome distribution between certain explant cells. Microscopic analysis showed a series of cellular changes like a decrease in vacuole size, increase in vacuole numbers, and increased density of cytoplasm and deposition of electron-dense material in cell walls that may be related with embryogenic transition. In somatic embryos, the limited symplasmic communication between cells was observed first in linear tri-cellular embryos. Further development of the fern embryo was associated with the formation of symplasmic domains corresponding to the four segments of the plant body. Using symplasmic tracers, we provided evidence that the changes in plasmodesmata permeability are corelated with somatic-to-embryogenic transition and somatic embryo development.
Collapse
Affiliation(s)
- Małgorzata Grzyb
- Department of Conservative Plant Biology, Polish Academy of Sciences Botanical Garden-Center for Biological Diversity Conservation in Powsin, Prawdziwka 2, Warsaw 02-973, Poland
| | - Justyna Wróbel-Marek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland
| | - Ewa Kurczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland
| | - Mirosław Sobczak
- Institute of Biology, Department of Botany, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, Warsaw 02-787, Poland
| | - Anna Mikuła
- Department of Conservative Plant Biology, Polish Academy of Sciences Botanical Garden-Center for Biological Diversity Conservation in Powsin, Prawdziwka 2, Warsaw 02-973, Poland
| |
Collapse
|
12
|
Guo H, Guo H, Zhang L, Fan Y, Wu J, Tang Z, Zhang Y, Fan Y, Zeng F. Dynamic Transcriptome Analysis Reveals Uncharacterized Complex Regulatory Pathway Underlying Genotype-Recalcitrant Somatic Embryogenesis Transdifferentiation in Cotton. Genes (Basel) 2020; 11:E519. [PMID: 32392816 PMCID: PMC7290922 DOI: 10.3390/genes11050519] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/21/2020] [Accepted: 05/05/2020] [Indexed: 11/27/2022] Open
Abstract
As a notable illustration of totipotency and plant regeneration, somatic embryogenesis (SE) is the developmental reprogramming of somatic cells toward the embryogenesis pathway, the key step for genetic engineering. Investigations examining the totipotency process are of great fundamental and practical importance in crop biotechnology. However, high-frequency regeneration of cotton via SE has been limited due to genotype-dependent response. The molecular basis deciphering SE genotype recalcitrance remains largely unexplored in cotton. In the current study, to comprehensively investigate the dynamic transcriptional profiling and gene regulatory patterns involved in SE process, a genome-wide RNA sequencing analysis was performed in two cotton genotypes with distinct embryogenic abilities, the highly embryogenic genotype Yuzao 1 (YZ) and the recalcitrant genotype Lumian 1 (LM). Three typical developmental staged cultures of early SE-hypocotyls (HY), nonembryogenic calli (NEC) and primary embryogenic calli (PEC)-were selected to establish the transcriptional profiles. Our data revealed that a total of 62,562 transcripts were present amongst different developmental stages in the two genotypes. Of these, 18,394 and 26,514 differentially expressed genes (DEGs) were identified during callus dedifferentiation (NEC-VS-HY) and embryogenic transdifferentiation (PEC-VS-NEC), respectively in the recalcitrant genotype, 21,842 and 22,343 DEGs in the highly embryogenic genotype. Furthermore, DEGs were clustered into six expression patterns during cotton SE process in the two genotypes. Moreover, functional enrichment analysis revealed that DEGs were significantly enriched in fatty acid, tryptophan and pyruvate metabolism in the highly embryogenic genotype and in DNA conformation change otherwise in the recalcitrant genotype. In addition, critical SE-associated expressed transcription factors, as well as alternative splicing events, were notably and preferentially activated during embryogenic transdifferentiation in the highly embryogenic genotype compared with the recalcitrant genotype. Taken together, by systematically comparing two genotypes with distinct embryogenic abilities, the findings in our study revealed a comprehensive overview of the dynamic gene regulatory patterns and uncharacterized complex regulatory pathways during cotton SE genotype-dependent response. Our work provides insights into the molecular basis and important gene resources for understanding the underlying genotype recalcitrance during SE process and plant regeneration, thereby holding great promise for accelerating the application of biotechnology to cotton for improving its breeding efficiency.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fanchang Zeng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China; (H.G.); (H.G.); (L.Z.); (Y.F.); (J.W.); (Z.T.); (Y.Z.); (Y.F.)
| |
Collapse
|
13
|
Su H, Chen G, Yang L, Zhang Y, Wang Y, Fang Z, Lv H. Proteomic variations after short-term heat shock treatment reveal differentially expressed proteins involved in early microspore embryogenesis in cabbage ( Brassica oleracea). PeerJ 2020; 8:e8897. [PMID: 32337101 PMCID: PMC7169393 DOI: 10.7717/peerj.8897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022] Open
Abstract
Microspore embryogenesis (ME), a widely used haploid breeding method that can considerably shorten the breeding cycle, provides an efficient mean of cultivating many important Brassica crops, such as cabbage, Chinese cabbage, and oilseed rape. For cabbage, in many cases, short-term heat shock treatment can strongly increase the embryogenesis rate, however, the underlying mechanism of this effect has not been elucidated. In this study, we compared the proteomics of isolated microspores with samples pretreated at 32 °C for 24 h and 25 °C for 24 h using two cabbage accessions (Zhonggan 628 and 87–534) showing highly different embryogenic rates. The embryo yield was 19.7 embryos/bud in Zhonggan 628 after 32 °C treatment, while no embryoid was observed in Zhonggan 628 after 25 °C treatment as well as in 87–534 at both temperatures. We identified a total of 363 and 282 differentially expressed proteins (DEPs) for Zhonggan 628 and 87–534 via a label-free proteomics technology. There were 97 DEPs specifically identified only in Zhonggan 628 but not in 87–534 after 32 °C heat-shock treatment that may be related to heat shock-induced embryogenesis in vitro culture. These DEPs were primarily enriched in carbon metabolic process, protein synthesis and degradation process, and signal transduction. Based on protein-protein interaction and pathway enrichment analyses, we proposed that SGT1 homolog A and B(SGT1), heat shock 70 kDa protein 5 (HSP70), cell division control protein 48 homolog A (CDC48) and fatty acyl-CoA reductase (FAR) might play important roles in microspore embryogenesis. This proteomic study may contribute to our molecular understanding of cabbage microspore embryogenesis and help to build a high-efficiency haploid breeding system.
Collapse
Affiliation(s)
- Henan Su
- Hunan Agricultural University, Changsha, China.,Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guo Chen
- Hunan Agricultural University, Changsha, China.,Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Limei Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiyuan Fang
- Hunan Agricultural University, Changsha, China.,Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Chen X, Chen Z, Huang W, Fu H, Wang Q, Wang Y, Cao J. Proteomic analysis of gametophytic sex expression in the fern Ceratopteris thalictroides. PLoS One 2019; 14:e0221470. [PMID: 31425560 PMCID: PMC6699692 DOI: 10.1371/journal.pone.0221470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/08/2019] [Indexed: 01/25/2023] Open
Abstract
Ceratopteris thalictroides, a model fern, has two kinds of gametophytes with different sex expression: male and hermaphrodite. Hermaphroditic gametophytes have one or several archegonia beneath the growing point and a few antheridia at the base or margin. Male gametophytes show a spoon-like shape with much longer than the width and produce many antheridia at the margin and surface. The results of chlorophyll fluorescence detection showed that the photochemical efficiency of hermaphrodites was higher than that of males. By using two-dimensional electrophoresis and mass spectrometry, the differentially abundant proteins in hermaphroditic and male gametophytes were identified. A total of 1136 ± 55 protein spots were detected in Coomassie-stained gels of proteins from hermaphroditic gametophytes, and 1130 ± 65 spots were detected in gels of proteins from male gametophytes. After annotation, 33 spots representing differentially abundant proteins were identified. Among these, proteins involved in photosynthesis and chaperone proteins were over-represented in hermaphrodites, whereas several proteins involved in metabolism were increased in male gametophytes in order to maintain their development under relatively nutritionally deficient conditions. Furthermore, the differentially abundant cytoskeletal proteins detected in this study, such as centrin and actin, may be involved in the formation of sexual organs and are directly related to sex expression. These differentially abundant proteins are important for maintaining the development of gametophytes of different sexes in C. thalictroides.
Collapse
Affiliation(s)
- Xuefei Chen
- College of Life Science, East China Normal University, Shanghai, China
- College of Life Science, Shanghai Normal University, Shanghai, China
| | - Zhiyi Chen
- College of Life Science, Shanghai Normal University, Shanghai, China
| | - Wujie Huang
- College of Life Science, Shanghai Normal University, Shanghai, China
| | - Huanhuan Fu
- College of Life Science, Shanghai Normal University, Shanghai, China
| | - Quanxi Wang
- College of Life Science, Shanghai Normal University, Shanghai, China
| | - Youfang Wang
- College of Life Science, East China Normal University, Shanghai, China
- * E-mail: (YW); (JC)
| | - Jianguo Cao
- College of Life Science, Shanghai Normal University, Shanghai, China
- * E-mail: (YW); (JC)
| |
Collapse
|
15
|
Metabolome and Transcriptome Association Analysis Reveals Dynamic Regulation of Purine Metabolism and Flavonoid Synthesis in Transdifferentiation during Somatic Embryogenesis in Cotton. Int J Mol Sci 2019; 20:ijms20092070. [PMID: 31027387 PMCID: PMC6539419 DOI: 10.3390/ijms20092070] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/21/2019] [Accepted: 04/24/2019] [Indexed: 01/08/2023] Open
Abstract
Plant regeneration via somatic embryogenesis (SE) is a key step during genetic engineering. In the current study, integrated widely targeted metabolomics and RNA sequencing were performed to investigate the dynamic metabolic and transcriptional profiling of cotton SE. Our data revealed that a total of 581 metabolites were present in nonembryogenic staged calli (NEC), primary embryogenic calli (PEC), and initiation staged globular embryos (GE). Of the differentially accumulated metabolites (DAMs), nucleotides, and lipids were specifically accumulated during embryogenic differentiation, whereas flavones and hydroxycinnamoyl derivatives were accumulated during somatic embryo development. Additionally, metabolites related to purine metabolism were significantly enriched in PEC vs. NEC, whereas in GE vs. PEC, DAMs were remarkably associated with flavonoid biosynthesis. An association analysis of the metabolome and transcriptome data indicated that purine metabolism and flavonoid biosynthesis were co-mapped based on the Kyoto encyclopedia of genes and genomes (KEGG) database. Moreover, purine metabolism-related genes associated with signal recognition, transcription, stress, and lipid binding were significantly upregulated. Moreover, several classic somatic embryogenesis (SE) genes were highly correlated with their corresponding metabolites that were involved in purine metabolism and flavonoid biosynthesis. The current study identified a series of potential metabolites and corresponding genes responsible for SE transdifferentiation, which provides a valuable foundation for a deeper understanding of the regulatory mechanisms underlying cell totipotency at the molecular and biochemical levels.
Collapse
|
16
|
Li Y, Liu K, Chen F, Cheng Y. Comparative proteomics analysis reveals the effect of germination and selenium enrichment on the quality of brown rice during storage. Food Chem 2018; 269:220-227. [DOI: 10.1016/j.foodchem.2018.07.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/21/2018] [Accepted: 07/02/2018] [Indexed: 01/07/2023]
|
17
|
Liu Z, Ge XX, Qiu WM, Long JM, Jia HH, Yang W, Dutt M, Wu XM, Guo WW. Overexpression of the CsFUS3 gene encoding a B3 transcription factor promotes somatic embryogenesis in Citrus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:121-131. [PMID: 30466577 DOI: 10.1016/j.plantsci.2018.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 06/09/2023]
Abstract
In citrus, genetic improvement via biotechnology is challenging due to insufficient understanding of molecular barriers that prevent regeneration by somatic embryogenesis (SE). Our previous study indicated that LEC genes were involved in SE in citrus, but their regulatory roles remain to be elucidated. Here, we cloned one of the LEC genes, CsFUS3, and show that it is preferentially expressed during SE and in the embryogenic callus (EC) derived from citrus varieties with strong embryogenic competence. The overexpression of CsFUS3 in recalcitrant citrus callus restored embryogenic competence. Complementation of the loss-of-function Arabidopsis fus3 mutant with the CsFUS3 gene restored normal late embryogenesis, which is consistent with the CsFUS3 and AtFUS3 proteins contributing to the same regulatory network in Arabidopsis. Transcriptome profiling revealed that the expression of particular TFs that promote SE was up-regulated in the citrus overexpression (OE) line. The 104 differentially expressed genes associated with hormone biosynthesis, catabolism, and signaling are particularly noteworthy. The dynamic change in the ratio of ABA to GA during SE in wild-type callus mirrored the expression pattern of CsFUS3. In contrast, in the OE line, the ratio of ABA to GA was higher and the capacity for SE was greater when the OE line was separately treated with ABA and GA biosynthesis inhibitors. Taken together, our results demonstrate that the overexpression of CsFUS3 appears to establish a cellular environment favorable to SE, at least in part by promoting a high ABA to GA ratio and by regulating the expression of TFs that promote SE.
Collapse
Affiliation(s)
- Zheng Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Xiao-Xia Ge
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; Center of Applied Biotechnology, Wuhan University of Bioengineering, Wuhan 430415, China.
| | - Wen-Ming Qiu
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA.
| | - Jian-Mei Long
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hui-Hui Jia
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wei Yang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Manjul Dutt
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA.
| | - Xiao-Meng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
18
|
Li QF, Wang JD, Xiong M, Wei K, Zhou P, Huang LC, Zhang CQ, Fan XL, Liu QQ. iTRAQ-Based Analysis of Proteins Co-Regulated by Brassinosteroids and Gibberellins in Rice Embryos during Seed Germination. Int J Mol Sci 2018; 19:ijms19113460. [PMID: 30400353 PMCID: PMC6274883 DOI: 10.3390/ijms19113460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/27/2018] [Accepted: 11/01/2018] [Indexed: 11/23/2022] Open
Abstract
Seed germination, a pivotal process in higher plants, is precisely regulated by various external and internal stimuli, including brassinosteroid (BR) and gibberellin (GA) phytohormones. The molecular mechanisms of crosstalk between BRs and GAs in regulating plant growth are well established. However, whether BRs interact with GAs to coordinate seed germination remains unknown, as do their common downstream targets. In the present study, 45 differentially expressed proteins responding to both BR and GA deficiency were identified using isobaric tags for relative and absolute quantification (iTRAQ) proteomic analysis during seed germination. The results indicate that crosstalk between BRs and GAs participates in seed germination, at least in part, by modulating the same set of responsive proteins. Moreover, most targets exhibited concordant changes in response to BR and GA deficiency, and gene ontology (GO) indicated that most possess catalytic activity and are involved in various metabolic processes. Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) analysis was used to construct a regulatory network of downstream proteins mediating BR- and GA-regulated seed germination. The mutation of GRP, one representative target, notably suppressed seed germination. Our findings not only provide critical clues for validating BR–GA crosstalk during rice seed germination, but also help to optimise molecular regulatory networks.
Collapse
Affiliation(s)
- Qian-Feng Li
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Jin-Dong Wang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China.
| | - Min Xiong
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China.
| | - Ke Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China.
| | - Peng Zhou
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China.
| | - Li-Chun Huang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China.
| | - Chang-Quan Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Xiao-Lei Fan
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Qiao-Quan Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
19
|
Mamedes-Rodrigues TC, Batista DS, Vieira NM, Matos EM, Fernandes D, Nunes-Nesi A, Cruz CD, Viccini LF, Nogueira FTS, Otoni WC. Regenerative potential, metabolic profile, and genetic stability of Brachypodium distachyon embryogenic calli as affected by successive subcultures. PROTOPLASMA 2018; 255:655-667. [PMID: 29080994 DOI: 10.1007/s00709-017-1177-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
Brachypodium distachyon, a model species for forage grasses and cereal crops, has been used in studies seeking improved biomass production and increased crop yield for biofuel production purposes. Somatic embryogenesis (SE) is the morphogenetic pathway that supports in vitro regeneration of such species. However, there are gaps in terms of studies on the metabolic profile and genetic stability along successive subcultures. The physiological variables and the metabolic profile of embryogenic callus (EC) and embryogenic structures (ES) from successive subcultures (30, 60, 90, 120, 150, 180, 210, 240, and 360-day-old subcultures) were analyzed. Canonical discriminant analysis separated EC into three groups: 60, 90, and 120 to 240 days. EC with 60 and 90 days showed the highest regenerative potential. EC grown for 90 days and submitted to SE induction in 2 mg L-1 of kinetin-supplemented medium was the highest ES producer. The metabolite profiles of non-embryogenic callus (NEC), EC, and ES submitted to principal component analysis (PCA) separated into two groups: 30 to 240- and 360-day-old calli. The most abundant metabolites for these groups were malonic acid, tryptophan, asparagine, and erythrose. PCA of ES also separated ages into groups and ranked 60- and 90-day-old calli as the best for use due to their high levels of various metabolites. The key metabolites that distinguished the ES groups were galactinol, oxaloacetate, tryptophan, and valine. In addition, significant secondary metabolites (e.g., caffeoylquinic, cinnamic, and ferulic acids) were important in the EC phase. Ferulic, cinnamic, and phenylacetic acids marked the decreases in the regenerative capacity of ES in B. distachyon. Decreased accumulations of the amino acids aspartic acid, asparagine, tryptophan, and glycine characterized NEC, suggesting that these metabolites are indispensable for the embryogenic competence in B. distachyon. The genetic stability of the regenerated plants was evaluated by flow cytometry, showing that ploidy instability in regenerated plants from B. distachyon calli is not correlated with callus age. Taken together, our data indicated that the loss of regenerative capacity in B. distachyon EC occurs after 120 days of subcultures, demonstrating that the use of EC can be extended to 90 days.
Collapse
Affiliation(s)
- T C Mamedes-Rodrigues
- Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil
| | - D S Batista
- Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil
| | - N M Vieira
- Departamento de Microbiologia/Núcleo de Análises de Biomoléculas-NUBIOMOL, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG, 36570-900, Brazil
| | - E M Matos
- Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil
| | - D Fernandes
- Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil
| | - A Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG, 36570-900, Brazil
| | - C D Cruz
- Laboratório de Bioinformática/BIOAGRO, Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG, 35670-900, Brazil
| | - L F Viccini
- Laboratório de Genética e Biotecnologia, Departamento de Ciências Biológicas, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n, Martelos, Juiz de Fora, MG, 36036-330, Brazil
| | - F T S Nogueira
- Laboratório de Genética Molecular do Desenvolvimento Vegetal (LGMDV), Universidade de São Paulo / ESALQ, Av. Pádua Dias, Piracicaba, SP, 13418-900, Brazil
| | - W C Otoni
- Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
20
|
Aguilar-Hernández V, Loyola-Vargas VM. Advanced Proteomic Approaches to Elucidate Somatic Embryogenesis. FRONTIERS IN PLANT SCIENCE 2018; 9:1658. [PMID: 30524454 PMCID: PMC6262180 DOI: 10.3389/fpls.2018.01658] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/25/2018] [Indexed: 05/06/2023]
Abstract
Somatic embryogenesis (SE) is a cell differentiation process by which a somatic cell changes its genetic program and develops into an embryonic cell. Investigating this process with various explant sources in vitro has allowed us to trace somatic embryo development from germination to plantlets and has led to the generation of new technologies, including genetic transformation, endangered species conservation, and synthetic seed production. A transcriptome data comparison from different stages of the developing somatic embryo has revealed a complex network controlling the somatic cell's fate, suggesting that an interconnected network acts at the protein level. Here, we discuss the current progress on SE using proteomic-based data, focusing on changing patterns of proteins during the establishment of the somatic embryo. Despite the advanced proteomic approaches available so far, deciphering how the somatic embryo is induced is still in its infancy. The new proteomics techniques that lead to the quantification of proteins with different abundances during the induction of SE are opening this area of study for the first time. These quantitative differences can elucidate the different pathways involved in SE induction. We envisage that the application of these proteomic technologies can be pivotal to identifying proteins critical to the process of SE, demonstrating the cellular localization, posttranslational modifications, and turnover protein events required to switch from a somatic cell to a somatic embryo cell and providing new insights into the molecular mechanisms underlying SE. This work will help to develop biotechnological strategies for mass production of quality crop material.
Collapse
Affiliation(s)
- Victor Aguilar-Hernández
- Catedrático CONACYT, Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
- *Correspondence: Victor Aguilar-Hernández, orcid.org/0000-0001-8239-4047
| | - Víctor M. Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| |
Collapse
|