1
|
Yang X, Zhang L, Wei J, Liu L, Liu D, Yan X, Yuan M, Zhang L, Zhang N, Ren Y, Chen F. A TaSnRK1α-TaCAT2 model mediates resistance to Fusarium crown rot by scavenging ROS in common wheat. Nat Commun 2025; 16:2549. [PMID: 40089587 PMCID: PMC11910652 DOI: 10.1038/s41467-025-57936-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/28/2025] [Indexed: 03/17/2025] Open
Abstract
Fusarium crown rot (FCR) is a serious underlying disease to threaten wheat yield and quality recently. Here, we identify a catalase antioxidant enzyme (TaCAT2) through genome wide association study (GWAS) and whole-exome sequencing (WES) in two nested bi-parental populations. We verify the function of TaCAT2 regulating wheat FCR resistance by genetic transformation. Moreover, we screen a sucrose non-fermenting-1-related protein kinase alpha subunit (TaSnRK1α) interacting with TaCAT2, and subsequently find that TaSnRK1α phosphorylates TaCAT2. We next identify an FCR-resistance haplotype TaCAT2Ser214, and confirm that Ser214 of TaCAT2 is a key phosphorylation site for TaSnRK1α. We also find that TaSnRK1α results in higher protein accumulation in TaCAT2Ser214 than in TaCAT2Thr214, which possibly contribute to scavenging ROS (reactive oxygen species) in TaCAT2Ser214 wheat plants. Furthermore, the function of TaSnRK1α regulating FCR resistance is verified by genetic transformation. Taken together, we propose a TaSnRK1α-TaCAT2 model to mediate FCR resistance by scavenging the ROS in wheat plants.
Collapse
Affiliation(s)
- Xia Yang
- Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Leilei Zhang
- Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Jiajie Wei
- Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Lexin Liu
- Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Di Liu
- Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Xiangning Yan
- Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Minjie Yuan
- Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Lingran Zhang
- Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Ning Zhang
- Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Yan Ren
- Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Feng Chen
- Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
2
|
Viviani A, Haile JK, Fernando WGD, Ceoloni C, Kuzmanović L, Lhamo D, Gu Y, Xu SS, Cai X, Buerstmayr H, Elias EM, Confortini A, Bozzoli M, Brar GS, Ruan Y, Berraies S, Hamada W, Oufensou S, Jayawardana M, Walkowiak S, Bourras S, Dayarathne M, Isidro y Sánchez J, Doohan F, Gadaleta A, Marcotuli I, He X, Singh PK, Dreisigacker S, Ammar K, Klymiuk V, Pozniak CJ, Tuberosa R, Maccaferri M, Steiner B, Mastrangelo AM, Cattivelli L. Priority actions for Fusarium head blight resistance in durum wheat: Insights from the wheat initiative. THE PLANT GENOME 2025; 18:e20539. [PMID: 39757924 PMCID: PMC11701714 DOI: 10.1002/tpg2.20539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/30/2024] [Accepted: 11/08/2024] [Indexed: 01/07/2025]
Abstract
Fusarium head blight (FHB), mainly caused by Fusarium graminearum and Fusarium culmorum, is a major wheat disease. Significant efforts have been made to improve resistance to FHB in bread wheat (Triticum aestivum), but more work is needed for durum wheat (Triticum turgidum spp. durum). Bread wheat has ample genetic variation for resistance breeding, which can be readily exploited, while durum wheat is characterized by higher disease susceptibility and fewer valuable resistance sources. The Wheat Initiative - Expert Working Group on Durum Wheat Genomics and Breeding has promoted a scientific discussion to define the key actions that should be prioritized for achieving resistance in durum wheat comparable to that found in bread wheat. Here, a detailed state of the art and novel tools to improve FHB resistance in durum are presented, together with a perspective on the next steps forward. A meta-analysis grouping all quantitative trait loci (QTL) associated with FHB resistance in both bread and durum wheat has been conducted to identify hotspot regions that do not overlap with Rht alleles, which are known to negatively correlate with FHB resistance. A detailed list of QTL related to FHB resistance and deoxynivalenol contamination and durum lines carrying different sources of FHB resistance are provided as a strategic resource. QTL, closely linked markers and durum wheat lines carrying the useful alleles, can be selected to design an effective breeding program. Finally, we highlight the priority actions that should be implemented to achieve satisfactory resistance to FHB in durum wheat.
Collapse
Affiliation(s)
- Ambra Viviani
- Department of Agricultural SciencesUniversity of BolognaBolognaItaly
| | - Jemanesh K. Haile
- Crop Development Centre and Department of Plant Sciences University of SaskatchewanSaskatoonSaskatchewanCanada
| | | | - Carla Ceoloni
- Department of Agriculture and Forest Sciences (DAFNE)University of TusciaViterboItaly
| | - Ljiljana Kuzmanović
- Department of Agriculture and Forest Sciences (DAFNE)University of TusciaViterboItaly
| | - Dhondup Lhamo
- USDA‐ARS, Crop Improvement and Genetics Research Unit, Western Regional Research CenterAlbanyCaliforniaUSA
| | - Yong‐Qiang Gu
- USDA‐ARS, Crop Improvement and Genetics Research Unit, Western Regional Research CenterAlbanyCaliforniaUSA
| | - Steven S. Xu
- USDA‐ARS, Crop Improvement and Genetics Research Unit, Western Regional Research CenterAlbanyCaliforniaUSA
| | - Xiwen Cai
- USDA‐ARS, Wheat, Sorghum & Forage Research UnitLincolnNebraskaUSA
- Department of Agronomy and HorticultureUniversity of NebraskaLincolnNebraskaUSA
| | - Hermann Buerstmayr
- Department of Agrobiotechnology TullnUniversity of Natural Resources and Life Sciences ViennaTullnAustria
| | - Elias M. Elias
- Department of Plant SciencesNorth Dakota State UniversityNorth DakotaFargoUSA
| | | | - Matteo Bozzoli
- Department of Agricultural SciencesUniversity of BolognaBolognaItaly
| | - Gurcharn Singh Brar
- Ag, Food & Nutr Science DepartmentUniversity of British Columbia (UBC)VancouverBritish ColumbiaCanada
| | - Yuefeng Ruan
- Swift Current Research and Development Center, Agriculture and Agri‐Food CanadaSwift CurrentSaskatchewanCanada
| | - Samia Berraies
- Swift Current Research and Development Center, Agriculture and Agri‐Food CanadaSwift CurrentSaskatchewanCanada
| | - Walid Hamada
- Institut National Agronomique de Tunisie 43TunisTunisia
| | - Safa Oufensou
- Desertification Research Center (NRD)Università degli Studi di SassariSassariItaly
| | | | | | - Salim Bourras
- Department of Plant BiologySwedish University of Agricultural SciencesUppsalaSweden
| | - Monika Dayarathne
- Department of Plant ScienceUniversity of ManitobaWinnipegManitobaCanada
| | - Julio Isidro y Sánchez
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de MadridMadridSpain
| | - Fiona Doohan
- School of Biology and Environmental ScienceUCD Earth Institute and UCD Institute for Food and Health, BelfieldDublinIreland
| | - Agata Gadaleta
- Department of Soil, Plant and Food SciencesUniversity of Bari Aldo MoroBariItaly
| | - Ilaria Marcotuli
- Department of Soil, Plant and Food SciencesUniversity of Bari Aldo MoroBariItaly
| | - Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT)Texcoco Edo de MexicoMexico
| | - Pawan K. Singh
- International Maize and Wheat Improvement Center (CIMMYT)Texcoco Edo de MexicoMexico
| | - Susanne Dreisigacker
- International Maize and Wheat Improvement Center (CIMMYT)Texcoco Edo de MexicoMexico
| | - Karim Ammar
- International Maize and Wheat Improvement Center (CIMMYT)Texcoco Edo de MexicoMexico
| | - Valentyna Klymiuk
- Crop Development Centre and Department of Plant Sciences University of SaskatchewanSaskatoonSaskatchewanCanada
| | - Curtis J. Pozniak
- Crop Development Centre and Department of Plant Sciences University of SaskatchewanSaskatoonSaskatchewanCanada
| | - Roberto Tuberosa
- Department of Agricultural SciencesUniversity of BolognaBolognaItaly
| | - Marco Maccaferri
- Department of Agricultural SciencesUniversity of BolognaBolognaItaly
| | - Barbara Steiner
- Department of Agrobiotechnology TullnUniversity of Natural Resources and Life Sciences ViennaTullnAustria
| | | | - Luigi Cattivelli
- CREA ‐ Research Centre for Genomics and BioinformaticsFiorenzuola d'Arda (PC)Italy
| |
Collapse
|
3
|
Perochon A, Doohan FM. Trichothecenes and Fumonisins: Key Players in Fusarium-Cereal Ecosystem Interactions. Toxins (Basel) 2024; 16:90. [PMID: 38393168 PMCID: PMC10893083 DOI: 10.3390/toxins16020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Fusarium fungi produce a diverse array of mycotoxic metabolites during the pathogenesis of cereals. Some, such as the trichothecenes and fumonisins, are phytotoxic, acting as non-proteinaceous effectors that facilitate disease development in cereals. Over the last few decades, we have gained some depth of understanding as to how trichothecenes and fumonisins interact with plant cells and how plants deploy mycotoxin detoxification and resistance strategies to defend themselves against the producer fungi. The cereal-mycotoxin interaction is part of a co-evolutionary dance between Fusarium and cereals, as evidenced by a trichothecene-responsive, taxonomically restricted, cereal gene competing with a fungal effector protein and enhancing tolerance to the trichothecene and resistance to DON-producing F. graminearum. But the binary fungal-plant interaction is part of a bigger ecosystem wherein other microbes and insects have been shown to interact with fungal mycotoxins, directly or indirectly through host plants. We are only beginning to unravel the extent to which trichothecenes, fumonisins and other mycotoxins play a role in fungal-ecosystem interactions. We now have tools to determine how, when and where mycotoxins impact and are impacted by the microbiome and microfauna. As more mycotoxins are described, research into their individual and synergistic toxicity and their interactions with the crop ecosystem will give insights into how we can holistically breed for and cultivate healthy crops.
Collapse
Affiliation(s)
| | - Fiona M. Doohan
- UCD School of Biology and Environmental Science, UCD Earth Institute and UCD Institute of Food and Health, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
4
|
Gutiérrez-Sánchez A, Plasencia J, Monribot-Villanueva JL, Rodríguez-Haas B, Ruíz-May E, Guerrero-Analco JA, Sánchez-Rangel D. Virulence factors of the genus Fusarium with targets in plants. Microbiol Res 2023; 277:127506. [PMID: 37783182 DOI: 10.1016/j.micres.2023.127506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Fusarium spp. comprise various species of filamentous fungi that cause severe diseases in plant crops of both agricultural and forestry interest. These plant pathogens produce a wide range of molecules with diverse chemical structures and biological activities. Genetic functional analyses of some of these compounds have shown their role as virulence factors (VF). However, their mode of action and contributions to the infection process for many of these molecules are still unknown. This review aims to analyze the state of the art in Fusarium VF, emphasizing their biological targets on the plant hosts. It also addresses the current experimental approaches to improve our understanding of their role in virulence and suggests relevant research questions that remain to be answered with a greater focus on species of agroeconomic importance. In this review, a total of 37 confirmed VF are described, including 22 proteinaceous and 15 non-proteinaceous molecules, mainly from Fusarium oxysporum and Fusarium graminearum and, to a lesser extent, in Fusarium verticillioides and Fusarium solani.
Collapse
Affiliation(s)
- Angélica Gutiérrez-Sánchez
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico; Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Javier Plasencia
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan L Monribot-Villanueva
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Benjamín Rodríguez-Haas
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Eliel Ruíz-May
- Laboratorio de Proteómica, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - José A Guerrero-Analco
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico.
| | - Diana Sánchez-Rangel
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico; Investigador por México - CONAHCyT en la Red de Estudios Moleculares Avanzados del Instituto de Ecología, A. C. (INECOL), Carretera antigua a Coatepec 351, El Haya, Xalapa, Veracruz 91073, Mexico.
| |
Collapse
|
5
|
Kaur N, Halford NG. Reducing the Risk of Acrylamide and Other Processing Contaminant Formation in Wheat Products. Foods 2023; 12:3264. [PMID: 37685197 PMCID: PMC10486470 DOI: 10.3390/foods12173264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Wheat is a staple crop, consumed worldwide as a major source of starch and protein. Global intake of wheat has increased in recent years, and overall, wheat is considered to be a healthy food, particularly when products are made from whole grains. However, wheat is almost invariably processed before it is consumed, usually via baking and/or toasting, and this can lead to the formation of toxic processing contaminants, including acrylamide, 5-hydroxymethylfurfural (HMF) and polycyclic aromatic hydrocarbons (PAHs). Acrylamide is principally formed from free (soluble, non-protein) asparagine and reducing sugars (glucose, fructose and maltose) within the Maillard reaction and is classified as a Group 2A carcinogen (probably carcinogenic to humans). It also has neurotoxic and developmental effects at high doses. HMF is also generated within the Maillard reaction but can also be formed via the dehydration of fructose or caramelisation. It is frequently found in bread, biscuits, cookies, and cakes. Its molecular structure points to genotoxicity and carcinogenic risks. PAHs are a large class of chemical compounds, many of which are genotoxic, mutagenic, teratogenic and carcinogenic. They are mostly formed during frying, baking and grilling due to incomplete combustion of organic matter. Production of these processing contaminants can be reduced with changes in recipe and processing parameters, along with effective quality control measures. However, in the case of acrylamide and HMF, their formation is also highly dependent on the concentrations of precursors in the grain. Here, we review the synthesis of these contaminants, factors impacting their production and the mitigation measures that can be taken to reduce their formation in wheat products, focusing on the role of genetics and agronomy. We also review the risk management measures adopted by food safety authorities around the world.
Collapse
|
6
|
Fakhar AZ, Liu J, Pajerowska-Mukhtar KM, Mukhtar MS. The Lost and Found: Unraveling the Functions of Orphan Genes. J Dev Biol 2023; 11:27. [PMID: 37367481 PMCID: PMC10299390 DOI: 10.3390/jdb11020027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Orphan Genes (OGs) are a mysterious class of genes that have recently gained significant attention. Despite lacking a clear evolutionary history, they are found in nearly all living organisms, from bacteria to humans, and they play important roles in diverse biological processes. The discovery of OGs was first made through comparative genomics followed by the identification of unique genes across different species. OGs tend to be more prevalent in species with larger genomes, such as plants and animals, and their evolutionary origins remain unclear but potentially arise from gene duplication, horizontal gene transfer (HGT), or de novo origination. Although their precise function is not well understood, OGs have been implicated in crucial biological processes such as development, metabolism, and stress responses. To better understand their significance, researchers are using a variety of approaches, including transcriptomics, functional genomics, and molecular biology. This review offers a comprehensive overview of the current knowledge of OGs in all domains of life, highlighting the possible role of dark transcriptomics in their evolution. More research is needed to fully comprehend the role of OGs in biology and their impact on various biological processes.
Collapse
Affiliation(s)
| | | | | | - M. Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 35294, USA
| |
Collapse
|
7
|
Zhao B, Yu H, Liu D, Wang J, Feng X, He F, Qi T, Du C, Wang L, Wang H, Li F. Combined Transcriptome and Metabolome Analysis Reveals Adaptive Defense Responses to DON Induction in Potato. Int J Mol Sci 2023; 24:ijms24098054. [PMID: 37175760 PMCID: PMC10179060 DOI: 10.3390/ijms24098054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Phytophthora infestans poses a serious threat to potato production, storage, and processing. Understanding plant immunity triggered by fungal elicitors is important for the effective control of plant diseases. However, the role of the potato stress response to Fusarium toxin deoxynivalenol (DON)-induced stress is still not fully understood. In this study, the metabolites of DON-treated potato tubers were studied for four time intervals using UPLC-MS/MS. We identified 676 metabolites, and differential accumulation metabolite analysis showed that alkaloids, phenolic acids, and flavonoids were the major differential metabolites that directly determined defense response. Transcriptome data showed that differentially expressed genes (DEGs) were significantly enriched in phenylpropane and flavonoid metabolic pathways. Weighted gene co-expression network analysis (WGCNA) identified many hub genes, some of which modulate plant immune responses. This study is important for understanding the metabolic changes, transcriptional regulation, and physiological responses of active and signaling substances during DON induction, and it will help to design defense strategies against Phytophthora infestans in potato.
Collapse
Affiliation(s)
- Biao Zhao
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Hang Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Dan Liu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Jiaqi Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Xu Feng
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fumeng He
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Tianshuai Qi
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Chong Du
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Linlin Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Haifeng Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Fenglan Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
8
|
Identification of Key Gene Network Modules and Hub Genes Associated with Wheat Response to Biotic Stress Using Combined Microarray Meta-analysis and WGCN Analysis. Mol Biotechnol 2023; 65:453-465. [PMID: 35996047 DOI: 10.1007/s12033-022-00541-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/05/2022] [Indexed: 12/31/2022]
Abstract
Wheat (Triticum aestivum) is one of the major crops worldwide and a primary source of calories for human food. Biotic stresses such as fungi, bacteria, and diseases limit wheat production. Although plant breeding and genetic engineering for biotic stress resistance have been suggested as promising solutions to handle losses caused by biotic stress factors, a comprehensive understanding of molecular mechanisms and identifying key genes is a critical step to obtaining success. Here, a network-based meta-analysis approach based on two main statistical methods was used to identify key genes and molecular mechanisms of the wheat response to biotic stress. A total of 163 samples (21,792 genes) from 10 datasets were analyzed. Fisher Z test based on the p-value and REM method based on effect size resulted in 533 differentially expressed genes (p < 0.001 and FDR < 0.001). WGCNA analysis using a dynamic tree-cutting algorithm was used to construct a co-expression network and three significant modules were detected. The modules were significantly enriched by 16 BP terms and 4 KEGG pathways (Benjamini-Hochberg FDR < 0.001). A total of nine hub genes (a top 1.5% of genes with the highest degree) were identified from the constructed network. The identification of DE genes, gene-gene co-expressing network, and hub genes may contribute to uncovering the molecular mechanisms of the wheat response to biotic stress.
Collapse
|
9
|
Kumar P, Mishra A, Rahim MS, Sharma V, Madhawan A, Parveen A, Fandade V, Sharma H, Roy J. Comparative transcriptome analyses revealed key genes involved in high amylopectin biosynthesis in wheat. 3 Biotech 2022; 12:295. [PMID: 36276458 PMCID: PMC9519823 DOI: 10.1007/s13205-022-03364-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022] Open
Abstract
High amylopectin starch is an important modified starch for food processing industries. Despite a thorough understanding of starch biosynthesis pathway, the regulatory mechanism responsible for amylopectin biosynthesis is not well explored. The present study utilized transcriptome sequencing approach to understand the molecular basis of high amylopectin content in three high amylopectin mutant wheat lines ('TAC 6', 'TAC 358', and 'TAC 846') along with parent variety 'C 306'. Differential scanning calorimetry (DSC) of high amylopectin starch identified a high thermal transition temperature and scanning electron microscopy (SEM) revealed more spherical starch granules in mutant lines compared to parent variety. A set of 4455 differentially expressed genes (DEGs) were identified at two-fold compared to the parent variety in high amylopectin wheat mutants. At ten-fold, 279 genes, including two starch branching genes (SBEIIa and SBEIIb), were up-regulated and only 30 genes, including the starch debranching enzyme (DBE), were down-regulated. Among the genes, different isoforms of sucrose non-fermenting-1-related protein kinase-1 (TaSnRK1α2-3B and TaSnRK1α2-3D) and its regulatory subunit, sucrose non-fermenting-4 (SNF-4-2A, SNF-4-2B, and SNF-4-5D), were found to be highly up-regulated. Further, expression of the DEGs related to starch biosynthesis pathway and TaSnRK1α2 and SNF-4 was performed using qRT-PCR. High expression of TaSnRK1α2, SNF-4, and SBEII isoforms suggests their probable role in high amylopectin starch biosynthesis in grain endosperm. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03364-3.
Collapse
Affiliation(s)
- Prashant Kumar
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001 India
| | - Ankita Mishra
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Mohammed Saba Rahim
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Vinita Sharma
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Akansha Madhawan
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001 India
| | - Afsana Parveen
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Vikas Fandade
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001 India
| | - Himanshu Sharma
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Joy Roy
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001 India
| |
Collapse
|
10
|
Hu C, Chen P, Zhou X, Li Y, Ma K, Li S, Liu H, Li L. Arms Race between the Host and Pathogen Associated with Fusarium Head Blight of Wheat. Cells 2022; 11:2275. [PMID: 35892572 PMCID: PMC9332245 DOI: 10.3390/cells11152275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Fusarium head blight (FHB), or scab, caused by Fusarium species, is an extremely destructive fungal disease in wheat worldwide. In recent decades, researchers have made unremitting efforts in genetic breeding and control technology related to FHB and have made great progress, especially in the exploration of germplasm resources resistant to FHB; identification and pathogenesis of pathogenic strains; discovery and identification of disease-resistant genes; biochemical control, and so on. However, FHB burst have not been effectively controlled and thereby pose increasingly severe threats to wheat productivity. This review focuses on recent advances in pathogenesis, resistance quantitative trait loci (QTLs)/genes, resistance mechanism, and signaling pathways. We identify two primary pathogenetic patterns of Fusarium species and three significant signaling pathways mediated by UGT, WRKY, and SnRK1, respectively; many publicly approved superstar QTLs and genes are fully summarized to illustrate the pathogenetic patterns of Fusarium species, signaling behavior of the major genes, and their sophisticated and dexterous crosstalk. Besides the research status of FHB resistance, breeding bottlenecks in resistant germplasm resources are also analyzed deeply. Finally, this review proposes that the maintenance of intracellular ROS (reactive oxygen species) homeostasis, regulated by several TaCERK-mediated theoretical patterns, may play an important role in plant response to FHB and puts forward some suggestions on resistant QTL/gene mining and molecular breeding in order to provide a valuable reference to contain FHB outbreaks in agricultural production and promote the sustainable development of green agriculture.
Collapse
Affiliation(s)
- Chunhong Hu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Peng Chen
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Xinhui Zhou
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Yangchen Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Keshi Ma
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Shumei Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Huaipan Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Lili Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466000, China
| |
Collapse
|
11
|
Tanvir R, Ping W, Sun J, Cain M, Li X, Li L. AtQQS orphan gene and NtNF-YC4 boost protein accumulation and pest resistance in tobacco (Nicotiana tabacum). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 317:111198. [PMID: 35193747 DOI: 10.1016/j.plantsci.2022.111198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/07/2021] [Accepted: 01/26/2022] [Indexed: 05/19/2023]
Abstract
Qua-Quine Starch (QQS), an orphan gene exclusively found in Arabidopsis thaliana, interacts with Nuclear Factor Y subunit C4 (NF-YC4) and regulates carbon and nitrogen allocation in different plant species. Several studies uncovered its potential in increasing total protein and resistance against pathogens/pests in Arabidopsis and soybean. However, it is still unclear if these attributes QQS offers are universal in all flowering plants. Here we studied AtQQS and Nicotiana tabacum NF-YC4's (NtNF-YC4) influence on starch/protein content and pest resistance in tobacco. Our results showed both AtQQS and NtNF-YC4 had a positive impact on the plant's total protein accumulation. Simultaneously, we have also observed reduced starch biosynthesis and increased resistance against common pests like whiteflies (Bemisia tabaci) and aphids (Myzus persicae) in tobacco plants expressing AtQQS or overexpressing NtNF-YC4. Real-time PCR also revealed increased NF-YC4 expression after aphid infestation in tobacco varieties with higher pest resistance but decreased/unchanged NF-YC4 expression in varieties susceptible to pests. Further analysis revealed that QQS expression and overexpression of NtNF-YC4 strongly repressed expression of genes such as sugar transporter SWEET10 and Flowering Locus T (FT), suggesting involvement of SWEET10 and FT in the QQS and NF-YC4 mediated carbon and nitrogen allocation in tobacco. Our data suggested that the activity of species-specific orphan genes may not be limited to the original species or its close relatives. Sequence alignment revealed the conserved sequence of the NF-YC4s in different plant species that may be responsible for the resulting shift in metabolism, pest resistance. Cis-acting DNA element analysis of NtNF-YC4 promoter region may outline potential mechanisms for these phenotypic changes.
Collapse
Affiliation(s)
- Rezwan Tanvir
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Wenli Ping
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; Institute of Tobacco, Henan Academy of Agricultural Sciences, Key Laboratory for Green Preservation & Control of Tobacco Diseases and Pests in Huanghuai Growing Area, Zhengzhou, Henan 450002, China
| | - Jiping Sun
- Institute of Tobacco, Henan Academy of Agricultural Sciences, Key Laboratory for Green Preservation & Control of Tobacco Diseases and Pests in Huanghuai Growing Area, Zhengzhou, Henan 450002, China
| | - Morgan Cain
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Xuejun Li
- Institute of Tobacco, Henan Academy of Agricultural Sciences, Key Laboratory for Green Preservation & Control of Tobacco Diseases and Pests in Huanghuai Growing Area, Zhengzhou, Henan 450002, China
| | - Ling Li
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
12
|
Malla KB, Thapa G, Doohan FM. Mitochondrial phosphate transporter and methyltransferase genes contribute to Fusarium head blight Type II disease resistance and grain development in wheat. PLoS One 2021; 16:e0258726. [PMID: 34648604 PMCID: PMC8516198 DOI: 10.1371/journal.pone.0258726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 10/04/2021] [Indexed: 11/18/2022] Open
Abstract
Fusarium head blight (FHB) is an economically important disease of wheat that results in yield loss and grain contaminated with fungal mycotoxins that are harmful to human and animal health. Herein we characterised two wheat genes involved in the FHB response in wheat: a wheat mitochondrial phosphate transporter (TaMPT) and a methyltransferase (TaSAM). Wheat has three sub-genomes (A, B, and D) and gene expression studies demonstrated that TaMPT and TaSAM homoeologs were differentially expressed in response to FHB infection and the mycotoxigenic Fusarium virulence factor deoxynivalenol (DON) in FHB resistant wheat cv. CM82036 and susceptible cv. Remus. Virus-induced gene silencing (VIGS) of either TaMPT or TaSAM enhanced the susceptibility of cv. CM82036 to FHB disease, reducing disease spread (Type II disease resistance). VIGS of TaMPT and TaSAM significantly reduced grain number and grain weight. This indicates TaSAM and TaMPT genes also contribute to grain development in wheat and adds to the increasing body of evidence linking FHB resistance genes to grain development. Hence, Fusarium responsive genes TaSAM and TaMPT warrant further study to determine their potential to enhance both disease resistance and grain development in wheat.
Collapse
Affiliation(s)
- Keshav B. Malla
- UCD Earth Institute, UCD Institute of Food and Health and UCD School of Biology and Environmental Sciences, UCD Science Centre East, University College Dublin, Belfield, Dublin, Ireland
| | - Ganesh Thapa
- UCD Earth Institute, UCD Institute of Food and Health and UCD School of Biology and Environmental Sciences, UCD Science Centre East, University College Dublin, Belfield, Dublin, Ireland
| | - Fiona M. Doohan
- UCD Earth Institute, UCD Institute of Food and Health and UCD School of Biology and Environmental Sciences, UCD Science Centre East, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
13
|
Chen Z, Zhou L, Jiang P, Lu R, Halford NG, Liu C. Genome-wide identification of sucrose nonfermenting-1-related protein kinase (SnRK) genes in barley and RNA-seq analyses of their expression in response to abscisic acid treatment. BMC Genomics 2021; 22:300. [PMID: 33902444 PMCID: PMC8074225 DOI: 10.1186/s12864-021-07601-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/11/2021] [Indexed: 01/21/2023] Open
Abstract
Background Sucrose nonfermenting-1 (SNF1)-related protein kinases (SnRKs) play important roles in regulating metabolism and stress responses in plants, providing a conduit for crosstalk between metabolic and stress signalling, in some cases involving the stress hormone, abscisic acid (ABA). The burgeoning and divergence of the plant gene family has led to the evolution of three subfamilies, SnRK1, SnRK2 and SnRK3, of which SnRK2 and SnRK3 are unique to plants. Therefore, the study of SnRKs in crops may lead to the development of strategies for breeding crop varieties that are more resilient under stress conditions. In the present study, we describe the SnRK gene family of barley (Hordeum vulgare), the widespread cultivation of which can be attributed to its good adaptation to different environments. Results The barley HvSnRK gene family was elucidated in its entirety from publicly-available genome data and found to comprise 50 genes. Phylogenetic analyses assigned six of the genes to the HvSnRK1 subfamily, 10 to HvSnRK2 and 34 to HvSnRK3. The search was validated by applying it to Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) genome data, identifying 50 SnRK genes in rice (four OsSnRK1, 11 OsSnRK2 and 35 OsSnRK3) and 39 in Arabidopsis (three AtSnRK1, 10 AtSnRK2 and 26 AtSnRK3). Specific motifs were identified in the encoded barley proteins, and multiple putative regulatory elements were found in the gene promoters, with light-regulated elements (LRE), ABA response elements (ABRE) and methyl jasmonate response elements (MeJa) the most common. RNA-seq analysis showed that many of the HvSnRK genes responded to ABA, some positively, some negatively and some with complex time-dependent responses. Conclusions The barley HvSnRK gene family is large, comprising 50 members, subdivided into HvSnRK1 (6 members), HvSnRK2 (10 members) and HvSnRK3 (34 members), showing differential positive and negative responses to ABA. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07601-6.
Collapse
Affiliation(s)
- Zhiwei Chen
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.,Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China
| | - Longhua Zhou
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.,Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China
| | - Panpan Jiang
- Shenzhen RealOm ics (Biotech) Co., Ltd., Shenzhen, 518081, China
| | - Ruiju Lu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.,Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China
| | - Nigel G Halford
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Chenghong Liu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China. .,Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China.
| |
Collapse
|
14
|
Perochon A, Benbow HR, Ślęczka-Brady K, Malla KB, Doohan FM. Analysis of the chromosomal clustering of Fusarium-responsive wheat genes uncovers new players in the defence against head blight disease. Sci Rep 2021; 11:7446. [PMID: 33811222 PMCID: PMC8018971 DOI: 10.1038/s41598-021-86362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/08/2021] [Indexed: 11/17/2022] Open
Abstract
There is increasing evidence that some functionally related, co-expressed genes cluster within eukaryotic genomes. We present a novel pipeline that delineates such eukaryotic gene clusters. Using this tool for bread wheat, we uncovered 44 clusters of genes that are responsive to the fungal pathogen Fusarium graminearum. As expected, these Fusarium-responsive gene clusters (FRGCs) included metabolic gene clusters, many of which are associated with disease resistance, but hitherto not described for wheat. However, the majority of the FRGCs are non-metabolic, many of which contain clusters of paralogues, including those implicated in plant disease responses, such as glutathione transferases, MAP kinases, and germin-like proteins. 20 of the FRGCs encode nonhomologous, non-metabolic genes (including defence-related genes). One of these clusters includes the characterised Fusarium resistance orphan gene, TaFROG. Eight of the FRGCs map within 6 FHB resistance loci. One small QTL on chromosome 7D (4.7 Mb) encodes eight Fusarium-responsive genes, five of which are within a FRGC. This study provides a new tool to identify genomic regions enriched in genes responsive to specific traits of interest and applied herein it highlighted gene families, genetic loci and biological pathways of importance in the response of wheat to disease.
Collapse
Affiliation(s)
- Alexandre Perochon
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Harriet R Benbow
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Katarzyna Ślęczka-Brady
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Keshav B Malla
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Fiona M Doohan
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
15
|
Fabre F, Urbach S, Roche S, Langin T, Bonhomme L. Proteomics-Based Data Integration of Wheat Cultivars Facing Fusarium graminearum Strains Revealed a Core-Responsive Pattern Controlling Fusarium Head Blight. FRONTIERS IN PLANT SCIENCE 2021; 12:644810. [PMID: 34135919 PMCID: PMC8201412 DOI: 10.3389/fpls.2021.644810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/07/2021] [Indexed: 05/03/2023]
Abstract
Fusarium head blight (FHB), mainly occurring upon Fusarium graminearum infection in a wide variety of small-grain cereals, is supposed to be controlled by a range of processes diverted by the fungal pathogen, the so-called susceptibility factors. As a mean to provide relevant information about the molecular events involved in FHB susceptibility in bread wheat, we studied an extensive proteome of more than 7,900 identified wheat proteins in three cultivars of contrasting susceptibilities during their interaction with three F. graminearum strains of different aggressiveness. No cultivar-specific proteins discriminated the three wheat genotypes, demonstrating the establishment of a core proteome regardless of unequivocal FHB susceptibility differences. Quantitative protein analysis revealed that most of the FHB-induced molecular adjustments were shared by wheat cultivars and occurred independently of the F. graminearum strain aggressiveness. Although subtle abundance changes evidenced genotype-dependent responses to FHB, cultivar distinction was found to be mainly due to basal abundance differences, especially regarding the chloroplast functions. Integrating these data with previous proteome mapping of the three F. graminearum strains facing the three same wheat cultivars, we demonstrated strong correlations between the wheat protein abundance changes and the adjustments of fungal proteins supposed to interfere with host molecular functions. Together, these results provide a resourceful dataset that expands our understanding of the specific molecular events taking place during the wheat-F. graminearum interaction.
Collapse
Affiliation(s)
- Francis Fabre
- Université Clermont Auvergne, INRAE, UMR 1095 Génétique Diversité Ecophysiologie des Céréales, Clermont-Ferrand, France
| | - Serge Urbach
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Sylvie Roche
- INRAE, Unité Experimentale 1375, Phénotypage au Champ des Céréales (PHACC), Clermont-Ferrand, France
| | - Thierry Langin
- Université Clermont Auvergne, INRAE, UMR 1095 Génétique Diversité Ecophysiologie des Céréales, Clermont-Ferrand, France
| | - Ludovic Bonhomme
- Université Clermont Auvergne, INRAE, UMR 1095 Génétique Diversité Ecophysiologie des Céréales, Clermont-Ferrand, France
- *Correspondence: Ludovic Bonhomme,
| |
Collapse
|
16
|
Wang Y, Gao Y, Zang P, Xu Y. Transcriptome analysis reveals underlying immune response mechanism of fungal (Penicillium oxalicum) disease in Gastrodia elata Bl. f. glauca S. chow (Orchidaceae). BMC PLANT BIOLOGY 2020; 20:445. [PMID: 32993485 PMCID: PMC7525978 DOI: 10.1186/s12870-020-02653-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/15/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Gastrodia elata Bl. f. glauca S. Chow is a medicinal plant. G. elata f. glauca is unavoidably infected by pathogens in their growth process. In previous work, we have successfully isolated and identified Penicillium oxalicum from fungal diseased tubers of G. elata f. glauca. As a widespread epidemic, this fungal disease seriously affected the yield and quality of G. elata f. glauca. We speculate that the healthy G. elata F. glauca might carry resistance genes, which can resist against fungal disease. In this study, healthy and fungal diseased mature tubers of G. elata f. glauca from Changbai Mountain area were used as experimental materials to help us find potential resistance genes against the fungal disease. RESULTS A total of 7540 differentially expressed Unigenes (DEGs) were identified (FDR < 0.01, log2FC > 2). The current study screened 10 potential resistance genes. They were attached to transcription factors (TFs) in plant hormone signal transduction pathway and plant pathogen interaction pathway, including WRKY22, GH3, TIFY/JAZ, ERF1, WRKY33, TGA. In addition, four of these genes were closely related to jasmonic acid signaling pathway. CONCLUSIONS The immune response mechanism of fungal disease in G. elata f. glauca is a complex biological process, involving plant hormones such as ethylene, jasmonic acid, salicylic acid and disease-resistant transcription factors such as WRKY, TGA.
Collapse
Affiliation(s)
- Yanhua Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Yugang Gao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
| | - Pu Zang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Yue Xu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| |
Collapse
|
17
|
An orphan protein of Fusarium graminearum modulates host immunity by mediating proteasomal degradation of TaSnRK1α. Nat Commun 2020; 11:4382. [PMID: 32873802 PMCID: PMC7462860 DOI: 10.1038/s41467-020-18240-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Fusarium graminearum is a causal agent of Fusarium head blight (FHB) and a deoxynivalenol (DON) producer. In this study, OSP24 is identified as an important virulence factor in systematic characterization of the 50 orphan secreted protein (OSP) genes of F. graminearum. Although dispensable for growth and initial penetration, OSP24 is important for infectious growth in wheat rachis tissues. OSP24 is specifically expressed during pathogenesis and its transient expression suppresses BAX- or INF1-induced cell death. Osp24 is translocated into plant cells and two of its 8 cysteine-residues are required for its function. Wheat SNF1-related kinase TaSnRK1α is identified as an Osp24-interacting protein and shows to be important for FHB resistance in TaSnRK1α-overexpressing or silencing transgenic plants. Osp24 accelerates the degradation of TaSnRK1α by facilitating its association with the ubiquitin-26S proteasome. Interestingly, TaSnRK1α also interacts with TaFROG, an orphan wheat protein induced by DON. TaFROG competes against Osp24 for binding with the same region of TaSnRKα and protects it from degradation. Overexpression of TaFROG stabilizes TaSnRK1α and increases FHB resistance. Taken together, Osp24 functions as a cytoplasmic effector by competing against TaFROG for binding with TaSnRK1α, demonstrating the counteracting roles of orphan proteins of both host and fungal pathogens during their interactions. Fusarium graminearum is a major fungal pathogen of cereals. Here the authors show that F. graminearum secretes an effector, Osp24, that induces degradation of the wheat TaSnRK1α kinase to promote disease while an orphan wheat protein, TaFROG1, can compete with Osp24 for binding to TaSnRK1α and protect it from degradation
Collapse
|
18
|
Raffan S, Oddy J, Halford NG. The Sulphur Response in Wheat Grain and Its Implications for Acrylamide Formation and Food Safety. Int J Mol Sci 2020; 21:E3876. [PMID: 32485924 PMCID: PMC7312080 DOI: 10.3390/ijms21113876] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/21/2023] Open
Abstract
Free (soluble, non-protein) asparagine concentration can increase many-fold in wheat grain in response to sulphur deficiency. This exacerbates a major food safety and regulatory compliance problem for the food industry because free asparagine may be converted to the carcinogenic contaminant, acrylamide, during baking and processing. Here, we describe the predominant route for the conversion of asparagine to acrylamide in the Maillard reaction. The effect of sulphur deficiency and its interaction with nitrogen availability is reviewed, and we reiterate our advice that sulphur should be applied to wheat being grown for human consumption at a rate of 20 kg per hectare. We describe the genetic control of free asparagine accumulation, including genes that encode metabolic enzymes (asparagine synthetase, glutamine synthetase, glutamate synthetase, and asparaginase), regulatory protein kinases (sucrose nonfermenting-1 (SNF1)-related protein kinase-1 (SnRK1) and general control nonderepressible-2 (GCN2)), and basic leucine zipper (bZIP) transcription factors, and how this genetic control responds to sulphur, highlighting the importance of asparagine synthetase-2 (ASN2) expression in the embryo. We show that expression of glutamate-cysteine ligase is reduced in response to sulphur deficiency, probably compromising glutathione synthesis. Finally, we describe unexpected effects of sulphur deficiency on carbon metabolism in the endosperm, with large increases in expression of sucrose synthase-2 (SuSy2) and starch synthases.
Collapse
Affiliation(s)
| | | | - Nigel G. Halford
- Plant Sciences Department, Rothamsted Research, Harpenden AL5 2JQ, UK; (S.R.); (J.O.)
| |
Collapse
|
19
|
Ferrero DML, Piattoni CV, Asencion Diez MD, Rojas BE, Hartman MD, Ballicora MA, Iglesias AA. Phosphorylation of ADP-Glucose Pyrophosphorylase During Wheat Seeds Development. FRONTIERS IN PLANT SCIENCE 2020; 11:1058. [PMID: 32754189 PMCID: PMC7366821 DOI: 10.3389/fpls.2020.01058] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/26/2020] [Indexed: 05/23/2023]
Abstract
Starch is the dominant reserve polysaccharide accumulated in the seed of grasses (like wheat). It is the most common carbohydrate in the human diet and a material applied to the bioplastics and biofuels industry. Hence, the complete understanding of starch metabolism is critical to design rational strategies to improve its allocation in plant reserve tissues. ADP-glucose pyrophosphorylase (ADP-Glc PPase) catalyzes the key (regulated) step in the synthetic starch pathway. The enzyme comprises a small (S) and a large (L) subunit forming an S2L2 heterotetramer, which is allosterically regulated by orthophosphate, fructose-6P, and 3P-glycerate. ADP-Glc PPase was found in a phosphorylated state in extracts from wheat seeds. The amount of the phosphorylated protein increased along with the development of the seed and correlated with relative increases of the enzyme activity and starch content. Conversely, this post-translational modification was absent in seeds from Ricinus communis. In vitro, the recombinant ADP-Glc PPase from wheat endosperm was phosphorylated by wheat seed extracts as well as by recombinant Ca2+-dependent plant protein kinases. Further analysis showed that the preferential phosphorylation takes place on the L subunit. Results suggest that the ADP-Glc PPase is a phosphorylation target in seeds from grasses but not from oleaginous plants. Accompanying seed maturation and starch accumulation, a combined regulation of ADP-Glc PPase by metabolites and phosphorylation may provide an enzyme with stable levels of activity. Such concerted modulation would drive carbon skeletons to the synthesis of starch for its long-term storage, which later support seed germination.
Collapse
Affiliation(s)
- Danisa M. L. Ferrero
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & FBCB, Santa Fe, Argentina
| | - Claudia V. Piattoni
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & FBCB, Santa Fe, Argentina
| | - Matías D. Asencion Diez
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & FBCB, Santa Fe, Argentina
| | - Bruno E. Rojas
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & FBCB, Santa Fe, Argentina
| | - Matías D. Hartman
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & FBCB, Santa Fe, Argentina
| | - Miguel A. Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Alberto A. Iglesias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & FBCB, Santa Fe, Argentina
| |
Collapse
|
20
|
Perincherry L, Lalak-Kańczugowska J, Stępień Ł. Fusarium-Produced Mycotoxins in Plant-Pathogen Interactions. Toxins (Basel) 2019; 11:toxins11110664. [PMID: 31739566 PMCID: PMC6891594 DOI: 10.3390/toxins11110664] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022] Open
Abstract
Pathogens belonging to the Fusarium genus are causal agents of the most significant crop diseases worldwide. Virtually all Fusarium species synthesize toxic secondary metabolites, known as mycotoxins; however, the roles of mycotoxins are not yet fully understood. To understand how a fungal partner alters its lifestyle to assimilate with the plant host remains a challenge. The review presented the mechanisms of mycotoxin biosynthesis in the Fusarium genus under various environmental conditions, such as pH, temperature, moisture content, and nitrogen source. It also concentrated on plant metabolic pathways and cytogenetic changes that are influenced as a consequence of mycotoxin confrontations. Moreover, we looked through special secondary metabolite production and mycotoxins specific for some significant fungal pathogens-plant host models. Plant strategies of avoiding the Fusarium mycotoxins were also discussed. Finally, we outlined the studies on the potential of plant secondary metabolites in defense reaction to Fusarium infection.
Collapse
|