1
|
Paillassa J, Pepin S, Ethier G, Lamarque LJ, Maire V. Carboxylation capacity is the main limitation of carbon assimilation in High Arctic shrubs. PLANT, CELL & ENVIRONMENT 2024; 47:5315-5329. [PMID: 39189974 DOI: 10.1111/pce.15097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Increases in shrub height, biomass and canopy cover are key whole-plant features of warming-induced vegetation change in tundra. We investigated leaf functional traits underlying photosynthetic capacity of Arctic shrub species, particularly its main limiting processes such as mesophyll conductance. In this nutrient-limited ecosystem, we expect leaf nitrogen concentration to be the main limiting factor for photosynthesis. We measured the net photosynthetic rate at saturated light (Asat) in three Salix species throughout a glacial valley in High-Arctic tundra and used a causal approach to test relationships between leaf stomatal and mesophyll conductances (gsc, gm), carboxylation capacity (Vcmax), nitrogen and phosphorus concentration (Narea, Parea) and leaf mass ratio (LMA). Arctic Salix species showed no difference in Asat compared to a global data set, while being characterized by higher Narea, Parea and LMA. Vcmax, gsc and gm independently increased Asat, with Vcmax as its main limitation. We highlighted a nitrogen-influenced pathway for increasing photosynthesis in the two prostrate mesic habitat species. In contrast, the erect wetland habitat Salix richardsonii mainly increased Asat with increasing gsc. Overall, our study revealed high photosynthetic capacities of Arctic Salix species but contrasting regulatory pathways that may influence shrub ability to respond to environmental changes in High Arctic tundra.
Collapse
Affiliation(s)
- Jennifer Paillassa
- Département des Sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
- Chaire en Écologie Fonctionnelle Arctique, Centre d'études nordiques, Université du Québec à Trois-Rivières, Trois Rivières, Quebec, Canada
- Centre d'études nordiques, Université Laval, Québec, Quebec, Canada
- Département des sols et de génie agroalimentaire, Université Laval, Québec, Quebec, Canada
| | - Steeve Pepin
- Département des sols et de génie agroalimentaire, Université Laval, Québec, Quebec, Canada
| | - Gilbert Ethier
- Département de phytologie, Université Laval, Québec, Quebec, Canada
| | - Laurent J Lamarque
- Département des Sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
- Chaire en Écologie Fonctionnelle Arctique, Centre d'études nordiques, Université du Québec à Trois-Rivières, Trois Rivières, Quebec, Canada
- Centre d'études nordiques, Université Laval, Québec, Quebec, Canada
| | - Vincent Maire
- Département des Sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
- Chaire en Écologie Fonctionnelle Arctique, Centre d'études nordiques, Université du Québec à Trois-Rivières, Trois Rivières, Quebec, Canada
- Centre d'études nordiques, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
2
|
Qin H, Zhang X, Tian G, Liu C, Xing Y, Feng Z, Lyu M, Liu J, Xu X, Zhu Z, Jiang Y, Ge S. Magnesium alleviates growth inhibition under low potassium by enhancing photosynthesis and carbon-nitrogen metabolism in apple plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108875. [PMID: 38972243 DOI: 10.1016/j.plaphy.2024.108875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
Potassium (K) and magnesium (Mg) play analogous roles in regulating plant photosynthesis and carbon and nitrogen (C-N) metabolism. Based on this consensus, we hypothesize that appropriate Mg supplementation may alleviate growth inhibition under low K stress. We monitored morphological, physiological, and molecular changes in G935 apple plants under different K (0.1 and 6 mmol L-1) and Mg supply (3 and 6 mmol L-1) conditions. Low K stress caused changes in root and leaf structure, inhibited photosynthesis, and limited the root growth of the apple rootstock. Further study on Mg supplementation showed that it could promote the uptake of K+ and NO3- by upregulating the expression of K+ transporter proteins such as Arabidopsis K+ transporter 1 (MdAKT1), high-affinity K+ transporter 1 (MdHKT1), and potassium transporter 5 (MdPT5) and nitrate transporters such as nitrate transporter 1.1/1.2/2.1/2.4 (MdNRT 1.1/1.2/2.1/2.4). Mg promoted the translocation of 15N from roots to leaves and enhanced photosynthetic N utilization efficiency (PNUE) by increasing the proportion of photosynthetic N and alleviating photosynthetic restrictions. Furthermore, Mg supplementation improved the synthesis of photosynthates by enhancing the activities of sugar-metabolizing enzymes (Rubisco, SS, SPS, S6PDH). Mg also facilitated the transport of sucrose and sorbitol from leaves to roots by upregulating the expression of sucrose transporter 1.1/1.2/4.1/4.2 (MdSUT 1.1/1.2/4.1/4.2) and sorbitol transporter 1.1/1.2 (MdSOT 1.1/1.2). Overall, Mg effectively alleviated growth inhibition in apple rootstock plants under low K stress by facilitating the uptake of N and K uptake, optimizing nitrogen partitioning, enhancing nitrogen use efficiency (NUE) and PNUE, and promoting the photosynthate synthesis and translocation.
Collapse
Affiliation(s)
- Hanhan Qin
- College of Horticulture Science and Engineering, Shandong Apple Technology Innovation Center, Shandong Collaborative Innovation Center for High-quality and Efficient Production of Fruits and Vegetables, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiuying Zhang
- Apple Industry Research Institute of Zhaotong,Zhaotong, Yunnan, 657000, China
| | - Ge Tian
- College of Horticulture Science and Engineering, Shandong Apple Technology Innovation Center, Shandong Collaborative Innovation Center for High-quality and Efficient Production of Fruits and Vegetables, Shandong Agricultural University, Tai'an, Shandong, 271018, China; Institute of Pomology, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
| | - Chunling Liu
- College of Horticulture Science and Engineering, Shandong Apple Technology Innovation Center, Shandong Collaborative Innovation Center for High-quality and Efficient Production of Fruits and Vegetables, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yue Xing
- College of Horticulture Science and Engineering, Shandong Apple Technology Innovation Center, Shandong Collaborative Innovation Center for High-quality and Efficient Production of Fruits and Vegetables, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ziquan Feng
- College of Horticulture Science and Engineering, Shandong Apple Technology Innovation Center, Shandong Collaborative Innovation Center for High-quality and Efficient Production of Fruits and Vegetables, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Mengxue Lyu
- College of Horticulture Science and Engineering, Shandong Apple Technology Innovation Center, Shandong Collaborative Innovation Center for High-quality and Efficient Production of Fruits and Vegetables, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Jingquan Liu
- College of Horticulture Science and Engineering, Shandong Apple Technology Innovation Center, Shandong Collaborative Innovation Center for High-quality and Efficient Production of Fruits and Vegetables, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - XinXiang Xu
- College of Horticulture Science and Engineering, Shandong Apple Technology Innovation Center, Shandong Collaborative Innovation Center for High-quality and Efficient Production of Fruits and Vegetables, Shandong Agricultural University, Tai'an, Shandong, 271018, China; Yantai Academy of Agricultural Sciences, Yantai, Shandong, 265500, China
| | - Zhanling Zhu
- College of Horticulture Science and Engineering, Shandong Apple Technology Innovation Center, Shandong Collaborative Innovation Center for High-quality and Efficient Production of Fruits and Vegetables, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Yuanmao Jiang
- College of Horticulture Science and Engineering, Shandong Apple Technology Innovation Center, Shandong Collaborative Innovation Center for High-quality and Efficient Production of Fruits and Vegetables, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Shunfeng Ge
- College of Horticulture Science and Engineering, Shandong Apple Technology Innovation Center, Shandong Collaborative Innovation Center for High-quality and Efficient Production of Fruits and Vegetables, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
3
|
Xu X, Zhang X, Ni W, Liu C, Qin H, Guan Y, Liu J, Feng Z, Xing Y, Tian G, Zhu Z, Ge S, Jiang Y. Nitrogen-potassium balance improves leaf photosynthetic capacity by regulating leaf nitrogen allocation in apple. HORTICULTURE RESEARCH 2024; 11:uhad253. [PMID: 38486813 PMCID: PMC10939330 DOI: 10.1093/hr/uhad253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/15/2023] [Indexed: 03/17/2024]
Abstract
Nitrogen (N) and potassium (K) are two important mineral nutrients in regulating leaf photosynthesis. However, the influence of N and K interaction on photosynthesis is still not fully understood. Using a hydroponics approach, we studied the effects of different N and K conditions on the physiological characteristics, N allocation and photosynthetic capacity of apple rootstock M9T337. The results showed that high N and low K conditions significantly reduced K content in roots and leaves, resulting in N/K imbalance, and allocated more N in leaves to non-photosynthetic N. Low K conditions increased biochemical limitation (BL), mesophyll limitation (MCL), and stomatal limitation (SL). By setting different N supplies, lowering N levels under low K conditions increased the proportion of water-soluble protein N (Nw) and sodium dodecyl sulfate-soluble proteins (Ns) by balancing N/K and increased the proportion of carboxylation N and electron transfer N. This increased the maximum carboxylation rate and mesophyll conductance, which reduced MCL and BL and alleviated the low K limitation of photosynthesis in apple rootstocks. In general, our results provide new insights into the regulation of photosynthetic capacity by N/K balance, which is conducive to the coordinated supply of N and K nutrients.
Collapse
Affiliation(s)
- Xinxiang Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an 271018, Shandong, China
- Yantai Academy of Agricultural Sciences, Institute of Pomology, Yan’tai 265500, Shandong, China
| | - Xu Zhang
- Yantai Academy of Agricultural Sciences, Institute of Pomology, Yan’tai 265500, Shandong, China
| | - Wei Ni
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an 271018, Shandong, China
| | - Chunling Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an 271018, Shandong, China
| | - Hanhan Qin
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an 271018, Shandong, China
| | - Yafei Guan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an 271018, Shandong, China
| | - Jingquan Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an 271018, Shandong, China
| | - Ziquan Feng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an 271018, Shandong, China
| | - Yue Xing
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an 271018, Shandong, China
| | - Ge Tian
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an 271018, Shandong, China
| | - Zhanling Zhu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an 271018, Shandong, China
| | - Shunfeng Ge
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an 271018, Shandong, China
| | - Yuanmao Jiang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an 271018, Shandong, China
| |
Collapse
|
4
|
Chen P, Li L, Xia S, Zhang R, Zhang R, Zeng XM, Shuai D, Liu Y, Li ZG. Enhancement patterns of potassium on nitrogen transport and functional genes in cotton vary with nitrogen levels. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111824. [PMID: 37572966 DOI: 10.1016/j.plantsci.2023.111824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/17/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The application of potassium (K) in conjunction with nitrogen (N) has been shown to enhance N use efficiency. However, there is still a need for further understanding of the optimal ratios and molecular regulatory mechanisms, particularly in soil-cotton systems. Here, a field trial was conducted, involving varying rates of N and K, alongside pot and hydroponic experiments. The objective was to assess the impact of N-K interaction on the absorption, transport and distribution of N in cotton. The results showed that K supply at 90 and 240 kg ha-1 had a beneficial impact on N uptake and distribution to both seed and lint, resulting in the highest N use efficiency ranging from 22% to 62% and yield improvements from 20% to 123%. The increase in stem and root diameters, rather than the quantify of xylem vessels and phloem sieve tubes, facilitated the uptake and transport of N due to the provision of K. At the molecular level, K supply upregulated the expression levels of genes encoding GhNRT2.1 transporter and GhSLAH3 channel in cotton roots to promote N uptake and GhNRT1.5/NPF7.3 genes to transport N to shoot under low-N conditions. However, under high-N conditions, K supply induced anion channel genes (GhSLAH4) of roots to promote N uptake and genes encoding GhNRT1.5/NPF7.3 and GhNRT1.8/NPF7.2 transporters to facilitate NO3- unloading from xylem to mesophyll cell in high-N plants. Furthermore, K supply resulted in the upregulation of gene expression for GhGS2 in leaves, while simultaneously downregulating the expression of GhNADH-GOGAT, GhGDH1 and GhGDH3 genes in high-N roots. The enzyme activities of nitrite reductase and glutamine synthetase increased and glutamate dehydrogenase decreased, but the concentration of NO3- and soluble protein exhibited a significant increase and free amino acid decreased in the shoots subsequent to K supply.
Collapse
Affiliation(s)
- Peng Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Linyang Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Shujie Xia
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Runhua Zhang
- Wuhan Academy of Agriculture Science and Technology, Vegetable Research Institute, Wuhan 430345, China
| | - Runqin Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiao-Min Zeng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Du Shuai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Conservation Biology / Economic Botany / Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Zhi-Guo Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
5
|
Parkash V, Snider JL, Sintim HY, Hand LC, Virk G, Pokhrel A. Differential sensitivities of photosynthetic processes and carbon loss mechanisms govern N-induced variation in net carbon assimilation rate for field-grown cotton. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2638-2652. [PMID: 36715336 DOI: 10.1093/jxb/erad038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/28/2023] [Indexed: 06/06/2023]
Abstract
Nitrogen (N) deficiency limits the net carbon assimilation rate (AN), but the relative N sensitivities of photosynthetic component processes and carbon loss mechanisms remain relatively unexplored for field-grown cotton. Therefore, the objective of the current study was to define the relative sensitivity of individual physiological processes driving N deficiency-induced declines in AN for field-grown cotton. Among the potential diffusional limitations evaluated, mesophyll conductance was the only parameter substantially reduced by N deficiency, but this did not affect CO2 availability in the chloroplast. A number of metabolic processes were negatively impacted by N deficiency, and these effects were more pronounced at lower leaf positions in the cotton canopy. Ribulose bisphosphate (RuBP) regeneration and carboxylation, AN, and gross photosynthesis were the most sensitive metabolic processes to N deficiency, whereas photosynthetic electron transport processes, electron flux to photorespiration, and dark respiration exhibited intermediate sensitivity to N deficiency. Among thylakoid-specific processes, the quantum yield of PSI end electron acceptor reduction was the most sensitive process to N deficiency. It was concluded that AN is primarily limited by Rubisco carboxylation and RuBP regeneration under N deficiency in field-grown cotton, and the differential N sensitivities of the photosynthetic process and carbon loss mechanisms contributed significantly to photosynthetic declines.
Collapse
Affiliation(s)
- Ved Parkash
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31794, USA
| | - John L Snider
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31794, USA
| | - Henry Y Sintim
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31794, USA
| | - Lavesta C Hand
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31794, USA
| | - Gurpreet Virk
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31794, USA
| | - Amrit Pokhrel
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31794, USA
| |
Collapse
|
6
|
Dai S, Wu H, Chen H, Wang Z, Yu X, Wang L, Jia X, Qin C, Zhu Y, Yi K, Zeng H. Comparative transcriptome analyses under individual and combined nutrient starvations provide insights into N/P/K interactions in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107642. [PMID: 36989993 DOI: 10.1016/j.plaphy.2023.107642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Crops often suffer from simultaneous limitations of multiple nutrients in soils, including nitrogen (N), phosphorus (P) and potassium (K), which are three major macronutrients essential for ensuring growth and yield. Although plant responses to individual N, P, and K deficiency have been well documented, our understanding of the responses to combined nutrient deficiencies and the crosstalk between nutrient starvation responses is still limited. Here, we compared the physiological responses in rice under seven kinds of single and multiple low nutrient stress of N, P and K, and used RNA sequencing approaches to compare their transcriptome changes. A total of 13,000 genes were found to be differentially expressed under all these single and multiple low N/P/K stresses, and 66 and 174 of them were shared by all these stresses in roots and shoots, respectively. Functional enrichment analyses of the DEGs showed that a group of biological and metabolic processes were shared by these low N/P/K stresses. Comparative analyses indicated that DEGs under multiple low nutrient stress was not the simple summation of single nutrient stress. N was found to be the predominant factor affecting the transcriptome under combined nutrient stress. N, P, or K availability exhibited massive influences on the transcriptomic responses to starvation of other nutrients. Many genes involved in nutrient transport, hormone signaling, and transcriptional regulation were commonly responsive to low N/P/K stresses. Some transcription factors were predicted to regulate the expression of genes that are commonly responsive to N, P, and K starvations. These results revealed the interactions between N, P, and K starvation responses, and will be helpful for further elucidation of the molecular mechanisms underlying nutrient interactions.
Collapse
Affiliation(s)
- Senhuan Dai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Haicheng Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Huiying Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zihui Wang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Yu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Long Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianqing Jia
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Cheng Qin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yiyong Zhu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
7
|
Yan J, Ye X, Song Y, Ren T, Wang C, Li X, Cong R, Lu Z, Lu J. Sufficient potassium improves inorganic phosphate-limited photosynthesis in Brassica napus by enhancing metabolic phosphorus fractions and Rubisco activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:416-429. [PMID: 36479950 DOI: 10.1111/tpj.16057] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/22/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Crop photosynthesis (A) and productivity are often limited by a combination of nutrient stresses, such that changes in the availability of one nutrient may affect the availability of another nutrient, in turn influencing A. In this study, we examined the synergistic effects of phosphorus (P) and potassium (K) on leaf A in a nutrient amendment experiment, in which P and K were added individually or in combination to Brassica napus grown under P and K co-limitation. The data revealed that the addition of P gradually removed the dominant limiting factor (i.e. the limited availability of P) and improved leaf A. Strikingly, the addition of K synergistically improved the overall uptake of P, mainly by boosting plant growth, and compensated for the physiological demand for P by prioritizing investment in metabolic pools of P (P-containing metabolites and inorganic phosphate, Pi). The enlarged pool of metabolically active P was partially associated with the upregulation of Pi regeneration through release from triose phosphates rather than replacement of P-containing lipids. This process mitigated P restrictions on A by maintaining the ATP/NADPH and NADPH/NADP+ ratios and increasing the content and activity of Rubisco. Our findings demonstrate that sufficient K increased Pi-limited A by enhancing metabolic P fractions and Rubisco activity. Thus, ionic synergism may be exploited to mitigate nutrient-limiting factors to improve crop productivity.
Collapse
Affiliation(s)
- Jinyao Yan
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Xiaolei Ye
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Yi Song
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Tao Ren
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Chongming Wang
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Xiaokun Li
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Rihuan Cong
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Zhifeng Lu
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Jianwei Lu
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| |
Collapse
|
8
|
Knauer J, Cuntz M, Evans JR, Niinemets Ü, Tosens T, Veromann‐Jürgenson L, Werner C, Zaehle S. Contrasting anatomical and biochemical controls on mesophyll conductance across plant functional types. THE NEW PHYTOLOGIST 2022; 236:357-368. [PMID: 35801854 PMCID: PMC9804998 DOI: 10.1111/nph.18363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/30/2022] [Indexed: 06/06/2023]
Abstract
Mesophyll conductance (gm ) limits photosynthesis by restricting CO2 diffusion between the substomatal cavities and chloroplasts. Although it is known that gm is determined by both leaf anatomical and biochemical traits, their relative contribution across plant functional types (PFTs) is still unclear. We compiled a dataset of gm measurements and concomitant leaf traits in unstressed plants comprising 563 studies and 617 species from all major PFTs. We investigated to what extent gm limits photosynthesis across PFTs, how gm relates to structural, anatomical, biochemical, and physiological leaf properties, and whether these relationships differ among PFTs. We found that gm imposes a significant limitation to photosynthesis in all C3 PFTs, ranging from 10-30% in most herbaceous annuals to 25-50% in woody evergreens. Anatomical leaf traits explained a significant proportion of the variation in gm (R2 > 0.3) in all PFTs except annual herbs, in which gm is more strongly related to biochemical factors associated with leaf nitrogen and potassium content. Our results underline the need to elucidate mechanisms underlying the global variability of gm . We emphasise the underestimated potential of gm for improving photosynthesis in crops and identify modifications in leaf biochemistry as the most promising pathway for increasing gm in these species.
Collapse
Affiliation(s)
- Jürgen Knauer
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSW2751Australia
- Climate Science CentreCSIRO Oceans and AtmosphereCanberraACT2601Australia
- Max Planck Institute for Biogeochemistry07745JenaGermany
| | - Matthias Cuntz
- AgroParisTech, UMR SilvaINRAE, Université de Lorraine54000NancyFrance
| | - John R. Evans
- ARC Centre of Excellence for Translational PhotosynthesisResearch School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental SciencesEstonian University of Life Sciences51006TartuEstonia
| | - Tiina Tosens
- Institute of Agricultural and Environmental SciencesEstonian University of Life Sciences51006TartuEstonia
| | | | | | - Sönke Zaehle
- Max Planck Institute for Biogeochemistry07745JenaGermany
| |
Collapse
|
9
|
Mostofa MG, Rahman MM, Ghosh TK, Kabir AH, Abdelrahman M, Rahman Khan MA, Mochida K, Tran LSP. Potassium in plant physiological adaptation to abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:279-289. [PMID: 35932652 DOI: 10.1016/j.plaphy.2022.07.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 05/02/2023]
Abstract
Potassium (K) is an integral part of plant nutrition, playing essential roles in plant growth and development. Despite its abundance in soils, the limitedly available form of K ion (K+) for plant uptake is a critical factor for agricultural production. Plants have evolved complex transport systems to maintain appropriate K+ levels in tissues under changing environmental conditions. Adequate stimulation and coordinated actions of multiple K+-channels and K+-transporters are required for nutrient homeostasis, reproductive growth, cellular signaling and stress adaptation responses in plants. Various contemporary studies revealed that K+-homeostasis plays a substantial role in plant responses and tolerance to abiotic stresses. The beneficial effects of K+ in plant responses to abiotic stresses include its roles in physiological and biochemical mechanisms involved in photosynthesis, osmoprotection, stomatal regulation, water-nutrient absorption, nutrient translocation and enzyme activation. Over the last decade, we have seen considerable breakthroughs in K research, owing to the advances in omics technologies. In this aspect, omics investigations (e.g., transcriptomics, metabolomics, and proteomics) in systems biology manner have broadened our understanding of how K+ signals are perceived, conveyed, and integrated for improving plant physiological resilience to abiotic stresses. Here, we update on how K+-uptake and K+-distribution are regulated under various types of abiotic stress. We discuss the effects of K+ on several physiological functions and the interaction of K+ with other nutrients to improve plant potential against abiotic stress-induced adverse consequences. Understanding of how K+ orchestrates physiological mechanisms and contributes to abiotic stress tolerance in plants is essential for practicing sustainable agriculture amidst the climate crisis in global agriculture.
Collapse
Affiliation(s)
- Mohammad Golam Mostofa
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA.
| | - Md Mezanur Rahman
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Totan Kumar Ghosh
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | | | | | - Md Arifur Rahman Khan
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan; Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, Yokohama 230-0045, Japan; Kihara Institute for Biological Research, Yokohama City University, Yokohama 230-0045, Japan; School of Information and Data Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA; Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam.
| |
Collapse
|
10
|
Xu X, Wang F, Xing Y, Liu J, Lv M, Meng H, Du X, Zhu Z, Ge S, Jiang Y. Appropriate and Constant Potassium Supply Promotes the Growth of M9T337 Apple Rootstocks by Regulating Endogenous Hormones and Carbon and Nitrogen Metabolism. FRONTIERS IN PLANT SCIENCE 2022; 13:827478. [PMID: 35371125 PMCID: PMC8967362 DOI: 10.3389/fpls.2022.827478] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/21/2022] [Indexed: 05/17/2023]
Abstract
Potassium (K) is an indispensable nutrient element in the development of fruit trees in terms of yield and quality. It is unclear how a stable or unstable supply of K affects plant growth. We studied the root morphology and physiological and molecular changes in the carbon and nitrogen metabolism of M9T337 apple rootstock under different K levels and supply methods using hydroponics. Five K supply treatments were implemented: continuous low K (KL), initial low and then high K (KLH), appropriate and constant K (KAC), initial high and then low K (KHL), and continuous high K (KH). The results showed that the biomass, root activity, photosynthesis, and carbon and nitrogen metabolism of the M9T337 rootstocks were inhibited under KL, KH, KLH and KHL conditions. The KAC treatment promoted root growth by optimizing endogenous hormone content, enhancing carbon and nitrogen metabolism enzyme activities, improving photosynthesis, optimizing the distribution of carbon and nitrogen, and upregulating the transcription levels of nitrogen assimilation-related genes (nitrate reductase, glutamine synthetase, glutamate synthase, MdNRT1.1, MdNRT1.2, MdNRT1.5, MdNRT2.4). These results suggest that an appropriate and constant K supply ensures the efficient assimilation and utilization of nitrogen and carbon.
Collapse
|
11
|
Abstract
Since 1893, when the word "photosynthesis" was first coined by Charles Reid Barnes and Conway MacMillan, our understanding of the elements and regulation of this complex process is far from being entirely understood. We aim to review the most relevant advances in photosynthesis research from the last few years and to provide a perspective on the forthcoming research in this field. Recent discoveries related to light sensing, harvesting, and dissipation; kinetics of CO2 fixation; components and regulators of CO2 diffusion through stomata and mesophyll; and genetic engineering for improving photosynthetic and production capacities of crops are addressed.
Collapse
Affiliation(s)
- Alicia V Perera-Castro
- Department of Biology, Universitat de les Illes Balears, INAGEA, Palma de Mallorca, Spain
| | - Jaume Flexas
- Department of Biology, Universitat de les Illes Balears, INAGEA, Palma de Mallorca, Spain
| |
Collapse
|
12
|
Kumar AA, Kumar SKN, Fernandez RE. Real Time Sensing of Soil Potassium Levels Using Zinc Oxide-Multiwall Carbon Nanotube-Based Sensors. IEEE Trans Nanobioscience 2020; 20:50-56. [PMID: 32997633 DOI: 10.1109/tnb.2020.3027863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There is a significant interest in the detection and monitoring of nutrient levels in agriculture farms. In this article, we report the fabrication of Zinc oxide (ZnO) modified multi-walled Carbon nanotube (F-MWCNT) sensor specifically developed for soil nutrient sensing. A thin layer of Valinomycin membrane was grown on the top of the F-MWCNT/ZnO nanocomposite active layer. The resulting composite structure Al/F-MWCNT/ZnO/Valinomycin was found to have a proportional impedance change with soil Potassium (K+) levels. The performance of the sensor was investigated in the 1- 5 kHz range. The impedance magnitude was found to linearly decrease from 2.5± 0.23 to [Formula: see text] range for K+ concentrations from 5 to 25 mM displaying a sensitivity of [Formula: see text]/mM with a correlation coefficient (R2) of 0.95744.
Collapse
|
13
|
A high-efficiency bioinspired photoelectric-electromechanical integrated nanogenerator. Nat Commun 2020; 11:6158. [PMID: 33268795 PMCID: PMC7710745 DOI: 10.1038/s41467-020-19987-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
Currently, the key challenge in triboelectric nanogenerators (TENGs) is how to efficiently enhance the surface charge density. Here, a new strategy is proposed to increase the surface charge density by comprehensively utilizing solar energy and tidal energy, and a bioinspired photoelectric-electromechanical integrated TENG (Pem-iTENG) is developed. This enhancement of output performance is greatly attributed to the accumulation of photoelectrons from photocatalysis and the triboelectric negative charges from contact electrification. Pem-iTENG shows a maximal open-circuit voltage of 124.2 V and a maximal short-circuit current density of 221.6 μA cm−2 under tidal wave and sunlight, an improvement by nearly a factor of 10 over that of reported TENGs based on solid-liquid contact electrification. More importantly, it exhibits a high energy conversion efficiency according to the evaluation method for solar cells. This work provides insights into development of high-performance TENGs by using different natural energy sources. Increasing the surface charge density of a triboelectric nanogenerator (TENG) under a single energy source is of wide interest. Here, the authors increase the surface charge density by comprehensively utilizing solar energy and tidal energy to develop a bioinspired photoelectric-electromechanical integrated TENG.
Collapse
|
14
|
Lu Z, Ren T, Li J, Hu W, Zhang J, Yan J, Li X, Cong R, Guo S, Lu J. Nutrition-mediated cell and tissue-level anatomy triggers the covariation of leaf photosynthesis and leaf mass per area. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6524-6537. [PMID: 32725164 DOI: 10.1093/jxb/eraa356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Plants in nutrient-poor habitats converge towards lower rates of leaf net CO2 assimilation (Aarea); however, they display variability in leaf mass investment per area (LMA). How a plant optimizes its leaf internal carbon investment may have knock-on effects on structural traits and, in turn, affect leaf carbon fixation. Quantitative models were applied to evaluate the structural causes of variations in LMA and their relevance to Aarea in rapeseed (Brassica napus) based on their responses to nitrogen (N), phosphorus (P), potassium (K), and boron (B) deficiencies. Leaf carbon fixation decreased in response to nutrient deficiency, but the photosynthetic limitations varied greatly depending on the deficient nutrient. In comparison with Aarea, the LMA exhibited diverse responses, being increased under P or B deficiency, decreased under K deficiency, and unaffected under N deficiency. These variations were due to changes in cell- and tissue-level carbon investments between cell dry mass density (N or K deficiency) and cellular anatomy, including cell dimension and number (P deficiency), or both (B deficiency). However, there was a conserved pattern independent of nutrient-specific limitations-low nutrient availability reduced leaf carbon fixation but increased carbon investment in non-photosynthetic structures, resulting in larger but fewer mesophyll cells with a thicker cell wall but a lower chloroplast surface area appressed to the intercellular airspace, which reduced the mesophyll conductance and feedback-limited Aarea. Our results provide insight into the importance of mineral nutrients in balancing the leaf carbon economy by coordinating leaf carbon assimilation and internal distribution.
Collapse
Affiliation(s)
- Zhifeng Lu
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Tao Ren
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Jing Li
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Wenshi Hu
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Jianglin Zhang
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Jinyao Yan
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xiaokun Li
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Rihuan Cong
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Jianwei Lu
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, China
| |
Collapse
|
15
|
Veromann-Jürgenson LL, Brodribb TJ, Niinemets Ü, Tosens T. Variability in the chloroplast area lining the intercellular airspace and cell walls drives mesophyll conductance in gymnosperms. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4958-4971. [PMID: 32392579 DOI: 10.1093/jxb/eraa231] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
The photosynthetic efficiency of plants in different environments is controlled by stomata, hydraulics, biochemistry, and mesophyll conductance (gm). Recently, gm was demonstrated to be the key limitation of photosynthesis in gymnosperms. Values of gm across gymnosperms varied over 20-fold, but this variation was poorly explained by robust structure-bound integrated traits such as leaf dry mass per area. Understanding how the component structural traits control gm is central for identifying the determinants of variability in gm across plant functional and phylogenetic groups. Here, we investigated the structural traits responsible for gm in 65 diverse gymnosperms. Although the integrated morphological traits, shape, and anatomical characteristics varied widely across species, the distinguishing features of all gymnosperms were thick mesophyll cell walls and low chloroplast area exposed to intercellular airspace (Sc/S) compared with angiosperms. Sc/S and cell wall thickness were the fundamental traits driving variations in gm across gymnosperm species. Chloroplast thickness was the strongest limitation of gm among liquid-phase components. The variation in leaf dry mass per area was not correlated with the key ultrastructural traits determining gm. Thus, given the absence of correlating integrated easy-to-measure traits, detailed knowledge of underlying component traits controlling gm across plant taxa is necessary to understand the photosynthetic limitations across ecosystems.
Collapse
Affiliation(s)
| | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| | - Tiina Tosens
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
16
|
Mesophyll conductance: the leaf corridors for photosynthesis. Biochem Soc Trans 2020; 48:429-439. [DOI: 10.1042/bst20190312] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/25/2020] [Accepted: 01/30/2020] [Indexed: 12/15/2022]
Abstract
Besides stomata, the photosynthetic CO2 pathway also involves the transport of CO2 from the sub-stomatal air spaces inside to the carboxylation sites in the chloroplast stroma, where Rubisco is located. This pathway is far to be a simple and direct way, formed by series of consecutive barriers that the CO2 should cross to be finally assimilated in photosynthesis, known as the mesophyll conductance (gm). Therefore, the gm reflects the pathway through different air, water and biophysical barriers within the leaf tissues and cell structures. Currently, it is known that gm can impose the same level of limitation (or even higher depending of the conditions) to photosynthesis than the wider known stomata or biochemistry. In this mini-review, we are focused on each of the gm determinants to summarize the current knowledge on the mechanisms driving gm from anatomical to metabolic and biochemical perspectives. Special attention deserve the latest studies demonstrating the importance of the molecular mechanisms driving anatomical traits as cell wall and the chloroplast surface exposed to the mesophyll airspaces (Sc/S) that significantly constrain gm. However, even considering these recent discoveries, still is poorly understood the mechanisms about signaling pathways linking the environment a/biotic stressors with gm responses. Thus, considering the main role of gm as a major driver of the CO2 availability at the carboxylation sites, future studies into these aspects will help us to understand photosynthesis responses in a global change framework.
Collapse
|