1
|
Fu Y, Chen C, Pei P, Hao X, Jin J, Shi S, Ge Q, Wang P, Li G, Fu G, Du C, Kang G. The SnRK1 kinase TaSnRK1.10 positively regulates heavy metal chromium tolerance mainly by mediating reactive oxygen species homeostasis and activating the phenylpropanoid biosynthetic pathway in wheat. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:138035. [PMID: 40138953 DOI: 10.1016/j.jhazmat.2025.138035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/03/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
The sucrose non-fermenting-1 (SNF1)-related kinase (SnRK1) family plays key roles in multiple plant processes. However, limited information about its role in chromium (Cr) tolerance is available. Here, we identified an SnRK1 member (TaSnRK1.10) and functionally characterised its role in Cr tolerance in wheat. Cas9-TaSnRK1.10 lines exhibited decreased Cr tolerance and accumulated more Cr than the wheat variety ZM7698 under Cr stress conditions. TaSnRK1.10-overexpression lines displayed opposite phenotypes. Root phenotypic analysis showed that TaSnRK1.10 altered the root morphology by affecting total root length, average root diameter, and root surface area, especially under Cr stress conditions. Further physiological analysis showed that the regulation of Cr tolerance mediated by TaSnRK1.10 was related to reactive oxygen species (ROS) homeostasis. Additionally, transcriptomic analysis suggested that the significantly differentially expressed genes in the Cr stress group were mainly enriched in the phenylpropanoid biosynthetic pathway, which was confirmed by quantitative polymerase chain reaction analysis, implying that the phenylpropanoid pathway plays a key role in the regulation of Cr tolerance mediated by TaSnRK1.10. Collectively, our research revealed that TaSnRK1.10 positively regulates Cr tolerance, mainly by mediating ROS homeostasis and activating the phenylpropanoid biosynthetic pathway, thus providing a candidate target for the genetic manipulation of Cr resistance in wheat.
Collapse
Affiliation(s)
- Yihan Fu
- The National Engineering Research Center for Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China; The State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China; Henan Technological Innovation Center of Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Cong Chen
- The National Engineering Research Center for Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China; The State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China; Henan Technological Innovation Center of Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Pei Pei
- The National Engineering Research Center for Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China; The State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China; Henan Technological Innovation Center of Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Xiangyang Hao
- The National Engineering Research Center for Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China; The State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China; Henan Technological Innovation Center of Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Jiajia Jin
- The National Engineering Research Center for Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China; The State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China; Henan Technological Innovation Center of Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Shujie Shi
- The National Engineering Research Center for Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China; The State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China; Henan Technological Innovation Center of Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Qiang Ge
- The National Engineering Research Center for Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China; The State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China; Henan Technological Innovation Center of Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Pengfei Wang
- The National Engineering Research Center for Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China; The State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China; Henan Technological Innovation Center of Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Gezi Li
- The National Engineering Research Center for Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China; The State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China; Henan Technological Innovation Center of Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Guozhan Fu
- College of Agronomy, Henan University of Science and Technology, Luoyang 471000, China
| | - Changqing Du
- The National Engineering Research Center for Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China; The State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China; Henan Technological Innovation Center of Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China.
| | - Guozhang Kang
- The National Engineering Research Center for Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China; The State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China; Henan Technological Innovation Center of Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Zhao W, Wen J, Zhao J, Liu L, Wang M, Huang M, Fang C, Liu Q. E3 Ubiquitin Ligase OsRFI2 Regulates Salinity Tolerance by Targeting Ascorbate Peroxidase OsAPX8 for its Degradation in Rice. RICE (NEW YORK, N.Y.) 2025; 18:12. [PMID: 40059282 PMCID: PMC11891124 DOI: 10.1186/s12284-025-00763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 02/13/2025] [Indexed: 03/29/2025]
Abstract
Salinity is a major abiotic stress that adversely affects rice growth and production. However, the detailed regulatory mechanisms of salt stress response in rice remain largely unexplored. In this study, we established that the RING-type E3 ubiquitin ligase OsRFI2 plays a negative role in salt tolerance in rice. Knockout mutants of OsRFI2 (Osrfi2) exhibited high tolerance, whereas OsRFI2-overexpressed transgenic lines (OE-OsRFI2) were more sensitive to salt stress. OsRFI2 that has E3 ligase activity interacts with ascorbate peroxidase OsAPX8 in chloroplast, and catalyzes its ubiquitination and degradation through the 26 S proteasome pathway. The Osapx8 mutants, like OE-OsRFI2 lines, showed high sensitivity to high salt concentrations, accumulating greater amounts of MDA, H2O2 and O2-, which lead to compromised cell permeability and ROS accumulation. Thus, the OsRFI2-OsAPX8 module adds novel clues for better understanding the regulatory mechanism of salt stress response in rice.
Collapse
Affiliation(s)
- Wenjing Zhao
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an Hangzhou, 311300, P. R. China
| | - Junli Wen
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an Hangzhou, 311300, P. R. China
| | - Juan Zhao
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an Hangzhou, 311300, P. R. China.
| | - Linlin Liu
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an Hangzhou, 311300, P. R. China
| | - Mei Wang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, P. R. China
| | - Menghan Huang
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an Hangzhou, 311300, P. R. China
| | - Chaowei Fang
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an Hangzhou, 311300, P. R. China
| | - Qingpo Liu
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an Hangzhou, 311300, P. R. China.
| |
Collapse
|
3
|
Liu X, Guo X, Li T, Wang X, Guan Y, Wang D, Wang Y, Ji X, Gao Q, Ji J. OsGSK1 interacts with OsbZIP72 to regulate salt response in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70112. [PMID: 40121668 DOI: 10.1111/tpj.70112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/02/2025] [Accepted: 03/08/2025] [Indexed: 03/25/2025]
Abstract
Soil salinity remains a continuing threat to agriculture worldwide, greatly affecting seedling development and reducing crop yield. Thus, the cultivation of salt-resistant crops on salinized land is an excellent strategy to ensure food security. The rice GSK3-like protein kinase, OsGSK1, is known to play a role in the response to various abiotic stressors; however, the underlying molecular mechanism of this response remains unclear. Here, we aimed to elucidate the mechanism by which OsGSK1 regulates the salt stress response. We found that OsGSK1 interacts with OsbZIP72 to negatively regulate salt stress tolerance in rice plants. OsGSK1 is specifically induced by cold, salt stress, and abscisic acid (ABA) treatment. OsGSK1 was found to be localized in the nucleus and cytoplasm, where it physically interacts with OsbZIP72 - a positive regulator of the rice salt stress response. OsbZIP72 directly binds to the ABA response element in the OsNHX1 promoter to regulate its expression under salt stress, whereas OsGSK1 interacts with OsbZIP72 to repress OsNHX1 expression. The knockout of OsGSK1 increased salt tolerance without affecting the main agronomic traits of the mutant plants. Therefore, OsGSK1 could be used to maintain rice yield in salinized soil.
Collapse
Affiliation(s)
- Xi Liu
- Key Laboratory of Eco-Agricultural Biotechnology around Hongze Lake, Regional Cooperative Innovation Center for Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
- School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
| | - Xin Guo
- School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
| | - Tingjing Li
- School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
| | - Xue Wang
- School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
| | - Yulu Guan
- School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
| | - Di Wang
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huai'an, 223001, China
| | - Yinjie Wang
- School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
| | - Xiaonan Ji
- School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
| | - Qingsong Gao
- Key Laboratory of Eco-Agricultural Biotechnology around Hongze Lake, Regional Cooperative Innovation Center for Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
- School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
| | - Jianhui Ji
- Key Laboratory of Eco-Agricultural Biotechnology around Hongze Lake, Regional Cooperative Innovation Center for Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
- School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
| |
Collapse
|
4
|
Ma Y, Chen Q, Javeed A, Wang Z, Liu S, Lin F, Zhang C, Liu C. Functional and transcriptomic characterization of the receptor-like protein kinase gene GmHSL1b involved in salt stress tolerance in soybean roots. PHYSIOLOGIA PLANTARUM 2025; 177:e70197. [PMID: 40207830 DOI: 10.1111/ppl.70197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 04/11/2025]
Abstract
The survival and adaptation of plants to adverse environmental conditions is crucial and is facilitated by receptor-like kinases, which act as cell surface receptors for a variety of signals. In this study, we identified a gene, GmHSL1b, encoding a receptor-like protein kinase that is responsive to abscisic acid (ABA) hormonal signals and is involved in the plant's response to drought and salt stresses. Subcellular localization assays have demonstrated that the GmHSL1b protein is located in the plasma membrane. Overexpression of the GmHSL1b gene in soybean enhanced root growth and development, as well as the plant's tolerance to salt stress, while the gmhsl1b mutant revealed increased sensitivity to salt stress. Comparative transcriptome analysis showed that some genes associated with various biological processes, such as mitogen-activated protein kinase (MAPK) cascade signaling, plant hormone signaling, cell wall remodeling, calcium signaling, and defense response mechanisms are differentially expressed in GmHSL1b overexpressing roots. Our research indicated that GmHSL1b can regulate the expression level of the candidate aquaporin GmPIP2-1, thereby affecting cell water content and the accumulation of reactive oxygen species (ROS) under salt stress. These findings indicate that the GmHSL1b participates in regulating root development and enhancing the tolerance to salt stress, thus offering insights for boosting crop adaptability to environmental stresses.
Collapse
Affiliation(s)
- Yuan Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Qiumin Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Ansar Javeed
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
- College of life sciences and medicine, Zhejiang Sci-Tech University, Zhejiang, Hangzhou, China
| | - Zhenghao Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Sijia Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Feng Lin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chunyu Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chen Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Maghraby A, Alzalaty M. Genome-wide identification, characterization, and functional analysis of the CHX, SOS, and RLK genes in Solanum lycopersicum under salt stress. Sci Rep 2025; 15:1142. [PMID: 39774029 PMCID: PMC11707246 DOI: 10.1038/s41598-024-83221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
The cation/proton exchanger (CHX), salt overly sensitive (SOS), and receptor-like kinase (RLK) genes play significant roles in the response to salt stress in plants. This study is the first to identify the SOS gene in Solanum lycopersicum (tomato) through genome-wide analysis under salt stress conditions. Quantitative reverse transcription PCR (qRT-PCR) results indicated that the expression levels of CHX, SOS, and RLK genes were upregulated, with fold changes of 1.83, 1.49, and 1.55, respectively, after 12 h of exposure to salt stress. Genome-wide analysis revealed 21 CHX, 5 SOS, and 86 RLK genes in S. lycopersicum. CHX genes were found on chromosomes 2, 3, 4, 5, 6, 7, 8, 9, 11, and 12 of S. lycopersicum. SOS genes were found on chromosomes 1, 4, 6, and 10. RLK genes were found on all chromosomes of S. lycopersicum. The Ka/Ks ratios indicate that the CHX, SOS, and RLK genes have been primarily influenced by purifying selection. This suggests that these genes have faced strong environmental pressures throughout their evolution. Purifying selection typically results in a decrease in genetic diversity. The estimated duplication time for CHX paralogous gene pairs ranged from approximately 26.965 to 245.413 million years ago (Mya), while the duplication time for SOS paralogous gene pairs ranged from around 116.682 to 275.631 Mya. For RLK paralogous gene pairs, the duplication time varied from approximately 27.689 to 239.376 Mya. Synteny analysis of the CHX, SOS, and RLK genes demonstrated collinear relationships with orthologous genes in Arabidopsis thaliana, but no collinearity orthologous relationships in Oryza sativa (rice). Furthermore, the analysis revealed that there were 6 orthologous SlCHX genes, 2 orthologous SlSOS genes, and 44 orthologous SlRLK genes paired with those in A. thaliana. The results of the present study may help to elucidate the role of the CHX, SOS, and RLK genes in salt stress in S. lycopersicum.
Collapse
Affiliation(s)
- Amaal Maghraby
- Botany and Microbiology Department, Faculty of Science, Cairo University, Cairo, Egypt.
| | - Mohamed Alzalaty
- Department of Plant Genetic Transformation, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Cairo, Egypt
| |
Collapse
|
6
|
Chen W, Guo W, Zhang C, Zhao Y, Lei Y, Chen C, Wei Z, Dai H. MdLRR-RLK1-MdATG3 module enhances the resistance of apples to abiotic stress via autophagy. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17211. [PMID: 39671299 DOI: 10.1111/tpj.17211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
Apple is an important economic species affected by abiotic stress, such as salt and drought. LRR-RLKs play a key role in plant responses to stress, although their physiological functions under abiotic stress are not yet fully understood. Autophagy is a highly conserved process in eukaryotes, which plays a vital role in drought and salt stress responses. In this study, overexpression of MdLRR-RLK1 in apple promoted plant growth and development and increased salt and drought stress tolerance. MdLRR-RLK1 interacts with MdATG3 in vivo and in vitro, and MdATG3 ubiquitinates and degrades MdLRR-RLK1. Intriguingly, MdLRR-RLK1 and MdATG3 enhance salt and drought tolerance through increasing autophagy. Moreover, MdATG3 interacts with MdATG8F and MdATG8I-like in apple. These findings reveal the interaction between MdLRR-RLK1 and MdATG3, suggesting mechanisms that regulate apple growth and resistance to abiotic stress.
Collapse
Affiliation(s)
- Wenjun Chen
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Wei Guo
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
- Analytical and Testing Center, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Chao Zhang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Yi Zhao
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Yingying Lei
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Cui Chen
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Ziwen Wei
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Hongyan Dai
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| |
Collapse
|
7
|
Das MK, Park S, Adhikari ND, Mou B. Genome-wide association study of salt tolerance at the seed germination stage in lettuce. PLoS One 2024; 19:e0308818. [PMID: 39423209 PMCID: PMC11488735 DOI: 10.1371/journal.pone.0308818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/26/2024] [Indexed: 10/21/2024] Open
Abstract
Developing lettuce varieties with salt tolerance at the seed germination stage is essential since lettuce seeds are planted half an inch deep in soil where salt levels are often highest in the salinity-affected growing regions. Greater knowledge of genetics and genomics of salt tolerance in lettuce will facilitate breeding of improved lettuce varieties with salt tolerance. Accordingly, we conducted a genome-wide association study (GWAS) in lettuce to identify marker-trait association for salt tolerance at the seed germination stage. The study involved 445 diverse lettuce accessions and 56,820 single nucleotide polymorphism (SNP) markers obtained through genotype-by-sequencing technology using lettuce reference genome version v8. GWAS using two single-locus and three multi-locus models for germination rate (GR) under salinity stress, 5 days post seeding (GR5d_S) and a salinity susceptibility index (SSI) based on GR under salinity stress and control conditions, 5 days post seeding (SSI_GR5d) revealed 10 significant SNPs on lettuce chromosomes 2, 4, and 7. The 10 SNPs were associated with five novel QTLs for salt tolerance in lettuce, explaining phenotyping variations of 5.85%, 4.38%, 4.26%, 3.77%, and 1.80%, indicating the quantitative nature of these two salt tolerance-related traits. Using the basic local alignment search tool (BLAST) within 100 Kb upstream and downstream of each of the 10 SNPs, we identified 25 salt tolerance-related putative candidate genes including four genes encoding for major transcription factors. The 10 significant salt tolerance-related SNPs and the 25 candidate genes identified in the current study will be a valuable resource for molecular marker development and marker-assisted selection for breeding lettuce varieties with improved salt tolerance at the seed germination stage.
Collapse
Affiliation(s)
- Modan K. Das
- USDA-Agricultural Research Service, Sam Farr United States Crop Improvement and Protection Research Center, Salinas, CA, United States of America
| | - Sunchung Park
- USDA-Agricultural Research Service, Sam Farr United States Crop Improvement and Protection Research Center, Salinas, CA, United States of America
| | - Neil D. Adhikari
- USDA-Agricultural Research Service, Sam Farr United States Crop Improvement and Protection Research Center, Salinas, CA, United States of America
| | - Beiquan Mou
- USDA-Agricultural Research Service, Sam Farr United States Crop Improvement and Protection Research Center, Salinas, CA, United States of America
| |
Collapse
|
8
|
Yang G, Li Z, Rong M, Yu R, Zhang Q, Wang G, Xu Z, Du X, Xu X. Comparative transcriptome analysis to identify the important mRNA and lncRNA associated with salinity tolerance in alfalfa. PeerJ 2024; 12:e18236. [PMID: 39430557 PMCID: PMC11490228 DOI: 10.7717/peerj.18236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/15/2024] [Indexed: 10/22/2024] Open
Abstract
Salinity represents a fatal factor affecting the productivity of alfalfa. But the regulation of salinity tolerance via lncRNAs and mRNAs remains largely unclear within alfalfa. For evaluating salinity stress resistance-related lncRNAs and mRNAs within alfalfa, we analyzed root transcriptomics in two alfalfa varieties, GN5 (salinity-tolerant) and GN3 (salinity-sensitive), after treatments with NaCl at 0 and 150 mM. There were altogether 117,677 lncRNAs and 172,986 mRNAs detected, including 1,466 lncRNAs and 2,288 mRNAs with significant differential expression in GN5150/GN50, GN3150/GN30, GN50/GN30, and GN5150/GN3150. As revealed by GO as well as KEGG enrichment, some ionic and osmotic stress-associated genes, such as HPCA1-LRR, PP2C60, PP2C71, CRK1, APX3, HXK2, BAG6, and ARF1, had up-regulated levels in GN5 compared with in GN3. In addition, NaCl treatment markedly decreased CNGC1 expression in GN5. According to co-expressed network analyses, six lncRNAs (TCONS_00113549, TCONS_00399794, TCONS_00297228, TCONS_00004647, TCONS_00033214 and TCONS_00285177) modulated 66 genes including ARF1, BAG6, PP2C71, and CNGC1 in alfalfa roots, suggesting that these nine genes and six lncRNAs probably facilitated the different salinity resistance in GN5 vs. GN3. These results shed more lights on molecular mechanisms underlying genotype difference in salinity tolerance among alfalfas.
Collapse
Affiliation(s)
- Gaimei Yang
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Zhengyan Li
- Animal Husbandry and Veterinary Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Mengru Rong
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Rugang Yu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Qiting Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Guoliang Wang
- Institute of Leisure Agriculture, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Zhiming Xu
- Animal Husbandry and Veterinary Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Xueling Du
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Xian Xu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| |
Collapse
|
9
|
Mehla S, Singh Y, Kumar U, Balyan P, Singh KP, Dhankher OP. Overexpression of rice lectin receptor-like kinase, OsLec-RLK, confers salinity stress tolerance and increases seed yield in pigeon pea (Cajanus cajan (L.) Millsp.). PLANT CELL REPORTS 2024; 43:230. [PMID: 39251423 DOI: 10.1007/s00299-024-03314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/10/2024] [Indexed: 09/11/2024]
Abstract
KEY MESSAGE OsLec-RLK overexpression enhances cell signalling and salt stress tolerance in pigeon pea, enhancing seed yield and harvest index and thus, enabling marginal lands to increase food and nutritional security. Lectin Receptor-like kinases (Lec-RLKs) are highly effective cell signaling molecules that counteract various stresses, including salt stress. We engineered pigeon pea by overexpressing OsLec-RLK gene for enhancing salt tolerance. The OsLec-RLK overexpression lines demonstrated superior performance under salt stress, from vegetative to reproductive phase, compared to wild types (WT). The overexpression lines had significantly higher K+/Na+ ratio than WT exposed to 100 mM NaCl. Under salt stress, transgenic lines showed higher levels of chlorophyll, proline, total soluble sugars, relative water content, and peroxidase and catalase activity than WT plants. Membrane injury index and lipid peroxidation were significantly reduced in transgenic lines. Analysis of phenological and yield attributes confirmed that the OsLec-RLK pigeon pea lines maintain plant vigor, with 10.34-fold increase in seed yield (per plant) and 4-5-fold increase in harvest index of overexpression lines, compared to wild type. Meanwhile, the overexpression of OsLec-RLK up-regulated the expression levels of histone deacetylase1, acyl CoA, ascorbate peroxidase, peroxidase, glutathione reductase and catalase, which were involved in the K+/Na+ homeostasis pathway. This study showed the potential of OsLec-RLK gene for increasing crop productivity and yields under salt stress and enabling the crops to be grown on marginal lands for increasing food and nutritional security.
Collapse
Affiliation(s)
- Sheetal Mehla
- Department of Molecular Biology and Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Yogita Singh
- Department of Molecular Biology and Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| | - Upendra Kumar
- Department of Molecular Biology and Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India.
- Department of Plant Science, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, 243006, India.
| | - Priyanka Balyan
- Department of Botany, Deva Nagri P.G. College, CCS University, Meerut, 245206, India
| | - Krishna Pal Singh
- Biophysics Unit, College of Basic Sciences & Humanities, GB Pant University of Agriculture & Technology, Pantnagar, 263145, India
- Vice-Chancellor's Secretariat, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, 243001, India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
10
|
Li F, Wu L, Li X, Chai Y, Ruan N, Wang Y, Xu N, Yu Z, Wang X, Chen H, Lu J, Xu H, Xu Z, Chen W, Xu Q. Dissecting the molecular basis of the ultra-large grain formation in rice. THE NEW PHYTOLOGIST 2024; 243:2251-2264. [PMID: 39073105 DOI: 10.1111/nph.20001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
The shape of rice grains not only determines the thousand-grain weight but also correlates closely with the grain quality. Here we identified an ultra-large grain accession (ULG) with a thousand-grain weight exceeding 60 g. The integrated analysis of QTL, BSA, de novo genome assembled, transcription sequencing, and gene editing was conducted to dissect the molecular basis of the ULG formation. The ULG pyramided advantageous alleles from at least four known grain-shaping genes, OsLG3, OsMADS1, GS3, GL3.1, and one novel locus, qULG2-b, which encoded a leucine-rich repeat receptor-like kinase. The collective impacts of OsLG3, OsMADS1, GS3, and GL3.1 on grain size were confirmed in transgenic plants and near-isogenic lines. The transcriptome analysis identified 112 genes cooperatively regulated by these four genes that were prominently involved in photosynthesis and carbon metabolism. By leveraging the pleiotropy of these genes, we enhanced the grain yield, appearance, and stress tolerance of rice var. SN265. Beyond showcasing the pyramiding of multiple grain size regulation genes that can produce ULG, our study provides a theoretical framework and valuable genomic resources for improving rice variety by leveraging the pleiotropy of grain size regulated genes.
Collapse
Affiliation(s)
- Fengcheng Li
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Lian Wu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiang Li
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanan Chai
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Nan Ruan
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Ye Wang
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Na Xu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhiwen Yu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaoche Wang
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Hao Chen
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Jiahao Lu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Hai Xu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhengjin Xu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Wenfu Chen
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Quan Xu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
11
|
Mu Z, Xu M, Manda T, Chen J, Yang L, Hwarari D. Characterization, evolution, and abiotic stress responses of leucine-rich repeat receptor-like protein kinases (LRR-RLK) in Liriodendron chinense. BMC Genomics 2024; 25:748. [PMID: 39085785 PMCID: PMC11292913 DOI: 10.1186/s12864-024-10560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Liriodendron chinense is susceptible to extinction due to the increasing severity of abiotic stresses resulting from global climate change, consequently impacting its growth, development, and geographic distribution. However, the L. chinense remains pivotal in both socio-economic and ecological realms. The LRR-RLK (leucine-rich repeat receptor-like protein kinase) genes, constituting a substantial cluster of receptor-like kinases in plants, are crucial for plant growth and stress regulation and are unexplored in the L. chinense. RESULT 233 LchiLRR-RLK genes were discovered, unevenly distributed across 17 chromosomes and 24 contigs. Among these, 67 pairs of paralogous genes demonstrated gene linkages, facilitating the expansion of the LchiLRR-RLK gene family through tandem (35.82%) and segmental (64.18%) duplications. The synonymous and nonsynonymous ratios showed that the LchiLRR-RLK genes underwent a purifying or stabilizing selection during evolution. Investigations in the conserved domain and protein structures revealed that the LchiLRR-RLKs are highly conserved, carrying conserved protein kinase and leucine-rich repeat-like domians that promote clustering in different groups implicating gene evolutionary conservation. A deeper analysis of LchiLRR-RLK full protein sequences phylogeny showed 13 groups with a common ancestor protein. Interspecies gene collinearity showed more orthologous gene pairs between L. chinense and P. trichocarpa, suggesting various similar biological functions between the two plant species. Analysis of the functional roles of the LchiLRR-RLK genes using the qPCR demonstrated that they are involved in cold, heat, and salt stress regulation, especially, members of subgroups VIII, III, and Xa. CONCLUSION Conclusively, the LRR-RLK genes are conserved in L. chinense and function to regulate the temperature and salt stresses, and this research provides new insights into understanding LchiLRR-RLK genes and their regulatory effects in abiotic stresses.
Collapse
Affiliation(s)
- Zhiying Mu
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang, 311300, China
| | - Mingyue Xu
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Teja Manda
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinhui Chen
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Liming Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
| | - Delight Hwarari
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
12
|
Wang H, Fang T, Li X, Xie Y, Wang W, Hu T, Kudrna D, Amombo E, Yin Y, Fan S, Gong Z, Huang Y, Xia C, Zhang J, Wu Y, Fu J. Whole-genome sequencing of allotetraploid bermudagrass reveals the origin of Cynodon and candidate genes for salt tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2068-2084. [PMID: 38531629 DOI: 10.1111/tpj.16729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 02/06/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024]
Abstract
Bermudagrass (Cynodon dactylon) is a globally distributed, extensively used warm-season turf and forage grass with high tolerance to salinity and drought stress in alkaline environments. However, the origin of the species and genetic mechanisms for salinity tolerance in the species are basically unknown. Accordingly, we set out to study evolution divergence events in the Cynodon genome and to identify genes for salinity tolerance. We developed a 604.0 Mb chromosome-level polyploid genome sequence for bermudagrass 'A12359' (n = 18). The C. dactylon genome comprises 2 complete sets of homoeologous chromosomes, each with approximately 30 000 genes, and most genes are conserved as syntenic pairs. Phylogenetic study showed that the initial Cynodon species diverged from Oropetium thomaeum approximately 19.7-25.4 million years ago (Mya), the A and B subgenomes of C. dactylon diverged approximately 6.3-9.1 Mya, and the bermudagrass polyploidization event occurred 1.5 Mya on the African continent. Moreover, we identified 82 candidate genes associated with seven agronomic traits using a genome-wide association study, and three single-nucleotide polymorphisms were strongly associated with three salt resistance genes: RAP2-2, CNG channels, and F14D7.1. These genes may be associated with enhanced bermudagrass salt tolerance. These bermudagrass genomic resources, when integrated, may provide fundamental insights into evolution of diploid and tetraploid genomes and enhance the efficacy of comparative genomics in studying salt tolerance in Cynodon.
Collapse
Affiliation(s)
- Huan Wang
- College of Grassland Science, Qingdao Agricultural University, Qingdao City, Shandong Province, 266109, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Tilin Fang
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Xiaoning Li
- Coastal Salinity Tolerant Grass Engineering and Research Center, Ludong University, Yantai, Shandong Province, 264025, China
| | - Yan Xie
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei Province, 430074, China
| | - Wei Wang
- Coastal Salinity Tolerant Grass Engineering and Research Center, Ludong University, Yantai, Shandong Province, 264025, China
| | - Tao Hu
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou City, Gansu Province, 730020, China
| | - David Kudrna
- School of Plant Science, University of Arizona, Tucson, Arizona, 85721, USA
| | - Erick Amombo
- Coastal Salinity Tolerant Grass Engineering and Research Center, Ludong University, Yantai, Shandong Province, 264025, China
| | - Yanling Yin
- Coastal Salinity Tolerant Grass Engineering and Research Center, Ludong University, Yantai, Shandong Province, 264025, China
| | - Shugao Fan
- Coastal Salinity Tolerant Grass Engineering and Research Center, Ludong University, Yantai, Shandong Province, 264025, China
| | - Zhiyun Gong
- Agricultural Department, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
| | - Yicheng Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Chunjiao Xia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Jianwei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Yanqi Wu
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Jinmin Fu
- College of Grassland Science, Qingdao Agricultural University, Qingdao City, Shandong Province, 266109, China
- Coastal Salinity Tolerant Grass Engineering and Research Center, Ludong University, Yantai, Shandong Province, 264025, China
| |
Collapse
|
13
|
Zhang Z, Ye F, Hu K, Luo T, Miao Z. New insights into evolution and functional diversification of Camellia sinensis LRR-RLKs. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:851-866. [PMID: 38846461 PMCID: PMC11150215 DOI: 10.1007/s12298-024-01458-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024]
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RLKs) represent the largest subgroup of receptor-like kinases (RLKs) in plants. While some LRR-RLK members play a role in regulating various plant growth processes related to morphogenesis, disease resistance, and stress response, the functions of most LRR-RLK genes remain unclear. In this study, we identified 397 LRR-RLK genes from the genome of Camellia sinensis and categorized them into 16 subfamilies. Approximately 62% of CsLRR-RLK genes are situated in regions resulting from segmental duplications, suggesting that the expansion of CsLRR-RLK genes is due to segmental duplications. Analysis of gene expression patterns revealed differential expression of CsLRR-RLK genes across different tissues and in response to stress. Furthermore, we demonstrated that CssEMS1 localizes to the cell membrane and can complement Arabidopsis ems1 mutant. This study is the initial in-depth evolutionary examination of LRR-RLKs in tea and provides a basis for future investigations into their functionality. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01458-1.
Collapse
Affiliation(s)
- Zaibao Zhang
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang China
- College of Life Science, Xinyang Normal University, Xinyang, Henan China
| | - Fan Ye
- College of Life Science, Xinyang Normal University, Xinyang, Henan China
| | - Kuanru Hu
- College of Life Science, Xinyang Normal University, Xinyang, Henan China
| | - Tian Luo
- College of Life Science, Xinyang Normal University, Xinyang, Henan China
| | - Zhiwei Miao
- College of Life Science, Xinyang Normal University, Xinyang, Henan China
| |
Collapse
|
14
|
Liu J, Li W, Wu G, Ali K. An update on evolutionary, structural, and functional studies of receptor-like kinases in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1305599. [PMID: 38362444 PMCID: PMC10868138 DOI: 10.3389/fpls.2024.1305599] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/03/2024] [Indexed: 02/17/2024]
Abstract
All living organisms must develop mechanisms to cope with and adapt to new environments. The transition of plants from aquatic to terrestrial environment provided new opportunities for them to exploit additional resources but made them vulnerable to harsh and ever-changing conditions. As such, the transmembrane receptor-like kinases (RLKs) have been extensively duplicated and expanded in land plants, increasing the number of RLKs in the advanced angiosperms, thus becoming one of the largest protein families in eukaryotes. The basic structure of the RLKs consists of a variable extracellular domain (ECD), a transmembrane domain (TM), and a conserved kinase domain (KD). Their variable ECDs can perceive various kinds of ligands that activate the conserved KD through a series of auto- and trans-phosphorylation events, allowing the KDs to keep the conserved kinase activities as a molecular switch that stabilizes their intracellular signaling cascades, possibly maintaining cellular homeostasis as their advantages in different environmental conditions. The RLK signaling mechanisms may require a coreceptor and other interactors, which ultimately leads to the control of various functions of growth and development, fertilization, and immunity. Therefore, the identification of new signaling mechanisms might offer a unique insight into the regulatory mechanism of RLKs in plant development and adaptations. Here, we give an overview update of recent advances in RLKs and their signaling mechanisms.
Collapse
Affiliation(s)
| | | | - Guang Wu
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Khawar Ali
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
15
|
Kim WJ, Yang B, Lee YJ, Kim JH, Kim SH, Ahn JW, Kang SY, Kim SH, Ryu J. Genome-Wide Association Study for Agronomic Traits in Gamma-Ray-Derived Mutant Kenaf ( Hibiscus cannabinus L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:249. [PMID: 38256802 PMCID: PMC10819814 DOI: 10.3390/plants13020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
Kenaf (Hibiscus cannabinus L.), in the Malvaceae family, is an important crop for not only fiber production, but also various other industrial materials. We performed phylogenetic analysis and a genome-wide association study (GWAS) of seven agronomic traits: days to flowering, plant height, fresh weight, dry weight, flower color, stem color, and leaf shape, using 96 kenaf genotypes, including gamma-irradiation-derived mutant lines. Genotypes were determined by genotyping-by-sequencing (GBS) and a total of 49,241 single-nucleotide polymorphisms (SNPs) were used in the analysis. Days to flowering, plant height, fresh weight, and dry weight were positively correlated with each other, and stem color was also correlated with fresh weight and dry weight. The phylogenetic analysis divided the 96 lines into nine related groups within two independent groups, and the GWAS analysis detected a total of 49 SNPs for days to flowering, plant height, fresh weight, dry weight, flower color, stem color, and leaf shape with -log10(P) ≥ 4, of which 22 were located in genic regions. The detected SNPs were located in genes with homology ranging from 45% to 96% to plants of the Malvaceae and Betulaceae, and these genes were found to be involved in plant growth and development via various pathways. Our identification of SNP markers related to agronomic traits is expected to help improve the quality of selective breeding programs for kenaf.
Collapse
Affiliation(s)
- Woon Ji Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (W.J.K.); (B.Y.); (Y.-j.L.); (J.H.K.); (S.H.K.); (J.-W.A.)
| | - Baul Yang
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (W.J.K.); (B.Y.); (Y.-j.L.); (J.H.K.); (S.H.K.); (J.-W.A.)
| | - Ye-jin Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (W.J.K.); (B.Y.); (Y.-j.L.); (J.H.K.); (S.H.K.); (J.-W.A.)
| | - Jae Hoon Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (W.J.K.); (B.Y.); (Y.-j.L.); (J.H.K.); (S.H.K.); (J.-W.A.)
| | - Sang Hoon Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (W.J.K.); (B.Y.); (Y.-j.L.); (J.H.K.); (S.H.K.); (J.-W.A.)
| | - Joon-Woo Ahn
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (W.J.K.); (B.Y.); (Y.-j.L.); (J.H.K.); (S.H.K.); (J.-W.A.)
| | - Si-Yong Kang
- Department of Horticulture, College of Industrial Sciences, Kongju National University, Yesan 32439, Republic of Korea;
| | - Seong-Hoon Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 5487, Republic of Korea;
| | - Jaihyunk Ryu
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (W.J.K.); (B.Y.); (Y.-j.L.); (J.H.K.); (S.H.K.); (J.-W.A.)
| |
Collapse
|
16
|
Wang Q, Zhao X, Sun Q, Mou Y, Wang J, Yan C, Yuan C, Li C, Shan S. Genome-wide identification of the LRR-RLK gene family in peanut and functional characterization of AhLRR-RLK265 in salt and drought stresses. Int J Biol Macromol 2024; 254:127829. [PMID: 37926304 DOI: 10.1016/j.ijbiomac.2023.127829] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RLKs) play important roles in plant developmental regulations and various stress responses. Peanut (Arachis hypogaea L.) is a worldwide important oil crop; however, no systematic identification or analysis of the peanut LRR-RLK gene family has been reported. In present study, 495 LRR-RLK genes in peanut were identified and analyzed. The 495 AhLRR-RLK genes were classed into 14 groups and 10 subgroups together with their Arabidopsis homologs according to phylogenetic analyses, and 491 of 495 AhLRR-RLK genes unequally located on 20 chromosomes. Analyses of gene structure and protein motif organization revealed similarity in exon/intron and motif organization among members of the same subgroup, further supporting the phylogenetic results. Gene duplication events were found in peanut LRR-RLK gene family via syntenic analysis, which were important in LRR-RLK gene family expansion in peanut. We found that the expression of AhLRR-RLK genes was detected in different tissues using RNA-seq data, implying that AhLRR-RLK genes may differ in function. In addition, Arabidopsis plants overexpressing stress-induced AhLRR-RLK265 displayed lower seed germination rates and root lengths compared to wild-type under exogenous ABA treatment. Notably, overexpression of AhLRR-RLK265 enhanced tolerance to salt and drought stresses in transgenic Arabidopsis. Moreover, the AhLRR-RLK265-OE lines were found to have higher activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) under salt and drought stress treatments. We believe these results may provide valuable information about the function of peanut LRR-RLK genes for further analysis.
Collapse
Affiliation(s)
- Qi Wang
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China.
| | - Xiaobo Zhao
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Quanxi Sun
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Yifei Mou
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Juan Wang
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Caixia Yan
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Cuiling Yuan
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Chunjuan Li
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Shihua Shan
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China.
| |
Collapse
|
17
|
Afzal M, Alghamdi SS, Khan MA, Al-Faifi SA, Rahman MHU. Transcriptomic analysis reveals candidate genes associated with salinity stress tolerance during the early vegetative stage in fababean genotype, Hassawi-2. Sci Rep 2023; 13:21223. [PMID: 38040745 PMCID: PMC10692206 DOI: 10.1038/s41598-023-48118-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023] Open
Abstract
Abiotic stresses are a significant constraint to plant production globally. Identifying stress-related genes can aid in the development of stress-tolerant elite genotypes and facilitate trait and crop manipulation. The primary aim of this study was to conduct whole transcriptome analyses of the salt-tolerant faba bean genotype, Hassawi-2, under different durations of salt stress (6 h, 12 h, 24 h, 48 h, and 72 h) at the early vegetative stage, to better understand the molecular basis of salt tolerance. After de novo assembly, a total of 140,308 unigenes were obtained. The up-regulated differentially expressed genes (DEGs) were 2380, 2863, 3057, 3484, and 4820 at 6 h, 12 h, 24 h, 48 h, and 72 h of salt stress, respectively. Meanwhile, 1974, 3436, 2371, 3502, and 5958 genes were downregulated at 6 h, 12 h, 24 h, 48 h, and 72 h of salt stress, respectively. These DEGs encoded various regulatory and functional proteins, including kinases, plant hormone proteins, transcriptional factors (TFs) basic helix-loop-helix (bHLH), Myeloblastosis (MYB), and (WRKY), heat shock proteins (HSPs), late embryogenesis abundant (LEA) proteins, dehydrin, antioxidant enzymes, and aquaporin proteins. This suggests that the faba bean genome possesses an abundance of salinity resistance genes, which trigger different adaptive mechanisms under salt stress. Some selected DEGs validated the RNA sequencing results, thus confirming similar gene expression levels. This study represents the first transcriptome analysis of faba bean leaves subjected to salinity stress offering valuable insights into the mechanisms governing salt tolerance in faba bean during the vegetative stage. This comprehensive investigation enhances our understanding of precise gene regulatory mechanisms and holds promise for the development of novel salt-tolerant faba bean salt-tolerant cultivars.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Plant Production, College of Food and Agricultural Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Salem S Alghamdi
- Department of Plant Production, College of Food and Agricultural Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Muhammad Altaf Khan
- Department of Plant Production, College of Food and Agricultural Science, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Sulieman A Al-Faifi
- Department of Plant Production, College of Food and Agricultural Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Muhammad Habib Ur Rahman
- INRES Institute of Crop Science and Resources Conservation INRES University of Bonn, Bonn, Germany.
- Seed Science and Technology, Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, Pakistan.
| |
Collapse
|
18
|
Wang K, Li S, Yang Z, Chen C, Fu Y, Du H, Sun H, Li J, Zhao Q, Du C. L-type lectin receptor-like kinase OsCORK1 as an important negative regulator confers copper stress tolerance in rice. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132214. [PMID: 37544174 DOI: 10.1016/j.jhazmat.2023.132214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
Copper (Cu) is vital for plant growth but becomes toxic in excess, posing potential threats to human health. Although receptor-like kinases (RLKs) have been studied in plant response to abiotic stresses, their roles in Cu stress response remain poorly understood. Therefore, we aimed to evaluate Cu toxicity effects on rice and elucidate its potential molecular mechanisms. Specifically, rice lectin-type RLK OsCORK1 (Copper-response receptor-like kinase 1) function in Cu stress response was investigated. RNA sequencing and expression assays revealed that OsCORK1 is mainly expressed in roots and leaves, and its expression was significantly induced by Cu stress time- and dose-dependently. Kinase activity assays demonstrated OsCORK1 as a Mn2+-preferred functional kinase. Genetically, OsCORK1 gene-edited mutants exhibited increased tolerance to Cu stress and reduced Cu accumulation compared to the wild type (WT). Conversely, OsCORK1 overexpression compromised the Cu stress tolerance observed in OsCORK1 gene-edited mutants. OsCORK1 gene-edited mutants slightly damaged the root tips compared to the WT under Cu stress. Furthermore, OsCORK1 was demonstrated to modulate Cu stress tolerance by mainly altering cell wall components, particularly lignin, in rice. Overall, OsCORK1 is an important negative regulator of Cu stress tolerance, providing a potential gene target to reduce Cu pollution in rice production.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Henan Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Post-doctoral station in Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Shen Li
- Key Laboratory of Henan Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Post-doctoral station in Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhaoyan Yang
- Office of Information Management, Henan Agricultural University, Zhengzhou 450046, China
| | - Cong Chen
- Key Laboratory of Henan Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Post-doctoral station in Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Yihan Fu
- Key Laboratory of Henan Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Post-doctoral station in Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Haitao Du
- Key Laboratory of Henan Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Post-doctoral station in Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Hongzheng Sun
- Key Laboratory of Henan Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Post-doctoral station in Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Junzhou Li
- Key Laboratory of Henan Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Post-doctoral station in Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Quanzhi Zhao
- Key Laboratory of Henan Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Post-doctoral station in Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; Rice Industrial Technology Research Institute, Guizhou University, Guiyang 550025, China
| | - Changqing Du
- Key Laboratory of Henan Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Post-doctoral station in Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
19
|
Han S, Shen Z, Gao Q, Jin N, Lou Y. Knocking Out OsRLK7-1 Impairs Rice Growth and Development but Enhances Its Resistance to Planthoppers. Int J Mol Sci 2023; 24:14569. [PMID: 37834016 PMCID: PMC10572756 DOI: 10.3390/ijms241914569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RLKs) are an important subfamily of receptor-like kinases (RLKs) in plants that play key roles in sensing different biotic and abiotic stress. However, the role of LRR-RLKs in herbivore-induced plant defense remains largely elusive. Here, we found that the expression of a rice gene, OsRLK7-1, was induced by mechanical wounding, but was slightly suppressed by the infestation of gravid females of brown planthopper (BPH, Nilaparvata lugens) or white-backed planthopper (WBPH, Sogatella furcifera). Through targeted disruption of OsRLK7-1 (resulting in the ko-rlk lines), we observed an augmentation in transcript levels of BPH-induced OsMPK3, OsWRKY30, OsWRKY33, and OsWRKY45, alongside heightened levels of planthopper-induced jasmonic acid, JA-isoleucine, and abscisic acid in plant tissues. These dynamic changes further facilitated the biosynthesis of multiple phenolamides within the rice plants, culminating in an enhanced resistance to planthopper infestations under both lab and field conditions. In addition, knocking out OsRLK7-1 impaired plant growth and reproduction. These results suggest that OsRLK7-1 plays an important role in regulating rice growth, development, and rice-planthopper interactions.
Collapse
Affiliation(s)
- Shanjie Han
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Lab of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhifan Shen
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Lab of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qing Gao
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Lab of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nuo Jin
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Lab of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Lab of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| |
Collapse
|
20
|
Peng Z, Rehman A, Li X, Jiang X, Tian C, Wang X, Li H, Wang Z, He S, Du X. Comprehensive Evaluation and Transcriptome Analysis Reveal the Salt Tolerance Mechanism in Semi-Wild Cotton ( Gossypium purpurascens). Int J Mol Sci 2023; 24:12853. [PMID: 37629034 PMCID: PMC10454576 DOI: 10.3390/ijms241612853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Elevated salinity significantly threatens cotton growth, particularly during the germination and seedling stages. The utilization of primitive species of Gossypium hirsutum, specifically Gossypium purpurascens, has the potential to facilitate the restoration of genetic diversity that has been depleted due to selective breeding in modern cultivars. This investigation evaluated 45 G. purpurascens varieties and a salt-tolerant cotton variety based on 34 morphological, physiological, and biochemical indicators and comprehensive salt tolerance index values. This study effectively identified a total of 19 salt-tolerant and two salt-resistant varieties. Furthermore, transcriptome sequencing of a salt-tolerant genotype (Nayanmian-2; NY2) and a salt-sensitive genotype (Sanshagaopao-2; GP2) revealed 2776, 6680, 4660, and 4174 differentially expressed genes (DEGs) under 0.5, 3, 12, and 24 h of salt stress. Gene ontology enrichment analysis indicated that the DEGs exhibited significant enrichment in biological processes like metabolic (GO:0008152) and cellular (GO:0009987) processes. MAPK signaling, plant-pathogen interaction, starch and sucrose metabolism, plant hormone signaling, photosynthesis, and fatty acid metabolism were identified as key KEGG pathways involved in salinity stress. Among the DEGs, including NAC, MYB, WRKY, ERF, bHLH, and bZIP, transcription factors, receptor-like kinases, and carbohydrate-active enzymes were crucial in salinity tolerance. Weighted gene co-expression network analysis (WGCNA) unveiled associations of salt-tolerant genotypes with flavonoid metabolism, carbon metabolism, and MAPK signaling pathways. Identifying nine hub genes (MYB4, MYB105, MYB36, bZIP19, bZIP43, FRS2 SMARCAL1, BBX21, F-box) across various intervals offered insights into the transcriptional regulation mechanism of salt tolerance in G. purpurascens. This study lays the groundwork for understanding the important pathways and gene networks in response to salt stress, thereby providing a foundation for enhancing salt tolerance in upland cotton.
Collapse
Affiliation(s)
- Zhen Peng
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572025, China
| | - Abdul Rehman
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Xiawen Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
| | - Xuran Jiang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
| | - Chunyan Tian
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
| | - Xiaoyang Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
| | - Hongge Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Zhenzhen Wang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Shoupu He
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572025, China
| | - Xiongming Du
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572025, China
| |
Collapse
|
21
|
Banik S, Dutta D. Membrane Proteins in Plant Salinity Stress Perception, Sensing, and Response. J Membr Biol 2023; 256:109-124. [PMID: 36757456 DOI: 10.1007/s00232-023-00279-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/28/2023] [Indexed: 02/10/2023]
Abstract
Plants have several mechanisms to endure salinity stress. The degree of salt tolerance varies significantly among different terrestrial crops. Proteins at the plant's cell wall and membrane mediate different physiological roles owing to their critical positioning between two distinct environments. A specific membrane protein is responsible for a single type of activity, such as a specific group of ion transport or a similar group of small molecule binding to exert multiple cellular effects. During salinity stress in plants, membrane protein functions: ion homeostasis, signal transduction, redox homeostasis, and solute transport are essential for stress perception, signaling, and recovery. Therefore, comprehensive knowledge about plant membrane proteins is essential to modulate crop salinity tolerance. This review gives a detailed overview of the membrane proteins involved in plant salinity stress highlighting the recent findings. Also, it discusses the role of solute transporters, accessory polypeptides, and proteins in salinity tolerance. Finally, some aspects of membrane proteins are discussed with potential applications to developing salt tolerance in crops.
Collapse
Affiliation(s)
- Sanhita Banik
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Debajyoti Dutta
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
22
|
Li Z, Jiang L, Wang C, Liu P, Ma L, Zou C, Pan G, Shen Y. Combined genome-wide association study and gene co-expression network analysis identified ZmAKINβγ1 involved in lead tolerance and accumulation in maize seedlings. Int J Biol Macromol 2023; 226:1374-1386. [PMID: 36455818 DOI: 10.1016/j.ijbiomac.2022.11.250] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
Lead (Pb) contamination has become an important abiotic stress that negatively influences crop biomass and yield, threatening human health via food chains. The excavation of causal genes for Pb tolerance in maize will contribute to the breeding of Pb-tolerant maize germplasms. This study aimed to demonstrate the effects of AKINbetagamma-1 protein kinase (ZmAKINβγ1) on maize tolerance to Pb and reveal its molecular mechanisms underlying Pb tolerance. ZmAKINβγ1 was identified using genome-wide association study and weighted gene co-expression network analysis for shoot dry weight (SDW) and root dry weight (RDW) under Pb treatment. The OE and RNAi experiments showed that ZmAKINβγ1 negatively regulated maize tolerance to Pb by reducing SDW and RDW and increasing Pb accumulation in maize. Comparative transcriptome analysis between the OE/RNAi and wild-type lines revealed that ZmAKINβγ1 participated in the pectin metabolism process and nitrogen compound response. Gene-based association analyses revealed that three variants located in ZmAKINβγ1 promoter induced changes in its expression and Pb tolerance among maize lines. The dual-luciferase reporter system verified that the two genotypes (AAT and CGG) of ZmAKINβγ1 promoter had contrasting transcriptional activities. Collectively, ZmAKINβγ1-mediated Pb tolerance provided new insights into the cultivation of Pb-tolerant maize varieties and phytoremediation of Pb-polluted soils.
Collapse
Affiliation(s)
- Zhaoling Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; College of Bioengineering, Sichuan University of Science & Engneering, Yibin 644000, China
| | - Li Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Chen Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Peng Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Langlang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Chaoying Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangtang Pan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yaou Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
23
|
Zhu Q, Feng Y, Xue J, Chen P, Zhang A, Yu Y. Advances in Receptor-like Protein Kinases in Balancing Plant Growth and Stress Responses. PLANTS (BASEL, SWITZERLAND) 2023; 12:427. [PMID: 36771514 PMCID: PMC9919196 DOI: 10.3390/plants12030427] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Accompanying the process of growth and development, plants are exposed to ever-changing environments, which consequently trigger abiotic or biotic stress responses. The large protein family known as receptor-like protein kinases (RLKs) is involved in the regulation of plant growth and development, as well as in the response to various stresses. Understanding the biological function and molecular mechanism of RLKs is helpful for crop breeding. Research on the role and mechanism of RLKs has recently received considerable attention regarding the balance between plant growth and environmental adaptability. In this paper, we systematically review the classification of RLKs, the regulatory roles of RLKs in plant development (meristem activity, leaf morphology and reproduction) and in stress responses (disease resistance and environmental adaptation). This review focuses on recent findings revealing that RLKs simultaneously regulate plant growth and stress adaptation, which may pave the way for the better understanding of their function in crop improvement. Although the exact crosstalk between growth constraint and plant adaptation remains elusive, a profound study on the adaptive mechanisms for decoupling the developmental processes would be a promising direction for the future research.
Collapse
Affiliation(s)
| | | | | | | | | | - Yang Yu
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
24
|
Perveen N, Dinesh MR, Sankaran M, Ravishankar KV, Krishnajee HG, Hanur VS, Alamri S, Kesawat MS, Irfan M. Comparative transcriptome analysis provides novel insights into molecular response of salt-tolerant and sensitive polyembryonic mango genotypes to salinity stress at seedling stage. FRONTIERS IN PLANT SCIENCE 2023; 14:1152485. [PMID: 37123820 PMCID: PMC10141464 DOI: 10.3389/fpls.2023.1152485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Introduction Increased soil salinity in the recent years has adversely affected the productivity of mango globally. Extending the cultivation of mango in salt affected regions warrants the use of salinity tolerant/resistant rootstocks. However, the lack of sufficient genomic and transcriptomic information impedes comprehensive research at the molecular level. Method We employed RNA sequencing-based transcriptome analysis to gain insight into molecular response to salt stress by using two polyembryonic mango genotypes with contrasting response to salt stress viz., salt tolerant Turpentine and salt susceptible Mylepelian. Results RNA sequencing by Novaseq6000 resulted in a total of 2795088, 17535948, 7813704 and 5544894 clean reads in Mylepelian treated (MT), Mylepelian control (MC), Turpentine treated (TT) and Turpentine control (TC) respectively. In total, 7169 unigenes annotated against all the five public databases, including NR, NT, PFAM, KOG, Swissport, KEGG and GO. Further, maximum number of differentially expressed genes were found between MT and MC (2106) followed by MT vs TT (1158) and TT and TC (587). The differentially expressed genes under different treatment levels included transcription factors (bZIP, NAC, bHLH), genes involved in Calcium-dependent protein kinases (CDPKs), ABA biosynthesis, Photosynthesis etc. Expression of few of these genes was experimentally validated through quantitative real-time PCR (qRT-PCR) and contrasting expression pattern of Auxin Response Factor 2 (ARF2), Late Embryogenesis Abundant (LEA) and CDPK genes were observed between Turpentine and Mylepelian. Discussion The results of this study will be useful in understanding the molecular mechanism underlying salt tolerance in mango which can serve as valuable baseline information to generate new targets in mango breeding for salt tolerance.
Collapse
Affiliation(s)
- Nusrat Perveen
- Division of Fruit Crops, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lakepost, Bengaluru, Karnataka, India
- *Correspondence: Nusrat Perveen, ; K. V. Ravishankar,
| | - M. R. Dinesh
- Division of Fruit Crops, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lakepost, Bengaluru, Karnataka, India
| | - M. Sankaran
- Division of Fruit Crops, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lakepost, Bengaluru, Karnataka, India
| | - K. V. Ravishankar
- Division of Biotechnology, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lakepost, Bengaluru, Karnataka, India
- *Correspondence: Nusrat Perveen, ; K. V. Ravishankar,
| | - Hara Gopal Krishnajee
- Division of Biotechnology, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lakepost, Bengaluru, Karnataka, India
| | - Vageeshbabu S. Hanur
- Division of Biotechnology, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lakepost, Bengaluru, Karnataka, India
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Mohammad Irfan
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Wang Y, Zhang P, Li L, Li D, Liang Z, Cao Y, Hu T, Yang P. Proteomic Analysis of Alfalfa (Medicago sativa L.) Roots in Response to Rhizobium Nodulation and Salt Stress. Genes (Basel) 2022; 13:genes13112004. [PMID: 36360241 PMCID: PMC9690670 DOI: 10.3390/genes13112004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
(1) Background: Alfalfa is an important legume forage throughout the world. Although alfalfa is considered moderately tolerant to salinity, its production and nitrogen-fixing activity are greatly limited by salt stress. (2) Methods: We examined the physiological changes and proteomic profiles of alfalfa with active nodules (NA) and without nodules (NN) under NaCl treatment. (3) Results: Our data suggested that NA roots showed upregulation of the pathways of abiotic and biotic stress responses (e.g., heat shock proteins and pathogenesis-related proteins), antioxidant enzyme synthesis, protein synthesis and degradation, cell wall degradation and modification, acid phosphatases, and porin transport when compared with NN plants under salt stress conditions. NA roots also upregulated the processes or proteins of lipid metabolism, heat shock proteins, protein degradation and folding, and cell cytoskeleton, downregulated the DNA and protein synthesis process, and vacuolar H+-ATPase proteins under salt stress. Besides, NA roots displayed a net H+ influx and low level of K+ efflux under salt stress, which may enhance the salt tolerance of NA plants. (4) Conclusions: The rhizobium symbiosis conferred the host plant salt tolerance by regulating a series of physiological processes to enhance stress response, improve antioxidant ability and energy use efficiency, and maintain ion homeostasis.
Collapse
Affiliation(s)
- Yafang Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Pan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Le Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Danning Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Zheng Liang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yuman Cao
- College of Grassland Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Tianming Hu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China
- Correspondence:
| |
Collapse
|
26
|
Soltabayeva A, Dauletova N, Serik S, Sandybek M, Omondi JO, Kurmanbayeva A, Srivastava S. Receptor-like Kinases (LRR-RLKs) in Response of Plants to Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192660. [PMID: 36235526 PMCID: PMC9572924 DOI: 10.3390/plants11192660] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 05/14/2023]
Abstract
Plants live under different biotic and abiotic stress conditions, and, to cope with the adversity and severity, plants have well-developed resistance mechanisms. The mechanism starts with perception of the stimuli followed by molecular, biochemical, and physiological adaptive measures. The family of LRR-RLKs (leucine-rich repeat receptor-like kinases) is one such group that perceives biotic and abiotic stimuli and also plays important roles in different biological processes of development. This has been mostly studied in the model plant, Arabidopsis thaliana, and to some extent in other plants, such as Solanum lycopersicum, Nicotiana benthamiana, Brassica napus, Oryza sativa, Triticum aestivum, Hordeum vulgare, Brachypodium distachyon, Medicago truncatula, Gossypium barbadense, Phaseolus vulgaris, Solanum tuberosum, and Malus robusta. Most LRR-RLKs tend to form different combinations of LRR-RLKs-complexes (dimer, trimer, and tetramers), and some of them were observed as important receptors in immune responses, cell death, and plant development processes. However, less is known about the function(s) of LRR-RLKs in response to abiotic and biotic stresses. Here, we give recent updates about LRR-RLK receptors, specifically focusing on their involvement in biotic and abiotic stresses in the model plant, A. thaliana. Furthermore, the recent studies on LRR-RLKs that are homologous in other plants is also reviewed in relation to their role in triggering stress response processes against biotic and abiotic stimuli and/or in exploring their additional function(s). Furthermore, we present the interactions and combinations among LRR-RLK receptors that have been confirmed through experiments. Moreover, based on GENEINVESTIGATOR microarray database analysis, we predict some potential LRR-RLK genes involved in certain biotic and abiotic stresses whose function and mechanism may be explored.
Collapse
Affiliation(s)
- Aigerim Soltabayeva
- Biology Department, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
- Correspondence:
| | - Nurbanu Dauletova
- Biology Department, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Symbat Serik
- Biology Department, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Margulan Sandybek
- Biology Department, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - John Okoth Omondi
- International Institute of Tropical Agriculture, Lilongwe P.O. Box 30258, Malawi
| | - Assylay Kurmanbayeva
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan
| | - Sudhakar Srivastava
- NCS-TCP, National Institute of Plant Genome Research, New Delhi 110067, India
| |
Collapse
|
27
|
Moriconi JI, Silva M, Zhang J, Tranquilli GE, Santa-María GE. A genome-wide association study unveils key chromosome regions involved in determining sodium accumulation in wheat under conditions of low potassium supply. JOURNAL OF PLANT PHYSIOLOGY 2022; 275:153739. [PMID: 35753159 DOI: 10.1016/j.jplph.2022.153739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Improving nutrient use efficiency is an important objective in modern breeding programs. In this work, we examined potassium utilization efficiency (KUtE) and traits potentially related to it in a formerly genotyped, geographically diverse population of bread wheat (Triticum aestivum) under low potassium supply conditions. Our results unveil the existence of a large variation within the population for the traits examined. A genome-wide association study, based on a single-locus model, identified 15 markers associated with some of those traits. No marker-trait association was found using that tool for KUtE, but the use of a multi-locus approach suggested that additional marker-trait associations may be present, including whole-plant KUtE. Besides, the existence of a significant correlation between KUtE and sodium accumulation in shoots suggests the possibility of pyramiding traits associated with sodium homeostasis to improve this efficiency. In this regard, two discrete regions mapped on the long arm of chromosome 1B (1BLA and 1BLB) were associated with variation in sodium accumulation as detected with the single and multi-locus models used. Further exploration of the potential function of the genes placed in these regions, and their expression patterns, suggested likely candidates for this trait. Among the candidates placed in 1BLA region, we found TraesCS1B02G370500, TraesCS1B02G370600, and TraesCS1B02G370900, coding for putative Calcineurin B like proteins. Region 1BLB contain TraesCS1B02G388900 coding for a kinase and other genes including TraesCS1B02G389700, TraesCS1B02G389800 and TraesCS1B02G389900 coding for Ethylene-responsive transcription factors. The information here provided can be useful in breeding programs aimed to manipulate sodium accumulation through marker-assisted selection.
Collapse
Affiliation(s)
- Jorge I Moriconi
- Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín (CONICET-UNSAM), Avenida Intendente Marino, km 8.2, Chascomús, 7130, Buenos Aires, Argentina.
| | - Martha Silva
- Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín (CONICET-UNSAM), Avenida Intendente Marino, km 8.2, Chascomús, 7130, Buenos Aires, Argentina.
| | - Junli Zhang
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| | - Gabriela E Tranquilli
- Instituto Nacional de Tecnología Agropecuaria (INTA), Centro de Investigación de Recursos Naturales, Instituto de Recursos Biológicos, Castelar, N. Repetto y Los Reseros s/n, Hurlingham, 1686, Provincia de Buenos Aires, Argentina.
| | - Guillermo E Santa-María
- Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín (CONICET-UNSAM), Avenida Intendente Marino, km 8.2, Chascomús, 7130, Buenos Aires, Argentina.
| |
Collapse
|
28
|
Xu J, Ji Z, Wang C, Xu F, Wang F, Zheng Y, Tang Y, Wei Z, Zhao T, Zhao K. WATER-SOAKED SPOT1 Controls Chloroplast Development and Leaf Senescence via Regulating Reactive Oxygen Species Homeostasis in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:918673. [PMID: 35693165 PMCID: PMC9178249 DOI: 10.3389/fpls.2022.918673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Transmembrane kinases (TMKs) play important roles in plant growth and signaling cascades of phytohormones. However, its function in the regulation of early leaf senescence (ELS) of plants remains unknown. Here, we report the molecular cloning and functional characterization of the WATER-SOAKED SPOT1 gene which encodes a protein belongs to the TMK family and controls chloroplast development and leaf senescence in rice (Oryza sativa L.). The water-soaked spot1 (oswss1) mutant displays water-soaked spots which subsequently developed into necrotic symptoms at the tillering stage. Moreover, oswss1 exhibits slightly rolled leaves with irregular epidermal cells, decreased chlorophyll contents, and defective stomata and chloroplasts as compared with the wild type. Map-based cloning revealed that OsWSS1 encodes transmembrane kinase TMK1. Genetic complementary experiments verified that a Leu396Pro amino acid substitution, residing in the highly conserved region of leucine-rich repeat (LRR) domain, was responsible for the phenotypes of oswss1. OsWSS1 was constitutively expressed in all tissues and its encoded protein is localized to the plasma membrane. Mutation of OsWSS1 led to hyper-accumulation of reactive oxygen species (ROS), more severe DNA fragmentation, and cell death than that of the wild-type control. In addition, we found that the expression of senescence-associated genes (SAGs) was significantly higher, while the expression of genes associated with chloroplast development and photosynthesis was significantly downregulated in oswss1 as compared with the wild type. Taken together, our results demonstrated that OsWSS1, a member of TMKs, plays a vital role in the regulation of ROS homeostasis, chloroplast development, and leaf senescence in rice.
Collapse
Affiliation(s)
- Jiangmin Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Zhiyuan Ji
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunlian Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feifei Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fujun Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yuhan Zheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongchao Tang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zheng Wei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianyong Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Kaijun Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
29
|
Alam MS, Kong J, Tao R, Ahmed T, Alamin M, Alotaibi SS, Abdelsalam NR, Xu JH. CRISPR/Cas9 Mediated Knockout of the OsbHLH024 Transcription Factor Improves Salt Stress Resistance in Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091184. [PMID: 35567185 PMCID: PMC9101608 DOI: 10.3390/plants11091184] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 05/07/2023]
Abstract
Salinity stress is one of the most prominent abiotic stresses that negatively affect crop production. Transcription factors (TFs) are involved in the absorption, transport, or compartmentation of sodium (Na+) or potassium (K+) to resist salt stress. The basic helix-loop-helix (bHLH) is a TF gene family critical for plant growth and stress responses, including salinity. Herein, we used the CRISPR/Cas9 strategy to generate the gene editing mutant to investigate the role of OsbHLH024 in rice under salt stress. The A nucleotide base deletion was identified in the osbhlh024 mutant (A91). Exposure of the A91 under salt stress resulted in a significant increase in the shoot weight, the total chlorophyll content, and the chlorophyll fluorescence. Moreover, high antioxidant activities coincided with less reactive oxygen species (ROS) and stabilized levels of MDA in the A91. This better control of oxidative stress was accompanied by fewer Na+ but more K+, and a balanced level of Ca2+, Zn2+, and Mg2+ in the shoot and root of the A91, allowing it to withstand salt stress. Furthermore, the A91 also presented a significantly up-regulated expression of the ion transporter genes (OsHKT1;3, OsHAK7, and OsSOS1) in the shoot when exposed to salt stress. These findings imply that the OsbHLH024 might play the role of a negative regulator of salt stress, which will help to understand better the molecular basis of rice production improvement under salt stress.
Collapse
Affiliation(s)
- Mohammad Shah Alam
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China; (M.S.A.); (J.K.); (R.T.); (M.A.)
| | - Jiarui Kong
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China; (M.S.A.); (J.K.); (R.T.); (M.A.)
| | - Ruofu Tao
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China; (M.S.A.); (J.K.); (R.T.); (M.A.)
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Md. Alamin
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China; (M.S.A.); (J.K.); (R.T.); (M.A.)
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Jian-Hong Xu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China; (M.S.A.); (J.K.); (R.T.); (M.A.)
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
- Correspondence:
| |
Collapse
|
30
|
Wang X, Li J, Sun J, Gu S, Wang J, Su C, Li Y, Ma D, Zhao M, Chen W. Mining Beneficial Genes for Salt Tolerance From a Core Collection of Rice Landraces at the Seedling Stage Through Genome-Wide Association Mapping. FRONTIERS IN PLANT SCIENCE 2022; 13:847863. [PMID: 35557725 PMCID: PMC9087808 DOI: 10.3389/fpls.2022.847863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Rice is a salt-sensitive plant. High concentration of salt will hinder the absorption of water and nutrients and ultimately affect the yield. In this study, eight seedling-stage salt-related traits within a core collection of rice landraces were evaluated under salinity stress (100 mM NaCl) and normal conditions in a growth chamber. Genome-wide association study (GWAS) was performed with the genotypic data including 2,487,353 single-nucleotide polymorphisms (SNPs) detected in the core collection. A total of 65 QTLs significantly associated with salt tolerance (ST) were identified by GWAS. Among them, a co-localization QTL qTL4 associated with the SKC, RN/K, and SNC on chromosome 6, which explained 14.38-17.94% of phenotypic variation, was selected for further analysis. According to haplotype analysis, qRT-PCR analysis, and sequence alignment, it was finally determined that 4 candidate genes (LOC_Os06g47720, LOC_Os06g47820, LOC_Os06g47850, LOC_Os06g47970) were related to ST. The results provide useful candidate genes for marker assisted selection for ST in the rice molecular breeding programs.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Jinquan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Strube Research GmbH & Co. KG, Söllingen, Germany
| | - Jian Sun
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Shuang Gu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Jingbo Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Chang Su
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Yueting Li
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Dianrong Ma
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Minghui Zhao
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Wenfu Chen
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
31
|
Integrated physiological, proteomic, and metabolomic analyses of pecan cultivar 'Pawnee' adaptation to salt stress. Sci Rep 2022; 12:1841. [PMID: 35115595 PMCID: PMC8814186 DOI: 10.1038/s41598-022-05866-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/13/2022] [Indexed: 12/14/2022] Open
Abstract
The pecan is a salt-alkali-tolerant plant, and its fruit and wood have high economic value. This study aimed to explore the molecular mechanisms responsible for salt stress tolerance in the pecan grown under hydroponic conditions to simulate salt stress. The results showed that the photosynthetic rate (Pn) was reduced in response to salt stress, while the intercellular carbon dioxide concentrations (Ci) increased. The response of the pecan to salt stress was measured using iTRAQ (isobaric tags for relative or absolute quantitation) and LC/MS (liquid chromatography and mass spectrometry) non-targeted metabolomics technology. A total of 198 differentially expressed proteins (65 down-regulated and 133 up-regulated) and 538 differentially expressed metabolites (283 down-regulated and 255 up-regulated) were identified after exposure to salt stress for 48 h. These genes were associated with 21 core pathways, shown by Kyoto Encyclopedia of Genes and Genomes annotation and enrichment, including the metabolic pathways involved in nucleotide sugar and amino sugar metabolism, amino acid biosynthesis, starch and sucrose metabolism, and phenylpropane biosynthesis. In addition, analysis of interactions between the differentially expressed proteins and metabolites showed that two key nodes of the salt stress regulatory network, L-fucose and succinate, were up-regulated and down-regulated, respectively, suggesting that these metabolites may be significant for adaptations to salt stress. Finally, several key proteins were further verified by parallel reaction monitoring. In conclusion, this study used physiological, proteomic, and metabolomic methods to provide an important preliminary foundation for improving the salt tolerance of pecans.
Collapse
|
32
|
Ma Q, Hu Z, Mao Z, Mei Y, Feng S, Shi K. A novel leucine-rich repeat receptor-like kinase MRK1 regulates resistance to multiple stresses in tomato. HORTICULTURE RESEARCH 2022; 9:uhab088. [PMID: 35048129 PMCID: PMC9123237 DOI: 10.1093/hr/uhab088] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RLKs) are ubiquitous in higher plants, which act as receptors of extracellular signals to trigger multiple physiological processes. However, the functions of the majority of LRR-RLKs remain largely unknown, especially in tomato (Solanum lycopersicum L.). Here, we found that MRK1 (Multiple resistance-associated kinase 1), encoding a novel tomato LRR-RLK, was significantly induced either by temperature stresses or bacterial pathogen attacks. Knocking out MRK1 impaired the tolerance to both cold and heat stress, accompanied with the decrease in transcripts of master regulators C-repeat binding factor 1 (CBF1) and Heat shock transcription factor a-1a (HsfA1a), respectively. Additionally, mrk1 mutants were hypersensitive to Pseudomonas syringae pv. tomato DC3000 and Ralstonia solanacearum and compromised pattern-triggered immunity (PTI) responses as evidenced by decreased reactive oxygen species production and reduced upregulation of the PTI marker genes. Moreover, bimolecular fluorescence complementation, split-luciferase assay and coimmunoprecipitation supported the existence of complex formation between the MRK1, FLS2 and Somatic embryogenesis receptor kinase (SERK3A/SERK3B) in a ligand-independent manner. This work demonstrates that tomato MRK1 as a novel positive regulator of multiple stresses, which might be a potential breeding target to improve crop stress resistance.
Collapse
Affiliation(s)
- Qiaomei Ma
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zhangjian Hu
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zhuo Mao
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yuyang Mei
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Shuxian Feng
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Kai Shi
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
33
|
Song M, Linghu B, Huang S, Li F, An R, Xie C, Zhu Y, Hu S, Mu J, Zhang Y. Genome-Wide Survey of Leucine-Rich Repeat Receptor-Like Protein Kinase Genes and CRISPR/Cas9-Targeted Mutagenesis BnBRI1 in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:865132. [PMID: 35498707 PMCID: PMC9039726 DOI: 10.3389/fpls.2022.865132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/14/2022] [Indexed: 05/19/2023]
Abstract
The leucine-rich repeat receptor-like protein kinase (LRR-RLK) family represents the largest group of RLKs in plants and plays vital roles in plant growth, development and the responses to environmental stress. Although LRR-RLK families have been identified in many species, they have not yet been reported in B. napus. In this study, a total of 444 BnLRR-RLK genes were identified in the genome of Brassica napus cultivar "Zhongshuang 11" (ZS11), and classified into 22 subfamilies based on phylogenetic relationships and genome-wide analyses. Conserved motifs and gene structures were shared within but not between subfamilies. The 444 BnLRR-RLK genes were asymmetrically distributed on 19 chromosomes and exhibited specific expression profiles in different tissues and in response to stress. We identified six BnBRI1 homologs and obtained partial knockouts via CRISPR/Cas9 technology, generating semi-dwarf lines without decreased yield compared with controls. This study provides comprehensive insight of the LRR-RLK family in B. napus. Additionally, the semi-dwarf lines expand the "ideotype" germplasm resources and accelerate the breeding process for B. napus.
Collapse
Affiliation(s)
- Min Song
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, China
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Bin Linghu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Shuhua Huang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, China
| | - Fang Li
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, China
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Ran An
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, China
| | - Changgen Xie
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Yantao Zhu
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, China
| | - Shengwu Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Jianxin Mu
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, China
- *Correspondence: Jianxin Mu,
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, China
- Yanfeng Zhang,
| |
Collapse
|
34
|
Liang T, Qing C, Liu P, Zou C, Yuan G, Pan G, Shen Y, Ma L. Joint GWAS and WGCNA uncover the genetic control of calcium accumulation under salt treatment in maize seedlings. PHYSIOLOGIA PLANTARUM 2022; 174:e13606. [PMID: 34837237 DOI: 10.1111/ppl.13606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 05/28/2023]
Abstract
Soil salinization is an important factor threatening the yield and quality of maize. Ca2+ plays a considerable role in regulating plant growth under salt stress. Herein, we examined the shoot Ca2+ concentrations, root Ca2+ concentrations, and transport coefficients of seedlings in an association panel composed of 305 maize inbred lines under normal and salt conditions. A genome-wide association study was conducted by using the investigated phenotypes and 46,408 single-nucleotide polymorphisms of the panel. As a result, 53 significant SNPs were specifically detected under salt treatment, and 544 genes were identified in the linkage disequilibrium regions of these SNPs. According to the expression data of the 544 genes, we carried out a weighted coexpression network analysis. Combining the enrichment analyses and functional annotations, four hub genes (GRMZM2G051032, GRMZM2G004314, GRMZM2G421669, and GRMZM2G123314) were finally determined, which were then used to evaluate the genetic variation effects by gene-based association analysis. Only GRMZM2G123314, which encodes a pentatricopeptide repeat protein, was significantly associated with Ca2+ transport and the haplotype G-CT was identified as the superior haplotype. Our study brings novel insights into the genetic and molecular mechanisms of salt stress response and contributes to the development of salt-tolerant varieties in maize.
Collapse
Affiliation(s)
- Tianhu Liang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chunyan Qing
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Peng Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chaoying Zou
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guangsheng Yuan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guangtang Pan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yaou Shen
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Langlang Ma
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
35
|
Geng B, Wang Q, Huang R, Liu Y, Guo Z, Lu S. A novel LRR-RLK (CTLK) confers cold tolerance through regulation on the C-repeat-binding factor pathway, antioxidants, and proline accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1679-1689. [PMID: 34626033 DOI: 10.1111/tpj.15535] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 09/26/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Leucine-rich repeat-receptor-like kinase (LRR-RLK) is a large subfamily of plant RLKs; however, its role in cold tolerance is still unknown. A novel cold tolerance LRR-RLK gene (MtCTLK1) in Medicago truncatula was identified using the transgenic lines overexpressing MtCTLK1 (MtCTLK1-OE) and mtctlk1 lines with Tnt1 retrotransposon insertion. Compared with the wild-type, MtCTLK1-OE lines had increased cold tolerance and mtctlk1 showed decreased cold tolerance. The impaired cold tolerance in mtctlk1 could be complemented by the transgenic expression of MtCTLK1 or its homolog MfCTLK1 from Medicago falcata. Antioxidant enzyme activities and proline accumulation as well as transcript levels of the associated genes were increased in response to cold, with higher levels in MtCTLK1-OE or lower levels in mtctlk1 lines as compared with wild type. C-Repeat-Binding Factors (CBFs) and CBF-dependent cold-responsive genes were also induced in response to cold, and higher transcript levels of CBFs and CBF-dependent cold-responsive genes were observed in MtCTLK1-OE lines whereas lower levels in mtctlk1 mutants. The results validate the role of MtCTLK1 or MfCTLK1 in the regulation of cold tolerance through the CBF pathway, antioxidant defense system and proline accumulation. It also provides a valuable gene for the molecular breeding program to improve cold tolerance in crops.
Collapse
Affiliation(s)
- Bohao Geng
- College of Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Qi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, China
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Risheng Huang
- College of Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Yajie Liu
- College of Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Shaoyun Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
36
|
Kong W, Sun T, Zhang C, Deng X, Li Y. Comparative Transcriptome Analysis Reveals the Mechanisms Underlying Differences in Salt Tolerance Between indica and japonica Rice at Seedling Stage. FRONTIERS IN PLANT SCIENCE 2021; 12:725436. [PMID: 34777413 PMCID: PMC8578091 DOI: 10.3389/fpls.2021.725436] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/07/2021] [Indexed: 05/23/2023]
Abstract
Screening and breeding more salt-tolerant varieties is an effective way to deal with the global reduction in rice (Oryza sativa L.) yield caused by salt stress. However, the molecular mechanism underlying differences in salt tolerance between varieties, especially between the subspecies, is still unclear. We herein performed a comparative transcriptomic analysis under salt stress in contrasting two rice genotypes, namely RPY geng (japonica, tolerant variety) and Luohui 9 (named as Chao 2R in this study, indica, susceptible variety). 7208 and 3874 differentially expressed genes (DEGs) were identified under salt stress in Chao 2R and RPY geng, separately. Of them, 2714 DEGs were co-expressed in both genotypes, while 4494 and 1190 DEGs were specifically up/down-regulated in Chao 2R and RPY geng, respectively. Gene ontology (GO) analysis results provided a more reasonable explanation for the salt tolerance difference between the two genotypes. The expression of normal life process genes in Chao 2R were severely affected under salt stress, but RPY geng regulated the expression of multiple stress-related genes to adapt to the same intensity of salt stress, such as secondary metabolic process (GO:0019748), oxidation-reduction process (GO:0009067), etc. Furthermore, we highlighted important pathways and transcription factors (TFs) related to salt tolerance in RPY geng specific DEGs sets based on MapMan annotation and TF identification. Through Meta-QTLs mapping and homologous analysis, we screened out 18 salt stress-related candidate genes (RPY geng specific DEGs) in 15 Meta-QTLs. Our findings not only offer new insights into the difference in salt stress tolerance between the rice subspecies but also provide critical target genes to facilitate gene editing to enhance salt stress tolerance in rice.
Collapse
Affiliation(s)
- Weilong Kong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Tong Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chenhao Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoxiao Deng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
37
|
Lin W, Wang Y, Liu X, Shang JX, Zhao L. OsWAK112, A Wall-Associated Kinase, Negatively Regulates Salt Stress Responses by Inhibiting Ethylene Production. FRONTIERS IN PLANT SCIENCE 2021; 12:751965. [PMID: 34675955 PMCID: PMC8523997 DOI: 10.3389/fpls.2021.751965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/06/2021] [Indexed: 05/27/2023]
Abstract
The wall-associated kinase (WAK) multigene family plays critical roles in various cellular processes and stress responses in plants, however, whether WAKs are involved in salt tolerance is obscure. Herein, we report the functional characterization of a rice WAK, WAK112, whose expression is suppressed by salt. Overexpression of OsWAK112 in rice and heterologous expression of OsWAK112 in Arabidopsis significantly decreased plant survival under conditions of salt stress, while knocking down the OsWAK112 in rice increased plant survival under salt stress. OsWAK112 is universally expressed in plant and associated with cell wall. Meanwhile, in vitro kinase assays and salt tolerance analyses showed that OsWAK112 possesses kinase activity and that it plays a negative role in the response of plants to salt stress. In addition, OsWAK112 interacts with S-adenosyl-L-methionine synthetase (SAMS) 1/2/3, which catalyzes SAM synthesis from ATP and L-methionine, and promotes OsSAMS1 degradation under salt stress. Furthermore, in OsWAK112-overexpressing plants, there is a decreased SAMS content and a decreased ethylene content under salt stress. These results indicate that OsWAK112 negatively regulates plant salt responses by inhibiting ethylene production, possibly via direct binding with OsSAMS1/2/3.
Collapse
Affiliation(s)
| | | | | | | | - Liqun Zhao
- *Correspondence: Liqun Zhao, ; orcid.org/0000-0001-6718-8130
| |
Collapse
|
38
|
Mishra D, Suri GS, Kaur G, Tiwari M. Comprehensive analysis of structural, functional, and evolutionary dynamics of Leucine Rich Repeats-RLKs in Thinopyrum elongatum. Int J Biol Macromol 2021; 183:513-527. [PMID: 33933540 DOI: 10.1016/j.ijbiomac.2021.04.137] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/07/2021] [Accepted: 04/21/2021] [Indexed: 11/29/2022]
Abstract
Leucine Rich Repeats-receptor-like protein kinases (LRR-RLKs) regulate several critical biological processes ranging from growth and development to stress response. Thinopyrum elongatum harbours many desirable traits such as biotic and abiotic stress resistance and therefore commonly used by wheat breeders. In the present investigation, in-silico analysis of LRR-RLKs yielded 589 genes of which 431 were membrane surface RLKs and 158 were receptor like cytoplasmic kinases. An insight into the gene and protein structure revealed quite a conserved nature of these proteins within subgroups. A large expansion in LRR-RLKs was due to tandem and segmental duplication event. Maximum number of tandem and segmentally duplicated pairs was observed in LRR-VI and LRR-XII subfamily, respectively. Furthermore, syntenic analyses revealed that chromosome 6 harboured more (48) tandem duplicated genes while chromosome 7 possessed more (47) segmentally duplicated genes. A detailed analysis about the gene duplication events coupled with expression profiles during Fusarium graminearum infection and water deficiency unravelled the expansion of the gene family with sub functionalization and neofunctionalization. Interaction network analysis showed that LRR-RLKs can heterodimerize upon ligand binding to perform various plant functional attributes.
Collapse
Affiliation(s)
- Divya Mishra
- Kansas State University, Manhattan, KS 66506, United States
| | | | - Gurleen Kaur
- California Baptist University, Riverside, CA 92504, United States
| | - Manish Tiwari
- Mid-Florida Research and Education Center, University of Florida, Apopka, FL 32703, United States.
| |
Collapse
|
39
|
Hu Y, Peng X, Wang F, Chen P, Zhao M, Shen S. Natural population re-sequencing detects the genetic basis of local adaptation to low temperature in a woody plant. PLANT MOLECULAR BIOLOGY 2021; 105:585-599. [PMID: 33651261 DOI: 10.1007/s11103-020-01111-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Total of 14 SNPs associated with overwintering-related traits and 75 selective regions were detected. Important candidate genes were identified and a possible network of cold-stress responses in woody plants was proposed. Local adaptation to low temperature is essential for woody plants to against changeable climate and safely survive the winter. To uncover the specific molecular mechanism of low temperature adaptation in woody plants, we sequenced 134 core individuals selected from 494 paper mulberry (Broussonetia papyrifera), which naturally distributed in different climate zones and latitudes. The population structure analysis, PCA analysis and neighbor-joining tree analysis indicated that the individuals were classified into three clusters, which showed forceful geographic distribution patterns because of the adaptation to local climate. Using two overwintering phenotypic data collected at high latitudes of 40°N and one bioclimatic variable, genome-phenotype and genome-environment associations, and genome-wide scans were performed. We detected 75 selective regions which possibly undergone temperature selection and identified 14 trait-associated SNPs that corresponded to 16 candidate genes (including LRR-RLK, PP2A, BCS1, etc.). Meanwhile, low temperature adaptation was also supported by other three trait-associated SNPs which exhibiting significant differences in overwintering traits between alleles within three geographic groups. To sum up, a possible network of cold signal perception and responses in woody plants were proposed, including important genes that have been confirmed in previous studies while others could be key potential candidates of woody plants. Overall, our results highlighted the specific and complex molecular mechanism of low temperature adaptation and overwintering of woody plants.
Collapse
Affiliation(s)
- Yanmin Hu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianjun Peng
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Fenfen Wang
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peilin Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meiling Zhao
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shihua Shen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|