1
|
Wang X, Wei H, Zhang N, Li S, Si H. StNF-YA8-YB20-YC5 module regulates potato tuber dormancy by modulating gibberellin and abscisic acid pathways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70106. [PMID: 40121666 DOI: 10.1111/tpj.70106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025]
Abstract
The molecular mechanisms involved in the regulation of potato tuber dormancy are complex, involving a variety of related genes and enzymes, which modulate multiple signaling pathways. Nuclear factor-Y (NF-Y) transcription factors (TFs) are widely found in eukaryotes and are involved in the regulation of plant embryonic development, seed germination, fruit ripening, and in response to biotic and abiotic stress. Previously, we found that StNF-YA8 gene expression was increasing with the release of potato tuber dormancy. In this study, it was found that StNF-YA8 overexpressed tubers broke dormancy earlier than non-transgenic (NT) and StNF-YA8 downregulated tubers. Changes in abscisic acid (ABA) and gibberellin (GA) content of different types of tubers at different dormancy periods confirmed that both GA and ABA hormones influenced the differences in dormancy time. This was confirmed by the expression of GA pathway genes StGA3ox1 and StGA20ox1 genes and ABA pathway genes StCYP707A2 and StPP2CA1 genes in different tubers. The four genes described above were further shown to be target genes of the StNF-YA8 TF, which transcriptionally activates the expression of these genes. In addition, we verified the involvement of StNF-YA8 in the tuber dormancy release process by the interacting proteins StNF-YB20 and StNF-YC5, which are able to bind to the StNF-YA8-B20-C5 module to activate the transcription of GA and ABA pathway genes. Our study reveals the StNF-YA8-C5 module activates the transcription of the StCYP707A2, StPP2CA1, StGA3ox1, and StGA20ox1 genes and alters GA and ABA content, accelerating the release of dormancy in potato tubers.
Collapse
Affiliation(s)
- Xiao Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Han Wei
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shigui Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
2
|
Yang Y, Feng T, Zheng X, Zheng H, Tang H, Yu X. Integrated analyses provide insights into the seed dormancy mechanisms of the endangered plant Sinojackia sarcocarpa. Genomics 2025; 117:110991. [PMID: 39848477 DOI: 10.1016/j.ygeno.2025.110991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/25/2024] [Accepted: 01/07/2025] [Indexed: 01/25/2025]
Abstract
Sinojackia sarcocarpa, an endangered ornamental plant endemic to China, faces germination challenges that contribute to its endangered status. The mechanisms of its seed dormancy are not well understood. This study used morphological, physiological, transcriptomic, and gene function analyses to investigate these mechanisms. Our research shows that seed dormancy in Sinojackia sarcocarpa involves both physical and physiological factors. We found that removing the hard endocarp and applying gibberellic acid can effectively break dormancy. Transcriptomic analysis identified 2218 up-regulated and 374 down-regulated genes during germination. Notably, DOG1-domain genes SsDOGL4, SsTGA9, and SsTGA10 were significantly downregulated, while SsDOG1 was not. Additionally, overexpression of SsDOGL4 in Arabidopsis endosperm was found to enhance seed dormancy. Collectively, these findings offer significant insights into the mechanisms underlying seed dormancy in this endangered plant species.
Collapse
Affiliation(s)
- Yao Yang
- Southwest Economic Plants Hybrid and Breeding Center, College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Tingting Feng
- Southwest Economic Plants Hybrid and Breeding Center, College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Xianzhe Zheng
- Southwest Economic Plants Hybrid and Breeding Center, College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Huifang Zheng
- Southwest Economic Plants Hybrid and Breeding Center, College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Hao Tang
- Southwest Economic Plants Hybrid and Breeding Center, College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Xiaobo Yu
- Southwest Economic Plants Hybrid and Breeding Center, College of Life Science, Leshan Normal University, Leshan 614000, China.
| |
Collapse
|
3
|
Rachappanavar V. Utilizing CRISPR-based genetic modification for precise control of seed dormancy: progress, obstacles, and potential directions. Mol Biol Rep 2025; 52:204. [PMID: 39907946 DOI: 10.1007/s11033-025-10285-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
Seed dormancy, a complex trait that is influenced by both nuclear and cytoplasmic factors, poses a significant challenge to agricultural productivity. Conventional dormancy-breaking techniques, including mechanical, physiological, and chemical methods, often yield inconsistent results, impair seed quality, and lack precision. This has necessitated exploration of more targeted and efficient approaches. CRISPR-based gene editing has emerged as a promising tool for the precise regulation of seed dormancy without compromising seed viability or sustainability. Although CRISPR has been successfully applied to modify genes that govern physiological traits in various crops, its use in dormancy regulation remains in the early stages. This review examines recent advancements in CRISPR-based approaches for modulating seed dormancy and discusses key gene targets, modification techniques, and the resulting effects. We also consider the future potential of CRISPR to enhance dormancy control across diverse crop species.
Collapse
Affiliation(s)
- Vinaykumar Rachappanavar
- MS Swaminathan School of Agriculture, Shoolini University, Solan, Himachal Pradesh, 173230, India.
| |
Collapse
|
4
|
Yi X, Hua W, Zhang Z, Liu L, Liu X, Liu F, Tang T, Yang H, Zhang J, Wu D, Zhao X. Dissecting the Genetic Basis of Preharvest Sprouting in Rice Using a Genome-Wide Association Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3257-3267. [PMID: 39854728 DOI: 10.1021/acs.jafc.4c09230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Preharvest sprouting (PHS) is an unfavorable trait in cereal crops that significantly reduces grain yield and quality. However, the regulatory mechanisms underlying this complex trait are still largely unknown. Here, 276 rice accessions from the 3000 Rice Genomes Project were used to perform a genome-wide association study. In total, seven PHS-associated quantitative trait loci (QTLs) were identified, including two novel QTLs and five previously reported QTLs. Among them, four QTLs were identified in 2020 and 2021, and rice accessions carrying at least two favorable alleles exhibited significantly improved PHS resistance. Within these four stable QTLs, five candidate genes were identified based on haplotype and gene expression analyses, including two genes in qPhs-1.1, one gene in qPhs-3, one gene in qPhs-6, and one gene in qPhs-7. Notably, the novel QTL qPhs-6 was found to contain the candidate gene Pi starvation-induced transcription factor 1 (OsPTF1). We discovered that OsPTF1 plays a novel role in negatively regulating PHS in rice and identified two elite haplotypes of OsPTF1 associated with low PHS. Our results provide future insight into the genetic basis of PHS and will prove useful in the future studies on the role of OsPTF1 in PHS in rice.
Collapse
Affiliation(s)
- Xin Yi
- Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection Co-constructed By the Province and Ministry, Huaiyin Normal University, Huai'an 223300, China
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai'an 223300, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanyi Hua
- Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection Co-constructed By the Province and Ministry, Huaiyin Normal University, Huai'an 223300, China
| | - Ziqiang Zhang
- Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection Co-constructed By the Province and Ministry, Huaiyin Normal University, Huai'an 223300, China
| | - Lei Liu
- Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection Co-constructed By the Province and Ministry, Huaiyin Normal University, Huai'an 223300, China
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai'an 223300, China
| | - Xi Liu
- Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection Co-constructed By the Province and Ministry, Huaiyin Normal University, Huai'an 223300, China
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai'an 223300, China
| | - Fuxia Liu
- Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection Co-constructed By the Province and Ministry, Huaiyin Normal University, Huai'an 223300, China
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai'an 223300, China
| | - Tang Tang
- Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection Co-constructed By the Province and Ministry, Huaiyin Normal University, Huai'an 223300, China
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai'an 223300, China
| | - Hengxuan Yang
- Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection Co-constructed By the Province and Ministry, Huaiyin Normal University, Huai'an 223300, China
| | - Jingtian Zhang
- Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection Co-constructed By the Province and Ministry, Huaiyin Normal University, Huai'an 223300, China
| | - Depeng Wu
- Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection Co-constructed By the Province and Ministry, Huaiyin Normal University, Huai'an 223300, China
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai'an 223300, China
| | - Xiangxiang Zhao
- Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection Co-constructed By the Province and Ministry, Huaiyin Normal University, Huai'an 223300, China
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai'an 223300, China
| |
Collapse
|
5
|
Fan X, Gao F, Liu Y, Huang W, Yang Y, Luo Z, Zhang J, Qi F, Lv J, Su X, Wang L, Song S, Ren G, Xing Y. The transcription factor CCT30 promotes rice preharvest sprouting by regulating sugar signalling to inhibit the ABA-mediated pathway. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:579-591. [PMID: 39622700 PMCID: PMC11772322 DOI: 10.1111/pbi.14521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 01/29/2025]
Abstract
Seed dormancy is an important adaptive trait in plants. Proper seed dormancy enables the avoidance of preharvest sprouting in the undesirable conditions like rainfall frequently. In this study, qPSR8, a major QTL for preharvest sprouting, was isolated, and a previously reported heading-date gene, CCT30, was verified as the candidate gene. The CCT30 knockout mutants (CCT30-CR) enhanced seed dormancy and ABA sensitivity as compared with the wild-type ZH11. Conversely, CCT30 overexpressing plants had opposite phenotype changes and had a decreased ABA content. The expression of ABA synthesis genes such as OsNCEDs and ABA signalling genes such as ABI3 and ABI5 were upregulated and sugar metabolism-related genes such as amylase genes were downregulated in CCT30-CR. Correspondingly, fewer free sugars, such as monosaccharides and oligosaccharides, accumulated in CCT30-CR. The freshly harvested seeds from CCT30-CR had no ability to transmit sugar signals when treated with 1% exogenous glucose. In addition, CCT30 interacted with the transcription factor OsbZIP37, which negatively regulates seed dormancy. Overall, CCT30 promotes preharvest sprouting by enhancing sugar signals that inhibit the ABA-mediated pathway, and CCT30 is a good gene for breeding rice varieties resistant to preharvest sprouting.
Collapse
Affiliation(s)
- Xiaowei Fan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Fangyuan Gao
- Environment‐Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research InstituteSichuan Academy of Agricultural SciencesChengduChina
| | - Yuexin Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Wen Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Ying Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Zhengliang Luo
- Environment‐Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research InstituteSichuan Academy of Agricultural SciencesChengduChina
| | - Jia Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Feixiang Qi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Jianqun Lv
- Environment‐Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research InstituteSichuan Academy of Agricultural SciencesChengduChina
| | - Xiangwen Su
- Environment‐Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research InstituteSichuan Academy of Agricultural SciencesChengduChina
| | - Lei Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Song Song
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- Henan Agricultural UniversityZhengzhouChina
| | - Guangjun Ren
- Environment‐Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research InstituteSichuan Academy of Agricultural SciencesChengduChina
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- Yazhouwan National LaboratorySanyaChina
| |
Collapse
|
6
|
Kumar A, Priyanka, K. J, Kaushik M, Mulani E, S. M, Roy J, Phogat S, Sareen B, Madhavan J, Sevanthi AM, Solanke AU, Kumar P, Mandal PK. Low titre of agroinoculum with prolonged incubation period and low auxin concentration in the regeneration media are the key to high frequency of transformation in climate-resilient Aus-type rice genotype Nagina 22. 3 Biotech 2025; 15:53. [PMID: 39898234 PMCID: PMC11785844 DOI: 10.1007/s13205-025-04210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
Developing an efficient and reproducible regeneration protocol holds paramount significance for advancing genetic transformation technologies in rice, facilitating their utilisation in crop improvement. Nagina 22 (N22), a climate-resilient Aus-type rice genotype known for its tolerance against multiple stresses, lacks a standardised transformation protocol, limiting its utilisation as a background for genetic transformation. This study reports, for the first time, a highly efficient transformation and regeneration protocol for N22 using a CRISPR/Cas9 vector. Mature seeds were used to induce embryogenic calli on CHU(N6)-based callus induction media (CIM) with varying concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D). The highest callus induction efficiency (~ 94%) was achieved using 3 mgL-1 2,4-D. For regeneration, calli were transferred to different regeneration media-I (RM-Ia to RM-Ie), where a combination of 5 mgL-1 6-benzylaminopurine (BAP) and 0.02 mgL-1 naphthalene acetic acid (NAA) resulted in ~ 44% regeneration frequency. Subsequent optimisation of regeneration media-II (RM-II) with low NAA concentration enhanced shoot elongation and root development. Furthermore, reducing basal salt concentration in the resuspension media significantly enhanced transformation efficiency to 44%, achieved, by only using sterile distilled water (SDW) with 150 mM acetosyringone for calli infection. The optimised protocol was successfully validated using CRISPR/Cas9 vector, facilitating targeted gene knockouts for functional genomic studies. This approach addresses a critical gap in N22 genetic transformation, providing a reliable protocol for advancing rice improvement through gene editing. It offers valuable insights for future research and practical applications in genetic transformation of this elite rice genotype for various agronomic and scientific purposes. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04210-y.
Collapse
Affiliation(s)
- Amit Kumar
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
- Amity Institute of Biotechnology, Amity University Uttar Pradesh (AUUP), Noida, UP 201313 India
| | - Priyanka
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Jeevanandhan K.
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Megha Kaushik
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Ekta Mulani
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Meena S.
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Jeet Roy
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Sachin Phogat
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Bhuvnesh Sareen
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Jayanthi Madhavan
- Division of Genetics, ICAR-Indian Agriculture Research Institute, Pusa Campus, New Delhi, 110012 India
| | | | | | - Prabhanshu Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh (AUUP), Noida, UP 201313 India
| | | |
Collapse
|
7
|
Li Y, Yin M, Wang J, Zhao X, Xu J, Wang W, Fu B. Epitranscriptome profiles reveal participation of the RNA methyltransferase gene OsMTA1 in rice seed germination and salt stress response. BMC PLANT BIOLOGY 2025; 25:115. [PMID: 39865266 PMCID: PMC11771074 DOI: 10.1186/s12870-025-06134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND RNA m6A methylation installed by RNA methyltransferases plays a crucial role in regulating plant growth and development and environmental stress responses. However, the underlying molecular mechanisms of m6A methylation involved in seed germination and stress responses are largely unknown. In the present study, we surveyed global m6A methylation in rice seed germination under salt stress and the control (no stress) using an osmta1 mutant and its wild type. RESULTS The knockout of OsMTA1 resulted in a decreased level of m6A methylation and delayed seed germination, together with increased oxidative damage in the osmta1-1 mutant, especially under salt stress, indicating that OsMTA1 performs a crucial function in rice seed germination and salt stress response. Comparative analysis of m6A profiling using methylated RNA immunoprecipitation sequencing revealed that a unique set of genes that functioned in seed germination, cell growth, and development, including OsbZIP78 and OsA8, were hypomethylated in osmta1-1 embryos and germinating seeds. Numerous genes involved in plant growth and stress response were hypomethylated in the osmta1-1 mutant during seed germination under salt stress. Further combined analysis of the m6A methylome and transcriptome revealed that the loss of function of OsMTA1 had a more complex impact on gene expression in osmta1-1. Several hypomethylated genes with a negative role in growth and development, such as OsHsfA7 and OsHDAC3, were highly up-regulated in the osmta1-1 mutant under the control condition. In contrast, several hypomethylated genes positively associated with stress response were down-regulated, whereas a different set of hypomethylated genes that functioned as negative regulators of growth and stress response were up-regulated in the osmta1-1 mutant under salt stress. These results further demonstrated that OsMTA1-mediated m6A methylation modulated rice seed germination and salt stress response by regulating transcription of a unique set of genes with diverse functions. CONCLUSION Our results reveal a crucial role for the m6A methyltransferase gene OsMTA1 in regulating rice seed germination and salt stress response, and provide candidate genes to assist in breeding new stress-tolerant rice varieties.
Collapse
Affiliation(s)
- Yingbo Li
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China
| | - Ming Yin
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China
| | - Juan Wang
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China
| | - Xiuqin Zhao
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China
| | - Jianlong Xu
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China
| | - Wensheng Wang
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China.
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China.
| | - Binying Fu
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China.
| |
Collapse
|
8
|
Shen J, Zhang L, Wang H, Guo J, Li Y, Tan Y, Shu Q, Qian Q, Yu H, Chen Y, Song S. The phosphatidylethanolamine-binding proteins OsMFT1 and OsMFT2 regulate seed dormancy in rice. THE PLANT CELL 2024; 36:3857-3874. [PMID: 39041489 PMCID: PMC11371141 DOI: 10.1093/plcell/koae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/17/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
Seed dormancy is crucial for optimal plant life-cycle timing. However, domestication has largely diminished seed dormancy in modern cereal cultivars, leading to challenges such as preharvest sprouting (PHS) and subsequent declines in yield and quality. Therefore, it is imperative to unravel the molecular mechanisms governing seed dormancy for the development of PHS-resistant varieties. In this study, we screened a mutant of BASIC HELIX-LOOP-HELIX TRANSCRIPTION FACTOR4 (OsbHLH004) with decreased seed dormancy and revealed that OsbHLH004 directly regulates the expression of 9-CIS-EPOXYCAROTENOID DIOXYGENASE3 (OsNCED3) and GIBBERELLIN 2-OXIDASE6 (OsGA2ox6) in rice (Oryza sativa). Additionally, we determined that two phosphatidylethanolamine-binding proteins, MOTHER OF FT AND TFL1 and 2 (OsMFT1 and OsMFT2; hereafter OsMFT1/2) interact with OsbHLH004 and Ideal Plant Architecture 1 (IPA1) to regulate their binding capacities on OsNCED3 and OsGA2ox6, thereby promoting seed dormancy. Intriguingly, FT-INTERACTING PROTEIN1 (OsFTIP1) interacts with OsMFT1/2 and affects their nucleocytoplasmic translocation into the nucleus, where OsMFT1/2-OsbHLH004 and OsMFT1/2-IPA1 antagonistically modulate the expression of OsNCED3 and OsGA2ox6. Our findings reveal that OsFTIP1-mediated inhibition of nuclear translocation of OsMFT1/2 and the dynamic transcriptional modulation of OsNCED3 and OsGA2ox6 by OsMFT1/2-OsbHLH004 and OsMFT1/2-IPA1 complexes in seed dormancy in rice.
Collapse
Affiliation(s)
- Jun Shen
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, Hainan 572000, China
| | - Liang Zhang
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Huanyu Wang
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiazhuo Guo
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yuchen Li
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Yuanyuan Tan
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qingyao Shu
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, Hainan 572000, China
| | - Qian Qian
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Hao Yu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117543, Singapore
| | - Ying Chen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Shiyong Song
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, Hainan 572000, China
| |
Collapse
|
9
|
Xu M, Zhang W, Jiao Y, Yang Q, Chen M, Cheng H, Cheng B, Zhang X. OsSCYL2 is Involved in Regulating ABA Signaling-Mediated Seed Germination in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:1088. [PMID: 38674497 PMCID: PMC11054224 DOI: 10.3390/plants13081088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Seed germination represents a multifaceted biological process influenced by various intrinsic and extrinsic factors. In the present study, our investigation unveiled the regulatory role of OsSCYL2, a gene identified as a facilitator of seed germination in rice. Notably, the germination kinetics of OsSCYL2-overexpressing seeds surpassed those of their wild-type counterparts, indicating the potency of OsSCYL2 in enhancing this developmental process. Moreover, qRT-PCR results showed that OsSCYL2 was consistently expressed throughout the germination process in rice. Exogenous application of ABA on seeds and seedlings underscored the sensitivity of OsSCYL2 to ABA during both seed germination initiation and post-germination growth phases. Transcriptomic profiling following OsSCYL2 overexpression revealed profound alterations in metabolic pathways, MAPK signaling cascades, and phytohormone-mediated signal transduction pathways, with 15 genes related to the ABA pathways exhibiting significant expression changes. Complementary in vivo and in vitro assays unveiled the physical interaction between OsSCYL2 and TOR, thereby implicating OsSCYL2 in the negative modulation of ABA-responsive genes and its consequential impact on seed germination dynamics. This study elucidated novel insights into the function of OsSCYL2 in regulating the germination process of rice seeds through the modulation of ABA signaling pathways, thereby enhancing the understanding of the functional significance of the SCYL protein family in plant physiological processes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xin Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
10
|
Park M, Shin SY, Moon H, Choi W, Shin C. Analysis of the global transcriptome and miRNAome associated with seed dormancy during seed maturation in rice (Oryza sativa L. cv. Nipponbare). BMC PLANT BIOLOGY 2024; 24:215. [PMID: 38532331 DOI: 10.1186/s12870-024-04928-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Seed dormancy is a biological mechanism that prevents germination until favorable conditions for the subsequent generation of plants are encountered. Therefore, this mechanism must be effectively established during seed maturation. Studies investigating the transcriptome and miRNAome of rice embryos and endosperms at various maturation stages to evaluate seed dormancy are limited. This study aimed to compare the transcriptome and miRNAome of rice seeds during seed maturation. RESULTS Oryza sativa L. cv. Nipponbare seeds were sampled for embryos and endosperms at three maturation stages: 30, 45, and 60 days after heading (DAH). The pre-harvest sprouting (PHS) assay was conducted to assess the level of dormancy in the seeds at each maturation stage. At 60 DAH, the PHS rate was significantly increased compared to those at 30 and 45 DAH, indicating that the dormancy is broken during the later maturation stage (45 DAH to 60 DAH). However, the largest number of differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs) were identified between 30 and 60 DAH in the embryo and endosperm, implying that the gradual changes in genes and miRNAs from 30 to 60 DAH may play a significant role in breaking seed dormancy. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses confirmed that DEGs related to plant hormones were most abundant in the embryo during 45 DAH to 60 DAH and 30 DAH to 60 DAH transitions. Alternatively, most of the DEGs in the endosperm were related to energy and abiotic stress. MapMan analysis and quantitative real-time polymerase chain reaction identified four newly profiled auxin-related genes (OsSAUR6/12/23/25) and one ethylene-related gene (OsERF087), which may be involved in seed dormancy during maturation. Additionally, miRNA target prediction (psRNATarget) and degradome dataset (TarDB) indicated a potential association between osa-miR531b and ethylene biosynthesis gene (OsACO4), along with osa-miR390-5p and the abscisic acid (ABA) exporter-related gene (OsMATE19) as factors involved in seed dormancy. CONCLUSIONS Analysis of the transcriptome and miRNAome of rice embryos and endosperms during seed maturation provided new insights into seed dormancy, particularly its relationship with plant hormones such as ABA, auxin, and ethylene.
Collapse
Affiliation(s)
- Minsu Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang-Yoon Shin
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hongman Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Woochang Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chanseok Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Center for Plant Plasticity, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
11
|
Liu C, Chang J, Yang J, Li H, Wu J, Wu J, Dai X, Wei F, Zhang X, Su X, Xia Z. Overexpression of NtDOGL4 improves cadmium tolerance through abscisic acid signaling pathway in tobacco. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133462. [PMID: 38215520 DOI: 10.1016/j.jhazmat.2024.133462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
The DELAY OF GERMINATION1-LIKE (DOGL) genes play an essential role in diverse biological processes in plants. However, their exact involvement in the response to cadmium (Cd) stress via the ABA pathway remains unclear. Here, we focused on NtDOGL4, a tobacco DOGL gene whose expression is highly induced upon exposure to Cd. Overexpression of NtDOGL4 in tobacco resulted in elevated endogenous ABA levels, reduced Cd accumulation, and increased tolerance to Cd. Moreover, NtDOGL4 overexpression led to decreased accumulation of reactive oxygen species (ROS) and improved ROS scavenging capacity under Cd stress. Further analyses revealed the direct binding of the transcription factor ABSCISIC ACID-INSENSITIVE 5 (ABI5) to the NtDOGL4 promoter, positively regulating its expression in tobacco. Notably, NtDOGL4 overexpression promoted suberin formation and deposition, while suppressing the expression of Cd transporter genes in tobacco roots, as evidenced by histochemical staining, suberin fraction determination, and qRT-PCR assays. Collectively, our results demonstrate that NtDOGL4 overexpression reduces Cd accumulation, thereby improving Cd stress tolerance through the modulation of antioxidant system, transcription of Cd transporters, and suberin deposition. Notably, the NtABI5-NtDOGL4 module functions as a positive regulator in tobacco's Cd tolerance, underscoring its potential as a molecular target for developing low-Cd crops to ensure environmental safety.
Collapse
Affiliation(s)
- Can Liu
- College of Life Science, Henan Agricultural University, Zhengzhou 450046, China; College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Jianbo Chang
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Jianxin Yang
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Hongchen Li
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Jiang Wu
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Junlin Wu
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Xiaoyan Dai
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China.
| | - Fengjie Wei
- Henan Provincial Tobacco Company, Zhengzhou 450018, China.
| | - Xiaoquan Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China.
| | - Xinhong Su
- Henan Provincial Tobacco Company, Zhengzhou 450018, China.
| | - Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
12
|
Kim JH, Yu J, Kim JY, Park YJ, Bae S, Kang KK, Jung YJ. Phenotypic characterization of pre-harvest sprouting resistance mutants generated by the CRISPR/Cas9-geminiviral replicon system in rice. BMB Rep 2024; 57:79-85. [PMID: 38303561 PMCID: PMC10910094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 02/03/2024] Open
Abstract
Pre-harvest sprouting is a critical phenomenon involving germination of seeds in the mother plant before harvest under relative humid conditions and reduced dormancy. In this paper, we generated HDR mutant lines with one region SNP (C/T) and an insertion of 6 bp (GGT/GGTGGCGGC) in OsERF1 genes for pre-harvest sprouting (PHS) resistance using CRISPR/Cas9 and a geminiviral replicon system. The incidence of HDR was 2.6% in transformed calli. T1 seeds were harvested from 12 HDR-induced calli and named ERF1-hdr line. Molecular stability, key agronomic properties, physiological properties, and biochemical properties of target genes in the ERF1-hdr line were investigated for three years. The ERF1-hdr line showed significantly enhanced seed dormancy and pre-harvest sprouting resistance. qRT-PCR analysis suggested that enhanced ABA signaling resulted in a stronger phenotype of PHS resistance. These results indicate that efficient HDR can be achieved through SNP/InDel replacement using a single and modular configuration applicable to different rice targets and other crops. This work demonstrates the potential to replace all genes with elite alleles within one generation and greatly expands our ability to improve agriculturally important traits. [BMB Reports 2024; 57(2): 79-85].
Collapse
Affiliation(s)
- Jong Hee Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Korea
| | - Jihyeon Yu
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jin Young Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea
| | - Yong Jin Park
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Korea
| | - Sangsu Bae
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Kwon Kyoo Kang
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Korea
| | - Yu Jin Jung
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Korea
| |
Collapse
|
13
|
Huang Y, Song J, Hao Q, Mou C, Wu H, Zhang F, Zhu Z, Wang P, Ma T, Fu K, Chen Y, Nguyen T, Liu S, Jiang L, Wan J. WEAK SEED DORMANCY 1, an aminotransferase protein, regulates seed dormancy in rice through the GA and ABA pathways. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107923. [PMID: 37549571 DOI: 10.1016/j.plaphy.2023.107923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/03/2023] [Accepted: 07/29/2023] [Indexed: 08/09/2023]
Abstract
Seed dormancy is a critical trait that enhances plant survival by preventing seed germination at the wrong time or under unsuitable conditions. Lack of seed dormancy in rice can lead to pre-harvest sprouting on mother plants leading to reduced yield and seed quality. Although some genes have been identified, knowledge of regulation of seed dormancy is limited. Here, we characterized a weak seed dormancy mutant named weak seed dormancy 1 (wsd1) that showed a higher seed germination percentage than the wild-type following the harvest ripeness. We cloned the WSD1 encoding an aminotransferase protein using a MutMap approach. WSD1 was stably expressed after imbibition and its protein was localized in the endoplasm reticulum. A widely targeted metabolomics assay and amino acid analysis showed that WSD1 had a role in regulating homeostasis of amino acids. PAC treatment and RNA-seq analysis showed that WSD1 regulates seed dormancy by involvement in the GA biosynthesis pathway. GA1 content and expression of GA biosynthesis-related genes were increased in the wsd1 mutant compared with the wild-type. The wsd1 mutant had reduced sensitivity to ABA. Our overall results indicated that WSD1 regulates seed dormancy by balancing the ABA and GA pathways.
Collapse
Affiliation(s)
- Yunshuai Huang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiawei Song
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qixian Hao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changling Mou
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongming Wu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fulin Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ziyan Zhu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tengfei Ma
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai Fu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaping Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Thanhliem Nguyen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China; Faculty of Natural Sciences, Quynhon University, Quynhon, 590000, Binhdinh, Viet Nam
| | - Shijia Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Jiang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianmin Wan
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China; National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
14
|
Née G, Krüger T. Dry side of the core: a meta-analysis addressing the original nature of the ABA signalosome at the onset of seed imbibition. FRONTIERS IN PLANT SCIENCE 2023; 14:1192652. [PMID: 37476171 PMCID: PMC10354442 DOI: 10.3389/fpls.2023.1192652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023]
Abstract
The timing of seedling emergence is a major agricultural and ecological fitness trait, and seed germination is controlled by a complex molecular network including phytohormone signalling. One such phytohormone, abscisic acid (ABA), controls a large array of stress and developmental processes, and researchers have long known it plays a crucial role in repressing germination. Although the main molecular components of the ABA signalling pathway have now been identified, the molecular mechanisms through which ABA elicits specific responses in distinct organs is still enigmatic. To address the fundamental characteristics of ABA signalling during germination, we performed a meta-analysis focusing on the Arabidopsis dry seed proteome as a reflexion basis. We combined cutting-edge proteome studies, comparative functional analyses, and protein interaction information with genetic and physiological data to redefine the singular composition and operation of the ABA core signalosome from the onset of seed imbibition. In addition, we performed a literature survey to integrate peripheral regulators present in seeds that directly regulate core component function. Although this may only be the tip of the iceberg, this extended model of ABA signalling in seeds already depicts a highly flexible system able to integrate a multitude of information to fine-tune the progression of germination.
Collapse
|
15
|
Kim S, Huh SM, Han HJ, Lee GS, Hwang YS, Cho MH, Kim BG, Song JS, Chung JH, Nam MH, Ji H, Kim KH, Yoon IS. A rice seed-specific glycine-rich protein OsDOR1 interacts with GID1 to repress GA signaling and regulates seed dormancy. PLANT MOLECULAR BIOLOGY 2023; 111:523-539. [PMID: 36973492 DOI: 10.1007/s11103-023-01343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Seed dormancy is an important agronomic trait under the control of complex genetic and environmental interactions, which have not been yet comprehensively understood. From the field screening of rice mutant library generated by a Ds transposable element, we identified a pre-harvest sprouting (PHS) mutant dor1. This mutant has a single insertion of Ds element at the second exon of OsDOR1 (LOC_Os03g20770), which encodes a novel seed-specific glycine-rich protein. This gene successfully complemented the PHS phenotype of dor1 mutant and its ectopic expression enhanced seed dormancy. Here, we demonstrated that OsDOR1 protein binds to the GA receptor protein, OsGID1 in rice protoplasts, and interrupts with the formation OsGID1-OsSLR1 complex in yeast cells. Co-expression of OsDOR1 with OsGID1 in rice protoplasts attenuated the GA-dependent degradation of OsSLR1, the key repressor of GA signaling. We showed the endogenous OsSLR1 protein level in the dor1 mutant seeds is significantly lower than that of wild type. The dor1 mutant featured a hypersensitive GA-response of α-amylase gene expression during seed germination. Based on these findings, we suggest that OsDOR1 is a novel negative player of GA signaling operated in the maintenance of seed dormancy. Our findings provide a novel source of PHS resistance.
Collapse
Affiliation(s)
- Sooyeon Kim
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Sun Mi Huh
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
- Department of Medical and Biological Sciences, Institute of Convergence Science & Technology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Hay Ju Han
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Gang Seob Lee
- Biosafety Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Yong-Sic Hwang
- Department of Systems Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Mi Hyun Cho
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Beom-Gi Kim
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Ji Sun Song
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Joo Hee Chung
- Seoul Center, Korea Basic Science Institute (KBSI), Seoul, 02841, Republic of Korea
| | - Myung Hee Nam
- Seoul Center, Korea Basic Science Institute (KBSI), Seoul, 02841, Republic of Korea
| | - Hyeonso Ji
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Kyung-Hwan Kim
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - In Sun Yoon
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea.
| |
Collapse
|
16
|
Chen D, Zou W, Zhang M, Liu J, Chen L, Peng T, Ye G. Genome-Wide Association Study for Seed Dormancy Using Re-Sequenced Germplasm under Multiple Conditions in Rice. Int J Mol Sci 2023; 24:ijms24076117. [PMID: 37047087 PMCID: PMC10094323 DOI: 10.3390/ijms24076117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Seed dormancy is a key factor used to determine seed germination in rice production. So far, only a few genes controlling seed dormancy have been reported, and the genetic mechanism of rice seed dormancy is still elusive. In this study, a population of 195 diverse re-sequenced accessions from 40 countries was evaluated for the seed germination rate (GR) without dormancy breaking (WDB) as a control and under dry heating (DH) and gibberellic acid (GA) treatments, as dormancy breaking agents to identify QTLs for seed dormancy. Phenotypic assessment revealed that these accessions had abundant variations in seed dormancy. GWAS using 1,120,223 high-quality single nucleotide polymorphisms (SNPs) and a mixed linear model (MLM) incorporating both principal components (PCs) and kinship (K) identified 30 QTLs on 10 chromosomes, accounting for 7.3-20.4% of the phenotypic variance in GR. Ten of the QTLs were located in the regions of previously reported QTLs, while the rest were novel ones. Thirteen high-confidence candidate genes were predicted for the four QTLs detected in two or three conditions (qGR4-4, qGR4-5, qGR8 and qGR11-4) and one QTL with a large effect (qGR3). These genes were highly expressed during seed development and were significantly regulated by various hormone treatments. This study provides new insights into the genetic and molecular basis of rice seed dormancy/germination. The accessions with moderate and strong dormancy and markers for the QTLs and candidate genes are useful for attaining a proper level of seed dormancy.
Collapse
Affiliation(s)
- Dandan Chen
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Wenli Zou
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Mingpei Zhang
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Jindong Liu
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Liang Chen
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Ting Peng
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Guoyou Ye
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Rice Breeding Innovations Platform, International Rice Research Institute (IRRI), Metro Manila 1301, Philippines
| |
Collapse
|
17
|
Zhao X, Zhang Y, Lai J, Deng Y, Hao Y, Wang S, Yang J. The SlDOG1 Affect Biosynthesis of Steroidal Glycoalkaloids by Regulating GAME Expression in Tomato. Int J Mol Sci 2023; 24:3360. [PMID: 36834772 PMCID: PMC9960814 DOI: 10.3390/ijms24043360] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/29/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Steroidal alkaloids (SAs) and steroidal glycoalkaloids (SGAs) are common constituents of plant species belonging to the Solanaceae family. However, the molecular mechanism regulating the formation of SAs and SGAs remains unknown. Here, genome-wide association mapping was used to elucidate SA and SGA regulation in tomatoes: a SlGAME5-like glycosyltransferase (Solyc10g085240) and the transcription factor SlDOG1 (Solyc10g085210) were significantly associated with steroidal alkaloid composition. In this study, it was found that rSlGAME5-like can catalyze a variety of substrates for glycosidation and can catalyze SA and flavonol pathways to form O-glucoside and O-galactoside in vitro. The overexpression of SlGAME5-like promoted α-tomatine, hydroxytomatine, and flavonol glycoside accumulation in tomatoes. Furthermore, assessments of natural variation combined with functional analyses identified SlDOG1 as a major determinant of tomato SGA content, which also promoted SA and SGA accumulation via the regulation of GAME gene expression. This study provides new insights into the regulatory mechanisms underlying SGA production in tomatoes.
Collapse
Affiliation(s)
- Xuecheng Zhao
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yueran Zhang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Jun Lai
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yuan Deng
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yingchen Hao
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Shouchuang Wang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Jun Yang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| |
Collapse
|
18
|
Temperature driven antagonistic fate determination by two bHLH transcription factors: dormancy or germination. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1208-1209. [PMID: 36633711 DOI: 10.1007/s11427-022-2270-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023]
|
19
|
Two bHLH transcription factors affect sprouting by regulating the level of ABA. Nat Genet 2022; 54:1772-1773. [PMID: 36471072 DOI: 10.1038/s41588-022-01238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Xu F, Tang J, Wang S, Cheng X, Wang H, Ou S, Gao S, Li B, Qian Y, Gao C, Chu C. Antagonistic control of seed dormancy in rice by two bHLH transcription factors. Nat Genet 2022; 54:1972-1982. [PMID: 36471073 DOI: 10.1038/s41588-022-01240-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/24/2022] [Indexed: 12/12/2022]
Abstract
Preharvest sprouting (PHS) due to lack of seed dormancy seriously threatens crop production worldwide. As a complex quantitative trait, breeding of crop cultivars with suitable seed dormancy is hindered by limited useful regulatory genes. Here by repeatable phenotypic characterization of fixed recombinant individuals, we report a quantitative genetic locus, Seed Dormancy 6 (SD6), from aus-type rice, encoding a basic helix-loop-helix (bHLH) transcription factor, which underlies the natural variation of seed dormancy. SD6 and another bHLH factor inducer of C-repeat binding factors expression 2 (ICE2) function antagonistically in controlling seed dormancy by directly regulating the ABA catabolism gene ABA8OX3, and indirectly regulating the ABA biosynthesis gene NCED2 via OsbHLH048, in a temperature-dependent manner. The weak-dormancy allele of SD6 is common in cultivated rice but undergoes negative selection in wild rice. Notably, by genome editing SD6 and its wheat homologs, we demonstrated that SD6 is a useful breeding target for alleviating PHS in cereals under field conditions.
Collapse
Affiliation(s)
- Fan Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, China
| | - Jiuyou Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Shengxing Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xi Cheng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, China
| | - Hongru Wang
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Shujun Ou
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Shaopei Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Boshu Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | | | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China. .,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
21
|
Gong D, He F, Liu J, Zhang C, Wang Y, Tian S, Sun C, Zhang X. Understanding of Hormonal Regulation in Rice Seed Germination. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071021. [PMID: 35888110 PMCID: PMC9324290 DOI: 10.3390/life12071021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 01/06/2023]
Abstract
Seed germination is a critical stage during the life cycle of plants. It is well known that germination is regulated by a series of internal and external factors, especially plant hormones. In Arabidopsis, many germination-related factors have been identified, while in rice, the important crop and monocot model species and the further molecular mechanisms and regulatory networks controlling germination still need to be elucidated. Hormonal signals, especially those of abscisic acid (ABA) and gibberellin (GA), play a dominant role in determining whether a seed germinates or not. The balance between the content and sensitivity of these two hormones is the key to the regulation of germination. In this review, we present the foundational knowledge of ABA and GA pathways obtained from germination research in Arabidopsis. Then, we highlight the current advances in the identification of the regulatory genes involved in ABA- or GA-mediated germination in rice. Furthermore, other plant hormones regulate seed germination, most likely by participating in the ABA or GA pathways. Finally, the results from some regulatory layers, including transcription factors, post-transcriptional regulations, and reactive oxygen species, are also discussed. This review aims to summarize our current understanding of the complex molecular networks involving the key roles of plant hormones in regulating the seed germination of rice.
Collapse
Affiliation(s)
- Diankai Gong
- Liaoning Rice Research Institute, Shenyang 110115, China; (D.G.); (C.Z.); (Y.W.); (S.T.); (C.S.)
| | - Fei He
- Tianjin Key Laboratory of Crop Genetics and Breeding, Tianjin Crop Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China; (F.H.); (J.L.)
| | - Jingyan Liu
- Tianjin Key Laboratory of Crop Genetics and Breeding, Tianjin Crop Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China; (F.H.); (J.L.)
| | - Cheng Zhang
- Liaoning Rice Research Institute, Shenyang 110115, China; (D.G.); (C.Z.); (Y.W.); (S.T.); (C.S.)
| | - Yanrong Wang
- Liaoning Rice Research Institute, Shenyang 110115, China; (D.G.); (C.Z.); (Y.W.); (S.T.); (C.S.)
| | - Shujun Tian
- Liaoning Rice Research Institute, Shenyang 110115, China; (D.G.); (C.Z.); (Y.W.); (S.T.); (C.S.)
| | - Chi Sun
- Liaoning Rice Research Institute, Shenyang 110115, China; (D.G.); (C.Z.); (Y.W.); (S.T.); (C.S.)
| | - Xue Zhang
- Liaoning Rice Research Institute, Shenyang 110115, China; (D.G.); (C.Z.); (Y.W.); (S.T.); (C.S.)
- Correspondence: ; Tel.: +86-150-4020-6835
| |
Collapse
|
22
|
Transcriptomics View over the Germination Landscape in Biofortified Rice. Genes (Basel) 2021; 12:genes12122013. [PMID: 34946962 PMCID: PMC8700799 DOI: 10.3390/genes12122013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/29/2022] Open
Abstract
Hidden hunger, or micronutrient deficiency, is a worldwide problem. Several approaches are employed to alleviate its effects (e.g., promoting diet diversity, use of dietary supplements, chemical fortification of processed food), and among these, biofortification is considered as one of the most cost-effective and highly sustainable. Rice is one of the best targets for biofortification since it is a staple food for almost half of the world’s population as a high-energy source but with low nutritional value. Multiple biofortified rice lines have been produced during the past decades, while few studies also reported modifications in germination behavior (in terms of enhanced or decreased germination percentage or speed). It is important to underline that rapid, uniform germination, and seedling establishment are essential prerequisites for crop productivity. Combining the two traits, biofortified, highly-nutritious seeds with improved germination behavior can be envisaged as a highly-desired target for rice breeding. To this purpose, information gathered from transcriptomics studies can reveal useful insights to unveil the molecular players governing both traits. The present review aims to provide an overview of transcriptomics studies applied at the crossroad between biofortification and seed germination, pointing out potential candidates for trait pyramiding.
Collapse
|
23
|
Park M, Choi W, Shin SY, Moon H, Lee D, Gho YS, Jung KH, Jeon JS, Shin C. Identification of Genes and MicroRNAs Affecting Pre-harvest Sprouting in Rice ( Oryza sativa L.) by Transcriptome and Small RNAome Analyses. FRONTIERS IN PLANT SCIENCE 2021; 12:727302. [PMID: 34421977 PMCID: PMC8377729 DOI: 10.3389/fpls.2021.727302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/19/2021] [Indexed: 06/02/2023]
Abstract
Pre-harvest sprouting (PHS) is one of the primary problems associated with seed dormancy in rice (Oryza sativa L.). It causes yield loss and reduces grain quality under unpredictable humid conditions at the ripening stage, thus affecting the economic value of the rice crop. To resolve this issue, understanding the molecular mechanism underlying seed dormancy in rice is important. Recent studies have shown that seed dormancy is affected by a large number of genes associated with plant hormone regulation. However, understanding regarding the effect of heat stress on seed dormancy and plant hormones is limited. This study compared the transcriptome and small RNAome of the seed embryo and endosperm of two contrasting japonica rice accessions, PHS susceptible (with low seed dormancy) and PHS resistant (with high seed dormancy), at three different maturation stages. We found that 9,068 genes and 35 microRNAs (miRNAs) were differentially expressed in the embryo, whereas 360 genes were differentially expressed in the endosperm. Furthermore, we identified and verified the candidate genes associated with seed dormancy and heat stress-related responses in rice using quantitative real-time PCR. We newly discovered eight hormone-related genes, four heat shock protein-related genes, and two miRNAs potentially involved in PHS. These findings provide a strong foundation for understanding the dynamics of transcriptome and small RNAome of hormone- and heat stress-related genes, which affect PHS during seed maturation.
Collapse
Affiliation(s)
- Minsu Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, South Korea
| | - Woochang Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Sang-Yoon Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Hongman Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Dowhan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Yun-Shil Gho
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Chanseok Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
24
|
Genome-Wide Identification and Expression Analysis of OsbZIP09 Target Genes in Rice Reveal Its Mechanism of Controlling Seed Germination. Int J Mol Sci 2021; 22:ijms22041661. [PMID: 33562219 PMCID: PMC7915905 DOI: 10.3390/ijms22041661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 01/01/2023] Open
Abstract
Seed dormancy and germination are key events in plant development and are critical for crop production, and defects in seed germination or the inappropriate release of seed dormancy cause substantial losses in crop yields. Rice is the staple food for more than half of the world's population, and preharvest sprouting (PHS) is one of the most severe problems in rice production, due to a low level of seed dormancy, especially under warm and damp conditions. Therefore, PHS leads to yield loss and a decrease in rice quality and vitality. We reveal that mutation of OsbZIP09 inhibited rice PHS. Analysis of the expression of OsbZIP09 and its encoded protein sequence and structure indicated that OsbZIP09 is a typical bZIP transcription factor that contains conserved bZIP domains, and its expression is induced by ABA. Moreover, RNA sequencing (RNA-seq) and DNA affinity purification sequencing (DAP-seq) analyses were performed and 52 key direct targets of OsbZIP09 were identified, including OsLOX2 and Late Embryogenesis Abundant (LEA) family genes, which are involved in controlling seed germination. Most of these key targets showed consistent changes in expression in response to abscisic acid (ABA) treatment and OsbZIP09 mutation. The data characterize a number of key target genes that are directly regulated by OsbZIP09 and contribute to revealing the molecular mechanism that underlies how OsbZIP09 controls rice seed germination.
Collapse
|