1
|
de Ocampo MP, Tam BP, Egdane JA, Chebotarov D, Doi K, Yamauchi A, Ismail AM, Henry A, Mitsuya S. Leaf Na+ effects and multi-trait GWAS point to salt exclusion as the key mechanism for reproductive stage salinity tolerance in rice. ANNALS OF BOTANY 2025; 135:949-962. [PMID: 39731213 PMCID: PMC12064422 DOI: 10.1093/aob/mcae227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/26/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND AND AIMS Since salinity stress may occur across stages of rice (Oryza sativa) crop growth, understanding the effects of salinity at the reproductive stage is important, although it has been much less studied than at the seedling stage. METHODS Lines from the Rice Diversity Panel 1 (RDP1) and the 3000 Rice Genomes (3KRG) were used to screen morphological and physiological traits, map loci controlling salinity tolerance through genome-wide association studies (GWAS), and identify favourable haplotypes associated with reproductive stage salinity tolerance. KEY RESULTS Salt exclusion was identified as the key tolerance mechanism in this study, based on reduced panicle length as flag leaf Na+ increased and a lack of effect of trimming the leaves on genotypic rankings in the salinity treatment. Since larger biomass showed a negative effect on the number of filled grains in multiple experiments, future studies should investigate the effect of whole-plant transpiration levels on salt uptake. In addition to genome-wide significant peaks identified in the single-trait GWAS analyses, six loci showed colocations for multiple traits across experiments. Among these colocating loci, three candidate loci that exhibited favourable haplotypes were also characterized to be involved in co-expression networks, among which apoplast and cell wall functions had been annotated, further highlighting the role of salt exclusion. CONCLUSION The loci identified here could be considered as potential sources for improving reproductive stage salinity tolerance in rice.
Collapse
Affiliation(s)
- Marjorie P de Ocampo
- International Rice Research Institute, Pili Drive, Los Baños, Laguna 4031,Philippines
| | - Bui Phuoc Tam
- Loc Troi Agricultural Research Institute, Hoa Tan Village, Dinh Thanh Commune, Thoai Son District, An Giang Province, Vietnam
| | - James A Egdane
- International Rice Research Institute, Pili Drive, Los Baños, Laguna 4031,Philippines
| | - Dmytro Chebotarov
- International Rice Research Institute, Pili Drive, Los Baños, Laguna 4031,Philippines
| | - Kazuyuki Doi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Akira Yamauchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Abdelbagi M Ismail
- International Rice Research Institute, Pili Drive, Los Baños, Laguna 4031,Philippines
| | - Amelia Henry
- International Rice Research Institute, Pili Drive, Los Baños, Laguna 4031,Philippines
| | - Shiro Mitsuya
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
2
|
Fernandes T, Gonçalves NM, Matiolli CC, Rodrigues MAA, Barros PM, Oliveira MM, Abreu IA. SUMOylation of rice DELLA SLR1 modulates transcriptional responses and improves yield under salt stress. PLANTA 2024; 260:136. [PMID: 39514093 PMCID: PMC11549141 DOI: 10.1007/s00425-024-04565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
MAIN CONCLUSION SUMOylation of SLR1 at K2 protects productivity under salt stress, possibly by modulation of SLR1 interactome. DELLA proteins modulate GA signaling and are major regulators of plant plasticity to endure stress. DELLAs are mostly regulated at the post-translational level, and their activity relies on the interaction with upstream regulators and transcription factors (TFs). SUMOylation is a post-translational modification (PTM) capable of changing protein interaction and has been found to influence DELLA activity in Arabidopsis. We determined that SUMOylation of the single rice DELLA, SLENDER RICE1 (SLR1), occurs in a lysine residue different from the one identified in Arabidopsis REPRESSOR OF GA (RGA). Artificially increasing the SUMOylated SLR1 levels attenuated the penalty of salt stress on rice yield. Gene expression analysis revealed that the overexpression of SUMOylated SLR1 can regulate GA biosynthesis, which could partially explain the sustained productivity upon salt stress imposition. Furthermore, SLR1 SUMOylation blocked the interaction with the growth regulator YAB4, which may fine-tune GA20ox2 expression. We also identified novel SLR1 interactors: bZIP23, bHLH089, bHLH094, and OSH1. All those interactions were impaired in the presence of SUMOylated SLR1. Mechanistically, we propose that SUMOylation of SLR1 disrupts its interaction with several transcription factors implicated in GA-dependent growth and ABA-dependent salinity tolerance to modulate downstream gene expression. We found that SLR1 SUMOylation represents a novel mechanism modulating DELLA activity, which attenuates the impact of stress on plant performance.
Collapse
Affiliation(s)
- Telma Fernandes
- Instituto de Tecnologia Química E Biológica, Universidade Nova de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal
| | - Nuno M Gonçalves
- Instituto de Tecnologia Química E Biológica, Universidade Nova de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal
| | - Cleverson C Matiolli
- Instituto de Tecnologia Química E Biológica, Universidade Nova de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal
| | - Mafalda A A Rodrigues
- Instituto de Tecnologia Química E Biológica, Universidade Nova de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal
| | - Pedro M Barros
- Instituto de Tecnologia Química E Biológica, Universidade Nova de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal
| | - M Margarida Oliveira
- Instituto de Tecnologia Química E Biológica, Universidade Nova de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal
| | - Isabel A Abreu
- Instituto de Tecnologia Química E Biológica, Universidade Nova de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal.
| |
Collapse
|
3
|
Duan F, Wu F, Li Z, Zhang K, Ma Q. Response of young rice panicles to salt stress: insights based on phenotype and transcriptome analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1451469. [PMID: 39498395 PMCID: PMC11532053 DOI: 10.3389/fpls.2024.1451469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/25/2024] [Indexed: 11/07/2024]
Abstract
Saline-alkali soils limit rice growth and production. With an increasing global population, enhancing rice salt tolerance is crucial for improving yields in these areas. This study investigated the developmental characteristics of young panicles and pollen fertility in two rice varieties, 58M and 58L, under salt stress. Results showed that 58M had more substantial salt tolerance during panicle development. RNA sequencing of 18 samples from both varieties under high salt stress (0 h, 6 h, and 24 h) identified 469 common differentially expressed genes (DEGs) and 2,308 DEGs between the varieties. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment highlighted significant pathways such as phenylpropanoid biosynthesis, protein processing, and flavonoid biosynthesis. Six gene co-expression modules related to salt tolerance were identified, with six candidate genes (LOC_Os05g38530, LOC_Os04g07920, LOC_Os12g02105, LOC_Os01g06580, LOC_Os06g49250, and LOC_Os06g48300) potentially linked to salt tolerance. These findings provide insights into rice salt tolerance mechanisms and offer new genetic resources for breeding salt-tolerant rice.
Collapse
Affiliation(s)
| | | | | | | | - Qilin Ma
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| |
Collapse
|
4
|
Aslam N, Li Q, Bashir S, Yuan L, Qiao L, Li W. Integrated Review of Transcriptomic and Proteomic Studies to Understand Molecular Mechanisms of Rice's Response to Environmental Stresses. BIOLOGY 2024; 13:659. [PMID: 39336087 PMCID: PMC11428526 DOI: 10.3390/biology13090659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
Rice (Oryza sativa L.) is grown nearly worldwide and is a staple food for more than half of the world's population. With the rise in extreme weather and climate events, there is an urgent need to decode the complex mechanisms of rice's response to environmental stress and to breed high-yield, high-quality and stress-resistant varieties. Over the past few decades, significant advancements in molecular biology have led to the widespread use of several omics methodologies to study all aspects of plant growth, development and environmental adaptation. Transcriptomics and proteomics have become the most popular techniques used to investigate plants' stress-responsive mechanisms despite the complexity of the underlying molecular landscapes. This review offers a comprehensive and current summary of how transcriptomics and proteomics together reveal the molecular details of rice's response to environmental stresses. It also provides a catalog of the current applications of omics in comprehending this imperative crop in relation to stress tolerance improvement and breeding. The evaluation of recent advances in CRISPR/Cas-based genome editing and the application of synthetic biology technologies highlights the possibility of expediting the development of rice cultivars that are resistant to stress and suited to various agroecological environments.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenqiang Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling 712100, China; (N.A.); (Q.L.); (S.B.); (L.Y.); (L.Q.)
| |
Collapse
|
5
|
Ma W, Zhang C, Zhang W, Sheng P, Xu M, Ni Y, Chen M, Cheng B, Zhang X. TMT-Based Comparative Peptidomics Analysis of Rice Seedlings under Salt Stress: An Accessible Method to Explore Plant Stress-Tolerance Processing. J Proteome Res 2022; 21:2905-2919. [PMID: 36351196 DOI: 10.1021/acs.jproteome.2c00318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rice (Oryza sativa L.) is an important staple crop, particularly in Asia, and abiotic stress conditions easily reduce its yields. Salt stress is one of the critical factors affecting rice growth and yield. In this study, a tandem mass tag (TMT)-based comparative peptidomics analysis of rice seedlings under salt stress was conducted. Rice seedlings were exposed to 50 and 150 mM NaCl for 24 and 72 h, respectively, and the root and shoot tissues of different treatment groups were collected separately for peptidomics analysis. A total of 911 and 1263 nonredundant peptides were identified in two pooled shoot tissue samples, while there were 770 and 672 nonredundant peptides in two pooled root tissue samples, respectively. Compared with the control groups, dozens to hundreds of differentially expressed peptides (DEPs) were characterized in all treatment groups. To explore the potential functions of these DEPs, we analyzed the basic characteristics of DEPs and further analyzed the annotated Gene Ontology terms according to their precursor proteins. Several DEP precursor proteins were closely related to the response to salt stress, and some were derived from the functional domains of their corresponding precursors. The germination rate and cotyledon greening rate of transgenic Arabidopsis expressing two DEPs, OsSTPE2 and OsSTPE3, were significantly enhanced under salt stress. The described workflow enables the discovery of a functional pipeline for the characterization of the plant peptidome and reveals two new plant peptides that confer salinity tolerance to plants. Data are available via ProteomeXchange with identifier PXD037574.
Collapse
Affiliation(s)
- Wanlu Ma
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Chenchen Zhang
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Wei Zhang
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Pijie Sheng
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Minyan Xu
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Ying Ni
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Meng Chen
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Beijiu Cheng
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China.,Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Xin Zhang
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China.,Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| |
Collapse
|
6
|
Sevilla E, Andreu P, Fillat MF, Peleato ML, Marín JA, Arbeloa A. Identification of Early Salt-Stress-Responsive Proteins in In Vitro Prunus Cultured Excised Roots. PLANTS 2022; 11:plants11162101. [PMID: 36015404 PMCID: PMC9416420 DOI: 10.3390/plants11162101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022]
Abstract
Fruit-tree rootstock selection is a challenge under a scenario of growing environmental stresses in which the soil and climate are greatly affected. Salinization is an increasing global process that severely affects soil fertility. The selection of rootstocks with the ability to tolerate salt stress is essential. Excised root cultures may be an excellent experimental approach to study stress physiology and a predictive tool to assess possible tolerance. In this study, we show how protein changes in response to salt stress evaluated in excised root cultures of Prunus cerasus (moderate salt-sensitive cultivar) could be representative of these changes in the roots of whole plants. The 2D electrophoresis of root extracts and subsequent spot identification by MALDI-TOF/TOF-MS show 16 relevant proteins differentially expressed in roots as a response to 60 mM NaCl. Cytoplasmic isozyme fructose 1,6-bisphosphate aldolase shows relevant changes in its relative presence of isoforms as a response to saline stress, while the total level of enzymes remains similar. Ferredoxin-NADP+ reductase increases as a response to salinity, even though the measured activity is not significantly different. The observed changes are congruent with previous proteomic studies on the roots of whole plants that are involved in protection mechanisms against salt stress.
Collapse
Affiliation(s)
- Emma Sevilla
- Department of Biochemistry, Molecular Biology, Institute of Biocomputation, Physics of Complex Systems, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Pilar Andreu
- Pomology Department, Estación Experimental de Aula Dei CSIC, Av. Montañana 1005, 50059 Zaragoza, Spain
| | - María F. Fillat
- Department of Biochemistry, Molecular Biology, Institute of Biocomputation, Physics of Complex Systems, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - M. Luisa Peleato
- Department of Biochemistry, Molecular Biology, Institute of Biocomputation, Physics of Complex Systems, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Juan A. Marín
- Pomology Department, Estación Experimental de Aula Dei CSIC, Av. Montañana 1005, 50059 Zaragoza, Spain
| | - Arancha Arbeloa
- Pomology Department, Estación Experimental de Aula Dei CSIC, Av. Montañana 1005, 50059 Zaragoza, Spain
- Correspondence:
| |
Collapse
|
7
|
A Review of Integrative Omic Approaches for Understanding Rice Salt Response Mechanisms. PLANTS 2022; 11:plants11111430. [PMID: 35684203 PMCID: PMC9182744 DOI: 10.3390/plants11111430] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023]
Abstract
Soil salinity is one of the most serious environmental challenges, posing a growing threat to agriculture across the world. Soil salinity has a significant impact on rice growth, development, and production. Hence, improving rice varieties’ resistance to salt stress is a viable solution for meeting global food demand. Adaptation to salt stress is a multifaceted process that involves interacting physiological traits, biochemical or metabolic pathways, and molecular mechanisms. The integration of multi-omics approaches contributes to a better understanding of molecular mechanisms as well as the improvement of salt-resistant and tolerant rice varieties. Firstly, we present a thorough review of current knowledge about salt stress effects on rice and mechanisms behind rice salt tolerance and salt stress signalling. This review focuses on the use of multi-omics approaches to improve next-generation rice breeding for salinity resistance and tolerance, including genomics, transcriptomics, proteomics, metabolomics and phenomics. Integrating multi-omics data effectively is critical to gaining a more comprehensive and in-depth understanding of the molecular pathways, enzyme activity and interacting networks of genes controlling salinity tolerance in rice. The key data mining strategies within the artificial intelligence to analyse big and complex data sets that will allow more accurate prediction of outcomes and modernise traditional breeding programmes and also expedite precision rice breeding such as genetic engineering and genome editing.
Collapse
|
8
|
Genetic Mapping to Detect Stringent QTLs Using 1k-RiCA SNP Genotyping Platform from the New Landrace Associated with Salt Tolerance at the Seedling Stage in Rice. PLANTS 2022; 11:plants11111409. [PMID: 35684182 PMCID: PMC9183132 DOI: 10.3390/plants11111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/02/2022]
Abstract
Rice is the world’s most important food crop, providing the daily calorie intake for more than half of the world’s population. Rice breeding has always been preoccupied with maximizing yield potential. However, numerous abiotic factors, such as salt, cold, drought, and heat, significantly reduce rice productivity. Salinity, one of the major abiotic stresses, reduces rice yield worldwide. This study was conducted to determine new quantitative trait loci (QTLs) that regulate salt tolerance in rice seedlings. One F2:3 mapping population was derived from a cross between BRRI dhan49 (a popular but sensitive rainfed rice variety) and Akundi (a salt-tolerant rice landrace in Bangladesh used as a donor parent). The 1k-Rice Custom Amplicon (1k-RiCA) single-nucleotide polymorphism (SNP) markers were used to genotype this mapping population. After removing segregation distortion and monomorphic markers, 884 SNPs generated a 1526.8 cM-long genetic linkage map with a mean marker density of 1.7 cM for the 12 linkage groups. By exploiting QGene and ICIM-ADD, a sum of 15 QTLs for nine traits was identified in salt stress on seven chromosomes. Four important genomic loci were identified (qSES1, qSL1, qSUR1 and qRL1) on chromosome 1. Out of these 15 QTLs, 14 QTLs are unique, as no other study has mapped in the same chromosomal location. We also detected 15 putative candidate genes and their functions. The ICIM-EPI approach identified 43 significant pairwise epistasis interactions between regions associated with and unassociated with QTLs. Apart from more well-known donors, Akundi serves as an important new donor source for global salt tolerance breeding initiatives, including Bangladesh. The introgression of the novel QTLs identified in this study will accelerate the development of new salt-tolerant varieties that are highly resistant to salt stress using marker-enabled breeding.
Collapse
|
9
|
Dai L, Li P, Li Q, Leng Y, Zeng D, Qian Q. Integrated Multi-Omics Perspective to Strengthen the Understanding of Salt Tolerance in Rice. Int J Mol Sci 2022; 23:ijms23095236. [PMID: 35563627 PMCID: PMC9105537 DOI: 10.3390/ijms23095236] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022] Open
Abstract
Salt stress is one of the major constraints to rice cultivation worldwide. Thus, the development of salt-tolerant rice cultivars becomes a hotspot of current rice breeding. Achieving this goal depends in part on understanding how rice responds to salt stress and uncovering the molecular mechanism underlying this trait. Over the past decade, great efforts have been made to understand the mechanism of salt tolerance in rice through genomics, transcriptomics, proteomics, metabolomics, and epigenetics. However, there are few reviews on this aspect. Therefore, we review the research progress of omics related to salt tolerance in rice and discuss how these advances will promote the innovations of salt-tolerant rice breeding. In the future, we expect that the integration of multi-omics salt tolerance data can accelerate the solution of the response mechanism of rice to salt stress, and lay a molecular foundation for precise breeding of salt tolerance.
Collapse
Affiliation(s)
- Liping Dai
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
| | - Peiyuan Li
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
| | - Qing Li
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
| | - Yujia Leng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Y.L.); (Q.Q.)
| | - Dali Zeng
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou 311300, China
| | - Qian Qian
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
- Correspondence: (Y.L.); (Q.Q.)
| |
Collapse
|
10
|
Sonsungsan P, Chantanakool P, Suratanee A, Buaboocha T, Comai L, Chadchawan S, Plaimas K. Identification of Key Genes in 'Luang Pratahn', Thai Salt-Tolerant Rice, Based on Time-Course Data and Weighted Co-expression Networks. FRONTIERS IN PLANT SCIENCE 2021; 12:744654. [PMID: 34925399 PMCID: PMC8675607 DOI: 10.3389/fpls.2021.744654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/01/2021] [Indexed: 05/13/2023]
Abstract
Salinity is an important environmental factor causing a negative effect on rice production. To prevent salinity effects on rice yields, genetic diversity concerning salt tolerance must be evaluated. In this study, we investigated the salinity responses of rice (Oryza sativa) to determine the critical genes. The transcriptomes of 'Luang Pratahn' rice, a local Thai rice variety with high salt tolerance, were used as a model for analyzing and identifying the key genes responsible for salt-stress tolerance. Based on 3' Tag-Seq data from the time course of salt-stress treatment, weighted gene co-expression network analysis was used to identify key genes in gene modules. We obtained 1,386 significantly differentially expressed genes in eight modules. Among them, six modules indicated a significant correlation within 6, 12, or 48h after salt stress. Functional and pathway enrichment analysis was performed on the co-expressed genes of interesting modules to reveal which genes were mainly enriched within important functions for salt-stress responses. To identify the key genes in salt-stress responses, we considered the two-state co-expression networks, normal growth conditions, and salt stress to investigate which genes were less important in a normal situation but gained more impact under stress. We identified key genes for the response to biotic and abiotic stimuli and tolerance to salt stress. Thus, these novel genes may play important roles in salinity tolerance and serve as potential biomarkers to improve salt tolerance cultivars.
Collapse
Affiliation(s)
- Pajaree Sonsungsan
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Pheerawat Chantanakool
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| | - Teerapong Buaboocha
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Luca Comai
- Department of Plant Biology, College of Biological Sciences, College of Biological Sciences, University of California, Davis, Davis, CA, United States
| | - Supachitra Chadchawan
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kitiporn Plaimas
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
11
|
Singh RK, Kota S, Flowers TJ. Salt tolerance in rice: seedling and reproductive stage QTL mapping come of age. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3495-3533. [PMID: 34287681 PMCID: PMC8519845 DOI: 10.1007/s00122-021-03890-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/09/2021] [Indexed: 05/15/2023]
Abstract
Reproductive stage salinity tolerance is most critical for rice as it determines the yield under stress. Few studies have been undertaken for this trait as phenotyping was cumbersome, but new methodology outlined in this review seeks to redress this deficiency. Sixty-three meta-QTLs, the most important genomic regions to target for enhancing salinity tolerance, are reported. Although rice has been categorized as a salt-sensitive crop, it is not equally affected throughout its growth, being most sensitive at the seedling and reproductive stages. However, a very poor correlation exists between sensitivity at these two stages, which suggests that the effects of salt are determined by different mechanisms and sets of genes (QTLs) in seedlings and during flowering. Although tolerance at the reproductive stage is arguably the more important, as it translates directly into grain yield, more than 90% of publications on the effects of salinity on rice are limited to the seedling stage. Only a few studies have been conducted on tolerance at the reproductive stage, as phenotyping is cumbersome. In this review, we list the varieties of rice released for salinity tolerance traits, those being commercially cultivated in salt-affected soils and summarize phenotyping methodologies. Since further increases in tolerance are needed to maintain future productivity, we highlight work on phenotyping for salinity tolerance at the reproductive stage. We have constructed an exhaustive list of the 935 reported QTLs for salinity tolerance in rice at the seedling and reproductive stages. We illustrate the chromosome locations of 63 meta-QTLs (with 95% confidence interval) that indicate the most important genomic regions for salt tolerance in rice. Further study of these QTLs should enhance our understanding of salt tolerance in rice and, if targeted, will have the highest probability of success for marker-assisted selections.
Collapse
Affiliation(s)
- Rakesh Kumar Singh
- Crop Diversification and Genetics, International Center for Biosaline Agriculture (ICBA), Dubai, UAE
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Banos, Philippines
| | - Suneetha Kota
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Banos, Philippines
- Genetics and Plant Breeding Department, Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Timothy J Flowers
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.
| |
Collapse
|
12
|
Ahmadizadeh M, Babaeian-Jelodar N, Mohammadi-Nejad G, Bagheri N, Singh RK. High-density linkage mapping for agronomic and physiological traits of rice (Oryza sativa L.) under reproductive-stage salt stress. J Genet 2021. [DOI: 10.1007/s12041-021-01301-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Chaturvedi P, Wiese AJ, Ghatak A, Záveská Drábková L, Weckwerth W, Honys D. Heat stress response mechanisms in pollen development. THE NEW PHYTOLOGIST 2021; 231:571-585. [PMID: 33818773 PMCID: PMC9292940 DOI: 10.1111/nph.17380] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 05/03/2023]
Abstract
Being rooted in place, plants are faced with the challenge of responding to unfavourable local conditions. One such condition, heat stress, contributes massively to crop losses globally. Heatwaves are predicted to increase, and it is of vital importance to generate crops that are tolerant to not only heat stress but also to several other abiotic stresses (e.g. drought stress, salinity stress) to ensure that global food security is protected. A better understanding of the molecular mechanisms that underlie the temperature stress response in pollen will be a significant step towards developing effective breeding strategies for high and stable production in crop plants. While most studies have focused on the vegetative phase of plant growth to understand heat stress tolerance, it is the reproductive phase that requires more attention as it is more sensitive to elevated temperatures. Every phase of reproductive development is affected by environmental challenges, including pollen and ovule development, pollen tube growth, male-female cross-talk, fertilization, and embryo development. In this review we summarize how pollen is affected by heat stress and the molecular mechanisms employed during the stress period, as revealed by classical and -omics experiments.
Collapse
Affiliation(s)
- Palak Chaturvedi
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaAlthanstrasse 14Vienna1090Austria
| | - Anna J. Wiese
- Laboratory of Pollen BiologyInstitute of Experimental Botany of the Czech Academy of SciencesRozvojová 263Prague 6165 02Czech Republic
| | - Arindam Ghatak
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaAlthanstrasse 14Vienna1090Austria
| | - Lenka Záveská Drábková
- Laboratory of Pollen BiologyInstitute of Experimental Botany of the Czech Academy of SciencesRozvojová 263Prague 6165 02Czech Republic
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaAlthanstrasse 14Vienna1090Austria
- Vienna Metabolomics Center (VIME)University of ViennaAlthanstrasse 14Vienna1090Austria
| | - David Honys
- Laboratory of Pollen BiologyInstitute of Experimental Botany of the Czech Academy of SciencesRozvojová 263Prague 6165 02Czech Republic
| |
Collapse
|
14
|
Gawarecka K, Ahn JH. Isoprenoid-Derived Metabolites and Sugars in the Regulation of Flowering Time: Does Day Length Matter? FRONTIERS IN PLANT SCIENCE 2021; 12:765995. [PMID: 35003159 PMCID: PMC8738093 DOI: 10.3389/fpls.2021.765995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/22/2021] [Indexed: 05/06/2023]
Abstract
In plants, a diverse set of pathways regulate the transition to flowering, leading to remarkable developmental flexibility. Although the importance of photoperiod in the regulation of flowering time is well known, increasing evidence suggests the existence of crosstalk among the flowering pathways regulated by photoperiod and metabolic pathways. For example, isoprenoid-derived phytohormones (abscisic acid, gibberellins, brassinosteroids, and cytokinins) play important roles in regulating flowering time. Moreover, emerging evidence reveals that other metabolites, such as chlorophylls and carotenoids, as well as sugar metabolism and sugar accumulation, also affect flowering time. In this review, we summarize recent findings on the roles of isoprenoid-derived metabolites and sugars in the regulation of flowering time and how day length affects these factors.
Collapse
|
15
|
Mehri N, Fotovat R, Mirzaei M, Fard EM, Parsamatin P, Hasan MT, Wu Y, Ghaffari MR, Salekdeh GH. Proteomic analysis of wheat contrasting genotypes reveals the interplay between primary metabolic and regulatory pathways in anthers under drought stress. J Proteomics 2020; 226:103895. [DOI: 10.1016/j.jprot.2020.103895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/12/2020] [Accepted: 07/06/2020] [Indexed: 02/08/2023]
|
16
|
Sobhanian H, Pahlavan S, Meyfour A. How does proteomics target plant environmental stresses in a semi-arid area? Mol Biol Rep 2020; 47:3181-3194. [DOI: 10.1007/s11033-020-05406-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 03/25/2020] [Indexed: 12/30/2022]
|
17
|
Koobaz P, Reza Ghaffari M, Heidari M, Mirzaei M, Ghanati F, Amirkhani A, Mortazavi SE, Moradi F, Hajirezaei MR, Salekdeh GH. Proteomic and metabolomic analysis of desiccation tolerance in wheat young seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:349-362. [PMID: 31786507 DOI: 10.1016/j.plaphy.2019.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Young wheat seedlings are desiccation tolerant and have the capacity to withstand long dehydration period. In this study, we characterized the proteome and metabolome of wheat seedlings during desiccation and after recovery. Functional classification of differentially identified proteins revealed dynamic changes in the number and abundance of proteins observed during stress and recovery. Desiccation resulted in a decline in the abundance of proteins associated with photosynthesis and carbohydrate reserves, along with an increase in the presence of proteins associated with stress and defense response, such as peroxiredoxins and antioxidant enzymes. Following recovery, the abundance of stress-responsive proteins returned either partially or completely to their baseline level, confirming their importance to the seedling's desiccation response. Furthermore, proteins involved in carbohydrate metabolism, as well as fructose-bisphosphate aldolase and fructokinase-2 and phosphorylated metabolites as the substrate or the end-product, showed the inverse pattern during desiccation and after re-watering. This may reflect the fact that plants maintained energy supply during stress to protect seedlings from further damage, and for use in subsequent recovery after rewatering period. This study provides novel insights into the molecular mechanisms underlying the desiccation tolerance of wheat seedlings, and paves the way for more detailed molecular analysis of this remarkable phenomenon.
Collapse
Affiliation(s)
- Parisa Koobaz
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Reza Ghaffari
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - Manzar Heidari
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - Mehdi Mirzaei
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia; Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Faezeh Ghanati
- Department of Plant Science, Faculty of Science, Tarbiat Modares University, Tehran, Iran
| | - Ardeshir Amirkhani
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia; Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Seyed Elyas Mortazavi
- Department of Plant Tissue and Organ Culture, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - Foad Moradi
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Reza Hajirezaei
- Physiology and Cell Biology Department, Molecular Plant Nutrition Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ghasem Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran; Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
18
|
Ganie SA, Molla KA, Henry RJ, Bhat KV, Mondal TK. Advances in understanding salt tolerance in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:851-870. [PMID: 30759266 DOI: 10.1007/s00122-019-03301-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/02/2019] [Indexed: 05/03/2023]
Abstract
This review presents a comprehensive overview of the recent research on rice salt tolerance in the areas of genomics, proteomics, metabolomics and chemical genomics. Salinity is one of the major constraints in rice cultivation globally. Traditionally, rice is a glycophyte except for a few genotypes that have been widely used in salinity tolerance breeding of rice. Both seedling and reproductive stages of rice are considered to be the salt-susceptible stages; however, research efforts have been biased towards improving the understanding of seedling-stage salt tolerance. An extensive literature survey indicated that there have been very few attempts to develop reproductive stage-specific salt tolerance in rice probably due to the lack of salt-tolerant phenotypes at the reproductive stage. Recently, the role of DNA methylation, genome duplication and codon usage bias in salinity tolerance of rice have been studied. Furthermore, the study of exogenous salt stress alleviants in rice has opened up another potential avenue for understanding and improving its salt tolerance. There is a need to not only generate additional genomic resources in the form of salt-responsive QTLs and molecular markers and to characterize the genes and their upstream regulatory regions, but also to use them to gain deep insights into the mechanisms useful for developing tolerant varieties. We analysed the genomic locations of diverse salt-responsive genomic resources and found that rice chromosomes 1-6 possess the majority of these salinity-responsive genomic resources. The review presents a comprehensive overview of the recent research on rice salt tolerance in the areas of genomics, proteomics, metabolomics and chemical genomics, which should help in understanding the molecular basis of salinity tolerance and its more effective improvement in rice.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India
| | - Kutubuddin Ali Molla
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - K V Bhat
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India
| | - Tapan Kumar Mondal
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India.
- ICAR-National Research Centre on Plant Biotechnology, IARI, Pusa, New Delhi, 110012, India.
| |
Collapse
|
19
|
Kord H, Fakheri B, Ghabooli M, Solouki M, Emamjomeh A, Khatabi B, Sepehri M, Salekdeh GH, Ghaffari MR. Salinity-associated microRNAs and their potential roles in mediating salt tolerance in rice colonized by the endophytic root fungus Piriformospora indica. Funct Integr Genomics 2019; 19:659-672. [PMID: 30903405 DOI: 10.1007/s10142-019-00671-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/24/2019] [Accepted: 02/25/2019] [Indexed: 12/23/2022]
Abstract
Piriformospora indica (P. indica), an endophytic root fungus, supports the growth and enhanced tolerance of plants to biotic and abiotic stresses. Several recent studies showed the significant role of small RNA (sRNA) molecules including microRNAs (miRNAs) in plant adaption to environmental stress, but little is known concerning the symbiosis-mediated salt stress tolerance regulated at miRNAs level. The overarching goal of this research is to elucidate the impact of miRNAs in regulating the P. indica-mediated salt tolerance in rice. Applying sRNA-seq analysis led to identify a set of 547 differentially abundant miRNAs in response to P. indica inoculation and salt stress. These included 206 rice-specific and 341 previously known miRNAs from other plant species. In silico analysis of miRNAs predictions of the differentially abundant miRNAs led to identifying of 193 putatively target genes, most of which were encoded either genes or transcription factors involved in nutrient uptake, sodium ion transporters, growth regulators, and auxin- responsive proteins. The rice-specific miRNAs targeted the transcription factors involved in the import of potassium ions into the root cells, the export of sodium ions, and plant growth and development. Interestingly, P. indica affected the differential abundance of miRNAs regulated genes and transcription factors linked to salt stress tolerance. Our data helps to understand the molecular basis of salt stress tolerance mediated by symbionts in plant and the potential impact of miRNAs for genetic improvement of rice varieties for tolerance to salt stress.
Collapse
Affiliation(s)
- Hadis Kord
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Baratali Fakheri
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Mehdi Ghabooli
- Department of Agronomy, Faculty of Agriculture, Malayer University, Malayer, Iran
| | - Mahmood Solouki
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Abbasali Emamjomeh
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Behnam Khatabi
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| | - Mozhgan Sepehri
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Reza Ghaffari
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
20
|
Development of High Yielding Glutinous Cytoplasmic Male Sterile Rice (Oryza sativa L.) Lines through CRISPR/Cas9 Based Mutagenesis of Wx and TGW6 and Proteomic Analysis of Anther. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8120290] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Development of high yielding and more palatable glutinous rice is an important goal in breeding and long-standing cultural interaction in Asia. In this study, the TGW6 and Wx, major genes conferring 1000 grain weight (GW) and amylose content (AC), were edited in a maintainer line by CRISPR/Cas9 technology. Four targets were assembled in pYLCRISPR/Cas9Pubi-H vector and T0 mutant plants were obtained through Agrobacterium mediated transformation with 90% mutation frequency having 28% homozygous mutations without off-target effects in three most likely sites of each target and expression level of target genes in mutant lines was significantly decreased (P < 0.01), the GW and gel consistency (GC) were increased, and the AC and gelatinization temperature (GT) were decreased significantly and grain appearance was opaque, while there was no change in starch content (SC) and other agronomic traits. Mutations were inheritable and some T1 plants were re-edited but T2 generation was completely stable. The pollen fertility status was randomly distributed, and the mutant maintainer lines were hybridized with Cytoplasmic Male Sterile (CMS) line 209A and after subsequent backcrossing the two glutinous CMS lines were obtained in BC2F1. The identified proteins from anthers of CMS and maintainer line were closely associated with transcription, metabolism, signal transduction, and protein biosynthesis. Putative mitochondrial NAD+-dependent malic enzyme was absent in CMS line which caused the pollen sterility because of insufficient energy, while upregulation of putative acetyl-CoA synthetase and Isoamylase in both lines might have strong relationship with CMS and amylose content. High yielding glutinous CMS lines will facilitate hybrid rice breeding and investigations of proteins linked to male sterility will provide the insights to complicated metabolic network in anther development.
Collapse
|
21
|
Response mechanisms induced by exposure to high temperature in anthers from thermo-tolerant and thermo-sensitive tomato plants: A proteomic perspective. PLoS One 2018; 13:e0201027. [PMID: 30024987 PMCID: PMC6053223 DOI: 10.1371/journal.pone.0201027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/07/2018] [Indexed: 11/19/2022] Open
Abstract
Constant global warming is one of the most detrimental environmental factors for agriculture causing significant losses in productivity as heat stress (HS) conditions damage plant growth and reproduction. In flowering plants such as tomato, HS has drastic repercussions on development and functionality of male reproductive organs and pollen. Response mechanisms to HS in tomato anthers and pollen have been widely investigated by transcriptomics; on the contrary, exhaustive proteomic evidences are still lacking. In this context, a differential proteomic study was performed on tomato anthers collected from two genotypes (thermo-tolerant and thermo-sensitive) to explore stress response mechanisms and identify proteins possibly associated to thermo-tolerance. Results showed that HS mainly affected energy and amino acid metabolism and nitrogen assimilation and modulated the expression of proteins involved in assuring protein quality and ROS detoxification. Moreover, proteins potentially associated to thermo-tolerant features, such as glutamine synthetase, S-adenosylmethionine synthase and polyphenol oxidase, were identified.
Collapse
|
22
|
Chen P, Li R, Zhou R. Comparative phosphoproteomic analysis reveals differentially phosphorylated proteins regulate anther and pollen development in kenaf cytoplasmic male sterility line. Amino Acids 2018; 50:841-862. [DOI: 10.1007/s00726-018-2564-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/29/2018] [Indexed: 12/28/2022]
|
23
|
Zhang Z, Hu M, Feng X, Gong A, Cheng L, Yuan H. Proteomes and Phosphoproteomes of Anther and Pollen: Availability and Progress. Proteomics 2018; 17. [PMID: 28665021 DOI: 10.1002/pmic.201600458] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 06/02/2017] [Indexed: 12/24/2022]
Abstract
In flowering plants, anther development plays crucial role in sexual reproduction. Within the anther, microspore mother cells meiosis produces microspores, which further develop into pollen grains that play decisive role in plant reproduction. Previous studies on anther biology mainly focused on single gene functions relying on genetic and molecular methods. Recently, anther development has been expanded from multiple OMICS approaches like transcriptomics, proteomics/phosphoproteomics, and metabolomics. The development of proteomics techniques allowing increased proteome coverage and quantitative measurements of proteins which can characterize proteomes and their modulation during normal development, biotic and abiotic stresses in anther development. In this review, we summarize the achievements of proteomics and phosphoproteomics with anther and pollen organs from model plant and crop species (i.e. Arabidopsis, rice, tobacco). The increased proteomic information facilitated translation of information from the models to crops and thus aid in agricultural improvement.
Collapse
Affiliation(s)
- Zaibao Zhang
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| | - Menghui Hu
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| | - Xiaobing Feng
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| | - Andong Gong
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| | - Lin Cheng
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| | - Hongyu Yuan
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| |
Collapse
|
24
|
Liu Y, Wang B, Li J, Song Z, Lu B, Chi M, Yang B, Qin D, Lam YW, Li J, Xu D. Salt Response Analysis in Two Rice Cultivars at Seedling Stage. ACTA PHYSIOLOGIAE PLANTARUM 2017; 39:215. [PMID: 31736527 PMCID: PMC6858053 DOI: 10.1007/s11738-017-2514-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 05/03/2023]
Abstract
In order to explore the salt-stress responses of two rice varieties, the physiological responses and biochemical responses were investigated using proteomics and classical biochemical methods. The results showed that the seedling growth was inhibited under salt condition in two rice varieties, the seedling growth in the tolerant variety was better than the sensitive variety. The sensitive variety(L7) appeared obvious salt-injury under 3-day salt stress, the tolerant variety (T07339) keep normal growth under 7-day salt stress except that the shoot length was decreased. Through the growth-parameters analysis, most of them in L7 were restrained by salinity and most in T07339 were unaffected. In T07339, the fresh root weight, the content of chlorophyll and the fresh shoot weight were even increased after 7 days of salt stress. A comparison of two-dimensional gel electrophoresis (2-DGE) protein profiles revealed 8 differently expressed proteins. Four proteins were expressed in different pattern between sensitive and tolerant varieties. These results provide novel insights into the investigations of the salt-response proteins that involved in improved salt tolerance.
Collapse
Affiliation(s)
- Yan Liu
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
| | - Baoxiang Wang
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
| | - Jian Li
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
| | - Zhaoqiang Song
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
| | - Baiguan Lu
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
| | - Ming Chi
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
| | - Bo Yang
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
- Department of Biology, The University of Vermont, Burlington, VT 05405, USA
- Vermont Genetics Network Proteomics Facility, The University of Vermont, Burlington, VT 05405, USA
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Derong Qin
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
| | - Ying-Wai Lam
- Department of Biology, The University of Vermont, Burlington, VT 05405, USA
- Vermont Genetics Network Proteomics Facility, The University of Vermont, Burlington, VT 05405, USA
| | - Jiaxu Li
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Dayong Xu
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
| |
Collapse
|
25
|
Barton JS, Schomacker R. Comparative protein profiles of the Ambrosia plants. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:633-639. [PMID: 28315734 DOI: 10.1016/j.bbapap.2017.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/22/2017] [Accepted: 03/14/2017] [Indexed: 12/17/2022]
Abstract
Ragweed pollen is primarily responsible for the hay fever allergies of sufferers throughout the world. A proteome study of three ragweed plants (Ambrosia artemisiifolia, Ambrosia trifida, and Ambrosia psilostachya) was undertaken to document and compare their protein profiles. Proteins extracted from the pollen of the three plants were subjected to one dimensional electrophoresis followed by tandem liquid chromatography-mass spectroscopy. Peptide sequence mapping permitted discovery of proteins not previously reported for all three plants and 45% of the identified proteins were shared by all three of them. Application of stringent criteria revealed not only a majority of known allergens for short ragweed but also allergens not previously reported for the other two plants. Additionally, potentially allergy inducing enolases are reported for the three plants. These results suggest that all three ragweed plants could contribute to the allergy malady.
Collapse
Affiliation(s)
- Janice S Barton
- Department of Chemistry, Washburn University, 1700 S College Avenue, Topeka, KS 66621, United States.
| | - Rachel Schomacker
- Department of Chemistry, Washburn University, 1700 S College Avenue, Topeka, KS 66621, United States
| |
Collapse
|
26
|
Mishra P, Mishra V, Takabe T, Rai V, Singh NK. Elucidation of salt-tolerance metabolic pathways in contrasting rice genotypes and their segregating progenies. PLANT CELL REPORTS 2016; 35:1273-86. [PMID: 26993328 DOI: 10.1007/s00299-016-1959-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 02/16/2016] [Indexed: 05/28/2023]
Abstract
Differentially expressed antioxidant enzymes, amino acids and proteins in contrasting rice genotypes, and co-location of their genes in the QTLs mapped using bi-parental population, indicated their role in salt tolerance. Soil salinity is a major environmental constraint limiting rice productivity. Salt-tolerant 'CSR27', salt-sensitive 'MI48'and their extreme tolerant and sensitive recombinant inbred line (RIL) progenies were used for the elucidation of salt stress tolerance metabolic pathways. Salt stress-mediated biochemical and molecular changes were analyzed in the two parents along with bulked-tolerant (BT) and bulked-sensitive (BS) extreme RILs. The tolerant parent and BT RILs suffered much lower reduction in the chlorophyll as compared to their sensitive counterparts. Activities of antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD) and non-enzymatic antioxidant ascorbic acid were much higher in salt-stressed CSR27 and BT RILs than MI48 and BS RILs. Further, the tolerant lines showed significant enhancement in the levels of amino acids methionine and proline in response to salt stress in comparison to the sensitive lines. Similarly, the tolerant genotypes showed minimal reduction in cysteine content whereas sensitive genotypes showed a sharp reduction. Real time PCR analysis confirmed the induction of methionine biosynthetic pathway (MBP) enzymes cystathionine-β synthase (CbS), S-adenosyl methionine synthase (SAMS), S-adenosyl methionine decarboxylase (SAMDC) and serine hydroxymethyl transferase (SHMT) genes in tolerant lines, suggesting potential role of the MBP in conferring salt tolerance in rice variety CSR27. Proteome profiling also confirmed higher expression of SOD, POD and plastidic CbS and other proteins in the tolerant lines, whose genes were co-located in the QTL intervals for salt tolerance mapped in the RIL population. The study signifies integrated biochemical-molecular approach for identifying salt tolerance genes for genetic improvement for stress tolerant rice varieties.
Collapse
Affiliation(s)
- Pragya Mishra
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
- Banasthali University, Tonk, Rajasthan, India
| | - Vagish Mishra
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Teruhiro Takabe
- Plant Biotechnology Research Center, Meijo University, Nagoya, Japan
| | - Vandna Rai
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | | |
Collapse
|
27
|
Chakraborty S, Salekdeh GH, Yang P, Woo SH, Chin CF, Gehring C, Haynes PA, Mirzaei M, Komatsu S. Proteomics of Important Food Crops in the Asia Oceania Region: Current Status and Future Perspectives. J Proteome Res 2015; 14:2723-44. [DOI: 10.1021/acs.jproteome.5b00211] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | | | - Pingfang Yang
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Sun Hee Woo
- Chungbuk National University, Cheongju 362-763, Korea
| | - Chiew Foan Chin
- University of Nottingham Malaysia Campus, 43500 Semenyih, Selangor, Malaysia
| | - Chris Gehring
- King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | | | | - Setsuko Komatsu
- National Institute of Crop Science, Tsukuba, Ibaraki 305-8518, Japan
| |
Collapse
|
28
|
Abdollah Hosseini S, Gharechahi J, Heidari M, Koobaz P, Abdollahi S, Mirzaei M, Nakhoda B, Hosseini Salekdeh G. Comparative proteomic and physiological characterisation of two closely related rice genotypes with contrasting responses to salt stress. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:527-542. [PMID: 32480698 DOI: 10.1071/fp14274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/07/2015] [Indexed: 06/11/2023]
Abstract
Salinity is a limiting factor affecting crop growth. We evaluated the responses of a salt-tolerant recombinant inbred rice (Oryza sativa L.) line, FL478, and the salt-sensitive IR29. Seedlings were exposed to salt stress and the growth rate was monitored to decipher the effect of long-term stress. At Day 16, IR29 produced lower shoot biomass than FL478. Significant differences for Na+ and K+ concentrations and Na+ : K+ ratios in roots and shoots were observed between genotypes. Changes in the proteomes of control and salt-stressed plants were analysed, identifying 59 and 39 salt-responsive proteins in roots and leaves, respectively. Proteomic analysis showed greater downregulation of proteins in IR29. In IR29, proteins related to pathways involved in salt tolerance (e.g. oxidative stress response, amino acid biosynthesis, polyamine biosynthesis, the actin cytoskeleton and ion compartmentalisation) changed to combat salinity. We found significant downregulation of proteins related to photosynthetic electron transport in IR29, indicating that photosynthesis was influenced, probably increasing the risk of reactive oxygen species formation. The sensitivity of IR29 might be related to its inability to exclude salt from its transpiration stream, to compartmentalise excess ions and to maintain a healthy photosynthetic apparatus during salt stress, or might be because of the leakiness of its roots, allowing excess salt to enter apoplastically. In FL478, superoxide dismutase, ferredoxin thioredoxin reductase, fibre protein and inorganic pyrophosphatase, which may participate in salt tolerance, increased in abundance. Our analyses provide novel insights into the mechanisms behind salt tolerance and sensitivity in genotypes with close genetic backgrounds.
Collapse
Affiliation(s)
- Seyed Abdollah Hosseini
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, PO Box 31535-1897, Karaj 3135933151, Iran
| | - Javad Gharechahi
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, PO Box 19395-5478, Tehran 1435916471, Iran
| | - Manzar Heidari
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, PO Box 31535-1897, Karaj 3135933151, Iran
| | - Parisa Koobaz
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, PO Box 31535-1897, Karaj 3135933151, Iran
| | - Shapour Abdollahi
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, PO Box 31535-1897, Karaj 3135933151, Iran
| | - Mehdi Mirzaei
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Babak Nakhoda
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, PO Box 31535-1897, Karaj 3135933151, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, PO Box 31535-1897, Karaj 3135933151, Iran
| |
Collapse
|
29
|
Xie X, Kang H, Liu W, Wang GL. Comprehensive Profiling of the Rice Ubiquitome Reveals the Significance of Lysine Ubiquitination in Young Leaves. J Proteome Res 2015; 14:2017-25. [DOI: 10.1021/pr5009724] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xin Xie
- State
Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute
of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Department
of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Houxiang Kang
- State
Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute
of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wende Liu
- State
Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute
of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guo-Liang Wang
- State
Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute
of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Department
of Plant Pathology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
30
|
Huerta-Ocampo JA, Barrera-Pacheco A, Mendoza-Hernández CS, Espitia-Rangel E, Mock HP, Barba de la Rosa AP. Salt stress-induced alterations in the root proteome of Amaranthus cruentus L. J Proteome Res 2014; 13:3607-27. [PMID: 24942474 DOI: 10.1021/pr500153m] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Salt stress is one of the major factors limiting crop productivity worldwide. Amaranth is a highly nutritious pseudocereal with remarkable nutraceutical properties; it is also a stress-tolerant plant, making it an alternative crop for sustainable food production in semiarid conditions. A two-dimensional electrophoresis gel coupled with a liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) approach was applied in order to analyze the changes in amaranth root protein accumulation in plants subjected to salt stress under hydroponic conditions during the osmotic phase (1 h), after recovery (24 h), and during the ionic phase of salt stress (168 h). A total of 101 protein spots were differentially accumulated in response to stress, in which 77 were successfully identified by LC-MS/MS and a database search against public and amaranth transcriptome databases. The resulting proteins were grouped into different categories of biological processes according to Gene Ontology. The identification of several protein isoforms with a change in pI and/or molecular weight reveals the importance of the salt-stress-induced posttranslational modifications in stress tolerance. Interestingly stress-responsive proteins unique to amaranth, for example, Ah24, were identified. Amaranth is a stress-tolerant alternative crop for sustainable food production, and the understanding of amaranth's stress tolerance mechanisms will provide valuable input to improve stress tolerance of other crop plants.
Collapse
Affiliation(s)
- José A Huerta-Ocampo
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C. , Camino a la Presa San José No. 2055, Lomas 4a Sección, 78216 San Luis Potosí, S.L.P., México
| | | | | | | | | | | |
Collapse
|
31
|
Liu CW, Chang TS, Hsu YK, Wang AZ, Yen HC, Wu YP, Wang CS, Lai CC. Comparative proteomic analysis of early salt stress responsive proteins in roots and leaves of rice. Proteomics 2014; 14:1759-75. [PMID: 24841874 DOI: 10.1002/pmic.201300276] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 04/01/2014] [Accepted: 05/15/2014] [Indexed: 11/11/2022]
Abstract
Growth and productivity of rice (Oryza sativa L.) are severely affected by salinity. Understanding the mechanisms that protect rice and other important cereal crops from salt stress will help in the development of salt-stress-tolerant strains. In this study, rice seedlings of the same genetic species with various salt tolerances were studied. We first used 2DE to resolve the expressed proteome in rice roots and leaves and then used nanospray liquid chromatography/tandem mass spectrometry to identify the differentially expressed proteins in rice seedlings after salt treatment. The 2DE assays revealed that there were 104 differentially expressed protein spots in rice roots and 59 in leaves. Then, we identified 83 proteins in rice roots and 61 proteins in rice leaves by MS analysis. Functional classification analysis revealed that the differentially expressed proteins from roots could be classified into 18 functional categories while those from leaves could be classified into 11 functional categories. The proteins from rice seedlings that most significantly contributed to a protective effect against increased salinity were cysteine synthase, adenosine triphosphate synthase, quercetin 3-O-methyltransferase 1, and lipoxygenase 2. Further analysis demonstrated that the primary mechanisms underlying the ability of rice seedlings to tolerate salt stress were glycolysis, purine metabolism, and photosynthesis. Thus, we suggest that differentially expressed proteins may serve as marker group for the salt tolerance of rice.
Collapse
Affiliation(s)
- Chih-Wei Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Mohammadi R, Mendioro MS, Diaz GQ, Gregorio GB, Singh RK. Mapping quantitative trait loci associated with yield and yield components under reproductive stage salinity stress in rice (Oryza sativa L.). J Genet 2014; 92:433-43. [PMID: 24371165 DOI: 10.1007/s12041-013-0285-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Salinity tolerance in rice is critical at reproductive stage because it ultimately determines grain yield. An F2 mapping population derived from a Sadri/FL478 cross was exposed to saline field conditions (6-8 dS m(-1)) after the active tillering stage to identify reproductive stage specific QTLs for salinity tolerance. Genetic linkage map was constructed using 123 microsatellite markers on 232 F2 progenies. Totally 35 QTLs for 11 traits under salinity stress were detected with LOD > 3, out of which 28 QTLs that explained from 5.9 to 30.0% phenotypic variation were found to be significant based on permutation test. Three major QTL clusters were found on chromosomes 2 (RM423-RM174), 4 (RM551-RM518) and 6 (RM20224-RM528) for multiple traits under salinity stress. Both parental lines contributed additively for QTLs identified for the yield components. A majority of the QTLs detected in our study are reported for the first time for reproductive stage salinity stress. Fine-mapping of selected putative QTLs will be the next step to facilitate marker-assisted backcrossing and to detect useful genes for salinity tolerance at the reproductive stage in rice.
Collapse
Affiliation(s)
- Reza Mohammadi
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO, Box 7777, Metro Manila, Philippines.
| | | | | | | | | |
Collapse
|
33
|
Yan J, Tian H, Wang S, Shao J, Zheng Y, Zhang H, Guo L, Ding Y. Pollen developmental defects in ZD-CMS rice line explored by cytological, molecular and proteomic approaches. J Proteomics 2014; 108:110-23. [PMID: 24878425 DOI: 10.1016/j.jprot.2014.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/13/2014] [Accepted: 05/19/2014] [Indexed: 10/25/2022]
Abstract
UNLABELLED Cytoplasmic male sterility (CMS) is a widely observed phenomenon, which is especially useful in hybrid seed production. Meixiang A (MxA) is a new rice CMS line derived from a pollen-free sterile line named Yunnan ZidaoA (ZD-CMS). In this study, a homologous WA352 gene with variation in two nucleotides was identified in MxA. Cytological analysis revealed that MxA was aborted in the early uninucleate stage. The protein expression profiles of MxA and its maintainer line MeixiangB (MxB) were systematically compared using iTRAQ-based quantitative proteomics technology using young florets at the early uninucleate stage. A total of 688 proteins were quantified in both rice lines, and 45 of these proteins were found to be differentially expressed. Bioinformatics analysis indicated a large number of the proteins involved in carbohydrate metabolism or the stress response were downregulated in MxA, suggesting that these metabolic processes had been hindered during pollen development in MxA. The ROS (reactive oxygen species) level was increased in the mitochondrion of MxA, and further ultrastructural analysis showed the mitochondria with disrupted cristae in the rice CMS line MxA. These findings substantially contribute to our knowledge of pollen developmental defects in ZD-CMS rice line. BIOLOGICAL SIGNIFICANCE MeixiangA (MxA) is a new type of rice CMS line, which is derived from pollen-free sterile line Yunnan ZidaoA. In this study, the cytological, molecular and proteomic approaches were used to study the characteristics of this new CMS line. Cytological study indicates the CMS line is aborted at the early uninucleate stage. A potential sterile gene ZD352 is identified in MxA, the protein product of which is mainly accumulated at the MMC/Meiotic stage. iTRAQ based proteomic analysis is performed to study the relevant proteins involved in the CMS occurance, 45 proteins are found to be significant differentially expressed and these proteins are involved in many cellular processes such as carbohydrate metabolism, stress response, protein synthesis. To our knowledge, this is the first report using the iTRAQ-labeled quantitative proteomic to study the protein expression variation during the abortion processes between a CMS line and its maintainer line. These results provide new insights on the CMS mechanisms of ZD-CMS rice line.
Collapse
Affiliation(s)
- Junjie Yan
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Han Tian
- State Key Laboratory of Virology, Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Shuzhen Wang
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Jinzhen Shao
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Yinzhen Zheng
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Hongyuan Zhang
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Lin Guo
- State Key Laboratory of Virology, Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Yi Ding
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China.
| |
Collapse
|
34
|
Barkla BJ, Castellanos-Cervantes T, de León JLD, Matros A, Mock HP, Perez-Alfocea F, Salekdeh GH, Witzel K, Zörb C. Elucidation of salt stress defense and tolerance mechanisms of crop plants using proteomics--current achievements and perspectives. Proteomics 2014; 13:1885-900. [PMID: 23723162 DOI: 10.1002/pmic.201200399] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 04/12/2013] [Accepted: 04/24/2013] [Indexed: 12/18/2022]
Abstract
Salinity is a major threat limiting the productivity of crop plants. A clear demand for improving the salinity tolerance of the major crop plants is imposed by the rapidly growing world population. This review summarizes the achievements of proteomic studies to elucidate the response mechanisms of selected model and crop plants to cope with salinity stress. We also aim at identifying research areas, which deserve increased attention in future proteome studies, as a prerequisite to identify novel targets for breeding strategies. Such areas include the impact of plant-microbial communities on the salinity tolerance of crops under field conditions, the importance of hormone signaling in abiotic stress tolerance, and the significance of control mechanisms underlying the observed changes in the proteome patterns. We briefly highlight the impact of novel tools for future proteome studies and argue for the use of integrated approaches. The evaluation of genetic resources by means of novel automated phenotyping facilities will have a large impact on the application of proteomics especially in combination with metabolomics or transcriptomics.
Collapse
|
35
|
Kim ST, Kim SG, Agrawal GK, Kikuchi S, Rakwal R. Rice proteomics: a model system for crop improvement and food security. Proteomics 2014; 14:593-610. [PMID: 24323464 DOI: 10.1002/pmic.201300388] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/24/2013] [Accepted: 11/07/2013] [Indexed: 12/14/2022]
Abstract
Rice proteomics has progressed at a tremendous pace since the year 2000, and that has resulted in establishing and understanding the proteomes of tissues, organs, and organelles under both normal and abnormal (adverse) environmental conditions. Established proteomes have also helped in re-annotating the rice genome and revealing the new role of previously known proteins. The progress of rice proteomics had recognized it as the corner/stepping stone for at least cereal crops. Rice proteomics remains a model system for crops as per its exemplary proteomics research. Proteomics-based discoveries in rice are likely to be translated in improving crop plants and vice versa against ever-changing environmental factors. This review comprehensively covers rice proteomics studies from August 2010 to July 2013, with major focus on rice responses to diverse abiotic (drought, salt, oxidative, temperature, nutrient, hormone, metal ions, UV radiation, and ozone) as well as various biotic stresses, especially rice-pathogen interactions. The differentially regulated proteins in response to various abiotic stresses in different tissues have also been summarized, indicating key metabolic and regulatory pathways. We envision a significant role of rice proteomics in addressing the global ground level problem of food security, to meet the demands of the human population which is expected to reach six to nine billion by 2040.
Collapse
Affiliation(s)
- Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, South Korea
| | | | | | | | | |
Collapse
|
36
|
Wang L, Liu X, Liang M, Tan F, Liang W, Chen Y, Lin Y, Huang L, Xing J, Chen W. Proteomic analysis of salt-responsive proteins in the leaves of mangrove Kandelia candel during short-term stress. PLoS One 2014; 9:e83141. [PMID: 24416157 PMCID: PMC3885408 DOI: 10.1371/journal.pone.0083141] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/30/2013] [Indexed: 11/18/2022] Open
Abstract
Salt stress is a major abiotic stress that limits crop productivity in many regions of the world. A comparative proteomic approach to identify salt stress-responsive proteins and to understand the molecular mechanisms was carried out in the woody halophyte Kandelia candel. Four-leaf-old K. candel seedlings were exposed to 150 (control), 300, 450, and 600 mM NaCl for 3 days. Proteins extracted from the leaves of K. candel seedlings were separated by two-dimensional gel electrophoresis (2-DE). More than 900 protein spots were detected on each gel, and 53 differentially expressed protein spots were located with at least two-fold differences in abundance on 2-DE maps, of which 48 were identified by matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF-TOF/MS). The results showed that K. candel could withstand up to 450 mM NaCl stress by up-regulating proteins that are mainly involved in photosynthesis, respiration and energy metabolism, Na(+) compartmentalization, protein folding and assembly, and signal transduction. Physiological data, including superoxide dismutase (SOD) and dehydroascorbate reductase (DHAR) activities, hydrogen peroxide (H2O2) and superoxide anion radicals (O2(-)) contents, as well as Na(+) content and K(+)/Na(+) ratios all correlated well with our proteomic results. This study provides new global insights into woody halophyte salt stress responses. Identification of differentially expressed proteins promotes better understanding of the molecular basis for salt stress reduction in K. candel.
Collapse
Affiliation(s)
- Lingxia Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiao Liu
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Meng Liang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Fanglin Tan
- Fujian Academy of Forestry, Fuzhou, Fujian, China
| | - Wenyu Liang
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia, China
| | - Yiyong Chen
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yongxiang Lin
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Li Huang
- Fujian Academy of Forestry, Fuzhou, Fujian, China
| | - Jianhong Xing
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wei Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
37
|
Ghaffari A, Gharechahi J, Nakhoda B, Salekdeh GH. Physiology and proteome responses of two contrasting rice mutants and their wild type parent under salt stress conditions at the vegetative stage. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:31-44. [PMID: 24094368 DOI: 10.1016/j.jplph.2013.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/13/2013] [Accepted: 07/22/2013] [Indexed: 05/21/2023]
Abstract
Salinity is one of the major environmental limiting factors that affects growth and productivity of rice (Oryza sativa L.) worldwide. Rice is among the most sensitive crops to salinity, especially at early vegetative stages. In order to get a better understanding of molecular pathways affected in rice mutants showing contrasting responses to salinity, we exploited the power of 2-DE based proteomics to explore the proteome changes associated with salt stress response. Our physiological observations showed that standard evaluation system (SES) scores, Na+ and K+ concentrations in shoots and Na+/K+ ratio were significantly different in contrasting mutants under salt stress condition. Proteomics analysis showed that, out of 854 protein spots which were reproducibly detected, 67 protein spots showed significant responses to salt stress. The tandem mass spectrometry analysis of these significantly differentially accumulated proteins resulted in identification of 34 unique proteins. These proteins are involved in various molecular processes including defense to oxidative stresses, metabolisms, photosynthesis, protein synthesis and processing, signal transduction. Several of the identified proteins were emerged as key participants in salt stress tolerance. The possible implication of salt responsive proteins in plant adaptation to salt stress is discussed.
Collapse
Affiliation(s)
- Akram Ghaffari
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, Karaj, Iran
| | | | | | | |
Collapse
|
38
|
Singh R, Jwa NS. Understanding the Responses of Rice to Environmental Stress Using Proteomics. J Proteome Res 2013; 12:4652-69. [DOI: 10.1021/pr400689j] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Raksha Singh
- Department of Molecular Biology,
College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143-747, Republic of Korea
| | - Nam-Soo Jwa
- Department of Molecular Biology,
College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143-747, Republic of Korea
| |
Collapse
|
39
|
A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 2013; 14:7405-32. [PMID: 23549272 PMCID: PMC3645693 DOI: 10.3390/ijms14047405] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 02/28/2013] [Accepted: 03/14/2013] [Indexed: 01/05/2023] Open
Abstract
Abiotic stress poses major problems to agriculture and increasing efforts are being made to understand plant stress response and tolerance mechanisms and to develop new tools that underpin successful agriculture. However, the molecular mechanisms of plant stress tolerance are not fully understood, and the data available is incomplete and sometimes contradictory. Here, we review the significance of protein and non-protein thiol compounds in relation to plant tolerance of abiotic stress. First, the roles of the amino acids cysteine and methionine, are discussed, followed by an extensive discussion of the low-molecular-weight tripeptide, thiol glutathione, which plays a central part in plant stress response and oxidative signalling and of glutathione-related enzymes, including those involved in the biosynthesis of non-protein thiol compounds. Special attention is given to the glutathione redox state, to phytochelatins and to the role of glutathione in the regulation of the cell cycle. The protein thiol section focuses on glutaredoxins and thioredoxins, proteins with oxidoreductase activity, which are involved in protein glutathionylation. The review concludes with a brief overview of and future perspectives for the involvement of plant thiols in abiotic stress tolerance.
Collapse
|
40
|
Alikhani M, Khatabi B, Sepehri M, Nekouei MK, Mardi M, Salekdeh GH. A proteomics approach to study the molecular basis of enhanced salt tolerance in barley (Hordeum vulgare L.) conferred by the root mutualistic fungus Piriformospora indica. MOLECULAR BIOSYSTEMS 2013; 9:1498-510. [DOI: 10.1039/c3mb70069k] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|