1
|
Song Y, Li J, Luan X, Li A, Liu N, Wu ZH, Yang W, Gao W, Zheng X, Zhang XQ. OsCHR728 encodes a chromatin remodeling factor involved in seed size and grain chalkiness in rice. Gene 2025; 951:149396. [PMID: 40058712 DOI: 10.1016/j.gene.2025.149396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
The Imitation Switch (ISWI)ATP-dependent chromatin remodeling factor proteins regulate various developmental processes, spanning from flowering to stress response. However, researches on the roles of ISWI subfamily genes in rice have been limited. This study investigated the expression profile of the rice chromatin remodeler OsCHR728, encoding an ISWI protein, across various tissues and developing stages. Our findings reveal that OsCHR728 is highly accumulated during early stage of the panicle development. We generated OsCHR728 knockout (KO) lines in rice using CRISPR/Cas9 technology. These mutant lines displayed smaller grain size compared to the wild type (Zhonghua 11, ZH11). Expression analysis revealed a significant downregulation of the transcript levels of five genes associated with cell cycle regulation in KO grains compared to the wild type, consistent with the reduced cell number in the mutant grains. Additionally, total free amino acid levels were higher in the KO mutant compared to the wild type, consequently enhancing the nutritional quality of the KO mutant grains. The mature endosperm of the KO mutant exhibited a reduced percentage of chalky grains and less chalkiness, suggesting an improvement in the appearance quality of the KO mutant. These results suggest that chromatin remodeling factor OsCHR728 plays a role in grain development, potentially providing a new avenue to enhance both the appearance and nutritional quality of rice cultivars.
Collapse
Affiliation(s)
- Yuxin Song
- Department of Horticulture, College of Agricultural and Biological Engineering, Foshan University, Foshan, China
| | - Jieni Li
- Department of Horticulture, College of Agricultural and Biological Engineering, Foshan University, Foshan, China; Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Xin Luan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ao Li
- Department of Horticulture, College of Agricultural and Biological Engineering, Foshan University, Foshan, China
| | - Na Liu
- Department of Horticulture, College of Agricultural and Biological Engineering, Foshan University, Foshan, China
| | - Zhi-Hao Wu
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Weifeng Yang
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Wanzhen Gao
- Department of Horticulture, College of Agricultural and Biological Engineering, Foshan University, Foshan, China
| | - Xia Zheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.
| | - Xiang-Qian Zhang
- Department of Horticulture, College of Agricultural and Biological Engineering, Foshan University, Foshan, China.
| |
Collapse
|
2
|
Li Z, Wang Z, Wang C, Zeng X, Tang J, Zhu H, Lin H, Zhu S, Li Y, Yao P, Gao Y, He G, Zhuang H, Li Y. LATERAL FLORET 2 encoding a sucrose non-fermenting 2 chromatin remodeling factor regulates axillary meristem of spikelet development in rice (Oryza sativa). THE NEW PHYTOLOGIST 2025; 246:598-615. [PMID: 40007170 DOI: 10.1111/nph.20455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
The spikelet, a unique inflorescence unit of grasses such as rice (Oryza sativa), possesses developmental regulatory mechanisms that require further exploration. In this study, we identified a mutant named lateral floret2 (lf2), which exhibited abnormalities in spikelet development. The lf2 mutants produced lateral florets within the axils of sterile lemmas and/or lateral spikelets within the axils of rudimentary glumes. Additionally, elongated rudimentary glumes and lemma-like sterile lemmas were observed in these mutant spikelets. Notably, these ectopic lateral florets or spikelets bored normal floral organs similar to the wild-type terminal florets. The LF2 gene encoded a SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A-like 1 subfamily chromatin remodeling factor belonging to the sucrose non-fermenting 2 family and was located in the nucleus. Furthermore, we detected interactions between LF2 and several subunits of nuclear factors (NF-Ys), and the CRISPR/Cas9-mediated mutation of OsNF-YA3 in transgenic plants exhibited partially similar defects in spikelet to lf2 mutant. Through correlation analyses among RNA-Seq, reverse transcription quantitative polymerase chain reaction and chromatin immunoprecipitation (ChIP) of H3K27Me3, we identified several genes involved in the auxin synthesis/signaling pathway and organ development that exhibited differences in gene expression and histone modifications. Moreover, biochemical analyses revealed that LF2 directly targeted the G1 locus. Genetic analyses supported the hypothesis that LF2 functioned upstream of G1 to regulate sterile lemma development. Our work revealed that LF2 regulated axillary meristem initiation by modulating the auxin synthesis and signaling pathway, and determined sterile lemma identity by maintaining the expression of the G1 gene during spikelet development.
Collapse
Affiliation(s)
- Zhongcheng Li
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Ziyi Wang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Chengyang Wang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaoqin Zeng
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Jun Tang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Honghui Zhu
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Hong Lin
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Siying Zhu
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yuhuan Li
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Puyang Yao
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yuanzhuo Gao
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Guanghua He
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Hui Zhuang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yunfeng Li
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
3
|
Bai X, Tang M, Hu X, Huang P, Wu Y, Chen T, He H, Xu ZF. Comparative transcriptome analysis of Cyperus esculentus and C. rotundus with contrasting oil contents in tubers defines genes and regulatory networks involved in oil accumulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112230. [PMID: 39154894 DOI: 10.1016/j.plantsci.2024.112230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Plant vegetative organs present great potential for lipid storage, with tubers of Cyperus esculentus as a unique example. To investigate the genome and transcriptomic features of C. esculentus and related species, we sequenced and assembled the C. esculentus genome at the contig level. Through a comparative study of high-quality transcriptomes across 36 tissues from high-oil and intermediate-oil C. esculentus and low-oil Cyperus rotundus, we identified potential genes and regulatory networks related to tuber oil accumulation. First, we identified tuber-specific genes in two C. esculentus cultivars. Second, genes involved in fatty acid (FA) biosynthesis, triacylglycerol synthesis, and TAG packaging presented increased activity in the later stages of tuber development. Notably, tubers with high oil contents presented higher levels of these genes than those with intermediate oil contents did, whereas tubers with low oil contents presented minimal gene expression. Notably, a large fragment of the FA biosynthesis rate-limiting enzyme-encoding gene BCCP1 was missing from the C. rotundus transcript, which might be responsible for blocking FA biosynthesis in its tubers. WGCNA pinpointed a gene module linked to tuber oil accumulation, with a coexpression network involving the transcription factors WRI1, MYB4, and bHLH68. The ethylene-related genes in this module suggest a role for ethylene signaling in oil accumulation, which is supported by the finding that ethylene (ETH) treatment increases the oil content in C. esculentus tubers. This study identified potential genes and networks associated with tuber oil accumulation in C. esculentus, highlighting the role of specific genes, transcription factors, and ethylene signaling in this process.
Collapse
Affiliation(s)
- Xue Bai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyong Tang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla 666303, China.
| | - Xiaodi Hu
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Ping Huang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Wu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Tao Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Huiying He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla 666303, China
| | - Zeng-Fu Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
4
|
Yin M, Wang S, Wang Y, Wei R, Liang Y, Zuo L, Huo M, Huang Z, Lang J, Zhao X, Zhang F, Xu J, Fu B, Li Z, Wang W. Impact of Abiotic Stress on Rice and the Role of DNA Methylation in Stress Response Mechanisms. PLANTS (BASEL, SWITZERLAND) 2024; 13:2700. [PMID: 39409570 PMCID: PMC11478684 DOI: 10.3390/plants13192700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024]
Abstract
With the intensification of global climate change and the increasing complexity of agricultural environments, the improvement of rice stress tolerance is an important focus of current breeding research. This review summarizes the current knowledge on the impact of various abiotic stresses on rice and the associated epigenetic responses (DNA methylation). Abiotic stress factors, including high temperature, drought, cold, heavy metal pollution, and high salinity, have a negative impact on crop productivity. Epigenetic changes are key regulatory factors in plant stress responses, and DNA methylation is one of the earliest discovered and thoroughly studied mechanisms in these epigenetic regulatory mechanisms. The normal growth of rice is highly dependent on the environment, and changes in the environment can lead to rice sterility and severe yield loss. Changes in the regulation of the DNA methylation pathway are involved in rice's response to stress. Various DNA methylation-regulating protein complexes that function during rice development have been identified. Significant changes in DNA methylation occur in numerous stress-responsive genes, particularly those in the abscisic acid signaling pathway. These findings underscore the complex mechanisms of the abiotic stress response in rice. We propose the effective improvement of tolerance traits by regulating the epigenetic status of rice and emphasize the role of DNA methylation in abiotic stress tolerance, thereby addressing global climate change and ensuring food security.
Collapse
Affiliation(s)
- Ming Yin
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shanwen Wang
- Southwest United Graduate School, Kunming 650092, China;
- Center of Innovation for Perennial Rice Technology in Yunnan, School of Agriculture, Yunnan University, Kunming 650091, China; (Z.H.); (J.L.)
| | - Yanfang Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Ronghua Wei
- Department of Agronomy, Hebei Agricultural University, Baoding 071001, China;
| | - Yawei Liang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Liying Zuo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Mingyue Huo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Zekai Huang
- Center of Innovation for Perennial Rice Technology in Yunnan, School of Agriculture, Yunnan University, Kunming 650091, China; (Z.H.); (J.L.)
| | - Jie Lang
- Center of Innovation for Perennial Rice Technology in Yunnan, School of Agriculture, Yunnan University, Kunming 650091, China; (Z.H.); (J.L.)
| | - Xiuqin Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Fan Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Jianlong Xu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Binying Fu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Zichao Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Wensheng Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
- Southwest United Graduate School, Kunming 650092, China;
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
5
|
Zhang Y, Dong G, Zhang Y, Jiang Y, Chen F, Ruan B, Wu L, Yu Y. BLA1 Affects Leaf Angles by Altering Brassinosteroid Biosynthesis in Rice ( Oryza sativa L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19629-19643. [PMID: 39207175 DOI: 10.1021/acs.jafc.4c04248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Brassinosteroids (BRs) are crucial plant hormones influencing diverse developmental processes in rice. While several enzymes in BR biosynthesis have been identified, their regulatory mechanisms remain largely unknown. This study highlights a novel regulatory pathway wherein the CHD3 chromatin remodeler, BLA1, epigenetically modulates the expression of key BR biosynthesis genes, BRD1 and D2. Phenotypic analysis of bla1 mutants revealed significant alterations, such as increased leaf angles and longer mesocotyls, which were alleviated by BR synthesis inhibitors. Moreover, the bla1 mutants showed elevated BR levels that correlated with the significant upregulation of the expression levels of BRD1 and D2, particularly at the lamina joint sites. Mechanistically, the yeast one-hybrid and chromatin immunoprecipitation assays revealed specific binding of BLA1 to the promoter regions of BRD1 and D2, accompanied by a marked enrichment of the transcriptionally active histone modification, H3K4me3, on these loci in the bla1 mutant. Functional assessments of the brd1 and d2 mutants confirmed their reduced sensitivity to BR, further underscoring their critical regulatory roles in BR-mediated developmental processes. Our findings uncovered an epigenetic mechanism that governs BR biosynthesis and orchestrates the expression of BRD1 and D2 to modulate BR levels and influence rice growth and development.
Collapse
Affiliation(s)
- Yanli Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- School of Life Sciences, Central South University, Changsha 410083, Hunan, China
| | - Guojun Dong
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, Zhejiang, China
| | - Ying Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yaohuang Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Fei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Banpu Ruan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Limin Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yanchun Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
6
|
Han J, Wang Q, Qian B, Liu Q, Wang Z, Liu Y, Chen Z, Wu W, Zhang C, Yin Y. Exploring the Roles of the Swi2/ Snf2 Gene Family in Maize Abiotic Stress Responses. Int J Mol Sci 2024; 25:9686. [PMID: 39273633 PMCID: PMC11396418 DOI: 10.3390/ijms25179686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
The maize Snf2 gene family plays a crucial role in chromatin remodeling and response to environmental stresses. In this study, we identified and analyzed 35 members of the maize Snf2 gene family (ZmCHR1 to ZmCHR35) using the Ensembl Plants database. Each protein contained conserved SNF2-N and Helicase-C domains. Phylogenetic analysis revealed six groups among the Snf2 proteins, with an uneven distribution across subfamilies. Physicochemical analysis indicated that the Snf2 proteins are hydrophilic, with varied amino acid lengths, isoelectric points, and molecular weights, and are predominantly localized in the nucleus. Chromosomal mapping showed that these genes are distributed across all ten maize chromosomes. Gene structure analysis revealed diverse exon-intron arrangements, while motif analysis identified 20 conserved motifs. Collinearity analysis highlighted gene duplication events, suggesting purifying selection. Cis-regulatory element analysis suggested involvement in abiotic and biotic stress responses. Expression analysis indicated tissue-specific expression patterns and differential expression under various stress conditions. Specifically, qRT-PCR validation under drought stress showed that certain Snf2 genes were upregulated at 12 h and downregulated at 24 h, revealing potential roles in drought tolerance. These findings provide a foundation for further exploration of the functional roles of the maize Snf2 gene family in development and stress responses.
Collapse
Affiliation(s)
- Jiarui Han
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun 130033, China
- College of Agriculture, Yanbian University, Yanji 133002, China
| | - Qi Wang
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun 130033, China
| | - Buxuan Qian
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun 130033, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Qing Liu
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun 130033, China
| | - Ziyu Wang
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun 130033, China
| | - Yang Liu
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun 130033, China
| | - Ziqi Chen
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun 130033, China
| | - Weilin Wu
- College of Agriculture, Yanbian University, Yanji 133002, China
| | - Chuang Zhang
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun 130033, China
| | - Yuejia Yin
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun 130033, China
| |
Collapse
|
7
|
Pal AK, Gandhivel VHS, Nambiar AB, Shivaprasad PV. Upstream regulator of genomic imprinting in rice endosperm is a small RNA-associated chromatin remodeler. Nat Commun 2024; 15:7807. [PMID: 39242590 PMCID: PMC11379814 DOI: 10.1038/s41467-024-52239-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
Genomic imprinting is observed in endosperm, a placenta-like seed tissue, where transposable elements (TEs) and repeat-derived small RNAs (sRNAs) mediate epigenetic changes in plants. In imprinting, uniparental gene expression arises due to parent-specific epigenetic marks on one allele but not on the other. The importance of sRNAs and their regulation in endosperm development or in imprinting is poorly understood in crops. Here we show that a previously uncharacterized CLASSY (CLSY)-family chromatin remodeler named OsCLSY3 is essential for rice endosperm development and imprinting, acting as an upstream player in the sRNA pathway. Comparative transcriptome and genetic analysis indicated its endosperm-preferred expression and its likely paternal imprinted nature. These important features are modulated by RNA-directed DNA methylation (RdDM) of tandemly arranged TEs in its promoter. Upon perturbation of OsCLSY3 in transgenic lines, we observe defects in endosperm development and a loss of around 70% of all sRNAs. Interestingly, well-conserved endosperm-specific sRNAs (siren) that are vital for reproductive fitness in angiosperms are also dependent on OsCLSY3. We observed that many imprinted genes and seed development-associated genes are under the control of OsCLSY3. These results support an essential role of OsCLSY3 in rice endosperm development and imprinting, and propose similar regulatory strategies involving CLSY3 homologs among other cereals.
Collapse
Affiliation(s)
- Avik Kumar Pal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Vivek Hari-Sundar Gandhivel
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Amruta B Nambiar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - P V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India.
| |
Collapse
|
8
|
Qian F, Zuo D, Xue Y, Guan W, Ullah N, Zhu J, Cai G, Zhu B, Wu X. Comprehensive genome-wide identification of Snf2 gene family and their expression profile under salt stress in six Brassica species of U's triangle model. PLANTA 2024; 260:49. [PMID: 38985323 DOI: 10.1007/s00425-024-04473-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024]
Abstract
MAIN CONCLUSION We comprehensively identified and analyzed the Snf2 gene family. Some Snf2 genes were involved in responding to salt stress based on the RNA-seq and qRT-PCR analysis. Sucrose nonfermenting 2 (Snf2) proteins are core components of chromatin remodeling complexes that not only alter DNA accessibility using the energy of ATP hydrolysis, but also play a critical regulatory role in growth, development, and stress response in eukaryotes. However, the comparative study of Snf2 gene family in the six Brassica species in U's triangle model remains unclear. Here, a total of 405 Snf2 genes were identified, comprising 53, 50, and 46 in the diploid progenitors: Brassica rapa (AA, 2n = 20), Brassica nigra (BB, 2n = 16), and Brassica oleracea (CC, 2n = 18), and 93, 91, and 72 in the allotetraploid: Brassica juncea (AABB, 2n = 36), Brassica napus (AACC, 2n = 38), and Brassica carinata (BBCC, 2n = 34), respectively. These genes were classified into six clades and further divided into 18 subfamilies based on their conserved motifs and domains. Intriguingly, these genes showed highly conserved chromosomal distributions and gene structures, indicating that few dynamic changes occurred during the polyploidization. The duplication modes of the six Brassica species were diverse, and the expansion of most Snf2 in Brassica occurred primarily through dispersed duplication (DSD) events. Additionally, the majority of Snf2 genes were under purifying selection during polyploidization, and some Snf2 genes were associated with various abiotic stresses. Both RNA-seq and qRT-PCR analysis showed that the expression of BnaSnf2 genes was significantly induced under salt stress, implying their involvement in salt tolerance response in Brassica species. The results provide a comprehensive understanding of the Snf2 genes in U's triangle model species, which will facilitate further functional analysis of the Snf2 genes in Brassica plants.
Collapse
Affiliation(s)
- Fang Qian
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
| | - Dan Zuo
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Yujun Xue
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
| | - Wenjie Guan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
| | - Naseeb Ullah
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
| | - Jiarong Zhu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
| | - Guangqin Cai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China.
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China.
| |
Collapse
|
9
|
Myint ZM, Koide Y, Takanishi W, Ikegaya T, Kwan C, Hikichi K, Tokuyama Y, Okada S, Onishi K, Ishikawa R, Fujita D, Yamagata Y, Matsumura H, Kishima Y, Kanazawa A. OlCHR, encoding a chromatin remodeling factor, is a killer causing hybrid sterility between rice species Oryza sativa and O. longistaminata. iScience 2024; 27:109761. [PMID: 38706863 PMCID: PMC11067373 DOI: 10.1016/j.isci.2024.109761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/26/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
The genetic mechanisms of reproductive isolation have been widely investigated within Asian cultivated rice (Oryza sativa); however, relevant genes between diverged species have been in sighted rather less. Herein, a gene showing selfish behavior was discovered in hybrids between the distantly related rice species Oryza longistaminata and O. sativa. The selfish allele S13l in the S13 locus impaired male fertility, discriminately eliminating pollens containing the allele S13s from O. sativa in heterozygotes (S13s/S13l). Genetic analysis revealed that a gene encoding a chromatin-remodeling factor (CHR) is involved in this phenomenon and a variety of O. sativa owns the truncated gene OsCHR745, whereas its homologue OlCHR has a complete structure in O. longistaminata. CRISPR-Cas9-mediated loss of function mutants restored fertility in hybrids. African cultivated rice, which naturally lacks the OlCHR homologue, is compatible with both S13s and S13l carriers. These results suggest that OlCHR is a Killer gene, which leads to reproductive isolation.
Collapse
Affiliation(s)
- Zin Mar Myint
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yohei Koide
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Wakana Takanishi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Tomohito Ikegaya
- National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Choi Kwan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Kiwamu Hikichi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yoshiki Tokuyama
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shuhei Okada
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Kazumitsu Onishi
- Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Ryo Ishikawa
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | | | | | | | - Yuji Kishima
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Akira Kanazawa
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
10
|
Zhang G, Jiao Y, Zhao Z, Chen Q, Wang Z, Zhu J, Lv N, Sun G. Genome-Wide and Expression Pattern Analysis of the HIT4 Gene Family Uncovers the Involvement of GHHIT4_4 in Response to Verticillium Wilt in Gossypium hirsutum. Genes (Basel) 2024; 15:348. [PMID: 38540407 PMCID: PMC10970331 DOI: 10.3390/genes15030348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 06/14/2024] Open
Abstract
Chromatin remodelers are essential for regulating plant growth, development, and responses to environmental stresses. HIT4 (HEAT-INTOLERANT 4) is a novel stress-induced chromatin remodeling factor that has been less studied in abiotic stress and stress resistance, particularly in cotton. In this study, we conducted a comprehensive analysis of the members of the HIT4 gene family in Gossypium hirsutum using bioinformatics methods, including phylogenetic relationships, gene organization, transcription profiles, phylogenetic connections, selection pressure, and stress response. A total of 18 HIT4 genes were identified in four cotton species, with six HIT4 gene members in upland cotton. Based on the evolutionary relationships shown in the phylogenetic tree, the 18 HIT4 protein sequences were classified into four distinct subgroups. Furthermore, we conducted chromosome mapping to determine the genomic locations of these genes and visually represented the structural characteristics of HIT4 in G. hirsutum. In addition, we predicted the regulatory elements in HIT4 in G. hirsutum and conducted an analysis of repetitive sequences and gene collinearity among HIT4 in four cotton species. Moreover, we calculated the Ka/Ks ratio for homologous genes to assess the selection pressure acting on HIT4. Using RNA-seq, we explored the expression patterns of HIT4 genes in G. hirsutum and Gossypium barbadense. Through weighted gene co-expression network analysis (WGCNA), we found that GHHIT4_4 belonged to the MEblue module, which was mainly enriched in pathways such as DNA replication, phagosome, pentose and glucuronate interconversions, steroid biosynthesis, and starch and sucrose metabolism. This module may regulate the mechanism of upland cotton resistance to Verticillium wilt through DNA replication, phagosome, and various metabolic pathways. In addition, we performed heterologous overexpression of GH_D11G0591 (GHHIT4_4) in tobacco, and the results showed a significant reduction in disease index compared to the wild type, with higher expression levels of disease resistance genes in the transgenic tobacco. After conducting a VIGS (virus-induced gene silencing) experiment in cotton, the results indicated that silencing GHHIT4_4 had a significant impact, the resistance to Verticillium wilt weakened, and the internode length of the plants significantly decreased by 30.7% while the number of true leaves increased by 41.5%. qRT-PCR analysis indicated that GHHIT4_4 mainly enhanced cotton resistance to Verticillium wilt by indirectly regulating the PAL, 4CL, and CHI genes. The subcellular localization results revealed that GHHIT4_4 was predominantly distributed in the mitochondria and nucleus. This study offers preliminary evidence for the involvement of the GHHIT4_4 in cotton resistance to Verticillium wilt and lays the foundation for further research on the disease resistance mechanism of this gene in cotton.
Collapse
Affiliation(s)
- Guoli Zhang
- Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation, 221 Wuyi Highway, Shihezi 832000, China; (G.Z.)
- College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (Y.J.)
- Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Shehezi 832000, China
| | - Yang Jiao
- College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (Y.J.)
- Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Shehezi 832000, China
- Xinjiang Academy of Agricultural and Reclamation, 221 Wuyi Highway, Shihezi 832000, China
| | - Zengqiang Zhao
- Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Shehezi 832000, China
- Xinjiang Academy of Agricultural and Reclamation, 221 Wuyi Highway, Shihezi 832000, China
| | - Quanjia Chen
- College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (Y.J.)
| | - Zhijun Wang
- Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation, 221 Wuyi Highway, Shihezi 832000, China; (G.Z.)
- Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Shehezi 832000, China
| | - Jincheng Zhu
- Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation, 221 Wuyi Highway, Shihezi 832000, China; (G.Z.)
- Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Shehezi 832000, China
| | - Ning Lv
- Xinjiang Academy of Agricultural and Reclamation, 221 Wuyi Highway, Shihezi 832000, China
| | - Guoqing Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
11
|
Song Y, He J, Guo J, Xie Y, Ma Z, Liu Z, Niu C, Li X, Chu B, Tahir MM, Xu J, Ma F, Guan Q. The chromatin remodeller MdRAD5B enhances drought tolerance by coupling MdLHP1-mediated H3K27me3 in apple. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:617-634. [PMID: 37874929 PMCID: PMC10893944 DOI: 10.1111/pbi.14210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
RAD5B belongs to the Rad5/16-like group of the SNF2 family, which often functions in chromatin remodelling. However, whether RAD5B is involved in chromatin remodelling, histone modification, and drought stress tolerance is largely unclear. We identified a drought-inducible chromatin remodeler, MdRAD5B, which positively regulates apple drought tolerance. Transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) analysis showed that MdRAD5B affects the expression of 466 drought-responsive genes through its chromatin remodelling function in response to drought stress. In addition, MdRAD5B interacts with and degrades MdLHP1, a crucial regulator of histone H3 trimethylation at K27 (H3K27me3), through the ubiquitin-independent 20S proteasome. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis revealed that MdRAD5B modulates the H3K27me3 deposition of 615 genes in response to drought stress. Genetic interaction analysis showed that MdRAD5B mediates the H3K27me3 deposition of drought-responsive genes through MdLHP1, which causes their expression changes under drought stress. Our results unravelled a dual function of MdRAD5B in gene expression modulation in apple in response to drought, that is, via the regulation of chromatin remodelling and H3K27me3.
Collapse
Affiliation(s)
- Yi Song
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Junxing Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Yinpeng Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Ziqing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Zeyuan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Chundong Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Baohua Chu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Muhammad Mobeen Tahir
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Jidi Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
- Shenzhen Research InstituteNorthwest A&F UniversityShenzhenChina
| |
Collapse
|
12
|
Zhang Y, Huang D, Miao Y. Epigenetic control of plant senescence and cell death and its application in crop improvement. FRONTIERS IN PLANT SCIENCE 2023; 14:1258487. [PMID: 37965008 PMCID: PMC10642554 DOI: 10.3389/fpls.2023.1258487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023]
Abstract
Plant senescence is the last stage of plant development and a type of programmed cell death, occurring at a predictable time and cell. It involves the functional conversion from nutrient assimilation to nutrient remobilization, which substantially impacts plant architecture and plant biomass, crop quality, and horticultural ornamental traits. In past two decades, DNA damage was believed to be a main reason for cell senescence. Increasing evidence suggests that the alteration of epigenetic information is a contributing factor to cell senescence in organisms. In this review, we summarize the current research progresses of epigenetic and epitranscriptional mechanism involved in cell senescence of plant, at the regulatory level of DNA methylation, histone methylation and acetylation, chromatin remodeling, non-coding RNAs and RNA methylation. Furthermore, we discuss their molecular genetic manipulation and potential application in agriculture for crop improvement. Finally we point out the prospects of future research topics.
Collapse
Affiliation(s)
- Yu Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongmei Huang
- Department of Biochemistry and Molecular Biology, Xiamen Medical College, Xiamen, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
13
|
Yan H, Liu F, Zhang G, Liu S, Ma W, Yang T, Li Y, Yang J, Cui H. PlantCHRs: A comprehensive database of plant chromatin remodeling factors. Comput Struct Biotechnol J 2023; 21:4974-4987. [PMID: 37867975 PMCID: PMC10589754 DOI: 10.1016/j.csbj.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
The Snf2 protein family is a group of ATP-dependent chromatin remodeling factors (CHRs) that play an essential role in gene expression regulation. In plants, Snf2 is involved in growth, development, as well as stress resistance. However, only a very limited number of experimentally validated Snf2 have been identified and reported, while the majority remaining undiscovered in most species . In this study, we predicted 3135 Snf2 proteins and 8398 chromatin remodeling complex (CRC) subunits in diverse plant species, and constructed the Plant Chromatin Remodeling Factors Database (PlantCHRs, http://www.functionalgenomics.cn/PlantCHRs/), which provide a comprehensive resource for researchers to access information about plant CHRs. We also developed an online tool capable of predicting CHRs and CRC subunits. Moreover, we investigated the distribution of Snf2 proteins in different species and observed a significant increase in the number of Snf2 proteins and the diversity of the Snf2 subfamily during the evolution, highlighting their evolutionary importance. By analyzing the expression patterns of the Snf2 genes in different tissues of maize and Arabidopsis, we found that the Snf2 proteins may show some conservation across different species in regulating plant growth and development. Over the all, we established a comprehensive database for plant CHRs, which will facilitate the researches on plant chromatin remodeling.
Collapse
Affiliation(s)
- Hengyu Yan
- College of Agronomy, Qingdao Agricultural University, China
| | - Fangyuan Liu
- College of Agronomy, Qingdao Agricultural University, China
| | - Guowei Zhang
- College of Agronomy, Qingdao Agricultural University, China
| | - Shuai Liu
- College of Agronomy, Qingdao Agricultural University, China
| | - Weiwei Ma
- College of Agronomy, Qingdao Agricultural University, China
| | - Ting Yang
- College of Agronomy, Qingdao Agricultural University, China
| | - Yubin Li
- College of Agronomy, Qingdao Agricultural University, China
| | - Jiaotong Yang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hailong Cui
- College of Economics and Management (Cooperative College), Qingdao Agricultural University, China
| |
Collapse
|
14
|
Liu H, Li J, Wang S, Hua J, Zou B. CHROMATIN REMODELING 11-dependent nucleosome occupancy affects disease resistance in rice. PLANT PHYSIOLOGY 2023; 193:1635-1651. [PMID: 37403194 DOI: 10.1093/plphys/kiad381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023]
Abstract
Plant immune responses involve transcriptional reprograming of defense response genes, and chromatin remodeling is important for transcriptional regulation. However, nucleosome dynamics induced by pathogen infection and its association with gene transcription are largely unexplored in plants. Here, we investigated the role of the rice (Oryza sativa) gene CHROMATIN REMODELING 11 (OsCHR11) in nucleosome dynamics and disease resistance. Nucleosome profiling revealed that OsCHR11 is required for the maintaining of genome-wide nucleosome occupancy in rice. Nucleosome occupancy of 14% of the genome was regulated by OsCHR11. Infection of bacterial leaf blight Xoo (Xanthomonas oryzae pv. oryzae) repressed genome-wide nucleosome occupancy, and this process depended on OsCHR11 function. Furthermore, OsCHR11/Xoo-dependent chromatin accessibility correlated with gene transcript induction by Xoo. In addition, accompanied by increased resistance to Xoo, several defense response genes were differentially expressed in oschr11 after Xoo infection. Overall, this study reports the genome-wide effects of pathogen infection on nucleosome occupancy, its regulation, and its contribution to disease resistance in rice.
Collapse
Affiliation(s)
- He Liu
- The State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Li
- The State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Wang
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Hua
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Baohong Zou
- The State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Wang J, Sun Z, Liu H, Yue L, Wang F, Liu S, Su B, Liu B, Kong F, Fang C. Genome-Wide Identification and Characterization of the Soybean Snf2 Gene Family and Expression Response to Rhizobia. Int J Mol Sci 2023; 24:ijms24087250. [PMID: 37108411 PMCID: PMC10138738 DOI: 10.3390/ijms24087250] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Sucrose nonfermenting 2 (Snf2) family proteins are the core component of chromatin remodeling complexes that can alter chromatin structure and nucleosome position by utilizing the energy of ATP, playing a vital role in transcription regulation, DNA replication, and DNA damage repair. Snf2 family proteins have been characterized in various species including plants, and they have been found to regulate development and stress responses in Arabidopsis. Soybean (Glycine max) is an important food and economic crop worldwide, unlike other non-leguminous crops, soybeans can form a symbiotic relationship with rhizobia for biological nitrogen fixation. However, little is known about Snf2 family proteins in soybean. In this study, we identified 66 Snf2 family genes in soybean that could be classified into six groups like Arabidopsis, unevenly distributed on 20 soybean chromosomes. Phylogenetic analysis with Arabidopsis revealed that these 66 Snf2 family genes could be divided into 18 subfamilies. Collinear analysis showed that segmental duplication was the main mechanism for expansion of Snf2 genes rather than tandem repeats. Further evolutionary analysis indicated that the duplicated gene pairs had undergone purifying selection. All Snf2 proteins contained seven domains, and each Snf2 protein had at least one SNF2_N domain and one Helicase_C domain. Promoter analysis revealed that most Snf2 genes had cis-elements associated with jasmonic acid, abscisic acid, and nodule specificity in their promoter regions. Microarray data and real-time quantitative PCR (qPCR) analysis revealed that the expression profiles of most Snf2 family genes were detected in both root and nodule tissues, and some of them were found to be significantly downregulated after rhizobial infection. In this study, we conducted a comprehensive analysis of the soybean Snf2 family genes and demonstrated their responsiveness to Rhizobia infection. This provides insight into the potential roles of Snf2 family genes in soybean symbiotic nodulation.
Collapse
Affiliation(s)
- Jianhao Wang
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Zhihui Sun
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Huan Liu
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Lin Yue
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Fan Wang
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Shuangrong Liu
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Bohong Su
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Baohui Liu
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Fanjiang Kong
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Chao Fang
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
16
|
Chen G, Mishina K, Zhu H, Kikuchi S, Sassa H, Oono Y, Komatsuda T. Genome-Wide Analysis of Snf2 Gene Family Reveals Potential Role in Regulation of Spike Development in Barley. Int J Mol Sci 2022; 24:ijms24010457. [PMID: 36613901 PMCID: PMC9820626 DOI: 10.3390/ijms24010457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Sucrose nonfermenting 2 (Snf2) family proteins, as the catalytic core of ATP-dependent chromatin remodeling complexes, play important roles in nuclear processes as diverse as DNA replication, transcriptional regulation, and DNA repair and recombination. The Snf2 gene family has been characterized in several plant species; some of its members regulate flower development in Arabidopsis. However, little is known about the members of the family in barley (Hordeum vulgare). Here, 38 Snf2 genes unevenly distributed among seven chromosomes were identified from the barley (cv. Morex) genome. Phylogenetic analysis categorized them into 18 subfamilies. They contained combinations of 21 domains and consisted of 3 to 34 exons. Evolution analysis revealed that segmental duplication contributed predominantly to the expansion of the family in barley, and the duplicated gene pairs have undergone purifying selection. About eight hundred Snf2 family genes were identified from 20 barley accessions, ranging from 38 to 41 genes in each. Most of these genes were subjected to purification selection during barley domestication. Most were expressed abundantly during spike development. This study provides a comprehensive characterization of barley Snf2 family members, which should help to improve our understanding of their potential regulatory roles in barley spike development.
Collapse
Affiliation(s)
- Gang Chen
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba 305-8602, Japan
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo 271-8510, Japan
| | - Kohei Mishina
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba 305-8602, Japan
| | - Hongjing Zhu
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba 305-8602, Japan
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo 271-8510, Japan
| | - Shinji Kikuchi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo 271-8510, Japan
| | - Hidenori Sassa
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo 271-8510, Japan
| | - Youko Oono
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba 305-8602, Japan
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo 271-8510, Japan
- Correspondence: (Y.O.); (T.K.); Tel.: +81-29-838-7443 (Y.O.); +86-531-6665-8143 (T.K.)
| | - Takao Komatsuda
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba 305-8602, Japan
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo 271-8510, Japan
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Jinan 252100, China
- Correspondence: (Y.O.); (T.K.); Tel.: +81-29-838-7443 (Y.O.); +86-531-6665-8143 (T.K.)
| |
Collapse
|
17
|
Xiang R, Ahmad B, Liang C, Shi X, Yang L, Du G, Wang L. Systematic genome-wide and expression analysis of RNA-directed DNA methylation pathway genes in grapes predicts their involvement in multiple biological processes. FRONTIERS IN PLANT SCIENCE 2022; 13:1089392. [PMID: 36570893 PMCID: PMC9780290 DOI: 10.3389/fpls.2022.1089392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
RNA-directed DNA methylation (RdDM) is an important epigenetic pathway in plants and mediates transcriptional silencing by siRNAs. Different gene families have role in the regulation of the RdDM pathway and there is a lack of information about these gene families in the grapes (Vitis vinifera L.). Here, we mentioned the genome-wide identification, bioinformatics analysis, evolutionary history, and expression profiling of VvRdDM pathway genes against various stresses, hormonal treatments as well as in different organs. Sixty VvRdDM genes belonging to fourteen different families were identified. All the genes were unevenly distributed and chromosome 4 contained the highest number of genes (7). Most of the genes showed similar exon-intron and motif distribution patterns within the same subfamilies. Out of 14 families, only members of 4 families underwent duplication events during the evolutionary process and 50% of members of the AGO family are the result of duplication events. Based on Ka/Ks ratio all duplicated gene pairs have a negative mode of selection. VvRdDM pathway genes showed differential spatiotemporal expression patterns against different hormone and stress treatments. Further, with multiple transcriptome analysis, some VvRdDM genes showed a broad spectrum of high expression in different organs at various stages, and VvRdDM genes also displayed different expression in seeded and seedless cultivars during different phases of seed development. This proposed that VvRdDM genes may play multiple roles in grape growth and development, especially in seed development. qRT-PCR analysis of selected genes further verified the critical roles of RdDM genes in multiple biological processes, especially in seed development/ovule abortion i.e., VvIDN2a, VvDRD1a, VvRDR1a, and VvRDR6. Our study provides detailed information about VvRdDM genes in perspective of gene structure and evolution, as well as expression pattern against different stress, hormones and in different plants parts. It provides new candidate gene resources for further functional characterization and molecular breeding of grapes.
Collapse
Affiliation(s)
- Rui Xiang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Bilal Ahmad
- College of Horticulture, Hebei Agricultural University, Baoding, China
- Department of Horticulture, Muhammad Nawaz Sharif (MNS)-University of Agriculture Multan, Multan, Pakistan
| | - Chen Liang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xiaoxin Shi
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Lili Yang
- Shijiazhuang Fruit Research Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Guoqiang Du
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Li Wang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| |
Collapse
|
18
|
Jacques CN, Favero DS, Kawamura A, Suzuki T, Sugimoto K, Neff MM. SUPPRESSOR OF PHYTOCHROME B-4 #3 reduces the expression of PIF-activated genes and increases expression of growth repressors to regulate hypocotyl elongation in short days. BMC PLANT BIOLOGY 2022; 22:399. [PMID: 35965321 PMCID: PMC9377115 DOI: 10.1186/s12870-022-03737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
SUPPRESSOR OF PHYTOCHROME B-4 #3 (SOB3) is a member of the AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED (AHL) family of transcription factors that are involved in light-mediated growth in Arabidopsis thaliana, affecting processes such as hypocotyl elongation. The majority of the research on the AHLs has been conducted in continuous light. However, there are unique molecular events that promote growth in short days (SD) compared to constant light conditions. Therefore, we investigated how AHLs affect hypocotyl elongation in SD. Firstly, we observed that AHLs inhibit hypocotyl growth in SD, similar to their effect in constant light. Next, we identified AHL-regulated genes in SD-grown seedlings by performing RNA-seq in two sob3 mutants at different time points. Our transcriptomic data indicate that PHYTOCHROME INTERACTING FACTORS (PIFs) 4, 5, 7, and 8 along with PIF-target genes are repressed by SOB3 and/or other AHLs. We also identified PIF target genes that are repressed and have not been previously described as AHL-regulated, including PRE1, PIL1, HFR1, CDF5, and XTR7. Interestingly, our RNA-seq data also suggest that AHLs activate the expression of growth repressors to control hypocotyl elongation, such as HY5 and IAA17. Notably, many growth-regulating and other genes identified from the RNA-seq experiment were differentially regulated between these two sob3 mutants at the time points tested. Surprisingly, our ChIP-seq data suggest that SOB3 mostly binds to similar genes throughout the day. Collectively, these data suggest that AHLs affect gene expression in a time point-specific manner irrespective of changes in binding to DNA throughout SD.
Collapse
Affiliation(s)
- Caitlin N Jacques
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Department of Crops and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA, 99164, USA
| | - David S Favero
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan.
| | - Ayako Kawamura
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Biosciences and Biotechnology, Chubu University, Kasugai, Aichi, 487-8501, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biological Sciences, The University of Tokyo, Tokyo, 119-0033, Japan
| | - Michael M Neff
- Department of Crops and Soil Sciences, Washington State University, Pullman, WA, 99164, USA.
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
19
|
Guo M, Zhao H, He Z, Zhang W, She Z, Mohammadi MA, Shi C, Yan M, Tian D, Qin Y. Comparative Expression Profiling of Snf2 Family Genes During Reproductive Development and Stress Responses in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:910663. [PMID: 35712583 PMCID: PMC9194907 DOI: 10.3389/fpls.2022.910663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Sucrose non-fermenting 2 (Snf2) protein family, as chromatin remodeling factors, is an enormous and the most diverse protein family, which contributes to biological processes of replication, transcription, and DNA repair using the energy of adenosine triphosphate (ATP) hydrolysis. The members of Snf2 family proteins have been well characterized in Arabidopsis, rice, and tomato. Although this family received significant attention, few genes were identified uniquely for their roles in mediating reproductive development and stress tolerance in rice. In the present study, we comprehensively analyzed the expression profiling of Snf2 genes during reproductive development and biotic/abiotic stresses. Our results showed that five proteins (OsCHR712/715/720/726/739) were mainly localized in the nucleus, while OsCHR715/739 were also slightly expressed in the cell membrane. There were abundant cis-acting elements in the putative promoter of Snf2 genes, including dehydration, MeJA, MYB binding site for drought, ABA-responsive, and stress-responsive element. Most of the genes were induced immediately after Magnaporthe oryzae infection at 12 h post-infection (hpi). About 55% of the total genes were upregulated under salt and drought stresses during the entire time, and 22-35% of the total genes were upregulated at 3 h. It was noteworthy that the seven genes (OsCHR705, OsCHR706, OsCHR710, OsCHR714, OsCHR721, OsCHR726, and OsCHR737) were upregulated, and one gene (OsCHR712) was downregulated under salt and drought stresses, respectively. The deficiency of OsCHR726 mutations displayed a hypersensitive phenotype under salt stress. These results will be significantly useful features for the validation of the rice Snf2 genes and facilitate understanding of the genetic engineering of crops with improved biotic and abiotic stresses.
Collapse
Affiliation(s)
- Mingliang Guo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Heming Zhao
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Zhimei He
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenchao Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zeyuan She
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Mohammad Aqa Mohammadi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao Shi
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Maokai Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Dagang Tian
- Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yuan Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
20
|
Ji SX, Wang XD, Lin ZK, Wan FH, Lü ZC, Liu WX. Characterization of Chromatin Remodeling Genes Involved in Thermal Tolerance of Biologically Invasive Bemisia tabaci. Front Physiol 2022; 13:865172. [PMID: 35669578 PMCID: PMC9163341 DOI: 10.3389/fphys.2022.865172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
As an invasive species, Bemisia tabaci Mediterranean (MED) has notable potential to adapt to a wide range of environmental temperatures, which enables it to successfully spread after invasion and occupy habitats over a wide latitude range. It has been postulated that chromatin remodeling mechanisms are related to the rapid acquisition of adaptive traits and thermal resistance in invasive species; however, relevant experimental evidence is scarce. To identify the molecular characteristics and assess the role of chromatin remodelers in thermal stress within invasive MED and native Asia II 1 of the B. tabaci species complex, we identified 13 switching defective/sucrose non-fermenting (SWI/SNF) and 10 imitation switch (ISWI) family members in the B. tabaci genome, analyzed their molecular characteristics and structures, and identified key mutation sites between MED and Asia II 1, then cloned the catalytic subunits, and revealed the difference in thermal tolerance function. The results showed that the expression levels of Bt-BRM-1 and Bt-BRM-2 were significantly higher in MED than in Asia II 1 during heat stress, and Bt-BRM-2 expression was significantly higher during cold stress. In addition, RNA interference results indicated that the two target genes had similar temperature tolerance function in the both two cryptic species. This study is the first to identify and analyze the molecular characteristics of SWI/SNF and ISWI family members and reveal their potential key roles in temperature tolerance in poikilothermic ectotherms. The results will assist in understanding the underlying temperature adaptation mechanism of invasive insects and will enrich stress adaptation research systems from an epigenetic perspective.
Collapse
Affiliation(s)
- Shun-Xia Ji
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiao-Di Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ze-Kai Lin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fang-Hao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhi-Chuang Lü
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Zhi-Chuang Lü,
| | - Wan-Xue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
21
|
Trujillo JT, Long J, Aboelnour E, Ogas J, Wisecaver JH. CHD chromatin remodeling protein diversification yields novel clades and domains absent in classic model organisms. Genome Biol Evol 2022; 14:6582301. [PMID: 35524943 PMCID: PMC9113485 DOI: 10.1093/gbe/evac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 11/20/2022] Open
Abstract
Chromatin remodelers play a fundamental role in the assembly of chromatin, regulation of transcription, and DNA repair. Biochemical and functional characterizations of the CHD family of chromatin remodelers from a variety of model organisms have shown that these remodelers participate in a wide range of activities. However, because the evolutionary history of CHD homologs is unclear, it is difficult to predict which of these activities are broadly conserved and which have evolved more recently in individual eukaryotic lineages. Here, we performed a comprehensive phylogenetic analysis of 8,042 CHD homologs from 1,894 species to create a model for the evolution of this family across eukaryotes with a particular focus on the timing of duplications that gave rise to the diverse copies observed in plants, animals, and fungi. Our analysis confirms that the three major subfamilies of CHD remodelers originated in the eukaryotic last common ancestor, and subsequent losses occurred independently in different lineages. Improved taxon sampling identified several subfamilies of CHD remodelers in plants that were absent or highly divergent in the model plant Arabidopsis thaliana. Whereas the timing of CHD subfamily expansions in vertebrates corresponds to whole genome duplication events, the mechanisms underlying CHD diversification in land plants appear more complicated. Analysis of protein domains reveals that CHD remodeler diversification has been accompanied by distinct transitions in domain architecture, contributing to the functional differences observed between these remodelers. This study demonstrates the importance of proper taxon sampling when studying ancient evolutionary events to prevent misinterpretation of subsequent lineage-specific changes and provides an evolutionary framework for functional and comparative analysis of this critical chromatin remodeler family across eukaryotes.
Collapse
Affiliation(s)
- Joshua T Trujillo
- Center for Plant Biology and Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jiaxin Long
- Center for Plant Biology and Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Erin Aboelnour
- Center for Plant Biology and Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA.,Helmholtz Pioneer Campus, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Joseph Ogas
- Center for Plant Biology and Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jennifer H Wisecaver
- Center for Plant Biology and Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
22
|
Genome-wide identification of chromatin regulators in Sorghum bicolor. 3 Biotech 2022; 12:117. [PMID: 35547013 PMCID: PMC9033926 DOI: 10.1007/s13205-022-03181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/03/2022] [Indexed: 11/01/2022] Open
Abstract
Chromatin regulators play important roles in plant development and stress response. In this study, we identified totally 231 chromatin regulators including 63 histones, 29 histone chaperones, 101 histone modification enzymes, and 38 chromatin remodeling factors from Sorghum bicolor (L.) Moench. Most of these chromatin regulators are homologous to their counterparts in Arabidopsis or rice. However, sorghum genome evolves a few novel histone variants specific to some grass species and a sorghum-unique chromatin remodeling factor that contain the domains belonging to the elongation factor EF-Tu and the histone chaperone SPT16. Finally, we performed co-expression analysis for the chromatin regulator-encoding genes by clustering the expression patterns of these genes. Our results provide useful information for the future studies on the mechanism of epigenetic regulation in sorghum and its roles in development and stress response. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03181-8.
Collapse
|
23
|
Guo M, Zhang W, Mohammadi MA, He Z, She Z, Yan M, Shi C, Lin L, Wang A, Liu J, Tian D, Zhao H, Qin Y. OsDDM1b Controls Grain Size by Influencing Cell Cycling and Regulating Homeostasis and Signaling of Brassinosteroid in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:873993. [PMID: 35463416 PMCID: PMC9024357 DOI: 10.3389/fpls.2022.873993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Snf2 family proteins are the crucial subunits of chromatin-remodeling complexes (CRCs), which contributes to the biological processes of transcription, replication, and DNA repair using ATP as energy. Some CRC subunits have been confirmed to be the critical regulators in various aspects of plant growth and development and in epigenetic mechanisms such as histone modification, DNA methylation, and histone variants. However, the functions of Snf2 family genes in rice were poorly investigated. In this study, the relative expression profile of 40 members of Snf2 family in rice was studied at certain developmental stages of seed. Our results revealed that OsCHR741/OsDDM1b (Decrease in DNA methylation 1) was accumulated highly in the early developmental stage of seeds. We further analyzed the OsDDM1b T-DNA insertion loss-of-function of mutant, which exhibited dwarfism, smaller organ size, and shorter and wider grain size than the wild type (Hwayoung, HY), yet no difference in 1,000-grain weight. Consistent with the grain size, the outer parenchyma cell layers of lemma in osddm1b developed more cells with decreased size. OsDDM1b encoded a nucleus, membrane-localized protein and was distributed predominately in young spikelets and seeds, asserting its role in grain size. Meanwhile, the osddm1b was less sensitive to brassinosteroids (BRs) while the endogenous BR levels increased. We detected changes in the expression levels of the BR signaling pathway and feedback-inhibited genes with and without exogenous BR application, and the alterations of expression were also observed in grain size-related genes in the osddm1b. Altogether, our results suggest that OsDDM1b plays a crucial role in grain size via influencing cell proliferation and regulating BR signaling and homeostasis.
Collapse
Affiliation(s)
- Mingliang Guo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenchao Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohammad Aqa Mohammadi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Zhimei He
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zeyuan She
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Maokai Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Chao Shi
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lingwei Lin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Aqiong Wang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jindian Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dagang Tian
- Biotechnology Research Institute, Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Heming Zhao
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Yuan Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
24
|
Liu X, Quan W, Bartels D. Stress memory responses and seed priming correlate with drought tolerance in plants: an overview. PLANTA 2022; 255:45. [PMID: 35066685 PMCID: PMC8784359 DOI: 10.1007/s00425-022-03828-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/08/2022] [Indexed: 05/08/2023]
Abstract
Environmental-friendly techniques based on plant stress memory, cross-stress tolerance, and seed priming help sustainable agriculture by mitigating negative effects of dehydration stress. The frequently uneven rainfall distribution caused by global warming will lead to more irregular and multiple abiotic stresses, such as heat stress, dehydration stress, cold stress or the combination of these stresses. Dehydration stress is one of the major environmental factors affecting the survival rate and productivity of plants. Hence, there is an urgent need to develop improved resilient varieties. Presently, technologies based on plant stress memory, cross-stress tolerance and priming of seeds represent fruitful and promising areas of future research and applied agricultural science. In this review, we will provide an overview of plant drought stress memory from physiological, biochemical, molecular and epigenetic perspectives. Drought priming-induced cross-stress tolerance to cold and heat stress will be discussed and the application of seed priming will be illustrated for different species.
Collapse
Affiliation(s)
- Xun Liu
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong, 643000, China
| | - Wenli Quan
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000, Hubei, China
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
25
|
Castano-Duque L, Ghosal S, Quilloy FA, Mitchell-Olds T, Dixit S. An epigenetic pathway in rice connects genetic variation to anaerobic germination and seedling establishment. PLANT PHYSIOLOGY 2021; 186:1042-1059. [PMID: 33638990 PMCID: PMC8195528 DOI: 10.1093/plphys/kiab100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Rice production is shifting from transplanting seedlings to direct sowing of seeds. Following heavy rains, directly sown seeds may need to germinate under anaerobic environments, but most rice (Oryza sativa) genotypes cannot survive these conditions. To identify the genetic architecture of complex traits, we quantified percentage anaerobic germination (AG) in 2,700 (wet-season) and 1,500 (dry-season) sequenced rice genotypes and performed genome-wide association studies (GWAS) using 693,502 single nucleotide polymorphisms. This was followed by post-GWAS analysis with a generalized SNP-to-gene set analysis, meta-analysis, and network analysis. We determined that percentage AG is intermediate-to-high among indica subpopulations, and AG is a polygenic trait associated with transcription factors linked to ethylene responses or genes involved in metabolic processes that are known to be associated with AG. Our post-GWAS analysis identified several genes involved in a wide variety of metabolic processes. We subsequently performed functional analysis focused on the small RNA and methylation pathways. We selected CLASSY 1 (CLSY1), a gene involved in the RNA-directed DNA methylation (RdDm) pathway, for further analyses under AG and found several lines of evidence that CLSY1 influences AG. We propose that the RdDm pathway plays a role in rice responses to water status during germination and seedling establishment developmental stages.
Collapse
Affiliation(s)
| | - Sharmistha Ghosal
- Rice Breeding Platform, International Rice Research Institute. Pili Drive, Los Baños, Laguna 4031, Philippines
| | - Fergie A Quilloy
- Rice Breeding Platform, International Rice Research Institute. Pili Drive, Los Baños, Laguna 4031, Philippines
| | | | - Shalabh Dixit
- Rice Breeding Platform, International Rice Research Institute. Pili Drive, Los Baños, Laguna 4031, Philippines
| |
Collapse
|
26
|
Song ZT, Liu JX, Han JJ. Chromatin remodeling factors regulate environmental stress responses in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:438-450. [PMID: 33421288 DOI: 10.1111/jipb.13064] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/23/2020] [Indexed: 05/14/2023]
Abstract
Environmental stress from climate change and agricultural activity threatens global plant biodiversity as well as crop yield and quality. As sessile organisms, plants must maintain the integrity of their genomes and adjust gene expression to adapt to various environmental changes. In eukaryotes, nucleosomes are the basic unit of chromatin around which genomic DNA is packaged by condensation. To enable dynamic access to packaged DNA, eukaryotes have evolved Snf2 (sucrose nonfermenting 2) family proteins as chromatin remodeling factors (CHRs) that modulate the position of nucleosomes on chromatin. During plant stress responses, CHRs are recruited to specific genomic loci, where they regulate the distribution or composition of nucleosomes, which in turn alters the accessibility of these loci to general transcription or DNA damage repair machinery. Moreover, CHRs interplay with other epigenetic mechanisms, including DNA methylation, histone modifications, and deposition of histone variants. CHRs are also involved in RNA processing at the post-transcriptional level. In this review, we discuss major advances in our understanding of the mechanisms by which CHRs function during plants' response to environmental stress.
Collapse
Affiliation(s)
- Ze-Ting Song
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, 650500, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Jia-Jia Han
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, 650500, China
- Laboratory of Ecology and Evolutionary Biology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, China
| |
Collapse
|
27
|
Liu X, Fan F, Liu M, Long W, Yu Y, Yuan H, Pan G, Li N, Li S, Liu J. Quantitative Trait Loci Mapping of Mineral Element Contents in Brown Rice Using Backcross Inbred Lines Derived From Oryza longistaminata. FRONTIERS IN PLANT SCIENCE 2020; 11:1229. [PMID: 32903403 PMCID: PMC7434966 DOI: 10.3389/fpls.2020.01229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Mineral elements play an extremely important role in human health, and are worthy of study in rice grain. Wild rice is an important gene pool for rice improvement including grain yield, disease, and pest resistance as well as mineral elements. In this study, we identified 33 quantitative trait loci (QTL) for Fe, Zn, Se, Cd, Hg, and As contents in wild rice Oryza longistaminata. Of which, 29 QTLs were the first report, and 12 QTLs were overlapped to form five clusters as qSe1/qCd1 on chromosome 1, qCd4.2/qHg4 on chromosome 4, qFe5.2/qZn5.2 on chromosome 5, qFe9/qHg9.2/qAs9.2 on chromosome 9, and qCd10/qHg10 on chromosome 10. Importantly, qSe1/qCd1, can significantly improve the Se content while reduce the Cd content, and qFe5.2/qZn5.2 can significantly improve both the Fe and Zn contents, they were delimited to an interval about 53.8 Kb and 26.2 Kb, respectively. These QTLs detected from Oryza longistaminata not only establish the basis for subsequent gene cloning to decipher the genetic mechanism of mineral element accumulation, but also provide new genetic resource for rice quality improvement.
Collapse
Affiliation(s)
- Xingdan Liu
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Fengfeng Fan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, China
| | - Manman Liu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, China
| | - Weixiong Long
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, China
| | - Yajie Yu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, China
| | - Huanran Yuan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, China
| | - Guojing Pan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, China
| | - Nengwu Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, China
| | - Jianfeng Liu
- College of Agronomy, Hunan Agricultural University, Changsha, China
| |
Collapse
|
28
|
Kang H, Wu D, Fan T, Zhu Y. Activities of Chromatin Remodeling Factors and Histone Chaperones and Their Effects in Root Apical Meristem Development. Int J Mol Sci 2020; 21:ijms21030771. [PMID: 31991579 PMCID: PMC7038114 DOI: 10.3390/ijms21030771] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 01/01/2023] Open
Abstract
Eukaryotic genes are packaged into dynamic but stable chromatin structures to deal with transcriptional reprogramming and inheritance during development. Chromatin remodeling factors and histone chaperones are epigenetic factors that target nucleosomes and/or histones to establish and maintain proper chromatin structures during critical physiological processes such as DNA replication and transcriptional modulation. Root apical meristems are vital for plant root development. Regarding the well-characterized transcription factors involved in stem cell proliferation and differentiation, there is increasing evidence of the functional implications of epigenetic regulation in root apical meristem development. In this review, we focus on the activities of chromatin remodeling factors and histone chaperones in the root apical meristems of the model plant species Arabidopsis and rice.
Collapse
|
29
|
Identification and Expression Analysis of Snf2 Family Proteins in Tomato ( Solanum lycopersicum). Int J Genomics 2019; 2019:5080935. [PMID: 31049349 PMCID: PMC6458923 DOI: 10.1155/2019/5080935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 12/18/2018] [Indexed: 02/03/2023] Open
Abstract
As part of chromatin-remodeling complexes (CRCs), sucrose nonfermenting 2 (Snf2) family proteins alter chromatin structure and nucleosome position by utilizing the energy of ATP, which allows other regulatory proteins to access DNA. Plant genomes encode a large number of Snf2 proteins, and some of them have been shown to be the key regulators at different developmental stages in Arabidopsis. Yet, little is known about the functions of Snf2 proteins in tomato (Solanum lycopersicum). In this study, 45 Snf2s were identified by the homologous search using representative sequences from yeast (S. cerevisiae), fruit fly (D. melanogaster), and Arabidopsis (A. thaliana) against the tomato genome annotation dataset. Tomato Snf2 proteins (also named SlCHRs) could be clustered into 6 groups and distributed on 11 chromosomes. All SlCHRs contained a helicase-C domain with about 80 amino acid residues and a SNF2-N domain with more variable amino acid residues. In addition, other conserved motifs were also identified in SlCHRs by using the MEME program. Expression profile analysis indicated that tomato Snf2 family genes displayed a wide range of expressions in different tissues and some of them were regulated by the environmental stimuli such as salicylic acid, abscisic acid, salt, and cold. Taken together, these results provide insights into the functions of SlCHRs in tomato.
Collapse
|
30
|
Pan Z, Liu J, Zhang Y, Chen S, Ma J, Dong W, Wu Z, Yao H. A novel integrative conjugative element mediates transfer of multi-drug resistance between Streptococcus suis strains of different serotypes. Vet Microbiol 2019; 229:110-116. [DOI: 10.1016/j.vetmic.2018.11.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
|
31
|
Han JJ, Song ZT, Sun JL, Yang ZT, Xian MJ, Wang S, Sun L, Liu JX. Chromatin remodeling factor CHR18 interacts with replication protein RPA1A to regulate the DNA replication stress response in Arabidopsis. THE NEW PHYTOLOGIST 2018; 220:476-487. [PMID: 29974976 DOI: 10.1111/nph.15311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
DNA replication is a fundamental process for the faithful transmission of genetic information in all living organisms. Many endogenous and environmental signals impede fork progression during DNA synthesis, which induces replication errors and DNA replication stress. Chromatin remodeling factors regulate nucleosome occupancy and the histone composition of the nucleosome in chromatin; however, whether chromatin remodeling factors are involved in the DNA replication stress response in plants is unknown. We reveal that chromatin remodeling factor CHR18 plays important roles in DNA replication stress in Arabidopsis thaliana by interacting with the DNA replication protein RPA1A. According to the genetic analysis, the loss of function of either CHR18 or RPA1A confers a high sensitivity to DNA replication stress in Arabidopsis. CHR18 interacts with RPA1A in both yeast cells and tobacco epidermal cells. The coexpression of RPA1A and CHR18 enhances the accumulation of CHR18 in nuclear foci in plants. CHR18 is a typical nuclear-localized chromatin remodeling factor with ATPase activity. Our results demonstrate that during DNA synthesis in plants, RPA1A interacts with CHR18 and recruits CHR18 to nuclear foci to resolve DNA replication stress, which is important for cell propagation and root growth in Arabidopsis plants.
Collapse
Affiliation(s)
- Jia-Jia Han
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Ze-Ting Song
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jing-Liang Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Zheng-Ting Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Meng-Jun Xian
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Shuo Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Ling Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China
| |
Collapse
|
32
|
Locus-specific control of the de novo DNA methylation pathway in Arabidopsis by the CLASSY family. Nat Genet 2018; 50:865-873. [PMID: 29736015 PMCID: PMC6317521 DOI: 10.1038/s41588-018-0115-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/21/2018] [Indexed: 11/09/2022]
Abstract
DNA methylation is essential for gene regulation, transposon silencing,
and imprinting. Although the generation of specific DNA methylation patterns is
critical for these processes, how methylation is regulated at individual loci
remains unclear. Here we show that a family of four putative chromatin
remodeling factors, CLASSY (CLSY) 1–4, are required for both
locus-specific and global regulation of DNA methylation in
Arabidopsis. Mechanistically, these factors act in
connection with RNA polymerase-IV (Pol-IV) to control the production of
24-nucleotide small interfering RNAs (24nt-siRNAs), which guide DNA methylation.
Individually, the CLSYs regulate Pol-IV-chromatin association and 24nt-siRNA
production at thousands of distinct loci, and together, they regulate
essentially all 24nt-siRNAs. Depending on the CLSYs involved, this regulation
relies on different repressive chromatin modifications to facilitate
locus-specific control of DNA methylation. Given the conservation between
methylation systems in plants and mammals, analogous pathways likely operate in
a broad range of organisms.
Collapse
|
33
|
Gianinetti A, Finocchiaro F, Bagnaresi P, Zechini A, Faccioli P, Cattivelli L, Valè G, Biselli C. Seed Dormancy Involves a Transcriptional Program That Supports Early Plastid Functionality during Imbibition. PLANTS 2018; 7:plants7020035. [PMID: 29671830 PMCID: PMC6026906 DOI: 10.3390/plants7020035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/05/2018] [Accepted: 04/11/2018] [Indexed: 01/18/2023]
Abstract
Red rice fully dormant seeds do not germinate even under favorable germination conditions. In several species, including rice, seed dormancy can be removed by dry-afterripening (warm storage); thus, dormant and non-dormant seeds can be compared for the same genotype. A weedy (red) rice genotype with strong dormancy was used for mRNA expression profiling, by RNA-Seq, of dormant and non-dormant dehulled caryopses (here addressed as seeds) at two temperatures (30 °C and 10 °C) and two durations of incubation in water (8 h and 8 days). Aim of the study was to highlight the differences in the transcriptome of dormant and non-dormant imbibed seeds. Transcript data suggested important differences between these seeds (at least, as inferred by expression-based metabolism reconstruction): dry-afterripening seems to impose a respiratory impairment onto non-dormant seeds, thus glycolysis is deduced to be preferentially directed to alcoholic fermentation in non-dormant seeds but to alanine production in dormant ones; phosphoenolpyruvate carboxykinase, pyruvate phosphate dikinase and alanine aminotransferase pathways appear to have an important gluconeogenetic role associated with the restoration of plastid functions in the dormant seed following imbibition; correspondingly, co-expression analysis pointed out a commitment to guarantee plastid functionality in dormant seeds. At 8 h of imbibition, as inferred by gene expression, dormant seeds appear to preferentially use carbon and nitrogen resources for biosynthetic processes in the plastid, including starch and proanthocyanidins accumulation. Chromatin modification appears to be a possible mechanism involved in the transition from dormancy to germination. Non-dormant seeds show higher expression of genes related to cell wall modification, suggesting they prepare for acrospire/radicle elongation.
Collapse
Affiliation(s)
- Alberto Gianinetti
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Franca Finocchiaro
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Paolo Bagnaresi
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Antonella Zechini
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Primetta Faccioli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Giampiero Valè
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100 Vercelli, Italy.
| | - Chiara Biselli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| |
Collapse
|
34
|
Chen DH, Huang Y, Jiang C, Si JP. Chromatin-Based Regulation of Plant Root Development. FRONTIERS IN PLANT SCIENCE 2018; 9:1509. [PMID: 30386363 PMCID: PMC6198463 DOI: 10.3389/fpls.2018.01509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/26/2018] [Indexed: 05/10/2023]
Abstract
Plant is endowed with sessile habit and nutrient acquisition mainly through the root organ, which also provides an excellent model to study stem cell fate and asymmetric division due to well-organized cell layers and relatively simple cell types in root meristem. Besides genetic material DNA wrapped around histone octamer, chromatin structure determined by chromatin modification including DNA methylation, histone modification and chromatin remodeling also contributes greatly to the regulation of gene expression. In this review, we summarize the current progresses on the molecular mechanisms of chromatin modification in regulating root development.
Collapse
Affiliation(s)
- Dong-Hong Chen
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium Catenatum, Zhejiang A&F University, Hangzhou, China
- *Correspondence: Dong-Hong Chen
| | - Yong Huang
- Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha, China
| | | | - Jin-Ping Si
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium Catenatum, Zhejiang A&F University, Hangzhou, China
- Jin-Ping Si
| |
Collapse
|
35
|
Genome-Wide Analysis of DNA Methylation During Ovule Development of Female-Sterile Rice fsv1. G3-GENES GENOMES GENETICS 2017; 7:3621-3635. [PMID: 28877971 PMCID: PMC5677159 DOI: 10.1534/g3.117.300243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The regulation of female fertility is an important field of rice sexual reproduction research. DNA methylation is an essential epigenetic modification that dynamically regulates gene expression during development processes. However, few reports have described the methylation profiles of female-sterile rice during ovule development. In this study, ovules were continuously acquired from the beginning of megaspore mother cell meiosis until the mature female gametophyte formation period, and global DNA methylation patterns were compared in the ovules of a high-frequency female-sterile line (fsv1) and a wild-type rice line (Gui99) using whole-genome bisulfite sequencing (WGBS). Profiling of the global DNA methylation revealed hypo-methylation, and 3471 significantly differentially methylated regions (DMRs) were observed in fsv1 ovules compared with Gui99. Based on functional annotation and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis of differentially methylated genes (DMGs), we observed more DMGs enriched in cellular component, reproduction regulation, metabolic pathway, and other pathways. In particular, many ovule development genes and plant hormone-related genes showed significantly different methylation patterns in the two rice lines, and these differences may provide important clues for revealing the mechanism of female gametophyte abortion.
Collapse
|
36
|
Qin J, Tang Z, Ma X, Meng Y. Investigating the regulatory roles of the microRNAs and the Argonaute 1-enriched small RNAs in plant metabolism. Gene 2017; 628:180-189. [PMID: 28698160 DOI: 10.1016/j.gene.2017.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 06/29/2017] [Accepted: 07/07/2017] [Indexed: 12/01/2022]
Abstract
The biological roles of small RNAs (sRNAs) in metabolic processes are emerging. However, a systemic study is needed to investigate the wide-spread involvement of the sRNAs in plant metabolism. By using the metabolism-related transcripts retrieved from the public database Plant Metabolic Network, and the publicly available sRNA high-throughput sequencing data, large-scale target identification was performed for microRNAs (miRNAs) and Argonaute 1 (AGO1)-enriched sRNAs in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). Based on the publicly available degradome sequencing data, 200 miRNA/sRNA-target pairs involving 19 miRNAs, 111 AGO1-enriched sRNAs and 58 target transcripts in Arabidopsis, and 151 pairs involving 62 miRNAs, 33 AGO1-enriched sRNAs and 69 target transcripts in rice were identified. After considering protein-protein interactions for the above identified target genes, a total of 251 pairs involving 21 miRNAs, 120 AGO1-enriched sRNAs and 75 target transcripts exist within the regulatory network of Arabidopsis, and 168 pairs involving 64 miRNAs, 38 AGO1-enriched sRNAs and 80 target transcripts exist in rice. Based on GO (Gene Ontology) term enrichment analysis, the targets within the networks of both plants are enriched in "metabolic process" and "catalytic activity", pointing to the high relevance of the established networks to metabolism. Several functionally conserved subnetworks were identified between the two plant species. Our study provides a basis for studies on metabolism-related sRNAs in plants.
Collapse
Affiliation(s)
- Jingping Qin
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Zhonghai Tang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, PR China.
| | - Xiaoxia Ma
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China
| | - Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China.
| |
Collapse
|
37
|
Ghan R, Petereit J, Tillett RL, Schlauch KA, Toubiana D, Fait A, Cramer GR. The common transcriptional subnetworks of the grape berry skin in the late stages of ripening. BMC PLANT BIOLOGY 2017; 17:94. [PMID: 28558655 PMCID: PMC5450095 DOI: 10.1186/s12870-017-1043-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 05/22/2017] [Indexed: 05/16/2023]
Abstract
BACKGROUND Wine grapes are important economically in many countries around the world. Defining the optimum time for grape harvest is a major challenge to the grower and winemaker. Berry skins are an important source of flavor, color and other quality traits in the ripening stage. Senescent-like processes such as chloroplast disorganization and cell death characterize the late ripening stage. RESULTS To better understand the molecular and physiological processes involved in the late stages of berry ripening, RNA-seq analysis of the skins of seven wine grape cultivars (Cabernet Franc, Cabernet Sauvignon, Merlot, Pinot Noir, Chardonnay, Sauvignon Blanc and Semillon) was performed. RNA-seq analysis identified approximately 2000 common differentially expressed genes for all seven cultivars across four different berry sugar levels (20 to 26 °Brix). Network analyses, both a posteriori (standard) and a priori (gene co-expression network analysis), were used to elucidate transcriptional subnetworks and hub genes associated with traits in the berry skins of the late stages of berry ripening. These independent approaches revealed genes involved in photosynthesis, catabolism, and nucleotide metabolism. The transcript abundance of most photosynthetic genes declined with increasing sugar levels in the berries. The transcript abundance of other processes increased such as nucleic acid metabolism, chromosome organization and lipid catabolism. Weighted gene co-expression network analysis (WGCNA) identified 64 gene modules that were organized into 12 subnetworks of three modules or more and six higher order gene subnetworks. Some gene subnetworks were highly correlated with sugar levels and some subnetworks were highly enriched in the chloroplast and nucleus. The petal R package was utilized independently to construct a true small-world and scale-free complex gene co-expression network model. A subnetwork of 216 genes with the highest connectivity was elucidated, consistent with the module results from WGCNA. Hub genes in these subnetworks were identified including numerous members of the core circadian clock, RNA splicing, proteolysis and chromosome organization. An integrated model was constructed linking light sensing with alternative splicing, chromosome remodeling and the circadian clock. CONCLUSIONS A common set of differentially expressed genes and gene subnetworks from seven different cultivars were examined in the skin of the late stages of grapevine berry ripening. A densely connected gene subnetwork was elucidated involving a complex interaction of berry senescent processes (autophagy), catabolism, the circadian clock, RNA splicing, proteolysis and epigenetic regulation. Hypotheses were induced from these data sets involving sugar accumulation, light, autophagy, epigenetic regulation, and fruit development. This work provides a better understanding of berry development and the transcriptional processes involved in the late stages of ripening.
Collapse
Affiliation(s)
- Ryan Ghan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| | - Juli Petereit
- Nevada INBRE Bioinformatics Core, University of Nevada, Reno, NV 89557 USA
| | - Richard L. Tillett
- Nevada INBRE Bioinformatics Core, University of Nevada, Reno, NV 89557 USA
| | - Karen A. Schlauch
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
- Nevada INBRE Bioinformatics Core, University of Nevada, Reno, NV 89557 USA
| | - David Toubiana
- Telekom Innovation, Laboratories and Cyber Security Research Center, Department of Information, Systems Engineering, Ben Gurion University, Beer Sheva, Israel
| | - Aaron Fait
- Ben-Gurion University of the Negev, Jacob Blaustein Institutes for Desert Research, 84990 Midreshet Ben-Gurion, Israel
| | - Grant R. Cramer
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| |
Collapse
|
38
|
Lafarge T, Bueno C, Frouin J, Jacquin L, Courtois B, Ahmadi N. Genome-wide association analysis for heat tolerance at flowering detected a large set of genes involved in adaptation to thermal and other stresses. PLoS One 2017; 12:e0171254. [PMID: 28152098 PMCID: PMC5289576 DOI: 10.1371/journal.pone.0171254] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/17/2017] [Indexed: 11/19/2022] Open
Abstract
Fertilization sensitivity to heat in rice is a major issue within climate change scenarios in the tropics. A panel of 167 indica landraces and improved varieties was phenotyped for spikelet sterility (SPKST) under 38°C during anthesis and for several secondary traits potentially affecting panicle micro-climate and thus the fertilization process. The panel was genotyped with an average density of one marker per 29 kb using genotyping by sequencing. Genome-wide association analyses (GWAS) were conducted using three methods based on single marker regression, haplotype regression and simultaneous fitting of all markers, respectively. Fourteen loci significantly associated with SPKST under at least two GWAS methods were detected. A large number of associations was also detected for the secondary traits. Analysis of co-localization of SPKST associated loci with QTLs detected in progenies of bi-parental crosses reported in the literature allowed to narrow -down the position of eight of those QTLs, including the most documented one, qHTSF4.1. Gene families underlying loci associated with SPKST corresponded to functions ranging from sensing abiotic stresses and regulating plant response, such as wall-associated kinases and heat shock proteins, to cell division and gametophyte development. Analysis of diversity at the vicinity of loci associated with SPKST within the rice three thousand genomes, revealed widespread distribution of the favourable alleles across O. sativa genetic groups. However, few accessions assembled the favourable alleles at all loci. Effective donors included the heat tolerant variety N22 and some Indian and Taiwanese varieties. These results provide a basis for breeding for heat tolerance during anthesis and for functional validation of major loci governing this trait.
Collapse
Affiliation(s)
| | - Crisanta Bueno
- International Rice Research Institute, Los-Banos, Philippines
| | | | | | | | | |
Collapse
|
39
|
Xia H, Huang W, Xiong J, Yan S, Tao T, Li J, Wu J, Luo L. Differentially Methylated Epiloci Generated from Numerous Genotypes of Contrasting Tolerances Are Associated with Osmotic-Tolerance in Rice Seedlings. FRONTIERS IN PLANT SCIENCE 2017; 8:11. [PMID: 28154573 PMCID: PMC5243842 DOI: 10.3389/fpls.2017.00011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/03/2017] [Indexed: 05/20/2023]
Abstract
DNA methylation plays an essential role in plant responses to environmental stress. Since drought develops into a rising problem in rice cultivation, investigations on genome-wide DNA methylation in responses to drought stress and in-depth explorations of its association with drought-tolerance are required. For this study, 68 rice accessions were used for an evaluation of their osmotic-tolerance related to 20% PEG6000 simulated physiological traits. The tolerant group revealed significantly higher levels of total antioxidant capacity and higher contents of H2O2 in both normal and osmotic-stressed treatments, as well as higher survival ratios. We furthermore investigated the DNA methylation status in normal, osmotic-stressed, and re-watering treatments via the methylation-sensitive amplification polymorphism (MSAP). The averaged similarity between two rice accessions from tolerant and susceptible groups was approximately 50%, similar with that between two accessions within the tolerant/susceptible group. However, the proportion of overall tolerance-associated epiloci was only 5.2% of total epiloci. The drought-tolerant accessions revealed lower DNA methylation levels in the stressed condition and more de-methylation events when they encountered osmotic stress, compared to the susceptible group. During the recovery process, the drought-tolerant accessions possessed more re-methylation events. Fourteen differentially methylated epiloci (DME) were, respectively, generated in normal, osmotic-stressed, and re-watering treatments. Approximately, 35.7% DME were determined as tolerance-associated epiloci. Additionally, rice accessions with lower methylation degrees on DME in the stressed conditions had a higher survival ratio compared to these with higher methylation degrees. This result is consistent with the lower DNA methylation levels of tolerant accessions observed in the stressed treatment. Methylation degrees on a differentially methylated epilocus may further influence gene regulation in the rice seedling in response to the osmotic stress. All these results indicate that DME generated from a number of genotypes could have higher probabilityies for association with stress-tolerance, rather than DME generated from two genotypes of contrasting tolerance. The DME found in this study are suspected to be good epigenetic markers for the application in drought-tolerant rice breeding. They could also be a valuable tool to study the epigenetic differentiation in the drought-tolerance between upland and lowland rice ecotypes.
Collapse
Affiliation(s)
- Hui Xia
- Shanghai Agrobiological Gene CenterShanghai, China
| | - Weixia Huang
- Shanghai Agrobiological Gene CenterShanghai, China
| | - Jie Xiong
- Shanghai Agrobiological Gene CenterShanghai, China
- College of Plant Sciences and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Shuaigang Yan
- Shanghai Agrobiological Gene CenterShanghai, China
- College of Plant Sciences and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Tao Tao
- Shanghai Agrobiological Gene CenterShanghai, China
| | - Jiajia Li
- Shanghai Agrobiological Gene CenterShanghai, China
| | - Jinhong Wu
- Shanghai Agrobiological Gene CenterShanghai, China
| | - Lijun Luo
- Shanghai Agrobiological Gene CenterShanghai, China
- *Correspondence: Lijun Luo
| |
Collapse
|
40
|
Baldoni E, Bagnaresi P, Locatelli F, Mattana M, Genga A. Comparative Leaf and Root Transcriptomic Analysis of two Rice Japonica Cultivars Reveals Major Differences in the Root Early Response to Osmotic Stress. RICE (NEW YORK, N.Y.) 2016; 9:25. [PMID: 27216147 PMCID: PMC4877341 DOI: 10.1186/s12284-016-0098-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/14/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Rice (Oryza sativa L.) is one of the most important crops cultivated in both tropical and temperate regions and is characterized by a low water-use efficiency and a high sensitivity to a water deficit, with yield reductions occurring at lower stress levels compared to most other crops. To identify genes and pathways involved in the tolerant response to dehydration, a powerful approach consists in the genome-wide analysis of stress-induced expression changes by comparing drought-tolerant and drought-sensitive genotypes. RESULTS The physiological response to osmotic stress of 17 japonica rice genotypes was evaluated. A clear differentiation of the most tolerant and the most sensitive phenotypes was evident, especially after 24 and 48 h of treatment. Two genotypes, which were characterized by a contrasting response (tolerance/sensitivity) to the imposed stress, were selected. A parallel transcriptomic analysis was performed on roots and leaves of these two genotypes at 3 and 24 h of stress treatment. RNA-Sequencing data showed that the tolerant genotype Eurosis and the sensitive genotype Loto mainly differed in the early response to osmotic stress in roots. In particular, the tolerant genotype was characterized by a prompt regulation of genes related to chromatin, cytoskeleton and transmembrane transporters. Moreover, a differential expression of transcription factor-encoding genes, genes involved in hormone-mediate signalling and genes involved in the biosynthesis of lignin was observed between the two genotypes. CONCLUSIONS Our results provide a transcriptomic characterization of the osmotic stress response in rice and identify several genes that may be important players in the tolerant response.
Collapse
Affiliation(s)
- Elena Baldoni
- Institute of Agricultural Biology and Biotechnology - National Research Council, via Bassini 15, 20133, Milan, Italy.
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy.
| | - Paolo Bagnaresi
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Genomics Research Centre, Fiorenzuola d'Arda, Piacenza, Italy
| | - Franca Locatelli
- Institute of Agricultural Biology and Biotechnology - National Research Council, via Bassini 15, 20133, Milan, Italy
| | - Monica Mattana
- Institute of Agricultural Biology and Biotechnology - National Research Council, via Bassini 15, 20133, Milan, Italy
| | - Annamaria Genga
- Institute of Agricultural Biology and Biotechnology - National Research Council, via Bassini 15, 20133, Milan, Italy.
| |
Collapse
|
41
|
Villacorta-Martin C, Núñez de Cáceres González FF, de Haan J, Huijben K, Passarinho P, Lugassi-Ben Hamo M, Zaccai M. Whole transcriptome profiling of the vernalization process in Lilium longiflorum (cultivar White Heaven) bulbs. BMC Genomics 2015. [PMID: 26216467 PMCID: PMC4515921 DOI: 10.1186/s12864-015-1675-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Vernalization is an obligatory requirement of extended exposure to low temperatures to induce flowering in certain plants. It is the most important factor affecting flowering time and quality in Easter lily (Lilium longiflorum). Exposing the bulbs to 4 °C gradually decreases flowering time up to 50 % compared to non-vernalized plants. We aim to understand the molecular regulation of vernalization in Easter lily, for which we characterized the global expression in lily bulb meristems after 0, 2, 5, 7 and 9 weeks of incubation at 4 °C. Results We assembled de-novo a transcriptome which, after filtering, yielded 121,572 transcripts and 42,430 genes which hold 15,414 annotated genes, with up to 3,657 GO terms. This extensive annotation was mapped to the more general GO slim plant with a total of 94 terms. The response to cold exposure was summarized in 6 expression clusters, providing useful patterns for dissecting the dynamics of vernalization in lily. The functional annotation (GO and GO slim plant) was used to group transcripts in gene sets. Analysis of these gene sets and profiles revealed that most of the enriched functions among genes up-regulated by cold exposure were related to epigenetic processes and chromatin remodeling. Candidate vernalization genes in lily were selected based on their sequence similarity to known regulators of flowering in other species. Conclusions We present a detailed analysis of gene expression dynamics during vernalization in Lilium, covering several time points and accounting for biological variation by the use of replicates. The resulting collection of transcripts and novel isoforms provides a useful resource for studying the changes occurring during vernalization at a fine level. The selected potential candidate genes can shed light on the regulation of this process. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1675-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Francisco F Núñez de Cáceres González
- Department of Life Sciences, Ben Gurion University of the Negev, P.O. Box 653, Beersheva, 84105, Israel. .,Present address: Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, C. P. 42184, Mineral de la Reforma, Hidalgo, Mexico.
| | - Jorn de Haan
- Genetwister Technologies B.V., P.O. Box 193, NL6700 AD, Wageningen, The Netherlands.
| | - Kitty Huijben
- Genetwister Technologies B.V., P.O. Box 193, NL6700 AD, Wageningen, The Netherlands.
| | - Paul Passarinho
- Genetwister Technologies B.V., P.O. Box 193, NL6700 AD, Wageningen, The Netherlands.
| | - Maya Lugassi-Ben Hamo
- Department of Life Sciences, Ben Gurion University of the Negev, P.O. Box 653, Beersheva, 84105, Israel.
| | - Michele Zaccai
- Department of Life Sciences, Ben Gurion University of the Negev, P.O. Box 653, Beersheva, 84105, Israel.
| |
Collapse
|
42
|
Han SK, Wu MF, Cui S, Wagner D. Roles and activities of chromatin remodeling ATPases in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:62-77. [PMID: 25977075 DOI: 10.1111/tpj.12877] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 05/18/2023]
Abstract
Chromatin remodeling ATPases and their associated complexes can alter the accessibility of the genome in the context of chromatin by using energy derived from the hydrolysis of ATP to change the positioning, occupancy and composition of nucleosomes. In animals and plants, these remodelers have been implicated in diverse processes ranging from stem cell maintenance and differentiation to developmental phase transitions and stress responses. Detailed investigation of their roles in individual processes has suggested a higher level of selectivity of chromatin remodeling ATPase activity than previously anticipated, and diverse mechanisms have been uncovered that can contribute to the selectivity. This review summarizes recent advances in understanding the roles and activities of chromatin remodeling ATPases in plants.
Collapse
Affiliation(s)
- Soon-Ki Han
- Howard Hughes Medical Institute and Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Miin-Feng Wu
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sujuan Cui
- Hebei Key Laboratory of Molecular Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
43
|
Wei T, He Z, Tan X, Liu X, Yuan X, Luo Y, Hu S. An integrated RNA-Seq and network study reveals a complex regulation process of rice embryo during seed germination. Biochem Biophys Res Commun 2015; 464:176-81. [PMID: 26116530 DOI: 10.1016/j.bbrc.2015.06.110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 06/17/2015] [Indexed: 01/08/2023]
Abstract
Seed germination is a crucial stage for plant development and agricultural production. To investigate its complex regulation process, the RNA-Seq study of rice embryo was conducted at three time points of 0, 12 and 48 h post imbibition (HPI). Dynamic transcriptional alterations were observed, especially in the early stage (0-12 HPI). Seed related genes, especially those encoding desiccation inducible proteins and storage reserves in embryo, decreased drastically after imbibition. The expression profiles of phytohormone related genes indicated distinct roles of abscisic acid (ABA), gibberellin (GA) and brassinosteroid (BR) in germination. Moreover, network analysis revealed the importance of protein phosphorylation in phytohormone interactions. Network and gene ontology (GO) analyses suggested that transcription factors (TFs) played a regulatory role in functional transitions during germination, and the enriched TF families at 0 HPI implied a regulation of epigenetic modification in dry seeds. In addition, 35 germination-specific TF genes in embryo were identified and seven genes were verified by qRT-PCR. Besides, enriched TF binding sites (TFBSs) supported physiological changes in germination. Overall, this study expands our comprehensive knowledge of multiple regulation factors underlying rice seed germination.
Collapse
Affiliation(s)
- Ting Wei
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zilong He
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - XinYu Tan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xue Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Yuan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingfeng Luo
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
44
|
Guo M, Wang R, Wang J, Hua K, Wang Y, Liu X, Yao S. ALT1, a Snf2 family chromatin remodeling ATPase, negatively regulates alkaline tolerance through enhanced defense against oxidative stress in rice. PLoS One 2014; 9:e112515. [PMID: 25473841 PMCID: PMC4256374 DOI: 10.1371/journal.pone.0112515] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/06/2014] [Indexed: 11/19/2022] Open
Abstract
Alkaline salt stress adversely affects rice growth, productivity and grain quality. However, the mechanism underlying this process remains elusive. We characterized here an alkaline tolerant mutant, alt1 in rice. Map-based cloning revealed that alt1 harbors a mutation in a chromatin remodeling ATPase gene. ALT1-RNAi transgenic plants under different genetic background mimicked the alt1 phenotype, exhibiting tolerance to alkaline stress in a transcript dosage-dependent manner. The predicted ALT1 protein belonged to the Ris1 subgroup of the Snf2 family and was localized in the nucleus, and transcription of ALT1 was transiently suppressed after alkaline treatment. Although the absorption of several metal ions maintained well in the mutant under alkaline stress, expression level of the genes involved in metal ions homeostasis was not altered in the alt1 mutant. Classification of differentially expressed abiotic stress related genes, as revealed by microarray analysis, found that the majority (50/78) were involved in ROS production, ROS scavenging, and DNA repair. This finding was further confirmed by that alt1 exhibited lower levels of H2O2 under alkaline stress and tolerance to methyl viologen treatment. Taken together, these results suggest that ALT1 negatively functions in alkaline tolerance mainly through the defense against oxidative damage, and provide a potential two-step strategy for improving the tolerance of rice plants to alkaline stress.
Collapse
Affiliation(s)
- Mingxin Guo
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruci Wang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Juan Wang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kai Hua
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yueming Wang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoqiang Liu
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shanguo Yao
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
45
|
Han SK, Wagner D. Role of chromatin in water stress responses in plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2785-99. [PMID: 24302754 PMCID: PMC4110454 DOI: 10.1093/jxb/ert403] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
As sessile organisms, plants are exposed to environmental stresses throughout their life. They have developed survival strategies such as developmental and morphological adaptations, as well as physiological responses, to protect themselves from adverse environments. In addition, stress sensing triggers large-scale transcriptional reprogramming directed at minimizing the deleterious effect of water stress on plant cells. Here, we review recent findings that reveal a role of chromatin in water stress responses. In addition, we discuss data in support of the idea that chromatin remodelling and modifying enzymes may be direct targets of stress signalling pathways. Modulation of chromatin regulator activity by these signaling pathways may be critical in minimizing potential trade-offs between growth and stress responses. Alterations in the chromatin organization and/or in the activity of chromatin remodelling and modifying enzymes may furthermore contribute to stress memory. Mechanistic insight into these phenomena derived from studies in model plant systems should allow future engineering of broadly drought-tolerant crop plants that do not incur unnecessary losses in yield or growth.
Collapse
Affiliation(s)
- Soon-Ki Han
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
46
|
Hu Y, Lai Y, Zhu D. Transcription regulation by CHD proteins to control plant development. FRONTIERS IN PLANT SCIENCE 2014; 5:223. [PMID: 24904618 PMCID: PMC4036436 DOI: 10.3389/fpls.2014.00223] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/05/2014] [Indexed: 05/19/2023]
Abstract
Chromodomain-Helicase-DNA (CHD)-binding proteins have been characterized in various species as important transcription regulators by their chromatin remodeling activity. However, in plant the function of these proteins has hardly been analyzed before except that Arabidopsis PIKLE and rice CHR729 are identified to play critical roles in the regulation of series of genes involved in developmental or stress responding process. In this review we focus on how plant CHD proteins regulate gene expression and the role of these proteins in controlling plant development and stress response.
Collapse
Affiliation(s)
- Yongfeng Hu
- *Correspondence: Yongfeng Hu, Jingchu University of Technology, Xiangshan Road 33, Jingmen, China e-mail:
| | | | | |
Collapse
|