1
|
Al-Obaidi JR, Jamaludin AA, Rahman NA, Ahmad-Kamil EI. How plants respond to heavy metal contamination: a narrative review of proteomic studies and phytoremediation applications. PLANTA 2024; 259:103. [PMID: 38551683 DOI: 10.1007/s00425-024-04378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
MAIN CONCLUSION Heavy metal pollution caused by human activities is a serious threat to the environment and human health. Plants have evolved sophisticated defence systems to deal with heavy metal stress, with proteins and enzymes serving as critical intercepting agents for heavy metal toxicity reduction. Proteomics continues to be effective in identifying markers associated with stress response and metabolic processes. This review explores the complex interactions between heavy metal pollution and plant physiology, with an emphasis on proteomic and biotechnological perspectives. Over the last century, accelerated industrialization, agriculture activities, energy production, and urbanization have established a constant need for natural resources, resulting in environmental degradation. The widespread buildup of heavy metals in ecosystems as a result of human activity is especially concerning. Although some heavy metals are required by organisms in trace amounts, high concentrations pose serious risks to the ecosystem and human health. As immobile organisms, plants are directly exposed to heavy metal contamination, prompting the development of robust defence mechanisms. Proteomics has been used to understand how plants react to heavy metal stress. The development of proteomic techniques offers promising opportunities to improve plant tolerance to toxicity from heavy metals. Additionally, there is substantial scope for phytoremediation, a sustainable method that uses plants to extract, sequester, or eliminate contaminants in the context of changes in protein expression and total protein behaviour. Changes in proteins and enzymatic activities have been highlighted to illuminate the complex effects of heavy metal pollution on plant metabolism, and how proteomic research has revealed the plant's ability to mitigate heavy metal toxicity by intercepting vital nutrients, organic substances, and/or microorganisms.
Collapse
Affiliation(s)
- Jameel R Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia.
- Applied Science Research Center, Applied Science Private University, Amman, Jordan.
| | - Azi Azeyanty Jamaludin
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia
- Center of Biodiversity and Conservation, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia
| | - Norafizah Abdul Rahman
- Gene Marker Laboratory, Faculty of Agriculture and Life Sciences (AGLS), Science South Building, Lincoln University, Lincoln, 7608, Canterbury, New Zealand
| | - E I Ahmad-Kamil
- Malaysian Nature Society (MNS), JKR 641, Jalan Kelantan, Bukit Persekutuan, 50480, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Vajjiravel P, Nagarajan D, Pugazhenthi V, Suresh A, Sivalingam MK, Venkat A, Mahapatra PP, Razi K, Al Murad M, Bae DW, Notaguchi M, Seth CS, Muneer S. Circadian-based approach for improving physiological, phytochemical and chloroplast proteome in Spinacia oleracea under salinity stress and light emitting diodes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108350. [PMID: 38199026 DOI: 10.1016/j.plaphy.2024.108350] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/02/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Salt stress is a recognized annihilating abiotic stress that has a significant impact on agricultural and horticulture crop productivity. Plant development faces three distinct dangers as a result of salt stress: oxidative stress, osmotic stress, and ionic toxicity. It has been shown that plants can forecast diurnal patterns using the circadian clock; moreover, they can manage their defensive mechanism for the detoxification of reactive oxygen species (ROS). Circadian rhythmicity in gene expression assembles transcription and translation feedback networks to govern plant shape, physiology, cellular and molecular activities. Both external and internal variables influence the systemic rhythm via input routes. The Malav Jyoti (MJ) and Delhi Green (DG) genotypes of spinach (Spinacia oleracea) were grown in the plant growth chamber. The chamber had an optimized temperature of 25 °C and humidity of 65% containing light emitting diode (LED) having Red: Blue: white (one side) and White fluorescent (other side) under salinity stress. The samples were collected on the basis of 4 h intervals of circadian hours (0 h, 4 h, 8 h and 12 h) during Day-10 and Day-20 of salt treatments. Under salt stress, the circadian and light-emitting diode-based strategy had a substantial influence on spinach's anti-oxidative responses, stomatal movement, CO2 assimilation, PS-I and II efficiency, phytochrome pigment efficiency, and photosynthesis. Based on the findings of the free radical scavenging enzyme tests, the photoperiodic hours for the proteome analysis were set to 11 am and 3 pm on Day-20. When compared to white fluorescent, this study found that LED has the capacity to influence the entrainment cues of the circadian clock in the cultivation of salt-sensitive spinach genotypes. According to our findings, changing the cellular scavenging mechanism and chloroplast proteome has increased the survival rate of spinach genotypes under LED when compared to white fluorescent.
Collapse
Affiliation(s)
- Prakash Vajjiravel
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, 632 014, India
| | - Divya Nagarajan
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, 632 014, India
| | - Varsha Pugazhenthi
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, 632 014, India
| | - Ajay Suresh
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, 632 014, India
| | - Madhan Kumar Sivalingam
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, 632 014, India
| | - Ajila Venkat
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, 632 014, India; School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India
| | - Pritam Paramguru Mahapatra
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, 632 014, India; School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India
| | - Kaukab Razi
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, 632 014, India; School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India
| | - Musa Al Murad
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, 632 014, India; School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India
| | - Dong Won Bae
- Central Instrument Facility, Gyeongsang National University, Jinju, 52828, South Korea
| | - Michitaka Notaguchi
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | - Sowbiya Muneer
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, 632 014, India.
| |
Collapse
|
3
|
Naaz S, Ahmad N, Jameel MR, Al-Huqail AA, Khan F, Qureshi MI. Impact of Some Toxic Metals on Important ABC Transporters in Soybean ( Glycine max L.). ACS OMEGA 2023; 8:27597-27611. [PMID: 37546587 PMCID: PMC10399161 DOI: 10.1021/acsomega.3c03325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
In plants, ATP-binding cassette (ABC) transporters facilitate the movement of substrates across membranes using ATP for growth, development, and defense. Soils contaminated with toxic metals such as cadmium (Cd) and mercury (Hg) might adversely affect the metabolism of plants and humans. In this study, a phylogenetic relationship among soybeans' (Glycine max) ATP binding cassette (GmABCs) and other plant ABCs was analyzed using sequence information, gene structure, chromosomal distribution, and conserved motif-domain. The ontology of GmABCs indicated their active involvement in trans-membrane transport and ATPase activity. Thirty-day-old soybean plants were exposed to 100 μM CdCl2 and 100 μM HgCl2 for 10 days. Physiological and biochemical traits were altered under stress conditions. Compared to Control, GmABC transporter genes were differentially expressed in response to Cd and Hg. The qRT-PCR data showed upregulation of seven ABC transporter genes in response to Cd stress and three were downregulated. On the other hand, Hg stress upregulated four GmABC genes and downregulated six. It could be concluded that most of the ABCB and ABCG subfamily members were actively involved in heavy metal responses. Real-time expression studies suggest the function of specific ABC transporters in Cd and Hg stress response and are helpful in future research to develop stress-tolerant varieties of soybean.
Collapse
Affiliation(s)
- Sheeba Naaz
- Department
of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
- Department
of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Nadeem Ahmad
- Department
of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - M. Rizwan Jameel
- Centre
for Interdisciplinary Research in Basic Sciences, Faculty of Natural
Sciences, Jamia Millia Islamia (A Central
University), New Delhi 110025, India
| | - Asma A. Al-Huqail
- Chair
of Climate Change, Environmental Development and Vegetation Cover,
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faheema Khan
- Chair
of Climate Change, Environmental Development and Vegetation Cover,
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - M. Irfan Qureshi
- Department
of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| |
Collapse
|
4
|
Mishra D, Chitara MK, Upadhayay VK, Singh JP, Chaturvedi P. Plant growth promoting potential of urea doped calcium phosphate nanoparticles in finger millet ( Eleusine coracana (L.) Gaertn.) under drought stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1137002. [PMID: 37255562 PMCID: PMC10225717 DOI: 10.3389/fpls.2023.1137002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023]
Abstract
Drought is a leading threat that impinges on plant growth and productivity. Nanotechnology is considered an adequate tool for resolving various environmental issues by offering avant-garde and pragmatic solutions. Using nutrients in the nano-scale including CaP-U NPs is a novel fertilization strategy for crops. The present study was conducted to develop and utilize environment-friendly urea nanoparticles (NPs) based nano-fertilizers as a crop nutrient. The high solubility of urea molecules was controlled by integrating them with a matrix of calcium phosphate nanoparticles (CaP NPs). CaP NPs contain high phosphorous and outstanding biocompatibility. Scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD) were used to characterize the fabricated NPs. FE-SEM determined no areas of phase separation in urea and calcium phosphate, indicating the successful formation of an encapsulated nanocomposite between the two nano matrices. TEM examination confirmed a fiber-like structure of CaP-U NPs with 15 to 50 nm diameter and 100 to 200 nm length. The synthesized CaP-U NPs and bulk urea (0.0, 0.1% and 0.5%) were applied by foliar sprays at an interval of 15 days on pre-sowed VL-379 variety of finger millet (Eleusine coracana (L.) Gaertn.), under irrigated and drought conditions. The application of the CaP-U NPs significantly enhanced different plant growth attributes such as shoot length (29.4 & 41%), root length (46.4 & 51%), shoot fresh (33.6 & 55.8%) and dry weight (63 & 59.1%), and root fresh (57 & 61%) and dry weight (78 & 80.7%), improved pigment system (chlorophyll) and activated plant defense enzymes such as proline (35.4%), superoxide dismutase (47.7%), guaiacol peroxidase (30.2%), ascorbate peroxidase (70%) under both irrigated and drought conditions. Superimposition of five treatment combinations on drought suggested that CaP-U NPs at 0.5 followed by 0.1% provided the highest growth indices and defense-related enzymes, which were significantly different. Overall, our findings suggested that synthesized CaP-U NPs treatment of finger millet seeds improved plant growth and enzymatic regulation, particularly more in drought conditions providing insight into the strategy for not only finger millet but probably for other commercial cereals crops which suffer from fluctuating environmental conditions.
Collapse
Affiliation(s)
- Dhruv Mishra
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (U.K.), India
| | - Manoj Kumar Chitara
- Department of Plant Pathology, College of Agriculture, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Viabhav Kumar Upadhayay
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Jagat Pal Singh
- Department of Physics, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Preeti Chaturvedi
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (U.K.), India
| |
Collapse
|
5
|
Alp K, Terzi H, Yildiz M. Proteomic and physiological analyses to elucidate nitric oxide-mediated adaptive responses of barley under cadmium stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1467-1476. [PMID: 36051236 PMCID: PMC9424405 DOI: 10.1007/s12298-022-01214-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/24/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Nitric oxide (NO) is known to induce plant resistance for several environmental stresses. The protective roles of NO in cadmium (Cd) toxicity have been well documented for various plant species; nevertheless, little information is available about its molecular regulation in improving Cd tolerance of barley plants. Therefore, we combined a comparative proteomics with physiological analyses to evaluate the potential roles of NO in alleviating Cd stress (50 μM) in barley (Hordeum vulgare L.) seedlings. Exogenous application of NO donor sodium nitroprusside (SNP, 100 μM) decreased the Cd-mediated seedling growth inhibition. This observation was supported by the reduction of lipid peroxidation as well as the improvement of chlorophyll content and inhibition of hydrogen peroxide accumulation. Activities of the superoxide dismutase and guaiacol peroxidase were reduced following the application of SNP, while ascorbate peroxidase activity was enhanced. In this study, a total of 34 proteins were significantly regulated by NO in the leaves under Cd stress using a gel-based proteomic approach. The proteomic analysis showed that several pathways were noticeably influenced by NO including photosynthesis and carbohydrate metabolism, protein metabolism, energy metabolism, stress defense, and signal transduction. These results provide new evidence that NO induce photosynthesis and energy metabolism which may enhance Cd tolerance in barley seedlings. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01214-3.
Collapse
Affiliation(s)
- Kübra Alp
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Hakan Terzi
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Mustafa Yildiz
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Afyon Kocatepe University, Afyonkarahisar, Turkey
| |
Collapse
|
6
|
Ma L, Zhang M, Chen J, Qing C, He S, Zou C, Yuan G, Yang C, Peng H, Pan G, Lübberstedt T, Shen Y. GWAS and WGCNA uncover hub genes controlling salt tolerance in maize (Zea mays L.) seedlings. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3305-3318. [PMID: 34218289 DOI: 10.1007/s00122-021-03897-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/25/2021] [Indexed: 05/20/2023]
Abstract
KEYMESSAGE Two hub genes GRMZM2G075104 and GRMZM2G333183 involved in salt tolerance were identified by GWAS and WGCNA. Furthermore, they were verified to affect salt tolerance by candidate gene association analysis. Salt stress influences maize growth and development. To decode the genetic basis and hub genes controlling salt tolerance is a meaningful exploration for cultivating salt-tolerant maize varieties. Herein, we used an association panel consisting of 305 lines to identify the genetic loci responsible for Na+- and K+-related traits in maize seedlings. Under the salt stress, seven significant single nucleotide polymorphisms were identified using a genome-wide association study, and 120 genes were obtained by scanning the linkage disequilibrium regions of these loci. According to the transcriptome data of the above 120 genes under salinity treatment, we conducted a weighted gene co-expression network analysis. Combined the gene annotations, two SNaC/SKC (shoot Na+ content/shoot K+ content)-associated genes GRMZM2G075104 and GRMZM2G333183 were finally identified as the hub genes involved in salt tolerance. Subsequently, these two genes were verified to affect salt tolerance of maize seedlings by candidate gene association analysis. Haplotypes TTGTCCG-CT and CTT were determined as favorable/salt-tolerance haplotypes for GRMZM2G075104 and GRMZM2G333183, respectively. These findings provide novel insights into genetic architectures underlying maize salt tolerance and contribute to the cultivation of salt-tolerant varieties in maize.
Collapse
Affiliation(s)
- Langlang Ma
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Minyan Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jie Chen
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Chunyan Qing
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shijiang He
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chaoying Zou
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangsheng Yuan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Cong Yang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hua Peng
- Sichuan Tourism College, Chengdu, 610100, China
| | - Guangtang Pan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | | | - Yaou Shen
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
7
|
Derbali W, Manaa A, Spengler B, Goussi R, Abideen Z, Ghezellou P, Abdelly C, Forreiter C, Koyro HW. Comparative proteomic approach to study the salinity effect on the growth of two contrasting quinoa genotypes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:215-229. [PMID: 33862501 DOI: 10.1016/j.plaphy.2021.03.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/28/2021] [Indexed: 05/27/2023]
Abstract
The aim of this study was to investigate the effect of NaCl salinity (0, 100 and 300 mM) on the individual response of the quinoa varieties Kcoito (Altiplano Ecotype) and UDEC-5 (Sea-level Ecotype) with physiological and proteomic approaches. Leaf protein profile was performed using two dimensional gel electrophoresis (2-DE). UDEC-5 showed an enhanced capacity to withstand salinity stress compared to Kcoito. In response to salinity, we detected overall the following differences between both genotypes: Toxicity symptoms, plant growth performance, photosynthesis performance and intensity of ROS-defense. We found a mirroring of these differences in the proteome of each genotype. Among the 700 protein spots reproducibly detected, 24 exhibited significant abundance variations between samples. These proteins were involved in energy and carbon metabolism, photosynthesis, ROS scavenging and detoxification, stress defense and chaperone functions, enzyme activation and ATPases. A specific set of proteins predominantly involved in photosynthesis and ROS scavenging showed significantly higher abundance under high salinity (300 mM NaCl). The adjustment was accompanied by a stimulation of various metabolic pathways to balance the supplementary demand for energy or intermediates. However, the more salt-resistant genotype UDEC-5 presented a beneficial and significantly higher expression of nearly all stress-related altered enzymes than Kcoito.
Collapse
Affiliation(s)
- Walid Derbali
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif, 2050, Tunisia; Faculté des Sciences de Tunis, Université Tunis El Manar, 2092. Tunisia; Institute for Plant Ecology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Arafet Manaa
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif, 2050, Tunisia.
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Rahma Goussi
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif, 2050, Tunisia; Faculté des Sciences de Tunis, Université Tunis El Manar, 2092. Tunisia
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte, University of Karachi, Karachi, Pakistan
| | - Parviz Ghezellou
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Chedly Abdelly
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif, 2050, Tunisia
| | - Christoph Forreiter
- Institut für Biologie, University of Siegen, Naturwissenschaftlich-Technische Fakultät, Adolf-Reichwein-Str. 2, 57068, Siegen, Germany
| | - Hans-Werner Koyro
- Institute for Plant Ecology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| |
Collapse
|
8
|
Sun X, Wang Y, Jiang T, Yuan X, Ren Z, Tuffour A, Liu H, Zhou Y, Gu J, Shi H. Nephrotoxicity Profile of Cadmium Revealed by Proteomics in Mouse Kidney. Biol Trace Elem Res 2021; 199:1929-1940. [PMID: 32803525 DOI: 10.1007/s12011-020-02312-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Cadmium (Cd) is a highly toxic metal and kidney is its main target. However, the molecular effects and associated potential impacts of Cd-accumulated kidney have not been well investigated. In this study, mouse was used as a model to investigate the Cd-induced proteomic profile change in kidney, and a total of 34 differentially expressed proteins were detected by two-dimensional gel electrophoresis (2-DE) and further identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). Through Gene Ontology analysis and KEGG pathway annotation, it showed that Cd-regulated kidney metabolism and promoted renal damage and cell migration. By validation of Western blotting and RT-qPCR, metastasis-related proteins LIM and SH3 domain protein 1 (LASP1) and phosphoenolpyruvate carboxykinase/cytosolic [GTP] (PEPCK1) were confirmed to be upregulated; Acyl-CoA synthetase medium-chain family member 3 (ACSM3) was downregulated. Furthermore, carcinoma development-related proteins initiation factor 4A (eIF4A) and pyridoxine-5'-phosphate oxidase (PNPO) were upregulated, and pyridoxal kinase (PK) was downregulated. The downregulation of Na(+)/H(+) exchange regulatory cofactor (NHERF3) might promote renal damage which associated with decrease of transferrin (TRF) in kidney. Taken together, our results revealed proteomic profile of Cd-induced nephrotoxicity and provided data for further insights into the mechanisms of Cd toxicity.
Collapse
Affiliation(s)
- Xi Sun
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yanwei Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Tingya Jiang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xiao Yuan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zhen Ren
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Alex Tuffour
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Haitao Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yang Zhou
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jie Gu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
9
|
Selection and Validation of Reference Genes for RT-qPCR Analysis in Spinacia oleracea under Abiotic Stress. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4853632. [PMID: 33623781 PMCID: PMC7875621 DOI: 10.1155/2021/4853632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/16/2021] [Indexed: 11/17/2022]
Abstract
Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is an accurate and convenient method for mRNA quantification. Selection of optimal reference gene(s) is an important step in RT-qPCR experiments. However, the stability of housekeeping genes in spinach (Spinacia oleracea) under various abiotic stresses is unclear. Evaluating the stability of candidate genes and determining the optimal gene(s) for normalization of gene expression in spinach are necessary to investigate the gene expression patterns during development and stress response. In this study, ten housekeeping genes, 18S ribosomal RNA (18S rRNA), actin, ADP ribosylation factor (ARF), cytochrome c oxidase subunit 5C (COX), cyclophilin (CYP), elongation factor 1-alpha (EF1α), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), histone H3 (H3), 50S ribosomal protein L2 (RPL2), and tubulin alpha chain (TUBα) from spinach, were selected as candidates in roots, stems, leaves, flowers, and seedlings in response to high temperature, CdCl2, NaCl, NaHCO3, and Na2CO3 stresses. The expression of these genes was quantified by RT-qPCR and evaluated by NormFinder, BestKeeper, and geNorm. 18S rRNA, actin, ARF, COX, CYP, EF1α, GAPDH, H3, and RPL2 were detected as optimal reference genes for gene expression analysis of different organs and stress responses. The results were further confirmed by the expression pattern normalized with different reference genes of two heat-responsive genes. Here, we optimized the detection method of the gene expression pattern in spinach. Our results provide the optimal candidate reference genes which were crucial for RT-qPCR analysis.
Collapse
|
10
|
Yuan W, Liu J, Takáč T, Chen H, Li X, Meng J, Tan Y, Ning T, He Z, Yi G, Xu C. Genome-Wide Identification of Banana Csl Gene Family and Their Different Responses to Low Temperature between Chilling-Sensitive and Tolerant Cultivars. PLANTS 2021; 10:plants10010122. [PMID: 33435621 PMCID: PMC7827608 DOI: 10.3390/plants10010122] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 01/04/2023]
Abstract
The cell wall plays an important role in responses to various stresses. The cellulose synthase-like gene (Csl) family has been reported to be involved in the biosynthesis of the hemicellulose backbone. However, little information is available on their involvement in plant tolerance to low-temperature (LT) stress. In this study, a total of 42 Csls were identified in Musa acuminata and clustered into six subfamilies (CslA, CslC, CslD, CslE, CslG, and CslH) according to phylogenetic relationships. The genomic features of MaCsl genes were characterized to identify gene structures, conserved motifs and the distribution among chromosomes. A phylogenetic tree was constructed to show the diversity in these genes. Different changes in hemicellulose content between chilling-tolerant and chilling-sensitive banana cultivars under LT were observed, suggesting that certain types of hemicellulose are involved in LT stress tolerance in banana. Thus, the expression patterns of MaCsl genes in both cultivars after LT treatment were investigated by RNA sequencing (RNA-Seq) technique followed by quantitative real-time PCR (qPCR) validation. The results indicated that MaCslA4/12, MaCslD4 and MaCslE2 are promising candidates determining the chilling tolerance of banana. Our results provide the first genome-wide characterization of the MaCsls in banana, and open the door for further functional studies.
Collapse
Affiliation(s)
- Weina Yuan
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.L.); (H.C.); (J.M.); (Y.T.); (T.N.); (Z.H.)
| | - Jing Liu
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.L.); (H.C.); (J.M.); (Y.T.); (T.N.); (Z.H.)
| | - Tomáš Takáč
- Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 783 75 Olomouc, Czech Republic;
| | - Houbin Chen
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.L.); (H.C.); (J.M.); (Y.T.); (T.N.); (Z.H.)
| | - Xiaoquan Li
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Jian Meng
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.L.); (H.C.); (J.M.); (Y.T.); (T.N.); (Z.H.)
| | - Yehuan Tan
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.L.); (H.C.); (J.M.); (Y.T.); (T.N.); (Z.H.)
| | - Tong Ning
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.L.); (H.C.); (J.M.); (Y.T.); (T.N.); (Z.H.)
| | - Zhenting He
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.L.); (H.C.); (J.M.); (Y.T.); (T.N.); (Z.H.)
| | - Ganjun Yi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Correspondence: (G.Y.); (C.X.)
| | - Chunxiang Xu
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.L.); (H.C.); (J.M.); (Y.T.); (T.N.); (Z.H.)
- Correspondence: (G.Y.); (C.X.)
| |
Collapse
|
11
|
Amna S, Qamar S, Turab Naqvi AA, Al-Huqail AA, Qureshi MI. Role of sulfur in combating arsenic stress through upregulation of important proteins, and in-silico analysis to study the interaction between phosphate transporter (PHO1), arsenic and phosphate in spinach. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:348-358. [PMID: 33189055 DOI: 10.1016/j.plaphy.2020.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
An adequate amount of Sulfur (S) is essential for proper plant growth and defence against abiotic stresses including metals and metalloids. Arsenic (As) contamination is increasing in agricultural soils rapidly due to anthropogenic activities. Sulfur deficiency and arsenic stress could be more harmful than these individual stresses alone. To understand the impact of S-deficiency and arsenic (31 ppm Na3AsO4 of soil) on ecophysiology, growth, inorganic phosphate level, and proteomic profile of spinach, the present study was conducted. Interaction of arsenic with phosphate transporters, phytochelatins, and glutathione was also analyzed in silico. Comparative 2D MS/MS proteomics helped in the identification of important proteins which might be the key players under S-deficiency and As stress. Upregulation and downregulation of 36 and 21 proteins under As stress; 19 and 36 proteins under S-deficiency; 38 and 31 proteins under combined stress, respectively was observed. A total, 87 proteins subjected to identification via MS/MS ion search were found to be associated with important plant functions. PHO1 abundance was highly influenced by As stress; hence an in-silico homology modeling based molecular docking was performed which indicated high interaction between PHO1 and As/phosphate. Varied proximity of arsenic with phosphate transporters, phytochelatin, and glutathione revealed these components as a potential target of As toxicity/detoxification in Spinach, reflecting sulfur as an important criterion for arsenic tolerance.
Collapse
Affiliation(s)
- Syeda Amna
- Proteomics and Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia, Delhi, India.
| | - Sadia Qamar
- Proteomics and Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia, Delhi, India.
| | - Ahmad Abu Turab Naqvi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Delhi, India.
| | - Asma A Al-Huqail
- Botany & Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, Saudi Arabia.
| | - M Irfan Qureshi
- Proteomics and Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia, Delhi, India.
| |
Collapse
|
12
|
Zhang H, Xu Z, Huo Y, Guo K, Wang Y, He G, Sun H, Li M, Li X, Xu N, Sun G. Overexpression of Trx CDSP32 gene promotes chlorophyll synthesis and photosynthetic electron transfer and alleviates cadmium-induced photoinhibition of PSII and PSI in tobacco leaves. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122899. [PMID: 32450465 DOI: 10.1016/j.jhazmat.2020.122899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 05/11/2023]
Abstract
Cadmium stress causes a decrease in chlorophyll content and inhibits photosynthesis in tobacco leaves. The role of thioredoxin-like protein CDSP32 expressed in plant chloroplasts is to alleviates the reduced enzymes expression involved in chlorophyll synthesis of tobacco leaves due to Cd exposure, effectively preventing chlorophyll degradation and promoting increased tobacco biomass. Overexpression of Trx CDSP32 can protect the oxygen-evolving complex on the PSII donor side and promote electron transfer on the PSII acceptor side of tobacco leaves under Cd stress. Trx CDSP32 not only significantly increase the PSI activity of tobacco leaves, but also alleviate cadmium-induced PSI photoinhibition. Although Trx CDSP32 has no significant effect on the expression of PC and FNR proteins in tobacco leaves under Cd stress, it can alleviate the decreased expression of protein subunits involved in photosynthetic electron transfer such as Cyt b6/f complex subunits, Fd, and ATP synthase subunits. Trx CDSP32 can promote the synthesis of chlorophyll, stabilize the electron transfer chain, and promote ATP synthase activity to alleviate cadmium-induced photoinhibition of PSII and PSI in tobacco leaves.
Collapse
Affiliation(s)
- Huihui Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zisong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yuze Huo
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Kaiwen Guo
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yue Wang
- College of Life Science, Northeast Forest University, Harbin, Heilongjiang, China
| | - Guoqiang He
- Mudanjiang Tobacco Science Research Institute, Mudanjiang, Heilongjiang, China
| | - Hongwei Sun
- Mudanjiang Tobacco Science Research Institute, Mudanjiang, Heilongjiang, China
| | - Mabo Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xin Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Nan Xu
- Natural Resources and Ecology Institute, Heilongjiang Sciences Academy, Harbin, Heilongjiang, China.
| | - Guangyu Sun
- College of Life Science, Northeast Forest University, Harbin, Heilongjiang, China
| |
Collapse
|
13
|
Vessal S, Arefian M, Siddique KHM. Proteomic responses to progressive dehydration stress in leaves of chickpea seedlings. BMC Genomics 2020; 21:523. [PMID: 32727351 PMCID: PMC7392671 DOI: 10.1186/s12864-020-06930-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
Background Chickpea is an important food legume crop with high protein levels that is widely grown in rainfed areas prone to drought stress. Using an integrated approach, we describe the relative changes in some physiological parameters and the proteome of a drought-tolerant (MCC537, T) and drought-sensitive (MCC806, S) chickpea genotype. Results Under progressive dehydration stress, the T genotype relied on a higher relative leaf water content after 3 and 5 d (69.7 and 49.3%) than the S genotype (59.7 and 40.3%) to maintain photosynthetic activities and improve endurance under stress. This may have been facilitated by greater proline accumulation in the T genotype than the S genotype (14.3 and 11.1 μmol g− 1 FW at 5 d, respectively). Moreover, the T genotype had less electrolyte leakage and lower malondialdehyde contents than the S genotype under dehydration stress, indicating greater membrane stability and thus greater dehydration tolerance. The proteomic analysis further confirmed that, in response to dehydration, the T genotype activated more proteins related to photosynthesis, stress response, protein synthesis and degradation, and gene transcription and signaling than the S genotype. Of the time-point dependent proteins, the largest difference in protein abundance occurred at 5 d, with 29 spots increasing in the T genotype and 30 spots decreasing in the S genotype. Some of the identified proteins—including RuBisCo, ATP synthase, carbonic anhydrase, psbP domain-containing protein, L-ascorbate peroxidase, 6-phosphogluconate dehydrogenase, elongation factor Tu, zinc metalloprotease FTSH 2, ribonucleoproteins and auxin-binding protein—may play a functional role in drought tolerance in chickpea. Conclusions This study highlights the significance of genotype- and time-specific proteins associated with dehydration stress and identifies potential resources for molecular drought tolerance improvement in chickpea.
Collapse
Affiliation(s)
- Saeedreza Vessal
- Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mohammad Arefian
- Plant Biotechnology and Breeding Department, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| |
Collapse
|
14
|
Parthenium hysterophorus steps up Ca-regulatory pathway in defence against highlight intensities. Sci Rep 2020; 10:8934. [PMID: 32488180 PMCID: PMC7265497 DOI: 10.1038/s41598-020-65721-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 05/04/2020] [Indexed: 12/21/2022] Open
Abstract
Parthenium hysterophorus exhibits tolerance to a great extent against abiotic stresses including high light intensities. In this study, P. hysterophorus was subjected to three different light intensities viz. control (CL, 250 µmol photons m-2 s-1), moderately high (ML, 500 µmol photons m-2 s-1) and high (HL, 1000 µmol photons m-2 s-1) for assessment of biochemical and physiological responses at 3 and 5 days after treatment (DAT). Proteomic responses were also observed at 5 DAT. Level of oxidative stress marker, abundance of H2O2 and O2- was highest in leaves exposed to HL followed by ML treatment. Biomass accumulation, photosynthetic parameters, chloroplast and mitochondrial integrity were also affected by both ML and HL treatments. Differential protein expression data showed modulation of thirty-eight proteins in ML and HL intensities. P. hysterophorus exhibited good ability to survive in ML then HL treatment as demonstrated by enhancement of the antioxidant system and photosynthesis. Furthermore, P. hysterophorus mobilized some key proteins related to calcium signaling, which in turn coordinate physiological homeostasis under stress. Proline and total soluble sugar content were high under stress; however, results of simulated experiment of our study indicate such accumulation of osmolytes may inhibit photon-availability to chloroplast. These results clarify our understanding of the mechanisms underlying the light stress tolerance of P. hysterophorus.
Collapse
|
15
|
Ansari WA, Atri N, Ahmad J, Qureshi MI, Singh B, Kumar R, Rai V, Pandey S. Drought mediated physiological and molecular changes in muskmelon (Cucumis melo L.). PLoS One 2019; 14:e0222647. [PMID: 31550269 PMCID: PMC6759176 DOI: 10.1371/journal.pone.0222647] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/03/2019] [Indexed: 01/08/2023] Open
Abstract
Water deficiency up to a certain level and duration leads to a stress condition called drought. It is a multi-dimensional stress causing alteration in the physiological, morphological, biochemical, and molecular traits in plants resulting in improper plant growth and development. Drought is one of the major abiotic stresses responsible for loss of crops including muskmelon (Cucumis melo. L). Muskmelon genotype SC-15, which exhibits high drought resistance as reported in our earlier reports, was exposed to deficient water condition and studied for alteration in physiological, molecular and proteomic profile changes in the leaves. Drought stress results in reduced net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration (E) rate. With expanded severity of drought, declination recorded in content of total chlorophyll and carotenoid while enhancement observed in phenol content indicating generation of oxidative stress. In contrary, activities of catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX), and guaiacol (POD) were increased under drought stress. Peptide mass fingerprinting (PMF) showed that drought increased the relative abundance of 38 spots while decreases10 spots of protein. The identified proteins belong to protein synthesis, photosynthesis, nucleotide biosynthesis, stress response, transcription regulation, metabolism, energy and DNA binding. A drought-induced MADS-box transcription factor was identified. The present findings indicate that under drought muskmelon elevates the abundance of defense proteins and suppresses catabolic proteins. The data obtained exhibits possible mechanisms adopted by muskmelon to counter the impacts of drought induced stress.
Collapse
Affiliation(s)
- Waquar Akhter Ansari
- ICAR–Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Neelam Atri
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Javed Ahmad
- Proteomics & Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Irfan Qureshi
- Proteomics & Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Bijendra Singh
- ICAR–Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Ram Kumar
- ICAR–National Research Centre on Plant Biotechnology, LBS Centre, Pusa Campus, New Delhi, India
| | - Vandna Rai
- ICAR–National Research Centre on Plant Biotechnology, LBS Centre, Pusa Campus, New Delhi, India
| | - Sudhakar Pandey
- ICAR–Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| |
Collapse
|
16
|
Arefian M, Vessal S, Malekzadeh-Shafaroudi S, Siddique KHM, Bagheri A. Comparative proteomics and gene expression analyses revealed responsive proteins and mechanisms for salt tolerance in chickpea genotypes. BMC PLANT BIOLOGY 2019; 19:300. [PMID: 31288738 PMCID: PMC6617847 DOI: 10.1186/s12870-019-1793-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/22/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Salinity is a major abiotic stress that limits the growth, productivity, and geographical distribution of plants. A comparative proteomics and gene expression analysis was performed to better understand salinity tolerance mechanisms in chickpea. RESULTS Ten days of NaCl treatments resulted in the differential expression of 364 reproducible spots in seedlings of two contrasting chickpea genotypes, Flip 97-43c (salt tolerant, T1) and Flip 97-196c (salt susceptible, S1). Notably, after 3 days of salinity, 80% of the identified proteins in T1 were upregulated, while only 41% in S2 had higher expression than the controls. The proteins were classified into eight functional categories, and three groups of co-expression profile. The second co-expressed group of proteins had higher and/or stable expression in T1, relative to S2, suggesting coordinated regulation and the importance of some processes involved in salinity acclimation. This group was mainly enriched in proteins associated with photosynthesis (39%; viz. chlorophyll a-b binding protein, oxygen-evolving enhancer protein, ATP synthase, RuBisCO subunits, carbonic anhydrase, and fructose-bisphosphate aldolase), stress responsiveness (21%; viz. heat shock 70 kDa protein, 20 kDa chaperonin, LEA-2 and ascorbate peroxidase), and protein synthesis and degradation (14%; viz. zinc metalloprotease FTSH 2 and elongation factor Tu). Thus, the levels and/or early and late responses in the activation of targeted proteins explained the variation in salinity tolerance between genotypes. Furthermore, T1 recorded more correlations between the targeted transcripts and their corresponding protein expression profiles than S2. CONCLUSIONS This study provides insight into the proteomic basis of a salt-tolerance mechanism in chickpea, and offers unexpected and poorly understood molecular resources as reliable starting points for further dissection.
Collapse
Affiliation(s)
- Mohammad Arefian
- Plant Biotechnology and Breeding Department, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saeedreza Vessal
- Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Saeid Malekzadeh-Shafaroudi
- Plant Biotechnology and Breeding Department, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Abdolreza Bagheri
- Plant Biotechnology and Breeding Department, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
17
|
Ji FS, Tang L, Li YY, Wang WC, Yang Z, Li XG, Zeng C. Differential proteomic analysis reveals the mechanism of Musa paradisiaca responding to salt stress. Mol Biol Rep 2018; 46:1057-1068. [DOI: 10.1007/s11033-018-4564-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/10/2018] [Indexed: 01/10/2023]
|
18
|
Baig MA, Ahmad J, Bagheri R, Ali AA, Al-Huqail AA, Ibrahim MM, Qureshi MI. Proteomic and ecophysiological responses of soybean (Glycine max L.) root nodules to Pb and hg stress. BMC PLANT BIOLOGY 2018; 18:283. [PMID: 30428829 PMCID: PMC6237034 DOI: 10.1186/s12870-018-1499-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 10/25/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Lead (Pb) and mercury (Hg) are persistent hazardous metals in industrially polluted soils which can be toxic in low quantities. Metal toxicity can cause changes at cellular and molecular level which should be studied for better understanding of tolerance mechanism in plants. Soybean (Glycine max L.) is an important oilseed crop of the world including India. Indian soils growing soybean are often contaminated by Pb and Hg. The aim of this study was to explore how soybean root nodule responds to Pb and Hg through proteomic and ecophysiological alterations in order to enhance tolerance to metal stress. RESULTS Soybean plants were exposed to Pb (30 ppm PbCl2) and Hg (0.5 ppm HgCl2) to study histological, histochemical, biochemical and molecular response of N2-fixing symbiotic nodules. Both Pb and Hg treatment increased the level of oxidative stress in leaves and nodules. Chlorosis in leaves and morphological/anatomical changes in nodules were observed. Activities of ascorbate peroxidase, glutathione reductase and catalase were also modulated. Significant changes were observed in abundance of 76 proteins by Pb and Hg. Pb and Hg influenced abundance of 33 proteins (17 up and 16 down) and 43 proteins (33 up and 10 down), respectively. MS/MS ion search identified 55 proteins which were functionally associated with numerous cellular functions. Six crucial proteins namely catalase (CAT), allene oxide synthase (AOS), glutathione S-transferase (GST), calcineurin B like (CBL), calmodulin like (CML) and rapid alkalinisation factor (RAF) were selected for transcript abundance estimation. The qRT-PCR based real time expression exhibited a positive correlation with proteomics expression except for GST and RAF. CONCLUSION Soybean root nodule responds to metal stress by increased abundance of defence, development and repair related proteins. An efficient proteomic modulation might lead to metal-induced stress tolerance in N2-fixing nodules. Although concentrations of Pb and Hg used in the study cannot be considered equimolar, yet Hg seems to induce more changes in nodule proteomic profile, and higher damage to both bacteroides and root anatomy.
Collapse
Affiliation(s)
- Mohd Affan Baig
- Proteomics and Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, 110025 India
| | - Javed Ahmad
- Proteomics and Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, 110025 India
| | - Rita Bagheri
- Proteomics and Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, 110025 India
| | - Arlene Asthana Ali
- Proteomics and Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, 110025 India
| | - Asma Abdulkareem Al-Huqail
- Department of Botany and Microbiology, Science College, King Saud University, 11495, Riyadh, Saudi Arabia
| | - Mohamed Mohamed Ibrahim
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, P.O. Box 21511, Alexandria, Egypt
| | - Mohammad Irfan Qureshi
- Proteomics and Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, 110025 India
| |
Collapse
|
19
|
Zhang H, Ding Y, Zhi J, Li X, Liu H, Xu J. Over-expression of the poplar expansin gene PtoEXPA12 in tobacco plants enhanced cadmium accumulation. Int J Biol Macromol 2018; 116:676-682. [PMID: 29758311 DOI: 10.1016/j.ijbiomac.2018.05.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 12/30/2022]
Abstract
As important cell wall proteins in plants, expansins are involved in a serious of abiotic stress resistance such as drought, heat, salt, even heavy metals. To understand the role of expansins in cadmium (Cd) stress, we analyzed the expression patterns of 36 expansin genes in Populus tomentosa. A Cd-induced expansin gene, PtoEXPA12, was identified, cloned, and transformed into tobacco plants. After treatment with Cd, the transgenic plants showed stronger symptoms of Cd toxicity as to the wild-type tobacco plants. Further physiological tests showed that the transformants had higher relative electrolyte leakage and superoxide dismutase activity, more malondialdehyde and H2O2 content, and lower chlorophyll content in Cd stress. Cd content measurement showed it is 1.40-2.07-fold higher and 1.29-1.38-fold higher separately in roots and shoots of transgenic plants than those in wild-type plants, while the transfer coefficient value kept invariably even decreased. Therefore, PtoEXPA12 was really involved in Cd uptake and accumulation, and led to Cd toxicity of cells. It would be a potentially applicable part in phytoremediation system.
Collapse
Affiliation(s)
- Hao Zhang
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, 100083, China
| | - Yana Ding
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, 100083, China
| | - Junkai Zhi
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, 100083, China
| | - Xiaoyu Li
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, 100083, China
| | - Huabo Liu
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, 100083, China
| | - Jichen Xu
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, 100083, China.
| |
Collapse
|
20
|
Husen A, Iqbal M, Sohrab SS, Ansari MKA. Salicylic acid alleviates salinity-caused damage to foliar functions, plant growth and antioxidant system in Ethiopian mustard (Brassica carinata A. Br.). ACTA ACUST UNITED AC 2018. [DOI: 10.1186/s40066-018-0194-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Ahmad J, Bashir H, Bagheri R, Baig A, Al-Huqail A, Ibrahim MM, Qureshi MI. Drought and salinity induced changes in ecophysiology and proteomic profile of Parthenium hysterophorus. PLoS One 2017; 12:e0185118. [PMID: 28953916 PMCID: PMC5617186 DOI: 10.1371/journal.pone.0185118] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/05/2017] [Indexed: 12/27/2022] Open
Abstract
Parthenium hysterophorus is a plant that tolerates drought and salinity to an extremely high degree. Higher expression of stress-responsive proteome contributes for greater defence against abiotic stresses. Thus, P. hysterophorus could be a rich source of genes that encode stress-imparting mechanisms and systems. The present study utilizes comparative physiological and proteomic approaches for identification of key proteins involved in stress-defence of P. hysterophorus. Thirty-days-old plants were exposed to drought (10% PEG 6000) and salinity (160 mM NaCl) for 10 days duration. Both stresses induced oxidative stress estimated in terms of TBARS and H2O2. Levels of both enzymatic and non-enzymatic antioxidants were elevated, more by drought than salinity. Particularly, SOD, GR, CAT and GST proved to be assisting as very commendable defence under drought, as well as salinity. Levels of ascorbate, glutathione and proline were also increased by both stresses, more in response to drought. Comparative proteomics analysis revealed a significant change in relative abundance of 72 proteins under drought and salinity. Drought and salinity increased abundance of 45 and 41 proteins and decreased abundance of 24 and 26 proteins, respectively. Drought and salinity increased and decreased abundance of 31 and 18 proteins, respectively. The functions of identified proteins included those related to defence response (26%), signal transduction (13%), transcription and translation (10%), growth and development (8.5%), photosynthesis (8.5%), metabolism (7%), terpenoid biosynthesis (5.5%), protein modification and transport (7%), oxido-reductase (4%) and Miscellaneous (11%). Among the defence related proteins, antioxidants and HSPs constituted 26% and 21%, respectively. Present study suggests a potential role of defence proteins. Proteins involved in molecular stabilization, formation of osmolytes and wax and contributing to stress-avoiding anatomical features emerged as key and complex mechanisms for imparting stress tolerance to P. hysterophorus.
Collapse
Affiliation(s)
- Javed Ahmad
- Department of Biotechnology, Jamia Millia Islamia (Central University), New Delhi, India
| | - Humayra Bashir
- Department of Biotechnology, Jamia Millia Islamia (Central University), New Delhi, India
| | - Rita Bagheri
- Department of Biotechnology, Jamia Millia Islamia (Central University), New Delhi, India
| | - Affan Baig
- Department of Biotechnology, Jamia Millia Islamia (Central University), New Delhi, India
| | - Asma Al-Huqail
- Department of Botany and Microbiology, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M. Ibrahim
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Egypt
- Department of Biology and Horticulture, Bergen Community College, Paramus, New Jersey, United States of America
| | - M. Irfan Qureshi
- Department of Biotechnology, Jamia Millia Islamia (Central University), New Delhi, India
| |
Collapse
|
22
|
Afreen S, Shamsi TN, Baig MA, Ahmad N, Fatima S, Qureshi MI, Hassan MI, Fatma T. A novel multicopper oxidase (laccase) from cyanobacteria: Purification, characterization with potential in the decolorization of anthraquinonic dye. PLoS One 2017; 12:e0175144. [PMID: 28384218 PMCID: PMC5383238 DOI: 10.1371/journal.pone.0175144] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/21/2017] [Indexed: 01/01/2023] Open
Abstract
A novel extracellular laccase enzyme produced from Spirulina platensis CFTRI was purified by ultrafiltration, cold acetone precipitation, anion exchange and size exclusion chromatography with 51.5% recovery and 5.8 purification fold. The purified laccase was a monomeric protein with molecular mass of ~66 kDa that was confirmed by zymogram analysis and peptide mass fingerprinting. The optimum pH and temperature of the enzyme activity was found at 3.0 and 30°C using ABTS as substrate but the enzyme was quite stable at high temperature and alkaline pH. The laccase activity was enhanced by Cu+2, Zn+2 and Mn+2. In addition, the dye decolorization potential of purified laccase was much higher in terms of extent as well as time. The purified laccase decolorized (96%) of anthraquinonic dye Reactive blue- 4 within 4 h and its biodegradation studies was monitored by UV visible spectra, FTIR and HPLC which concluded that cyanobacterial laccase can be efficiently used to decolorize synthetic dye and help in waste water treatment.
Collapse
Affiliation(s)
- Sumbul Afreen
- Cyanobacterial Biotechnology laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Tooba Naz Shamsi
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Mohd Affan Baig
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Nadeem Ahmad
- Cyanobacterial Biotechnology laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Sadaf Fatima
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - M. Irfan Qureshi
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Md. Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Tasneem Fatma
- Cyanobacterial Biotechnology laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
- * E-mail:
| |
Collapse
|
23
|
Shamsi TN, Parveen R, Amir M, Baig MA, Qureshi MI, Ali S, Fatima S. Allium sativum Protease Inhibitor: A Novel Kunitz Trypsin Inhibitor from Garlic Is a New Comrade of the Serpin Family. PLoS One 2016; 11:e0165572. [PMID: 27846232 PMCID: PMC5112792 DOI: 10.1371/journal.pone.0165572] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/13/2016] [Indexed: 12/17/2022] Open
Abstract
PURPOSE This study was aimed to purify and characterize the Protease inhibitor (PI) from a plant Allium sativum (garlic) with strong medicinal properties and to explore its phytodrug potentials. METHODS Allium sativum Protease Inhibitor (ASPI) was purified using ammonium sulphate fractionation and Fast Protein Liquid Chromatography on anion exchanger Hi-Trap DEAE column. The purified protein was analyzed for its purity and molecular weight by SDS PAGE. The confirmation of presence of trypsin inhibiting PI was performed by MALDI TOF-TOF and analyzed by MASCOT database. The ASPI was further investigated for its kinetic properties and stability under extreme conditions of pH, temperature and chemical denaturants. Secondary structure was determined by Circular Dichorism (CD) spectroscopy. RESULTS ASPI of ~15 kDa inhibited trypsin and matched "truncated kunitz Trypsin Inhibitor (Glycine max)" in MASCOT database. The purified ASPI showed 30376.1371 U/mg specific activity with a fold purity of 159.92 and yield ~93%. ASPI was quite stable in the range of pH 2-12 showing a decline in the activity around pH 4-5 suggesting that the pI value of the protein as ASPI aggregates in this range. ASPI showed stability to a broad range of temperature (10-80°C) but declined beyond 80°C. Further, detergents, oxidizing agents and reducing agents demonstrated change in ASPI activity under varying concentrations. The kinetic analysis revealed sigmoidal relationship of velocity with substrate concentration with Vmax 240.8 (μM/min) and Km value of 0.12 μM. ASPI showed uncompetitive inhibition with a Ki of 0.08±0.01 nM). The Far UV CD depicted 2.0% α -helices and 51% β -sheets at native pH. CONCLUSIONS To conclude, purified ~15 kDa ASPI exhibited fair stability in wide range of pH and temperature Overall, there was an increase in purification fold with remarkable yield. Chemical modification studies suggested the presence of lysine and tryptophan residues as lead amino acids present in the reactive sites. Therefore, ASPI with trypsin inhibitory property has the potential to be used as a non-cytotoxic clinical agents.
Collapse
Affiliation(s)
- Tooba Naz Shamsi
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Romana Parveen
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohd. Amir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohd. Affan Baig
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - M. Irfan Qureshi
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Sher Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Sadaf Fatima
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
24
|
Yousuf PY, Ahmad A, Aref IM, Ozturk M, Ganie AH, Iqbal M. Salt-stress-responsive chloroplast proteins in Brassica juncea genotypes with contrasting salt tolerance and their quantitative PCR analysis. PROTOPLASMA 2016; 253:1565-1575. [PMID: 26638208 DOI: 10.1007/s00709-015-0917-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 11/23/2015] [Indexed: 05/21/2023]
Abstract
Brassica juncea is mainly cultivated in the arid and semi-arid regions of India where its production is significantly affected by soil salinity. Adequate knowledge of the mechanisms underlying the salt tolerance at sub-cellular levels must aid in developing the salt-tolerant plants. A proper functioning of chloroplasts under salinity conditions is highly desirable to maintain crop productivity. The adaptive molecular mechanisms offered by plants at the chloroplast level to cope with salinity stress must be a prime target in developing the salt-tolerant plants. In the present study, we have analyzed differential expression of chloroplast proteins in two Brassica juncea genotypes, Pusa Agrani (salt-sensitive) and CS-54 (salt-tolerant), under the effect of sodium chloride. The chloroplast proteins were isolated and resolved using 2DE, which facilitated identification and quantification of 12 proteins that differed in expression in the salt-tolerant and salt-sensitive genotypes. The identified proteins were related to a variety of chloroplast-associated molecular processes, including oxygen-evolving process, PS I and PS II functioning, Calvin cycle and redox homeostasis. Expression analysis of genes encoding differentially expressed proteins through real time PCR supported our findings with proteomic analysis. The study indicates that modulating the expression of chloroplast proteins associated with stabilization of photosystems and oxidative defence plays imperative roles in adaptation to salt stress.
Collapse
Affiliation(s)
- Peerzada Yasir Yousuf
- Department of Botany, Molecular Ecology Laboratory, Jamia Hamdard, New Delhi, 110062, India
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Ibrahim M Aref
- Department of Plant Production, College of Food and Agricultural Science, King Saud University, Post Box 2460, Riyadh, 11451, Saudi Arabia
| | - Munir Ozturk
- Department of Biology, Ege University, Izmir, 350000, Turkey
| | - Arshid Hussain Ganie
- Department of Botany, Molecular Ecology Laboratory, Jamia Hamdard, New Delhi, 110062, India
| | - Muhammad Iqbal
- Department of Botany, Molecular Ecology Laboratory, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
25
|
Yousuf PY, Ganie AH, Khan I, Qureshi MI, Ibrahim MM, Sarwat M, Iqbal M, Ahmad A. Nitrogen-Efficient and Nitrogen-Inefficient Indian Mustard Showed Differential Expression Pattern of Proteins in Response to Elevated CO2 and Low Nitrogen. FRONTIERS IN PLANT SCIENCE 2016; 7:1074. [PMID: 27524987 PMCID: PMC4965474 DOI: 10.3389/fpls.2016.01074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
Carbon (C) and nitrogen (N) are two essential elements that influence plant growth and development. The C and N metabolic pathways influence each other to affect gene expression, but little is known about which genes are regulated by interaction between C and N or the mechanisms by which the pathways interact. In the present investigation, proteome analysis of N-efficient and N-inefficient Indian mustard, grown under varied combinations of low-N, sufficient-N, ambient [CO2], and elevated [CO2] was carried out to identify proteins and the encoding genes of the interactions between C and N. Two-dimensional gel electrophoresis (2-DE) revealed 158 candidate protein spots. Among these, 72 spots were identified by matrix-assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF). The identified proteins are related to various molecular processes including photosynthesis, energy metabolism, protein synthesis, transport and degradation, signal transduction, nitrogen metabolism and defense to oxidative, water and heat stresses. Identification of proteins like PII-like protein, cyclophilin, elongation factor-TU, oxygen-evolving enhancer protein and rubisco activase offers a peculiar overview of changes elicited by elevated [CO2], providing clues about how N-efficient cultivar of Indian mustard adapt to low N supply under elevated [CO2] conditions. This study provides new insights and novel information for a better understanding of adaptive responses to elevated [CO2] under N deficiency in Indian mustard.
Collapse
Affiliation(s)
| | - Arshid H. Ganie
- Department of Botany, Faculty of ScienceJamia Hamdard, New Delhi, India
| | - Ishrat Khan
- Department of Botany, Faculty of ScienceJamia Hamdard, New Delhi, India
| | - Mohammad I. Qureshi
- Proteomics and Bioinformatics Laboratory, Department of Biotechnology, Faculty of Natural SciencesJamia Millia Islamia, New Delhi, India
| | - Mohamed M. Ibrahim
- Department of Botany and Microbiology, Science College, King Saud UniversityRiyadh, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Alexandria UniversityAlexandria, Egypt
| | - Maryam Sarwat
- Pharmaceutic Biotechnology, Amity Institute of Pharmacy, Amity UniversityNoida, India
| | - Muhammad Iqbal
- Department of Botany, Faculty of ScienceJamia Hamdard, New Delhi, India
| | - Altaf Ahmad
- Proteomics and Nanobiotechnology Laboratory, Department of Botany, Faculty of Life Sciences, Aligarh Muslim UniversityAligarh, India
| |
Collapse
|
26
|
Nazir M, Pandey R, Siddiqi TO, Ibrahim MM, Qureshi MI, Abraham G, Vengavasi K, Ahmad A. Nitrogen-Deficiency Stress Induces Protein Expression Differentially in Low-N Tolerant and Low-N Sensitive Maize Genotypes. FRONTIERS IN PLANT SCIENCE 2016; 7:298. [PMID: 27047497 PMCID: PMC4800187 DOI: 10.3389/fpls.2016.00298] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/25/2016] [Indexed: 05/04/2023]
Abstract
Nitrogen (N) is essential for proper plant growth and its application has proven to be critical for agricultural produce. However, for unavoidable economic and environmental problems associated with excessive use of N-fertilizers, it is an urgent demand to manage application of fertilizers. Improving the N-use efficiency (NUE) of crop plants to sustain productivity even at low N levels is the possible solution. In the present investigation, contrasting low-N sensitive (HM-4) and low-N tolerant (PEHM-2) genotypes were identified and used for comparative proteome-profiling of leaves under optimum and low N as well as restoration of low N on 3rd (NR3) and 5th (NR5) days after re-supplying N. The analysis of differential expression pattern of proteins was performed by 2-D gel electrophoresis. Significant variations in the expression of proteins were observed under low N, which were genotype specific. In the leaf proteome, 25 spots were influenced by N treatment and four spots were different between the two genotypes. Most of the proteins that were differentially accumulated in response to N level and were involved in photosynthesis and metabolism, affirming the relationship between N and carbon metabolism. In addition to this, greater intensity of some defense proteins in the low N tolerant genotype was found that may have a possible role in imparting it tolerance under N starvation conditions. The new insights generated on maize proteome in response to N-starvation and restoration would be useful toward improvement of NUE in maize.
Collapse
Affiliation(s)
- Muslima Nazir
- Department of Botany, Faculty of Science, Jamia HamdardNew Delhi, India
| | - Renu Pandey
- Division of Plant Physiology, Indian Council of Agricultural Research-Indian Agricultural Research InstituteNew Delhi, India
| | - Tariq O. Siddiqi
- Department of Botany, Faculty of Science, Jamia HamdardNew Delhi, India
| | - Mohamed M. Ibrahim
- Department of Botany and Microbiology, Science College, King Saud UniversityRiyadh, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Alexandria UniversityAlexandria, Egypt
| | - Mohammad I. Qureshi
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia IslamiaNew Delhi, India
| | - Gerard Abraham
- Centre for Conservation and Utilization of Blue Green Algae, Indian Council of Agricultural Research-Indian Agricultural Research InstituteNew Delhi, India
| | - Krishnapriya Vengavasi
- Division of Plant Physiology, Indian Council of Agricultural Research-Indian Agricultural Research InstituteNew Delhi, India
| | - Altaf Ahmad
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim UniversityAligarh, India
| |
Collapse
|