1
|
Khairy T, Amin DH, Salama HM, Elkholy IMA, Elnakib M, Gebreel HM, Sayed HAE. Pioneering study of Egyptian Neem and Jojoba extracts with molecular docking combat hospital multidrug resistant bacteria. Braz J Microbiol 2025; 56:425-445. [PMID: 39775688 PMCID: PMC11885210 DOI: 10.1007/s42770-024-01590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Hospital surfaces are often contaminated with multidrug-resistant pathogenic bacteria that cause healthcare-associated infections and lead to increased mortality and morbidity. There is a need for new alternative antibacterial agents to overcome antibiotic resistance. Azadirachta indica and Simmondsia chinensis have been found to possess antibacterial activity and medicinal value. The antibacterial activity of these plant extracts against clinical isolates was investigated using the agar disc diffusion method. These clinical isolates included E. coli, Pseudomonas aeruginosa, Acinetobacter spp., Klebsiella pneumoniae, Stenotrophomonas maltophilia, and methicillin-resistant Staphylococcus aureus (MRSA), which were identified by the vitek-2 system, and resistance genes of selected bacterial strains were identified by using the bioFire FilmArray test. The most potent extract of these plants was the ethanolic extract, where the inhibition percentage of ethanolic Jojoba and Neem extracts was 90.9% and 74.5%, respectively against all the tested pathogens. On the other hand, the methanolic extracts of Neem and Jojoba have different degrees of antibacterial activity against the tested pathogens. The phytochemical components of the most potent extracts (ethanolic extracts) were investigated by gas chromatography‒mass spectrometry (GC\MS), which revealed that the ethanolic extracts were enriched in phenolics, flavonoids, and sugars. FTIR analyses of the plant extracts confirmed the presence of alcoholic, carboxylic, and aldehydic moieties. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) activity of the ethanolic extracts of Neem and Jojoba increased in a dose-dependent manner, with average IC50 values of 98.17 ± 0.85, 4.95 ± 0.06, and 4.17 ± 0.04 mg/mL, respectively, for the ethanolic Neem extract, the ethanolic Jojoba extract, and ascorbic acid (standard). Furthermore, increased cytotoxicity was demonstrated in the HFB4 cell line in a dose-dependent manner. The average IC50s of the ethanolic Neem extract and the ethanolic Jojoba extract were 18.18 ± 0.15 and 76.16 ± 1.49 mg/mL, respectively. Moreover, the results for the antibiofilm activity of the ethanolic Neem extract showed that 99.5% of the biofilms formed at 25 mg/ml. In addition, 50 mg/ml of the ethanolic extract of Jojoba had a suppressive effect of 98.2%. The significant components Nonanoic acid (21.9405%) and Palmitic Acid (16.0869%) from Neem and pinitol from Jojoba (82.85%) were selected throughout the molecular docking investigation, by which the chosen constituents inhibited the crystal structure of penicillin-binding protein 4 (PBP4) from Staphylococcus aureus (PDB ID: 1TVF) and the crystal structure of the OXA-48 beta-lactamase (PDB ID: 7AUX) from K. pneumoniae. Overall, our study reveals the effectiveness of antimicrobial plant extracts as therapeutic solutions for antibiotic resistance in Egypt and worldwide with some modifications to decrease their cytotoxicity.
Collapse
Affiliation(s)
- Toka Khairy
- Department of Microbiology, Faculty of Science, Ain shams University, El-Khalyfa El-Mamoun Street, Abbasya, Cairo, Egypt.
| | - Dina Hatem Amin
- Department of Microbiology, Faculty of Science, Ain shams University, El-Khalyfa El-Mamoun Street, Abbasya, Cairo, Egypt
| | - Hanaa Mohamed Salama
- Department of Chemistry, Faculty of Science, Port Said University, Port Said, 42521, Egypt
| | - Iman Mohamed Amin Elkholy
- Ain Shams Specialized Hospital, Ain Shams University, El-Khalyfa El-Mamoun Street, Abbasya, Cairo, Egypt
| | - Mostafa Elnakib
- Military Medical Academy, Ehsan abdelkodos Street, Manshyt Elbakry, Ciro, Egypt
| | - Hassan Mahmoud Gebreel
- Department of Microbiology, Faculty of Science, Ain shams University, El-Khalyfa El-Mamoun Street, Abbasya, Cairo, Egypt
| | - Hayam Abd Elnabi Sayed
- Department of Microbiology, Faculty of Science, Ain shams University, El-Khalyfa El-Mamoun Street, Abbasya, Cairo, Egypt
| |
Collapse
|
2
|
Khairy T, Amin DH, Salama HM, Elkholy IMA, Elnakib M, Gebreel HM, Sayed HAE. Antibacterial activity of green synthesized copper oxide nanoparticles against multidrug-resistant bacteria. Sci Rep 2024; 14:25020. [PMID: 39443504 PMCID: PMC11499942 DOI: 10.1038/s41598-024-75147-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Using plant extracts in the green synthesis of nanoparticles has become an environmentally acceptable approach. In our study, copper oxide nanoparticles (CuO NPs) were synthesized using ethanolic extracts of Azadirachta indica and Simmondsia chinensis. CuO NP formation was confirmed by the change in color and by UV‒visible spectroscopy (CuO NPs peaked at a wavelength of 344 nm). TEM images confirmed the semispherical shape of the CuO NPs, with particle sizes ranging from 30.9 to 10.7 nm. The antibacterial activity of these NPs was evaluated by using the agar diffusion method against clinical isolates, including methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, Pseudomonas aeruginosa, Acinetobacter spp., Klebsiella pneumoniae, and Stenotrophomonas maltophilia. The minimum inhibitory concentration (MIC) of CuO NPs ranged from 62.5 to 125 µg/ml. In contrast, the antioxidant activity and antibiofilm activity of CuO NPs ranged from 31.1 to 92.2% at 125-500 µg/ml and 62.2-95%, respectively, at 125 -62.5 µg/ml. Our results confirmed that CuO NPs had IC50s of 383.41 ± 3.4 and 402.73 ± 1.86 at 250 µg/mL against the HBF4 cell line. Molecular docking studies with CuO NPs suggested that penicillin-binding protein 4 (PBP4) and beta-lactamase proteins (OXA-48) strongly bind to S. aureus and K. pneumoniae, respectively, with CuO NPs. Our study confirms the promising use of CuO NPs in treating pathogenic bacteria and that CuO NPs could be possible alternative antibiotics. This study supports the pharmaceutical and healthcare sectors in Egypt and worldwide.
Collapse
Affiliation(s)
- Toka Khairy
- Department of Microbiology, Faculty of Science, Ain Shams University, El- Khalyfa El-Mamoun Street, Abbasya, Cairo, Egypt.
| | - Dina Hatem Amin
- Department of Microbiology, Faculty of Science, Ain Shams University, El- Khalyfa El-Mamoun Street, Abbasya, Cairo, Egypt
| | - Hanaa Mohamed Salama
- Department of Chemistry, Faculty of Science, Port Said University, Port Said, 42521, Egypt
| | - Iman Mohamed Amin Elkholy
- Ain Shams Specialized Hospital, Ain Shams University, El-Khalyfa El-Mamoun Street, Abbasya, Cairo, Egypt
| | - Mostafa Elnakib
- Medical Microbiology and Immunology, Military Medical Academy, Ehsan Abdelkodos Street, Manshyt Elbakry, Ciro, Egypt
| | - Hassan Mahmoud Gebreel
- Department of Microbiology, Faculty of Science, Ain Shams University, El- Khalyfa El-Mamoun Street, Abbasya, Cairo, Egypt
| | - Hayam Abd Elnabi Sayed
- Department of Microbiology, Faculty of Science, Ain Shams University, El- Khalyfa El-Mamoun Street, Abbasya, Cairo, Egypt
| |
Collapse
|
3
|
Hadimani S, Supriya D, Roopa K, Soujanya SK, Rakshata V, Netravati A, Akshayakumar V, De Britto S, Jogaiah S. Biodegradable hybrid biopolymer film based on carboxy methyl cellulose and selenium nanoparticles with antifungal properties to enhance grapes shelf life. Int J Biol Macromol 2023; 237:124076. [PMID: 36934815 DOI: 10.1016/j.ijbiomac.2023.124076] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
In the current study, cellulose was extracted from sugarcane bagasse and further converted into carboxy methyl cellulose. The morphological, chemical, and structural characterization of synthesizeed carboxy methyl cellulose was performed. Further, the biopolymer was fabricated with mycogenic selenium nanoparticles and used to develop the biopolymer films. The developed biopolymer films were examined for the fruit shelf life stability, antifungal activity, and biodegradation potential. The results revealed that grapes wrapped with biofilms showed enhanced shelf life of fruit at all storage time intervals. The study also witnesses the antifungal activity of biopolymer films with a remarkable inhibitory action on the spores of Fusarium oxysporum and Sclerospora graminicola phytopathogens. Lastly, the biopolymer films were significantly degradable in the soil within two weeks of incubation. Thus, the developed biopolymer films exhibit multifaceted properties that can be used as an alternative to synthetic plastics for fruit packaging and also helps in protecting against fungal contaminants during storage with naturally degradable potential.
Collapse
Affiliation(s)
- Shiva Hadimani
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad 580003, Karnataka, India
| | - Dodamani Supriya
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad 580003, Karnataka, India
| | - Koliwad Roopa
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad 580003, Karnataka, India
| | - Shivanna K Soujanya
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad 580003, Karnataka, India
| | - Vandakuduri Rakshata
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad 580003, Karnataka, India
| | - Avaradi Netravati
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad 580003, Karnataka, India
| | - Vijayakumar Akshayakumar
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad 580003, Karnataka, India
| | - Savitha De Britto
- Division of Biological Sciences, School of Science and Technology, University of Goroka, Goroka 441, Papua New Guinea
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad 580003, Karnataka, India; Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periye (PO), 671316 Kasaragod (DT), Kerala, India.
| |
Collapse
|
4
|
Altayb HN, Yassin NF, Hosawi S, Kazmi I. In-vitro and in-silico antibacterial activity of Azadirachta indica (Neem), methanolic extract, and identification of Beta.d-Mannofuranoside as a promising antibacterial agent. BMC PLANT BIOLOGY 2022; 22:262. [PMID: 35610569 PMCID: PMC9131563 DOI: 10.1186/s12870-022-03650-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Antimicrobial resistance became the leading cause of death globally, resulting in an urgent need for the discovery of new, safe, and efficient antibacterial agents. Compounds derived from plants can provide an essential source of new types of antibiotics. A. indica (neem) plant is rich in antimicrobial phytoconstituents. Here, we used the sensitive and reliable gas chromatography-mass spectrometry (GC-MS) approach, for the quantitative and quantitative determination of bioactive constituents in methanolic extract of neem leaves grown in Sudan. Subsequently, antibacterial activity, pharmacokinetic and toxicological properties were utilized using in silico tools. RESULTS The methanolic extract of neem leaves was found to have antibacterial activity against all pathogenic and reference strains. The lowest concentration reported with bacterial activity was 3.125%, which showed zones of inhibition of more than 10 mm on P. aeruginosa, K. pneumoniae, Citrobacter spp., and E. coli, and 8 mm on Proteus spp., E. faecalis, S. epidermidis, and the pathogenic S. aureus. GC-MS analysis revealed the presence of 30 chemical compounds, including fatty acids (11), hydrocarbons (9), pyridine derivatives (2), aldehydes (2), phenol group (1), aromatic substances (1), coumarins (1), and monoterpenes (1). In silico and in vitro tools revealed that.beta.d-Mannofuranoside, O-geranyl was the most active compound on different bacterial proteins. It showed the best docking energy (-8 kcal/mol) and best stability with different bacterial essential proteins during molecular dynamic (MD) simulation. It also had a good minimum inhibitory concentration (MIC) (32 μg/ml and 64 μg/ml) against S. aureus (ATCC 25,923) and E. coli (ATCC 25,922) respectively. CONCLUSION The methanolic extract of A. indica leaves possessed strong antibacterial activity against different types of bacteria. Beta.d-Mannofuranoside, O-geranyl was the most active compound and it passed 5 rules of drug-likeness properties. It could therefore be further processed for animal testing and clinical trials for its possible use as an antibacterial agent with commercial values.
Collapse
Affiliation(s)
- Hisham N Altayb
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Nijood F Yassin
- Department Microbiology, College of Medical Laboratory Sciences, Sudan University of Science and Technology, Khartoum, Sudan
| | - Salman Hosawi
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Imran Kazmi
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Jabborova D, Kannepalli A, Davranov K, Narimanov A, Enakiev Y, Syed A, Elgorban AM, Bahkali AH, Wirth S, Sayyed RZ, Gafur A. Co-inoculation of rhizobacteria promotes growth, yield, and nutrient contents in soybean and improves soil enzymes and nutrients under drought conditions. Sci Rep 2021; 11:22081. [PMID: 34764331 PMCID: PMC8586231 DOI: 10.1038/s41598-021-01337-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022] Open
Abstract
Drought stress is the major abiotic factor limiting crop production. Co-inoculating crops with nitrogen fixing bacteria and plant growth-promoting rhizobacteria (PGPR) improves plant growth and increases drought tolerance in arid or semiarid areas. Soybean is a major source of high-quality protein and oil for humans. It is susceptible to drought stress conditions. The co-inoculation of drought-stressed soybean with nodulating rhizobia and root-colonizing, PGPR improves the root and the shoot growth, formation of nodules, and nitrogen fixation capacity in soybean. The present study was aimed to observe if the co-inoculation of soybean (Glycine max L. (Merr.) nodulating with Bradyrhizobium japonicum USDA110 and PGPR Pseudomonas putida NUU8 can enhance drought tolerance, nodulation, plant growth, and nutrient uptake under drought conditions. The results of the study showed that co-inoculation with B. japonicum USDA110 and P. putida NUU8 gave more benefits in nodulation and growth of soybean compared to plants inoculated with B. japonicum USDA110 alone and uninoculated control. Under drought conditions, co-inoculation of B. japonicum USDA 110 and P. putida NUU8 significantly enhanced the root length by 56%, shoot length by 33%, root dry weight by 47%, shoot dry weight by 48%, and nodule number 17% compared to the control under drought-stressed. Co-inoculation with B. japonicum, USDA 110 and P. putida NUU8 significantly enhanced plant and soil nutrients and soil enzymes compared to control under normal and drought stress conditions. The synergistic use of B. japonicum USDA110 and P. putida NUU8 improves plant growth and nodulation of soybean under drought stress conditions. The results suggested that these strains could be used to formulate a consortium of biofertilizers for sustainable production of soybean under drought-stressed field conditions.
Collapse
Affiliation(s)
- Dilfuza Jabborova
- Institute of Genetics and Plant Experimental Biology, Uzbekistan Academy of Sciences, Tashkent Region, 111208, Kibray, Uzbekistan.
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India.
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Müncheberg, Germany.
| | - Annapurna Kannepalli
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Kakhramon Davranov
- Institute of Microbiology, Academy of Sciences of Uzbekistan, 100128, Tashkent, Uzbekistan
| | - Abdujalil Narimanov
- Institute of Genetics and Plant Experimental Biology, Uzbekistan Academy of Sciences, Tashkent Region, 111208, Kibray, Uzbekistan
| | - Yuriy Enakiev
- Agro-Technology and Plant Protection. 7, Nikola Pushkarov Institute of Soil Science, Shosse Bankya str., 1331, Sofia, Bulgaria
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Stephan Wirth
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Müncheberg, Germany
| | - R Z Sayyed
- Department of Microbiology, PSGVP Mandal's, Arts, Science & Commerce College, Shahada, Maharashtra, 425409, India.
| | - Abdul Gafur
- Sinarmas Forestry Corporate Research and Development, Perawang, 28772, Indonesia.
| |
Collapse
|
6
|
Jagannath S, Konappa N, Lokesh A, Dasegowda T, Udayashankar AC, Chowdappa S, Cheluviah M, Satapute P, Jogaiah S. Bioactive compounds guided diversity of endophytic fungi from Baliospermum montanum and their potential extracellular enzymes. Anal Biochem 2020; 614:114024. [PMID: 33245903 DOI: 10.1016/j.ab.2020.114024] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
Baliospermum montanum (Willd.) Muell. Arg, a medicinal plant distributed throughout India from Kashmir to peninsular-Indian region is extensively used to treat jaundice, asthma, and constipation. In the current study, 203 endophytic fungi representing twenty-nine species were isolated from tissues of B. montanum. The colonization and isolation rate of endophytes were higher in stem followed by seed, root, leaf and flower. The phytochemical analysis revealed 70% endophytic isolates showed alkaloids and flavonoids, 13% were positive for phenols, saponins and terpenoids. Further, these endophytes produced remarkable extracellular enzymes such as amylase, cellulase, phosphates, protease and lipase. The most promisive three endophytic fungi were identified by ITS region and secreted metabolites were identified by gas chromatography-mass spectrometry (GC-MS/MS). The GC-MS profile detected twenty-five bioactive compounds from ethyl acetate extracts. Among endophytic fungi, Trichoderma reesei isolated from flower exhibited nine bioactive compounds namely, 2-Cyclopentenone, 2-(4-chloroanilino)-4-piperidino, Oxime-methoxy-Phenyl, Methanamine N-hydroxy-N-methyl, Strychane, Cyclotetrasiloxane, Octamethyl and 1-Acetyl-20a-hydroxy-16-methylene. The endophyte, Aspergillus brasiliensis isolated from root and Fusarium oxysporum isolated from seed produced nine and seven bioactive compounds, respectively. Overall, a significant contribution of bioactive compounds was noticed from the diverse endophytic fungi associated with B. montanum and could be explored for development of novel drug with commercial values.
Collapse
Affiliation(s)
- Shubha Jagannath
- Department of Botany, Molecular Biology Division, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560 056, Karnataka, India
| | - Narasimhamurthy Konappa
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysur, 570 006, Karnataka, India
| | - Arpitha Lokesh
- Department of Botany, Molecular Biology Division, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560 056, Karnataka, India
| | - Tejaswini Dasegowda
- Department of Botany, Molecular Biology Division, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560 056, Karnataka, India
| | - Arakere C Udayashankar
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysur, 570 006, Karnataka, India
| | - Srinivas Chowdappa
- Fungal Metabolites Research Laboratory, Department of Microbiology and Biotechnology, Jnana Bharathi Campus, Bangalore University, Bangalore, 560 056, Karnataka, India
| | - Maya Cheluviah
- Department of Botany, Molecular Biology Division, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560 056, Karnataka, India.
| | - Praveen Satapute
- Laboratory of Plant Healthcare and Diagnostics, PG Department of Biotechnology and Microbiology, Karnataka University, Dharwad, 580 003, Karnataka, India
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, PG Department of Biotechnology and Microbiology, Karnataka University, Dharwad, 580 003, Karnataka, India.
| |
Collapse
|
7
|
Research Advances of Beneficial Microbiota Associated with Crop Plants. Int J Mol Sci 2020; 21:ijms21051792. [PMID: 32150945 PMCID: PMC7084388 DOI: 10.3390/ijms21051792] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Plants are associated with hundreds of thousands of microbes that are present outside on the surfaces or colonizing inside plant organs, such as leaves and roots. Plant-associated microbiota plays a vital role in regulating various biological processes and affects a wide range of traits involved in plant growth and development, as well as plant responses to adverse environmental conditions. An increasing number of studies have illustrated the important role of microbiota in crop plant growth and environmental stress resistance, which overall assists agricultural sustainability. Beneficial bacteria and fungi have been isolated and applied, which show potential applications in the improvement of agricultural technologies, as well as plant growth promotion and stress resistance, which all lead to enhanced crop yields. The symbioses of arbuscular mycorrhizal fungi, rhizobia and Frankia species with their host plants have been intensively studied to provide mechanistic insights into the mutual beneficial relationship of plant–microbe interactions. With the advances in second generation sequencing and omic technologies, a number of important mechanisms underlying plant–microbe interactions have been unraveled. However, the associations of microbes with their host plants are more complicated than expected, and many questions remain without proper answers. These include the influence of microbiota on the allelochemical effect caused by one plant upon another via the production of chemical compounds, or how the monoculture of crops influences their rhizosphere microbial community and diversity, which in turn affects the crop growth and responses to environmental stresses. In this review, first, we systematically illustrate the impacts of beneficial microbiota, particularly beneficial bacteria and fungi on crop plant growth and development and, then, discuss the correlations between the beneficial microbiota and their host plants. Finally, we provide some perspectives for future studies on plant–microbe interactions.
Collapse
|
8
|
Nandini B, Puttaswamy H, Prakash HS, Adhikari S, Jogaiah S, Nagaraja G. Elicitation of Novel Trichogenic-Lipid Nanoemulsion Signaling Resistance Against Pearl Millet Downy Mildew Disease. Biomolecules 2019; 10:biom10010025. [PMID: 31878099 PMCID: PMC7022861 DOI: 10.3390/biom10010025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/08/2019] [Accepted: 12/11/2019] [Indexed: 11/30/2022] Open
Abstract
Nanoemulsion was formulated from membrane lipids of Trichoderma spp. with the non-ionic surfactant Tween 80 by the ultrasonic emulsification method. Nanoemulsion with a droplet diameter of 5 to 51 nm was obtained. The possible effects of membrane lipid nanoemulsion on pearl millet (PM) seed growth parameters and elicitation of downy mildew (DM) disease resistance in PM was analyzed to develop an eco-friendly disease management strategy. Seed priming with nanoemulsion illustrates significant protection and elevated levels of early defense gene expression. Lipid profiling of Trichoderma spp. reveals the presence of oleic acid as a major fatty acid molecule. The prominent molecule in the purified lipid fraction of T. brevicompactum (UP-91) responsible for the elicitation of induction of systemic resistance in PM host against DM pathogen was predicted as (E)-N-(1, 3-dihydroxyoctadec-4-en-2yl) acetamide. The results suggest that protection offered by the novel nanoemulsion formulation is systemic in nature and durable and offers a newer sustainable approach to manage biotrophic oomycetous pathogen.
Collapse
Affiliation(s)
- Boregowda Nandini
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 560 006, Karnataka, India; (B.N.); (H.S.P.)
| | - Hariprasad Puttaswamy
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110 016, India;
| | - Harischandra Sripathy Prakash
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 560 006, Karnataka, India; (B.N.); (H.S.P.)
| | - Shivakanthkumar Adhikari
- Laboratory of Plant Healthcare and Diagnostics, PG Department of Biotechnology and Microbiology, Karnatak University, Dharwad 580 003, India;
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, PG Department of Biotechnology and Microbiology, Karnatak University, Dharwad 580 003, India;
- Correspondence: (S.J.); (G.N.); Tel.: +91-836-2779533 (S.J.); +91-0821-2419462 (G.N.); Fax: +91-836-2747884 (S.J.)
| | - Geetha Nagaraja
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 560 006, Karnataka, India; (B.N.); (H.S.P.)
- Correspondence: (S.J.); (G.N.); Tel.: +91-836-2779533 (S.J.); +91-0821-2419462 (G.N.); Fax: +91-836-2747884 (S.J.)
| |
Collapse
|
9
|
Jogaiah S, Kurjogi M, Abdelrahman M, Hanumanthappa N, Tran LSP. Ganoderma applanatum-mediated green synthesis of silver nanoparticles: Structural characterization, and in vitro and in vivo biomedical and agrochemical properties. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2017.12.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
10
|
Joshi SM, De Britto S, Jogaiah S, Ito SI. Mycogenic Selenium Nanoparticles as Potential New Generation Broad Spectrum Antifungal Molecules. Biomolecules 2019; 9:E419. [PMID: 31466286 PMCID: PMC6769984 DOI: 10.3390/biom9090419] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 11/16/2022] Open
Abstract
The current challenges of sustainable agricultural development augmented by global climate change have led to the exploration of new technologies like nanotechnology, which has potential in providing novel and improved solutions. Nanotools in the form of nanofertilizers and nanopesticides possess smart delivery mechanisms and controlled release capacity for active ingredients, thus minimizing excess run-off to water bodies. This study aimed to establish the broad spectrum antifungal activity of mycogenic selenium nanoparticles (SeNPs) synthesized from Trichoderma atroviride, and characterize the bioactive nanoparticles using UV-Vis spectroscopy, dynamic light scattering (DLS), Fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), and high-resolution transmission electron microscopy (HR-TEM). The synthesized nanoparticles displayed excellent in vitro antifungal activity against Pyricularia grisea and inhibited the infection of Colletotrichum capsici and Alternaria solani on chili and tomato leaves at concentrations of 50 and 100 ppm, respectively. The SEM-EDS analysis of the bioactive SeNPs revealed a spherical shape with sizes ranging from 60.48 nm to 123.16 nm. The nanoparticles also possessed the unique property of aggregating and binding to the zoospores of P. infestans at a concentration of 100 ppm, which was visualized using light microscope, atomic force microscopy, and electron microscopy. Thus, the present study highlights the practical application of SeNPs to manage plant diseases in an ecofriendly manner, due to their mycogenic synthesis and broad spectrum antifungal activity against different phytopathogens.
Collapse
Affiliation(s)
- Shreya M Joshi
- Laboratory of Plant Healthcare and Diagnostics, PG Department of Studies in Biotechnology and Microbiology, Karnatak University, Pavate Nagar, Dharwad 580 003, Karnataka, India
| | - Savitha De Britto
- Laboratory of Plant Healthcare and Diagnostics, PG Department of Studies in Biotechnology and Microbiology, Karnatak University, Pavate Nagar, Dharwad 580 003, Karnataka, India
- Division of Biological Sciences, School of Science and Technology, The University of Goroka, Goroka 441, Papua New Guinea
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, PG Department of Studies in Biotechnology and Microbiology, Karnatak University, Pavate Nagar, Dharwad 580 003, Karnataka, India.
| | - Shin-Ichi Ito
- Laboratory of Molecular Plant Pathology, Department of Biological and Environmental Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan.
- Research Center for Thermotolerant Microbial Resources (RCTMR), Yamaguchi University, Yamaguchi 753-8515, Japan.
| |
Collapse
|
11
|
Méndez-Bravo A, Cortazar-Murillo EM, Guevara-Avendaño E, Ceballos-Luna O, Rodríguez-Haas B, Kiel-Martínez AL, Hernández-Cristóbal O, Guerrero-Analco JA, Reverchon F. Plant growth-promoting rhizobacteria associated with avocado display antagonistic activity against Phytophthora cinnamomi through volatile emissions. PLoS One 2018; 13:e0194665. [PMID: 29558512 PMCID: PMC5860777 DOI: 10.1371/journal.pone.0194665] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 03/07/2018] [Indexed: 12/16/2022] Open
Abstract
Rhizobacteria associated with crops constitute an important source of potentially beneficial microorganisms with plant growth promoting activity or antagonistic effects against phytopathogens. In this study, we evaluated the plant growth promoting activity of 11 bacterial isolates that were obtained from the rhizosphere of healthy avocado trees and from that of avocado trees having survived root rot infestations. Seven bacterial isolates, belonging to the genera Bacillus, Pseudomonas and Arthrobacter, promoted in vitro growth of Arabidopsis thaliana. These isolates were then tested for antagonistic activity against Phytophthora cinnamomi, in direct dual culture assays. Two of those rhizobacterial isolates, obtained from symptomatic-declining trees, displayed antagonistic activity. Isolate A8a, which is closely related to Bacillus acidiceler, was also able to inhibit P. cinnamomi growth in vitro by 76% through the production of volatile compounds. Solid phase microextraction (SPME) and analysis by gas chromatography coupled with mass spectrometry (GC-MS) allowed to tentatively identify the main volatiles emitted by isolate A8a as 2,3,5-trimethylpyrazine, 6,10-dimethyl-5,9-undecadien-2-one and 3-amino-1,3-oxazolidin-2-one. These volatile compounds have been reported to show antifungal activity when produced by other bacterial isolates. These results confirm the significance of rhizobacteria and suggest that these bacteria could be used for biocontrol of soil borne oomycetes through their volatiles emissions.
Collapse
Affiliation(s)
- Alfonso Méndez-Bravo
- CONACYT—Escuela Nacional de Estudios Superiores, Laboratorio Nacional de Análisis y Síntesis Ecológica, Universidad Nacional Autónoma de México; Morelia, Michoacán, México
- * E-mail: (AMB); (FR)
| | - Elvis Marian Cortazar-Murillo
- Facultad de Ingenierías y Ciencias Químicas, Química Farmacéutica Biológica, Universidad Veracruzana; Xalapa, Veracruz, México
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C.; Xalapa, Veracruz, México
| | - Edgar Guevara-Avendaño
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C.; Xalapa, Veracruz, México
| | - Oscar Ceballos-Luna
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C.; Xalapa, Veracruz, México
- Facultad de Biología, Universidad Veracruzana; Xalapa, Veracruz, México
| | - Benjamín Rodríguez-Haas
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C.; Xalapa, Veracruz, México
| | - Ana L. Kiel-Martínez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C.; Xalapa, Veracruz, México
| | - Orlando Hernández-Cristóbal
- Escuela Nacional de Estudios Superiores, Laboratorio de Microscopía, Universidad Nacional Autónoma de México; Morelia, Michoacán, México
| | - José A. Guerrero-Analco
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C.; Xalapa, Veracruz, México
| | - Frédérique Reverchon
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C.; Xalapa, Veracruz, México
- * E-mail: (AMB); (FR)
| |
Collapse
|
12
|
Jogaiah S, Kurjogi M, Govind SR, Huntrike SS, Basappa VA, Tran LSP. Isolation and evaluation of proteolytic actinomycete isolates as novel inducers of pearl millet downy mildew disease protection. Sci Rep 2016; 6:30789. [PMID: 27499196 PMCID: PMC4976326 DOI: 10.1038/srep30789] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/11/2016] [Indexed: 11/12/2022] Open
Abstract
Native endophytic actinomycetes isolated from pearl millet roots were examined for their efficacy to protect pearl millet against downy mildew. Nineteen of 39 isolates were found to be proteolytic, of which 7 strains could directly suppress the sporangium formation of Sclerospora graminicola, the pearl millet downy mildew pathogen. Thus, mycelial suspensions containing either spores or cell-free extract of these 7 isolates were used for seed-coating and -soaking treatments to test for their induction of downy mildew resistance. Results indicated that seed-coating overall provided better protection to downy mildew than seed-soaking. In both treatments, the tested isolates demonstrated differential abilities in downy mildew disease protection, with Streptomyces griseus SJ_UOM-07-09 and Streptosporangium roseum SJ_UOM-18-09 showing the highest protection rates. Additionally, the levels of disease protection conferred by the actinomycetes were just slightly lower than that of the systemic fungicide Apron, suggesting their effectiveness. Further studies revealed that the more rapid root colonization by SJ_UOM-18-09 resulted in faster and higher induced resistance in comparison with SJ_UOM-07-09 under greenhouse conditions, indicating that SJ_UOM-18-09 was superior than SJ_UOM-07-09 in inducing resistance. Results from this study provide comprehensive information on biocontrol functions of SJ_UOM- 18-09 with great potential to control downy mildew disease in pearl millet.
Collapse
Affiliation(s)
- Sudisha Jogaiah
- Plant Healthcare and Diagnostic Center, Department of Studies in Biotechnology and Microbiology, Karnatak University, Dharwad 580 003, Karnataka, India
| | - Mahantesh Kurjogi
- Plant Healthcare and Diagnostic Center, Department of Studies in Biotechnology and Microbiology, Karnatak University, Dharwad 580 003, Karnataka, India
| | | | - Shekar Shetty Huntrike
- Downy Mildew Research Laboratory, Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Vedamurthy Ankala Basappa
- Plant Healthcare and Diagnostic Center, Department of Studies in Biotechnology and Microbiology, Karnatak University, Dharwad 580 003, Karnataka, India
| | - Lam-Son Phan Tran
- Plant Abiotic Stress Research Group &Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|