1
|
Martínez-Esteso MJ, Morante-Carriel J, Samper-Herrero A, Martínez-Márquez A, Sellés-Marchart S, Nájera H, Bru-Martínez R. Proteomics: An Essential Tool to Study Plant-Specialized Metabolism. Biomolecules 2024; 14:1539. [PMID: 39766246 PMCID: PMC11674799 DOI: 10.3390/biom14121539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Plants are a valuable source of specialized metabolites that provide a plethora of therapeutic applications. They are natural defenses that plants use to adapt and respond to their changing environment. Decoding their biosynthetic pathways and understanding how specialized plant metabolites (SPMs) respond to biotic or abiotic stress will provide vital knowledge for plant biology research and its application for the future sustainable production of many SPMs of interest. Here, we focus on the proteomic approaches and strategies that help with the study of plant-specialized metabolism, including the: (i) discovery of key enzymes and the clarification of their biosynthetic pathways; (ii) study of the interconnection of both primary (providers of carbon and energy for SPM production) and specialized (secondary) metabolism; (iii) study of plant responses to biotic and abiotic stress; (iv) study of the regulatory mechanisms that direct their biosynthetic pathways. Proteomics, as exemplified in this review by the many studies performed to date, is a powerful tool that forms part of omics-driven research. The proteomes analysis provides an additional unique level of information, which is absent from any other omics studies. Thus, an integrative analysis, considered versus a single omics analysis, moves us more closely toward a closer interpretation of real cellular processes. Finally, this work highlights advanced proteomic technologies with immediate applications in the field.
Collapse
Affiliation(s)
- María José Martínez-Esteso
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.M.-C.); (A.S.-H.); (A.M.-M.); (S.S.-M.); (R.B.-M.)
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Jaime Morante-Carriel
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.M.-C.); (A.S.-H.); (A.M.-M.); (S.S.-M.); (R.B.-M.)
- Plant Biotechnology Group, Faculty of Forestry and Agricultural Sciences, Quevedo State Technical University, Av. Quito km 1 1/2 vía a Santo Domingo de los Tsachilas, Quevedo 120501, Ecuador
| | - Antonio Samper-Herrero
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.M.-C.); (A.S.-H.); (A.M.-M.); (S.S.-M.); (R.B.-M.)
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Ascensión Martínez-Márquez
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.M.-C.); (A.S.-H.); (A.M.-M.); (S.S.-M.); (R.B.-M.)
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Susana Sellés-Marchart
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.M.-C.); (A.S.-H.); (A.M.-M.); (S.S.-M.); (R.B.-M.)
- Research Technical Facility, Proteomics and Genomics Division, University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Hugo Nájera
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana–Cuajimalpa, Av. Vasco de Quiroga 4871, Colonia Santa Fe Cuajimalpa, Alcaldía Cuajimalpa de Morelos, Mexico City 05348, Mexico;
| | - Roque Bru-Martínez
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.M.-C.); (A.S.-H.); (A.M.-M.); (S.S.-M.); (R.B.-M.)
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
- Multidisciplinary Institute for the Study of the Environment (IMEM), University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain
| |
Collapse
|
2
|
Qiao W, Feng W, Yang L, Li C, Qu X, Zhang Y. De Novo Biosynthesis of the Anticancer Compound Euphol in Saccharomyces cerevisiae. ACS Synth Biol 2021; 10:2351-2358. [PMID: 34445867 DOI: 10.1021/acssynbio.1c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Euphol is a euphane-type tetracyclic triterpene which is primarily found in the Euphorbia genus. Euphol has been renowned because of its great potential as a promising anticancer drug. Surprisingly, despite its diverse antitumor effects, the respective gene for euphol biosynthesis had not been identified until this study. In our experiments with Euphorbia tirucalli, euphol was detected predominantly in latex, the element that is often used for cancer treatments in Brazil. Two latex-specifically expressed oxidosqualene cyclases (OSCs) from E. tirucalli, designated as EtOSC5 and EtOSC6, were functionally characterized by expression in a lanosterol synthase knockout yeast strain GIL77. EtOSC5 produces euphol and its 20S-isomer tirucallol as two of the major products, while EtOSC6 produces taraxasterol and β-amyrin as the major products. These four compounds were also detected as the major triterpenes in the E. tirucalli latex, suggesting that EtOSC5 and EtOSC6 are the primary catalysts for the formation of E. tirucalli latex triterpene alcohols. Based on a model structure of EtOSC5 followed with site-mutagenesis experiments, the mechanism for the EtOSC5 activity was proposed. By applying state-of-the-art engineering techniques, the expression of EtOSC5 together with three other known precursor genes were chromosomally integrated into Saccharomyces cerevisiae. The resulting engineered yeast strain YS5E-1 produced 1.84 ± 0.17 mg/L of euphol in shake flasks.
Collapse
Affiliation(s)
- Weibo Qiao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wei Feng
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lu Yang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Changfu Li
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xudong Qu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yansheng Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
3
|
Castelblanque L, García-Andrade J, Martínez-Arias C, Rodríguez JJ, Escaray FJ, Aguilar-Fenollosa E, Jaques JA, Vera P. Opposing roles of plant laticifer cells in the resistance to insect herbivores and fungal pathogens. PLANT COMMUNICATIONS 2021; 2:100112. [PMID: 34027388 PMCID: PMC8132127 DOI: 10.1016/j.xplc.2020.100112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/07/2020] [Accepted: 09/09/2020] [Indexed: 06/12/2023]
Abstract
More than 12,000 plant species (ca. 10% of flowering plants) exude latex when their tissues are injured. Latex is produced and stored in specialized cells named "laticifers". Laticifers form a tubing system composed of rows of elongated cells that branch and create an internal network encompassing the entire plant. Laticifers constitute a recent evolutionary achievement in ecophysiological adaptation to specific natural environments; however, their fitness benefit to the plant still remains to be proven. The identification of Euphorbia lathyris mutants (pil mutants) deficient in laticifer cells or latex metabolism, and therefore compromised in latex production, allowed us to test the importance of laticifers in pest resistance. We provided genetic evidence indicating that laticifers represent a cellular adaptation for an essential defense strategy to fend off arthropod herbivores with different feeding habits, such as Spodoptera exigua and Tetranychus urticae. In marked contrast, we also discovered that a lack of laticifer cells causes complete resistance to the fungal pathogen Botrytis cinerea. Thereafter, a latex-derived factor required for conidia germination on the leaf surface was identified. This factor promoted disease susceptibility enhancement even in the non-latex-bearing plant Arabidopsis. We speculate on the role of laticifers in the co-evolutionary arms race between plants and their enemies.
Collapse
Affiliation(s)
- Lourdes Castelblanque
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politécnica de València-C.S.I.C, Ciudad Politécnica de la Innovación, Edificio 8E, Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain
| | - Javier García-Andrade
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politécnica de València-C.S.I.C, Ciudad Politécnica de la Innovación, Edificio 8E, Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain
| | - Clara Martínez-Arias
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politécnica de València-C.S.I.C, Ciudad Politécnica de la Innovación, Edificio 8E, Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain
| | - Juan J. Rodríguez
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politécnica de València-C.S.I.C, Ciudad Politécnica de la Innovación, Edificio 8E, Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain
| | - Francisco J. Escaray
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politécnica de València-C.S.I.C, Ciudad Politécnica de la Innovación, Edificio 8E, Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain
| | - Ernestina Aguilar-Fenollosa
- Universitat Jaume I, Departament de Ciències Agràries i del Medi Natural, Campus del Riu Sec, 12003 Castelló de la Plana, Spain
| | - Josep A. Jaques
- Universitat Jaume I, Departament de Ciències Agràries i del Medi Natural, Campus del Riu Sec, 12003 Castelló de la Plana, Spain
| | - Pablo Vera
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politécnica de València-C.S.I.C, Ciudad Politécnica de la Innovación, Edificio 8E, Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain
| |
Collapse
|
4
|
Savadogo EH, Shiomi Y, Yasuda J, Akino T, Yamaguchi M, Yoshida H, Umegawachi T, Tanaka R, Suong DNA, Miura K, Yazaki K, Kitajima S. Gene expression of PLAT and ATS3 proteins increases plant resistance to insects. PLANTA 2021; 253:37. [PMID: 33464406 DOI: 10.1007/s00425-020-03530-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Genes of the PLAT protein family, including PLAT and ATS3 subfamilies of higher plants and homologs of liverwort, are involved in plant defense against insects. Laticifer cells in plants contain large amounts of anti-microbe or anti-insect proteins and are involved in plant defense against biotic stresses. We previously found that PLAT proteins accumulate in laticifers of fig tree (Ficus carica) at comparable levels to those of chitinases, and the transcript level of ATS3, another PLAT domain-containing protein, is highest in the transcriptome of laticifers of Euphorbia tirucalli. In this study, we investigated whether the PLAT domain-containing proteins are involved in defense against insects. Larvae of the lepidopteran Spodoptera litura showed retarded growth when fed with Nicotiana benthamiana leaves expressing F. carica PLAT or E. tirucalli ATS3 genes, introduced by agroinfiltration using expression vector pBYR2HS. Transcriptome analysis of these leaves indicated that ethylene and jasmonate signaling were activated, leading to increased expression of genes for PR-1, β-1,3-glucanase, PR5 and trypsin inhibitors, suggesting an indirect mechanism of PLAT- and ATS3-induced resistance in the host plant. Direct cytotoxicity of PLAT and ATS3 to insects was also possible because heterologous expression of the corresponding genes in Drosophila melanogaster caused apoptosis-mediated cell death in this insect. Larval growth retardation of S. litura occurred when they were fed radish sprouts, a good host for agroinfiltration, expressing any of nine homologous genes of dicotyledon Arabidopsis thaliana, monocotyledon Brachypodium distachyon, conifer Picea sitchensis and liverwort Marchantia polymorpha. Of these nine genes, the heterologous expression of A. thaliana AT5G62200 and AT5G62210 caused significant increases in larval death. These results indicated that the PLAT protein family has largely conserved anti-insect activity in the plant kingdom (249 words).
Collapse
Affiliation(s)
- Eric Hyrmeya Savadogo
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yui Shiomi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, Japan
| | - Junko Yasuda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, Japan
| | - Toshiharu Akino
- The Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, Japan
| | - Takanari Umegawachi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, Japan
| | - Ryo Tanaka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, Japan
| | - Dang Ngoc Anh Suong
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, Japan
| | - Kenji Miura
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, 611-0011, Japan
| | - Sakihito Kitajima
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, Japan.
- The Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
5
|
Vilperte V, Lucaciu CR, Halbwirth H, Boehm R, Rattei T, Debener T. Hybrid de novo transcriptome assembly of poinsettia (Euphorbia pulcherrima Willd. Ex Klotsch) bracts. BMC Genomics 2019; 20:900. [PMID: 31775622 PMCID: PMC6882326 DOI: 10.1186/s12864-019-6247-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Poinsettia is a popular and important ornamental crop, mostly during the Christmas season. Its bract coloration ranges from pink/red to creamy/white shades. Despite its ornamental value, there is a lack of knowledge about the genetics and molecular biology of poinsettia, especially on the mechanisms of color formation. We performed an RNA-Seq analysis in order to shed light on the transcriptome of poinsettia bracts. Moreover, we analyzed the transcriptome differences of red- and white-bracted poinsettia varieties during bract development and coloration. For the assembly of a bract transcriptome, two paired-end cDNA libraries from a red and white poinsettia pair were sequenced with the Illumina technology, and one library from a red-bracted variety was used for PacBio sequencing. Both short and long reads were assembled using a hybrid de novo strategy. Samples of red- and white-bracted poinsettias were sequenced and comparatively analyzed in three color developmental stages in order to understand the mechanisms of color formation and accumulation in the species. RESULTS The final transcriptome contains 288,524 contigs, with 33% showing confident protein annotation against the TAIR10 database. The BUSCO pipeline, which is based on near-universal orthologous gene groups, was applied to assess the transcriptome completeness. From a total of 1440 BUSCO groups searched, 77% were categorized as complete (41% as single-copy and 36% as duplicated), 10% as fragmented and 13% as missing BUSCOs. The gene expression comparison between red and white varieties of poinsettia showed a differential regulation of the flavonoid biosynthesis pathway only at particular stages of bract development. An initial impairment of the flavonoid pathway early in the color accumulation process for the white poinsettia variety was observed, but these differences were no longer present in the subsequent stages of bract development. Nonetheless, GSTF11 and UGT79B10 showed a lower expression in the last stage of bract development for the white variety and, therefore, are potential candidates for further studies on poinsettia coloration. CONCLUSIONS In summary, this transcriptome analysis provides a valuable foundation for further studies on poinsettia, such as plant breeding and genetics, and highlights crucial information on the molecular mechanism of color formation.
Collapse
Affiliation(s)
- Vinicius Vilperte
- Institute of Plant Genetics, Leibniz Universität Hannover, 30419, Hannover, Germany.,Klemm + Sohn GmbH & Co., 70379, Stuttgart, KG, Germany
| | - Calin Rares Lucaciu
- Department of Microbiology and Ecosystem Science, University of Vienna, 1090, Vienna, Austria
| | - Heidi Halbwirth
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, 1060, Vienna, Austria
| | - Robert Boehm
- Klemm + Sohn GmbH & Co., 70379, Stuttgart, KG, Germany
| | - Thomas Rattei
- Department of Microbiology and Ecosystem Science, University of Vienna, 1090, Vienna, Austria.
| | - Thomas Debener
- Institute of Plant Genetics, Leibniz Universität Hannover, 30419, Hannover, Germany.
| |
Collapse
|
6
|
Dussourd DE, Van Valkenburg M, Rajan K, Wagner DL. A notodontid novelty: Theroa zethus caterpillars use behavior and anti-predator weaponry to disarm host plants. PLoS One 2019; 14:e0218994. [PMID: 31291279 PMCID: PMC6619741 DOI: 10.1371/journal.pone.0218994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/13/2019] [Indexed: 11/19/2022] Open
Abstract
Unlike most notodontids, Theroa zethus larvae feed on plants that emit copious latex when damaged. To determine how the larvae overcome this defense, we filmed final instars on poinsettia, Euphorbia pulcherrima, then simulated their behaviors and tested how the behaviors individually and combined affect latex exudation. Larvae initially scraped the stem, petiole, or midrib with their mandibles, then secreted acid from their ventral eversible gland (VEG) onto the abraded surface. Scraping facilitated acid penetration by disrupting the waxy cuticle. As the acid softened tissues, the larvae used their mandibles to compress the plant repeatedly, thereby rupturing the latex canals. Scraping, acid application, and compression created withered furrows that greatly diminished latex exudation distal to the furrows where the larvae invariably fed. The VEG in notodontids ordinarily serves to deter predators; when attacked, larvae spray acid aimed directly at the assailant. Using HPLC, we documented that the VEG secretion of T. zethus contains 30% formic acid (6.53M) with small amounts of butyric acid (0.05M). When applied to poinsettia petioles, the acids caused a similar reduction in latex outflow as VEG secretion milked from larvae. VEG acid could disrupt latex canals in part by stimulating the normal acid-growth mechanism employed by plants to loosen walls for cell elongation. Histological examination of cross sections in poinsettia midribs confirmed that cell walls within furrows were often highly distorted as expected if VEG acids weaken walls. Theroa zethus is the only notodontid caterpillar known to use mandibular scraping and VEG acid to disable plant defenses. However, we document that mandibular constriction of petioles occurs also in other notodontids including species that feed on hardwood trees. This capability may represent a pre-adaptation that facilitated the host shift in the Theroa lineage onto latex-bearing plants by enabling larvae to deactivate laticifers with minimal latex contact.
Collapse
Affiliation(s)
- David E. Dussourd
- Department of Biology, University of Central Arkansas, Conway, Arkansas, United States of America
- * E-mail:
| | - Madalyn Van Valkenburg
- Department of Biology, University of Central Arkansas, Conway, Arkansas, United States of America
| | - Kalavathy Rajan
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - David L. Wagner
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, Connecticut, United States of America
| |
Collapse
|
7
|
Ramos MV, Demarco D, da Costa Souza IC, de Freitas CDT. Laticifers, Latex, and Their Role in Plant Defense. TRENDS IN PLANT SCIENCE 2019; 24:553-567. [PMID: 30979674 DOI: 10.1016/j.tplants.2019.03.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Latex, a sap produced by cells called laticifers, occurs in plants of wide taxonomic diversity. Plants exude latex sap in response to physical damage. Questions about the function of latex or the underlying mechanisms persist, but a role in defense is likely. The presence of constitutive peptidases in latex sap in addition to inducible and de novo synthesized pathogenesis-related proteins (PR-proteins), raises the question about the role that each sap component plays to protect plants and how synergism occurs among sap proteins in the course of herbivory or infection. Here we discuss a variety of functions for laticifer and latex in plant defense. We propose that latex peptidases build the front line of defense against herbivores or pathogens.
Collapse
Affiliation(s)
- Márcio Viana Ramos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Bloco 907, Fortaleza-Ceará, CEP 60451-970, Brazil.
| | - Diego Demarco
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, CEP 05508-090, Brazil
| | - Isabel Cristina da Costa Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Bloco 907, Fortaleza-Ceará, CEP 60451-970, Brazil
| | - Cleverson Diniz Teixeira de Freitas
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Bloco 907, Fortaleza-Ceará, CEP 60451-970, Brazil
| |
Collapse
|
8
|
Liu H, Lu Y, Wang J, Hu J, Wuyun T. Genome-wide screening of long non-coding RNAs involved in rubber biosynthesis in Eucommia ulmoides. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:1070-1082. [PMID: 29944209 DOI: 10.1111/jipb.12693] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Increasing evidence indicates that long non-coding RNAs (lncRNAs) play pivotal roles in regulatory networks controlling plant and animal gene expression. However, lncRNA roles in regulating rubber biosynthesis in Eucommia ulmoides, an emerging source of natural rubber (Eu-rubber), are currently unknown. Here, we report on RNA deep-sequencing of E. ulmoides fruits at two developmental stages. Based on application of a stringent pipeline, 29,103 lncRNAs and 9,048 transcripts of uncertain coding potential (TUCPs) were identified. Two differentially expressed (DE) TUCPs appear to simultaneously regulate 12 protein-coding genes involved in Eu-rubber biosynthesis (GIEBs), as well as 95 DE genes. Functional categorization of these 95 DE genes indicated their involvement in subcellular microstructures and cellular processes, such as cell wall, cell division, and growth. These DE genes may participate in the differentiation and development of laticifers, where Eu-rubber is synthesized. A model is proposed in which "commanders" (DE TUCPs) direct the "builders" (DE genes) to construct a "storehouse" of materials needed for Eu-rubber synthesis, and the "workers" (GIEBs) to synthesize Eu-rubber. These findings provide insights into both cis- and trans-polyisoprene biosynthesis in plants, laying the foundation for additional studies of this crucial process.
Collapse
Affiliation(s)
- Huimin Liu
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China
| | - Yan Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Juan Wang
- Chemistry department, University of Missouri-Columbia, Columbia MO 65201, USA
| | - Jingjing Hu
- Inertia Shanghai Biotechnology Co., Ltd., Shanghai 200335, China
| | - Tana Wuyun
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China
| |
Collapse
|
9
|
Characterization of an Insecticidal Protein from Withania somnifera Against Lepidopteran and Hemipteran Pest. Mol Biotechnol 2018; 60:290-301. [PMID: 29492788 DOI: 10.1007/s12033-018-0070-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lectins are carbohydrate-binding proteins with wide array of functions including plant defense against pathogens and insect pests. In the present study, a putative mannose-binding lectin (WsMBP1) of 1124 bp was isolated from leaves of Withania somnifera. The gene was expressed in E. coli, and the recombinant WsMBP1 with a predicted molecular weight of 31 kDa was tested for its insecticidal properties against Hyblaea puera (Lepidoptera: Hyblaeidae) and Probergrothius sanguinolens (Hemiptera: Pyrrhocoridae). Delay in growth and metamorphosis, decreased larval body mass and increased mortality was recorded in recombinant WsMBP1-fed larvae. Histological studies on the midgut of lectin-treated insects showed disrupted and diffused secretory cells surrounding the gut lumen in larvae of H. puera and P. sanguinolens, implicating its role in disruption of the digestive process and nutrient assimilation in the studied insect pests. The present study indicates that WsMBP1 can act as a potential gene resource in future transformation programs for incorporating insect pest tolerance in susceptible plant genotypes.
Collapse
|
10
|
Kitajima S, Aoki W, Shibata D, Nakajima D, Sakurai N, Yazaki K, Munakata R, Taira T, Kobayashi M, Aburaya S, Savadogo EH, Hibino S, Yano H. Comparative multi-omics analysis reveals diverse latex-based defense strategies against pests among latex-producing organs of the fig tree (Ficus carica). PLANTA 2018. [PMID: 29536219 DOI: 10.1007/s00425-018-2880-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Latexes in immature fruit, young petioles and lignified trunks of fig trees protect the plant using toxic proteins and metabolites in various organ-dependent ways. Latexes from plants contain high amounts of toxic proteins and metabolites, which attack microbes and herbivores after exudation at pest-induced wound sites. The protein and metabolite constituents of latexes are highly variable, depending on the plant species and organ. To determine the diversity of latex-based defense strategies in fig tree (Ficus carica) organs, we conducted comparative proteomic, transcriptomic and metabolomic analyses on latexes isolated from immature fruit, young petioles and lignified trunks of F. carica after constructing a unigene sequence library using RNA-seq data. Trypsin inhibitors were the most abundant proteins in petiole latex, while cysteine proteases ("ficins") were the most abundant in immature fruit and trunk latexes. Galloylglycerol, a possible defense-related metabolite, appeared to be highly accumulated in all three latexes. The expression levels of pathogenesis-related proteins were highest in the latex of trunk, suggesting that this latex had adapted a defensive role against microbe attacks. Although young petioles and immature fruit are both unlignified soft organs, and potential food for herbivorous insects, unigenes for the sesquiterpenoid pathway, which likely produces defense-associated volatiles, and the phenylpropanoid pathway, which produces toxic furanocoumarins, were expressed less in immature fruit latex. This difference may indicate that while petioles and fruit protect the plant from attack by herbivores, the fruit must also attract insect pollinators at younger stages and animals after ripening. We also suggest possible candidate transcription factors and signal transduction proteins that are involved in the differential expression of the unigenes.
Collapse
Affiliation(s)
- Sakihito Kitajima
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
- The Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| | - Wataru Aoki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
- Kyoto Integrated Science and Technology Bio-Analysis Center (KIST-BIC), Shimogyo-ku, Kyoto, 600-8813, Japan
| | - Daisuke Shibata
- Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba, 292-0818, Japan
| | - Daisuke Nakajima
- Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba, 292-0818, Japan
| | - Nozomu Sakurai
- Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba, 292-0818, Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, 611-0011, Japan
| | - Ryosuke Munakata
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, 611-0011, Japan
- Université de Lorraine, INRA, UMR1121, LAE, 54 000, Nancy, France
| | - Toki Taira
- Department of Bioscience and Biotechnology, University of the Ryukyus, Senbaru, Nishihara-cho, Okinawa, 903-0213, Japan
| | - Masaru Kobayashi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shunsuke Aburaya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Eric Hyrmeya Savadogo
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Susumu Hibino
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Haruna Yano
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| |
Collapse
|
11
|
Qiao W, Li C, Mosongo I, Liang Q, Liu M, Wang X. Comparative Transcriptome Analysis Identifies Putative Genes Involved in Steroid Biosynthesis in Euphorbia tirucalli. Genes (Basel) 2018; 9:E38. [PMID: 29342957 PMCID: PMC5793189 DOI: 10.3390/genes9010038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 11/17/2022] Open
Abstract
Phytochemical analysis of different Euphorbia tirucalli tissues revealed a contrasting tissue-specificity for the biosynthesis of euphol and β-sitosterol, which represent the two pharmaceutically active steroids in E. tirucalli. To uncover the molecular mechanism underlying this tissue-specificity for phytochemicals, a comprehensive E. tirucalli transcriptome derived from its root, stem, leaf and latex was constructed, and a total of 91,619 unigenes were generated with 51.08% being successfully annotated against the non-redundant (Nr) protein database. A comparison of the transcriptome from different tissues discovered members of unigenes in the upstream steps of sterol backbone biosynthesis leading to this tissue-specific sterol biosynthesis. Among them, the putative oxidosqualene cyclase (OSC) encoding genes involved in euphol synthesis were notably identified, and their expressions were significantly up-regulated in the latex. In addition, genome-wide differentially expressed genes (DEGs) in the different E. tirucalli tissues were identified. The cluster analysis of those DEGs showed a unique expression pattern in the latex compared with other tissues. The DEGs identified in this study would enrich the insights of sterol biosynthesis and the regulation mechanism of this latex-specificity.
Collapse
Affiliation(s)
- Weibo Qiao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Changfu Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Isidore Mosongo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qin Liang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Mengdi Liu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xin Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
12
|
Castelblanque L, Balaguer B, Martí C, Rodríguez JJ, Orozco M, Vera P. Multiple facets of laticifer cells. PLANT SIGNALING & BEHAVIOR 2017; 12:e1300743. [PMID: 28718699 PMCID: PMC5586393 DOI: 10.1080/15592324.2017.1300743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 06/07/2023]
Abstract
In the latex-bearing plants, the laticiferous system is the tubing structure that contains the latex and is constituted of living cells (laticifers). While laticifers are present only in a small percentage of the flowering plant species, they represent a type of specialized tissue within the plant where a myriad of metabolites are synthesized, some of them of considerable commercial importance. In this mini-review we synopsize the present knowledge about laticifer cells and discuss about their particular features as well as some evolutionary and ecophysiological cues and the potential exploitation of the knowledge generated around this peculiar type of plant cell. We illustrate some of these questions with the experience in Euphorbia lathyris laticifers and latex.
Collapse
Affiliation(s)
- Lourdes Castelblanque
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Ingeniero Fausto Elio, Valencia, Spain
| | - Begoña Balaguer
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Ingeniero Fausto Elio, Valencia, Spain
| | - Cristina Martí
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Ingeniero Fausto Elio, Valencia, Spain
| | - Juan José Rodríguez
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Ingeniero Fausto Elio, Valencia, Spain
| | - Marianela Orozco
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Ingeniero Fausto Elio, Valencia, Spain
| | - Pablo Vera
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Ingeniero Fausto Elio, Valencia, Spain
| |
Collapse
|