1
|
Lang X, Zhao X, Zhao J, Ren T, Nie L, Zhao W. MicroRNA Profiling Revealed the Mechanism of Enhanced Cold Resistance by Grafting in Melon ( Cucumis melo L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:1016. [PMID: 38611545 PMCID: PMC11013280 DOI: 10.3390/plants13071016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Grafting is widely used to improve the resistance to abiotic stresses in cucurbit plants, but the effect and molecular mechanism of grafting on cold stress are still unknown in melon. In this study, phenotypic characteristics, physiological indexes, small-RNA sequencing and expression analyses were performed on grafted plants with pumpkin rootstock (PG) and self-grafted plants (SG) to explore the mechanism of changed cold tolerance by grafting in melon. Compared with SG plants, the cold tolerance was obviously enhanced, the malondialdehyde (MDA) content was significantly decreased and the activities of antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD) were significantly increased in PG plants. Depend on differentially expressed miRNA (DEM) identification and expression pattern analyses, cme-miR156b, cme-miR156f and chr07_30026 were thought to play a key role in enhancing low-temperature resistance resulting from grafting. Subsequently, 24, 37 and 17 target genes of cme-miR156b, cme-miR156f and chr07_30026 were respectively predicted, and 21 target genes were co-regulated by cme-miR156b and cme-miR156f. Among these 57 unique target genes, the putative promoter of 13 target genes contained the low-temperature responsive (LTR) cis-acting element. The results of qRT-PCR indicated that six target genes (MELO3C002370, MELO3C009217, MELO3C018972, MELO3C016713, MELO3C012858 and MELO3C000732) displayed the opposite expression pattern to their corresponding miRNAs. Furthermore, MELO3C002370, MELO3C016713 and MELO3C012858 were significantly downregulated in cold-resistant cultivars and upregulated in cold-sensitive varieties after cold stimulus, and they acted as the key negative regulators of low-temperature response in melon. This study revealed three key miRNAs and three putative target genes involved in the cold tolerance of melon and provided a molecular basis underlying how grafting improved the low-temperature resistance of melon plants.
Collapse
Affiliation(s)
- Xinmei Lang
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (X.L.); (X.Z.); (J.Z.); (T.R.)
| | - Xuan Zhao
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (X.L.); (X.Z.); (J.Z.); (T.R.)
| | - Jiateng Zhao
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (X.L.); (X.Z.); (J.Z.); (T.R.)
| | - Tiantian Ren
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (X.L.); (X.Z.); (J.Z.); (T.R.)
| | - Lanchun Nie
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (X.L.); (X.Z.); (J.Z.); (T.R.)
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding 071000, China
- Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Baoding 071000, China
| | - Wensheng Zhao
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (X.L.); (X.Z.); (J.Z.); (T.R.)
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding 071000, China
- Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Baoding 071000, China
| |
Collapse
|
2
|
Amin B, Atif MJ, Pan Y, Rather SA, Ali M, Li S, Cheng Z. Transcriptomic analysis of Cucumis sativus uncovers putative genes related to hormone signaling under low temperature (LT) and high humidity (HH) stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 333:111750. [PMID: 37257510 DOI: 10.1016/j.plantsci.2023.111750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/22/2023] [Accepted: 05/27/2023] [Indexed: 06/02/2023]
Abstract
Climate change has caused changes in environmental conditions, leading to both low temperature (LT) and high humidity (HH) stress on crops worldwide. Therefore, there is a growing need to enhance our understanding of the physiological and molecular mechanisms underlying LT and HH stress tolerance in cucumbers, given the significance of climate change. The findings of this study offer a comprehensive understanding of how the transcriptome and hormone profiles of cucumbers respond to LT and HH stress. In this study, cucumber seedlings were subjected to LT and HH stress (9/5 °C day/night temperature, 95% humidity) as well as control (CK) conditions (25/18 °C day/night temperature, 80% humidity) for 24, 48, and 72 h. It was observed that the LT and HH stress caused severe damage to the morphometric traits of the plants compared to the control treatment. The concentrations of phytohormones IAA, ethylene, and GA were lower, while ABA and JA were higher during LT and HH stress at most time points. To gain insights into the molecular mechanisms underlying this stress response, RNA-sequencing was performed. The analysis revealed a total of 10,459 differentially expressed genes (DEGs) with annotated pathways. These pathways included plant hormone signal transduction, protein processing in the endoplasmic reticulum, MAPK signaling pathway, carbon fixation in photosynthetic organisms, and glycerolipid metabolism. Furthermore, 123 DEGs associated with hormone signaling pathways were identified, and their responses to LT and HH stress were thoroughly discussed. Overall, this study sheds light on the LT and HH tolerance mechanisms in cucumbers, particularly focusing on the genes involved in the LT and HH response and the signaling pathways of endogenous phytohormones.
Collapse
Affiliation(s)
- Bakht Amin
- College of Horticulture, Northwest A&F University, Yangling 712100, China; Institute of Rice Industry Technology Research, Key Laboratory of Plant Resource Conservation andGermplasm Innovation in Mountainous Region (Ministry of Education), College of AgriculturalSciences, Guizhou University, Guiyang 550025, China
| | - Muhammad Jawaad Atif
- College of Horticulture, Northwest A&F University, Yangling 712100, China; Horticultural Research Institute, National Agricultural Research Centre, Islamabad 44000, Pakistan
| | - Yupeng Pan
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Shabir A Rather
- Center for Integrative Conservation and Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Menglun 666303, Yunnan, China
| | - Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Shuju Li
- Tianjin Kerun Cucumber Research Institute, Tianjin 300192, China
| | - Zhihui Cheng
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
3
|
Dong Y, Xiao W, Guo W, Liu Y, Nie W, Huang R, Tan C, Jia Z, Liu J, Jiang Z, Chang E. Effects of Donor Ages and Propagation Methods on Seedling Growth of Platycladus orientalis (L.) Franco in Winter. Int J Mol Sci 2023; 24:ijms24087170. [PMID: 37108331 PMCID: PMC10138323 DOI: 10.3390/ijms24087170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
To evaluate the effects of donor ages on growth and stress resistance of 6-year-old seedlings propagated from 5-, 2000-, and 3000-year-old Platycladus orientalis donors with grafting, cutting, and seed sowing, growth indicators and physiological and transcriptomic analyses were performed in 6-year-old seedlings in winter. Results showed that basal stem diameters and plant heights of seedlings of the three propagation methods decreased with the age of the donors, and the sown seedlings were the thickest and tallest. The contents of soluble sugar, chlorophyll, and free fatty acid in apical leaves of the three propagation methods were negatively correlated with donor ages in winter, while the opposite was true for flavonoid and total phenolic. The contents of flavonoid, total phenolic, and free fatty acid in cutting seedlings were highest in the seedlings propagated in the three methods in winter. KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis of differentially expressed genes showed phenylpropanoid biosynthesis and fatty acid metabolism pathways, and their expression levels were up-regulated in apical leaves from 6-year-old seedlings propagated from 3000-year-old P. orientalis donors. In addition, hub genes analysis presented that C4H, OMT1, CCR2, PAL, PRX52, ACP1, AtPDAT2, and FAD3 were up-regulated in cutting seedlings, and the gene expression levels decreased in seedlings propagated from 2000- and 3000-year-old donors. These findings demonstrate the resistance stability of cuttings of P. orientalis and provide insights into the regulatory mechanisms of seedlings of P. orientalis propagated from donors at different ages in different propagation methods against low-temperature stress.
Collapse
Affiliation(s)
- Yao Dong
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grass-Land Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Wenfa Xiao
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grass-Land Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Wei Guo
- Taishan Academy of Forestry Sciences, Taian 271000, China
| | - Yifu Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grass-Land Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Wen Nie
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grass-Land Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Ruizhi Huang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grass-Land Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Cancan Tan
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grass-Land Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Zirui Jia
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jianfeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Zeping Jiang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grass-Land Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Ermei Chang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
4
|
Tomkins M, Hoerbst F, Gupta S, Apelt F, Kehr J, Kragler F, Morris RJ. Exact Bayesian inference for the detection of graft-mobile transcripts from sequencing data. J R Soc Interface 2022; 19:20220644. [PMID: 36514890 PMCID: PMC9748499 DOI: 10.1098/rsif.2022.0644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
The long-distance transport of messenger RNAs (mRNAs) has been shown to be important for several developmental processes in plants. A popular method for identifying travelling mRNAs is to perform RNA-Seq on grafted plants. This approach depends on the ability to correctly assign sequenced mRNAs to the genetic background from which they originated. The assignment is often based on the identification of single-nucleotide polymorphisms (SNPs) between otherwise identical sequences. A major challenge is therefore to distinguish SNPs from sequencing errors. Here, we show how Bayes factors can be computed analytically using RNA-Seq data over all the SNPs in an mRNA. We used simulations to evaluate the performance of the proposed framework and demonstrate how Bayes factors accurately identify graft-mobile transcripts. The comparison with other detection methods using simulated data shows how not taking the variability in read depth, error rates and multiple SNPs per transcript into account can lead to incorrect classification. Our results suggest experimental design criteria for successful graft-mobile mRNA detection and show the pitfalls of filtering for sequencing errors or focusing on single SNPs within an mRNA.
Collapse
Affiliation(s)
- Melissa Tomkins
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR47UH, UK
| | - Franziska Hoerbst
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR47UH, UK
| | - Saurabh Gupta
- Max Planck Institute of Molecular Plant Physiology, Max Planck Institute, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Federico Apelt
- Max Planck Institute of Molecular Plant Physiology, Max Planck Institute, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Julia Kehr
- Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststrasse 18, Hamburg 22609, Germany
| | - Friedrich Kragler
- Max Planck Institute of Molecular Plant Physiology, Max Planck Institute, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Richard J. Morris
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR47UH, UK
| |
Collapse
|
5
|
Ullah I, Kamel EAR, Shah ST, Basit A, Mohamed HI, Sajid M. Application of RNAi technology: a novel approach to navigate abiotic stresses. Mol Biol Rep 2022; 49:10975-10993. [PMID: 36057876 DOI: 10.1007/s11033-022-07871-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Due to the rising population globally, and the demand for food, it is critical to significantly increase crop production by 2050. However, climate change estimates show that droughts and heatwaves will become more prevalent in many parts of the world, posing a severe danger to food output. METHODS Selective breeding based on genetic diversity is falling short of meeting the expanding need for food and feed. However, the advent of modern plant genetic engineering, genome editing, and synthetic biology provides precise techniques for producing crops capable of sustaining yield under stress situations. RESULTS As a result, crop varieties with built-in genetic tolerance to environmental challenges are desperately needed. In the recent years, small RNA (sRNA) data has progressed to become one of the most effective approaches for the improvement of crops. So many sRNAs (18-30nt) have been found with the use of hi-tech bioinformatics and sequencing techniques which are involved in the regulation of sequence specific gene noncoding RNAs (short ncRNAs) i.e., microRNA (miRNA) and small interfering RNA (siRNA). Such research outcomes may advance our understanding of the genetic basis of adaptability of plants to various environmental challenges and the genetic variation of plant's tolerance to a number of abiotic stresses. CONCLUSION The review article highlights current trends and advances in sRNAs' critical role in responses of plants to drought, heat, cold, and salinity, and also the potential technology that identifies the abiotic stress-regulated sRNAs, and techniques for analyzing and validating the target genes.
Collapse
Affiliation(s)
- Izhar Ullah
- Department of Horticulture, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25120, Pakistan
| | - Ehab A R Kamel
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Syed Tanveer Shah
- Department of Horticulture, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25120, Pakistan
| | - Abdul Basit
- Department of Horticulture, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25120, Pakistan
| | - Heba I Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt.
| | - Muhammad Sajid
- Department of Horticulture, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25120, Pakistan
| |
Collapse
|
6
|
Sun J, Chen J, Si X, Liu W, Yuan M, Guo S, Wang Y. WRKY41/WRKY46-miR396b-5p-TPR module mediates abscisic acid-induced cold tolerance of grafted cucumber seedlings. FRONTIERS IN PLANT SCIENCE 2022; 13:1012439. [PMID: 36160963 PMCID: PMC9493262 DOI: 10.3389/fpls.2022.1012439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/23/2022] [Indexed: 06/01/2023]
Abstract
Grafting is one of the key agronomic measures to enhance the tolerance to environmental stresses in horticultural plants, but the specific molecular regulation mechanism in this tolerance largely remains unclear. Here, we found that cucumber grafted onto figleaf gourd rootstock increased cold tolerance through abscisic acid (ABA) activating WRKY41/WRKY46-miR396b-5p-TPR (tetratricopeptide repeat-like superfamily protein) module. Cucumber seedlings grafted onto figleaf gourd increased cold tolerance and induced the expression of miR396b-5p. Furthermore, overexpression of cucumber miR396b-5p in Arabidopsis improved cold tolerance. 5' RNA ligase-mediated rapid amplification of cDNA ends (5' RLM-RACE) and transient transformation experiments demonstrated that TPR was the target gene of miR396b-5p, while TPR overexpression plants were hypersensitive to cold stress. The yeast one-hybrid and dual-luciferase assays showed that both WRKY41 and WRKY46 bound to MIR396b-5p promoter to induce its expression. Furthermore, cold stress enhanced the content of ABA in the roots and leaves of figleaf gourd grafted cucumber seedlings. Exogenous application of ABA induced the expression of WRKY41 and WRKY46, and cold tolerance of grafted cucumber seedlings. However, figleaf gourd rootstock-induced cold tolerance was compromised when plants were pretreated with ABA biosynthesis inhibitor. Thus, ABA mediated figleaf gourd grafting-induced cold tolerance of cucumber seedlings through activating the WRKY41/WRKY46-miR396b-5p-TPR module.
Collapse
|
7
|
Ma J, Wang J, Wang Q, Shang L, Zhao Y, Zhang G, Ma Q, Hong S, Gu C. Physiological and transcriptional responses to heat stress and functional analyses of PsHSPs in tree peony ( Paeonia suffruticosa). FRONTIERS IN PLANT SCIENCE 2022; 13:926900. [PMID: 36035676 PMCID: PMC9403832 DOI: 10.3389/fpls.2022.926900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Tree peony (Paeonia suffruticosa) is a traditional Chinese flower that is not resistant to high temperatures, and the frequent sunburn during summer limits its normal growth. The lack of understanding of the molecular mechanisms in tree peony has greatly restricted the improvement of novel heat-tolerant varieties. Therefore, we treated tree peony cultivar "Yuhong" (P. suffruticosa "Yuhong") at normal (25°C) and high temperatures (40°C) and sequenced the transcriptomes, to investigate the molecular responsive mechanisms to heat stress. By comparing the transcriptomes, a total of 7,673 differentially expressed genes (DEGs) were detected comprising 4,220 upregulated and 3,453 downregulated genes. Functional annotation showed that the DEGs were mainly related to the metabolic process, cells and binding, carbon metabolism, and endoplasmic reticulum protein processing. qRT-PCR revealed that three sHSP genes (PsHSP17.8, PsHSP21, and PsHSP27.4) were upregulated in the response of tree peony to heat stress. Tissue quantification of the transgenic lines (Arabidopsis thaliana) showed that all three genes were most highly expressed in the leaves. The survival rates of transgenic lines (PsHSP17.8, PsHSP21, and PsHSP27.4) restored to normal growth after high-temperature treatment were 43, 36, and 31%, respectively. In addition, the activity of superoxide dismutase, accumulation of free proline, and chlorophyll level was higher than those of the wild-type lines, while the malondialdehyde content and conductivity were lower, and the membrane lipid peroxidation reaction of the wild-type plant was more intense. Our research found several processes and pathways related to heat resistance in tree peony including metabolic process, single-organism process, phenylpropane biosynthesis pathway, and endoplasmic reticulum protein synthesis pathway. PsHSP17.8, PsHSP21, and PsHSP27.4 improved heat tolerance by increasing SOD activity and proline content. These findings can provide genetic resources for understanding the heat-resistance response of tree peony and benefit future germplasm innovation.
Collapse
Affiliation(s)
- Jin Ma
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Jie Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China
| | - Qun Wang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Linxue Shang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yu Zhao
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Guozhe Zhang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Qingqing Ma
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Sidan Hong
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Cuihua Gu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
8
|
Liu W, Wang Q, Zhang R, Liu M, Wang C, Liu Z, Xiang C, Lu X, Zhang X, Li X, Wang T, Gao L, Zhang W. Rootstock-scion exchanging mRNAs participate in the pathways of amino acids and fatty acid metabolism in cucumber under early chilling stress. HORTICULTURE RESEARCH 2022; 9:uhac031. [PMID: 35184197 PMCID: PMC9039506 DOI: 10.1093/hr/uhac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Cucumber (Cucumis sativus L.) often experiences chilling stress that limits their growth and productivity. Grafting is widely used to improve abiotic stress resistance by alternating a vigorous root system, suggesting there exists systemic signals communication between distant organs. mRNAs are reported to be evolving in fortification strategies by long-distance signaling when plants suffering from chilling stress. However, the potential function of mobile mRNAs alleviating chilling stress in grafted cucumber is still unknown. Here, the physiological changes, mobile mRNAs profiling, transcriptomic and metabolomic changes in above- and underground tissues of all graft combinations of cucumber and pumpkin responding to chilling stress were established and analyzed comprehensively. The co-relationship between the cluster of chilling-induced pumpkin mobile mRNAs with Differentially Expressed Genes (DEGs) and Differentially Intensive Metabolites (DIMs) revealed that four key chilling-induced pumpkin mobile mRNAs were highly related to glycine, serine and threonine synthesis and fatty acid β-oxidative degradation metabolism in cucumber tissues of heterografts. The verification of mobile mRNAs, potential transport of metabolites and exogenous application of key metabolites of glycerophospholipid metabolism pathway in cucumber seedlings confirmed that the role of mobile mRNAs in regulating chilling responses in grafted cucumber. Our results build a link between the long-distance mRNAs of chilling-tolerant pumpkin and the fatty acid β-oxidative degradation metabolism of chilling-sensitive cucumber. It helps to uncover the mechanism of signaling interaction between scion and stock responding to chilling tolerant in grafted cucumber.
Collapse
Affiliation(s)
- Wenqian Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Qing Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Ruoyan Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Mengshuang Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Cuicui Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Zixi Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Chenggang Xiang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- College of Life Science and Technology, HongHe University, Mengzi, Yunnan 661100, China
| | - Xiaohong Lu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Xiaojing Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Xiaojun Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Tao Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Wenna Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Lu J, Cheng F, Huang Y, Bie Z. Grafting Watermelon Onto Pumpkin Increases Chilling Tolerance by Up Regulating Arginine Decarboxylase to Increase Putrescine Biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 12:812396. [PMID: 35242149 PMCID: PMC8886213 DOI: 10.3389/fpls.2021.812396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/23/2021] [Indexed: 06/02/2023]
Abstract
Low temperature is a major environmental factor that severely impairs plant growth and productivity. Watermelon (Citrullus lanatus) is a chilling-sensitive crop. Grafting of watermelon onto pumpkin rootstock is an effective technique to increase the chilling tolerance of watermelon when exposure to short-time chilling stress. However, the mechanism by which pumpkin rootstock increases chilling tolerance remains poorly understood. Under 10°C/5°C (day/night) chilling stress treatment, pumpkin-grafted watermelon seedlings showed higher chilling tolerance than self-grafted watermelon plants with significantly reduced lipid peroxidation and chilling injury (CI) index. Physiological analysis revealed that pumpkin rootstock grafting led to the notable accumulation of putrescine in watermelon seedlings under chilling conditions. Pre-treat foliar with 1 mM D-arginine (inhibitor of arginine decarboxylase, ADC) increased the electrolyte leakage (EL) of pumpkin-grafted watermelon leaves under chilling stress. This result can be ascribed to the decrease in transcript levels of ADC, ornithine decarboxylase, spermidine synthase, and polyamine oxidase genes involved in the synthesis and metabolism of polyamines. Transcriptome analysis showed that pumpkin rootstock improved chilling tolerance in watermelon seedlings by regulating differential gene expression under chilling stress. Pumpkin-grafted seedling reduced the number and expression level of differential genes in watermelon scion under chilling stress. It specifically increased the up-regulated expression of ADC (Cla97C11G210580), a key gene in the polyamine metabolism pathway, and ultimately promoted the accumulation of putrescine. In conclusion, pumpkin rootstock grafting increased the chilling tolerance of watermelon through transcription adjustments, up regulating the expression level of ADC, and promoting the synthesis of putrescine, which ultimately improved the chilling tolerance of pumpkin-grafted watermelon plants.
Collapse
|
10
|
Luan H, Niu C, Nie X, Li Y, Wei M. Transcriptome and Physiological Analysis of Rootstock Types and Silicon Affecting Cold Tolerance of Cucumber Seedlings. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030445. [PMID: 35161426 PMCID: PMC8838756 DOI: 10.3390/plants11030445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 05/05/2023]
Abstract
Cucumbers grafted on rootstocks with different de-blooming capacity show varying levels of cold tolerance. The content of fruit bloom correlates with its silicon-metabolizing capacity, and rootstock grafting can alter not only the cold tolerance but also the silicon-metabolizing capacity of the scion. The molecular mechanisms responsible for resistance due to rootstocks and silicon and the pathway that affects cold tolerance, however, remain poorly understood. Therefore, we performed physiological and transcriptome analysis to clarify how rootstock types and silicon affect cold tolerance in cucumber seedlings. Then, we randomly selected eight differentially expressed genes (DEGs) for quantitative real time PCR (qRT-PCR) analysis to proof the reliability of the transcriptome data. The results showed that silicon can enhance the cold tolerance of cucumbers by boosting the phenylpropanoid metabolism, and rootstock grafting can boost the active oxygen scavenging ability and synthesis level of hormones in cucumbers and maintain the stability of the membrane structure to enhance cold tolerance. The difference in cold tolerance between the two rootstocks is because the cold-tolerant one has stronger metabolic and sharp signal transduction ability and can maintain the stability of photosynthesis, thereby contributing to the stability of the cellular system and enhancing tolerance to cold.
Collapse
Affiliation(s)
- Heng Luan
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China; (H.L.); (C.N.); (X.N.); (Y.L.)
| | - Chenxu Niu
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China; (H.L.); (C.N.); (X.N.); (Y.L.)
| | - Xinmiao Nie
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China; (H.L.); (C.N.); (X.N.); (Y.L.)
| | - Yan Li
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China; (H.L.); (C.N.); (X.N.); (Y.L.)
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Taian 271018, China
- State Key Laboratory of Crop Biology, Taian 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Taian 271018, China
| | - Min Wei
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China; (H.L.); (C.N.); (X.N.); (Y.L.)
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Taian 271018, China
- State Key Laboratory of Crop Biology, Taian 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Taian 271018, China
- Correspondence: ; Tel.: +86-0538-824-6296
| |
Collapse
|
11
|
Davoudi M, Song M, Zhang M, Chen J, Lou Q. Long-distance control of pumpkin rootstock over cucumber scion under drought stress as revealed by transcriptome sequencing and mobile mRNAs identifications. HORTICULTURE RESEARCH 2022; 9:uhab033. [PMID: 35043177 PMCID: PMC8854630 DOI: 10.1093/hr/uhab033] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/21/2021] [Indexed: 06/01/2023]
Abstract
Grafting with pumpkin rootstock is commonly used not only to improve the quality of cucumber fruits but also to confer biotic or abiotic stress tolerance. However, the molecular mechanism of grafted cucumbers to drought stress and the possible roles of mobile mRNAs to improve stress tolerance have remained obscure. Hence, we conducted transcriptome sequencing and combined it with morpho-physiological experiments to compare the response of homografts (cucumber as scion and rootstock) (C) and heterografts (cucumber as scion and pumpkin as rootstock) (P) to drought stress. After applying drought stress, homografts and heterografts expressed 2960 and 3088 genes in response to drought stress, respectively. The identified DEGs in heterografts under drought stress were categorized into different stress-responsive groups, such as carbohydrate metabolism (involved in osmotic adjustment by sugar accumulation), lipid and cell wall metabolism (involved in cell membrane integrity by a reduction in lipid peroxidation), redox homeostasis (increased antioxidant enzymes activities), phytohormone (increased ABA content), protein kinases and transcription factors (TFs) using MapMan software. Earlier and greater H2O2 accumulation in xylem below the graft union was accompanied by leaf ABA accumulation in heterografts in response to drought stress. Greater leaf ABA helped heterografted cucumbers to sense and respond to drought stress earlier than homografts. The timely response of heterografts to drought stress led to maintain higher water content in the leaves even in the late stage of drought stress. The identified mobile mRNAs (mb-mRNAs) in heterografts were mostly related to photosynthesis which would be the possible reason for improved chlorophyll content and maximum photochemical efficiency of PSII (Fv/Fm). The existence of some stress-responsive pumpkin (rootstock) mRNAs in cucumber (scion), such as heat shock protein (HSP70, a well-known stress-responsive gene), led to the higher proline accumulation than homografts. The expression of the mobile and immobile stress-responsive mRNAs and timely response of heterografts to drought stress could improve drought tolerance in pumpkin-rooted plants.
Collapse
Affiliation(s)
- Marzieh Davoudi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street 13 No.1, Nanjing 210095, China
| | - Mengfei Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street 13 No.1, Nanjing 210095, China
| | - Mengru Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street 13 No.1, Nanjing 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street 13 No.1, Nanjing 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street 13 No.1, Nanjing 210095, China
| |
Collapse
|
12
|
Xie H, Zhu M, Yu Y, Zeng X, Tang G, Duan Y, Wang J, Yu Y. Comparative transcriptome analysis of the cold resistance of the sterile rice line 33S. PLoS One 2022; 17:e0261822. [PMID: 35030196 PMCID: PMC8759683 DOI: 10.1371/journal.pone.0261822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 12/12/2021] [Indexed: 11/19/2022] Open
Abstract
Rice (Oryza sativa L.) is one of the most important species for food production worldwide. Low temperature is a major abiotic factor that affects rice germination and reproduction. Here, the underlying regulatory mechanism in seedlings of a TGMS variety (33S) and a cold-sensitive variety (Nipponbare) was investigated by comparative transcriptome. There were 795 differentially expressed genes (DEGs) identified only in cold-treated 33S, suggesting that 33S had a unique cold-resistance system. Functional and enrichment analysis of these DEGs revealed that, in 33S, several metabolic pathways, such as photosynthesis, amino acid metabolism, secondary metabolite biosynthesis, were significantly repressed. Moreover, pathways related to growth and development, including starch and sucrose metabolism, and DNA biosynthesis and damage response/repair, were significantly enhanced. The expression of genes related to nutrient reserve activity were significantly up-regulated in 33S. Finally, three NAC and several ERF transcription factors were predicted to be important in this transcriptional reprogramming. This present work provides valuable information for future investigations of low-temperature response mechanisms and genetic improvement of cold-tolerant rice seedlings.
Collapse
Affiliation(s)
- Hongjun Xie
- Hunan Rice Research Institute, Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Changsha, China
| | - Mingdong Zhu
- Hunan Rice Research Institute, Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Changsha, China
| | - Yaying Yu
- Hunan Rice Research Institute, Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Changsha, China
| | - Xiaoshan Zeng
- Hunan Rice Research Institute, Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Changsha, China
| | - Guohua Tang
- Hunan Rice Research Institute, Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Changsha, China
| | - Yonghong Duan
- Hunan Rice Research Institute, Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Changsha, China
| | - Jianlong Wang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, College of Agronomy, Hunan Agricultural University, Changsha, China
- * E-mail: (JW); (YY)
| | - Yinghong Yu
- Hunan Academy of Agricultural Sciences, Changsha, China
- * E-mail: (JW); (YY)
| |
Collapse
|
13
|
Effect of Cold Stress on Growth, Physiological Characteristics, and Calvin-Cycle-Related Gene Expression of Grafted Watermelon Seedlings of Different Gourd Rootstocks. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7100391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recently, grafting has been used to improve abiotic stress resistance in crops. Here, using watermelon ‘Zaojia 8424’ (Citrullus lanatus) as scions, three different gourds (Lagenaria siceraria, 0526, 2505, and 1226) as rootstocks, and non-grafted plants as controls (different plants were abbreviated as 0526, 2505, 1226, and 8424), the effect of cold stress on various physiological and molecular parameters was investigated. The results demonstrate that the improved cold tolerance of gourd-grafted watermelon was associated with higher chlorophyll and proline content, and lower malondialdehyde (MDA) content, compared to 8424 under cold stress. Furthermore, grafted watermelons accumulated fewer reactive oxygen species (ROS), accompanied by enhanced antioxidant activity and a higher expression of enzymes related to the Calvin cycle. In conclusion, watermelons with 2505 and 0526 rootstocks were more resilient compared to 1226 and 8424. These results confirm that using tolerant rootstocks may be an efficient adaptation strategy for improving abiotic stress tolerance in watermelon.
Collapse
|
14
|
Li H, Guo Y, Lan Z, Xu K, Chang J, Ahammed GJ, Ma J, Wei C, Zhang X. Methyl jasmonate mediates melatonin-induced cold tolerance of grafted watermelon plants. HORTICULTURE RESEARCH 2021; 8:57. [PMID: 33750773 PMCID: PMC7943586 DOI: 10.1038/s41438-021-00496-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 05/20/2023]
Abstract
Root-shoot communication has a critical role in plant adaptation to environmental stress. Grafting is widely applied to enhance the abiotic stress tolerance of many horticultural crop species; however, the signal transduction mechanism involved in this tolerance remains unknown. Here, we show that pumpkin- or figleaf gourd rootstock-enhanced cold tolerance of watermelon shoots is accompanied by increases in the accumulation of melatonin, methyl jasmonate (MeJA), and hydrogen peroxide (H2O2). Increased melatonin levels in leaves were associated with both increased melatonin in rootstocks and MeJA-induced melatonin biosynthesis in leaves of plants under cold stress. Exogenous melatonin increased the accumulation of MeJA and H2O2 and enhanced cold tolerance, while inhibition of melatonin accumulation attenuated rootstock-induced MeJA and H2O2 accumulation and cold tolerance. MeJA application induced H2O2 accumulation and cold tolerance, but inhibition of JA biosynthesis abolished rootstock- or melatonin-induced H2O2 accumulation and cold tolerance. Additionally, inhibition of H2O2 production attenuated MeJA-induced tolerance to cold stress. Taken together, our results suggest that melatonin is involved in grafting-induced cold tolerance by inducing the accumulation of MeJA and H2O2. MeJA subsequently increases melatonin accumulation, forming a self-amplifying feedback loop that leads to increased H2O2 accumulation and cold tolerance. This study reveals a novel regulatory mechanism of rootstock-induced cold tolerance.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Yanliang Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Zhixiang Lan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Kai Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Jingjing Chang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, 471023, Luoyang, Henan, China
| | - Jianxiang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Chunhua Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Xian Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China.
- State Key Laboratory of Vegetable Germplasm Innovation, 300384, Tianjin, China.
| |
Collapse
|
15
|
Zhang M, Xu J, Ren R, Liu G, Yao X, Lou L, Xu J, Yang X. Proteomic Analysis of Fusarium oxysporum-Induced Mechanism in Grafted Watermelon Seedlings. FRONTIERS IN PLANT SCIENCE 2021; 12:632758. [PMID: 33747013 PMCID: PMC7969889 DOI: 10.3389/fpls.2021.632758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Grafting can improve the resistance of watermelon to soil-borne diseases. However, the molecular mechanism of defense response is not completely understood. Herein, we used a proteomic approach to investigate the molecular basis involved in grafted watermelon leaf defense against Fusarium oxysporum f.sp. niveum (FON) infection. The bottle gourd rootstock-grafted (RG) watermelon seedlings were highly resistant to FON compared with self-grafted (SG) watermelon plants, with a disease incidence of 3.4 and 89%, respectively. Meanwhile, grafting significantly induced the activity of pathogenesis-related proteases under FON challenge. Proteins extracted from leaves of RG and SG under FON inoculation were analyzed using two-dimensional gel electrophoresis. Thirty-nine differentially accumulated proteins (DAPs) were identified and classified into 10 functional groups. Accordingly, protein biosynthetic and stress- and defense-related proteins play crucial roles in the enhancement of disease resistance of RG watermelon seedlings, compared with that of SG watermelon seedlings. Proteins involved in signal transduction positively regulated the defense process. Carbohydrate and energy metabolism and photosystem contributed to energy production in RG watermelon seedlings under FON infection. The disease resistance of RG watermelon seedlings may also be related to the improved scavenging capacity of reactive oxygen species (ROS). The expression profile of 10 randomly selected proteins was measured using quantitative real-time PCR, among which, 7 was consistent with the results of the proteomic analysis. The functional implications of these proteins in regulating grafted watermelon response against F. oxysporum are discussed.
Collapse
Affiliation(s)
- Man Zhang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement/Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Jinhua Xu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement/Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Runsheng Ren
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement/Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Guang Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement/Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiefeng Yao
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement/Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lina Lou
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement/Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jian Xu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement/Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xingping Yang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement/Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
16
|
Role of Melatonin in Plant Tolerance to Soil Stressors: Salinity, pH and Heavy Metals. Molecules 2020; 25:molecules25225359. [PMID: 33212772 PMCID: PMC7696660 DOI: 10.3390/molecules25225359] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/25/2022] Open
Abstract
Melatonin (MT) is a pleiotropic molecule with diverse and numerous actions both in plants and animals. In plants, MT acts as an excellent promotor of tolerance against abiotic stress situations such as drought, cold, heat, salinity, and chemical pollutants. In all these situations, MT has a stimulating effect on plants, fomenting many changes in biochemical processes and stress-related gene expression. Melatonin plays vital roles as an antioxidant and can work as a free radical scavenger to protect plants from oxidative stress by stabilization cell redox status; however, MT can alleviate the toxic oxygen and nitrogen species. Beyond this, MT stimulates the antioxidant enzymes and augments antioxidants, as well as activates the ascorbate–glutathione (AsA–GSH) cycle to scavenge excess reactive oxygen species (ROS). In this review, we examine the recent data on the capacity of MT to alleviate the effects of common abiotic soil stressors, such as salinity, alkalinity, acidity, and the presence of heavy metals, reinforcing the general metabolism of plants and counteracting harmful agents. An exhaustive analysis of the latest advances in this regard is presented, and possible future applications of MT are discussed.
Collapse
|
17
|
Song W, Tang F, Cai W, Zhang Q, Zhou F, Ning M, Tian H, Shan C. iTRAQ-based quantitative proteomics analysis of cantaloupe (Cucumis melo var. saccharinus) after cold storage. BMC Genomics 2020; 21:390. [PMID: 32493266 PMCID: PMC7268308 DOI: 10.1186/s12864-020-06797-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/26/2020] [Indexed: 12/25/2022] Open
Abstract
Background Cantaloupe is susceptible to cold stress when it is stored at low temperatures, resulting in the loss of edible and commercial quality. To ascertain the molecular mechanisms of low temperatures resistance in cantaloupe, a cold-sensitive cultivar, Golden Empress-308 (GE) and a cold-tolerant cultivar, Jia Shi-310 (JS), were selected in parallel for iTRAQ quantitative proteomic analysis. Results The two kinds of commercial cultivars were exposed to a temperature of 0.5 °C for 0, 12 and 24 days. We found that the cold-sensitive cultivar (GE) suffered more severe damage as the length of the cold treatment increased. Proteomic analysis of both cultivars indicated that the number of differentially expressed proteins (DEPs) changed remarkably during the chilly treatment. JS expressed cold-responsive proteins more rapidly and mobilized more groups of proteins than GE. Furthermore, metabolic analysis revealed that more amino acids were up-regulated in JS during the early phases of low temperatures stress. The DEPs we found were mainly related to carbohydrate and energy metabolism, structural proteins, reactive oxygen species scavenging, amino acids metabolism and signal transduction. The consequences of phenotype assays, metabolic analysis and q-PCR validation confirm the findings of the iTRAQ analysis. Conclusion We found that the prompt response and mobilization of proteins in JS allowed it to maintain a higher level of cold tolerance than GE, and that the slower cold responses in GE may be a vital reason for the severe chilling injury commonly found in this cultivar. The candidate proteins we identified will form the basis of future studies and may improve our understanding of the mechanisms of cold tolerance in cantaloupe.
Collapse
Affiliation(s)
- Wen Song
- College of Food, Shihezi University, Xinjiang, 832000, China
| | - Fengxian Tang
- College of Food, Shihezi University, Xinjiang, 832000, China
| | - Wenchao Cai
- College of Food, Shihezi University, Xinjiang, 832000, China
| | - Qin Zhang
- College of Food, Shihezi University, Xinjiang, 832000, China
| | - Fake Zhou
- College of Food, Shihezi University, Xinjiang, 832000, China
| | - Ming Ning
- College of Food, Shihezi University, Xinjiang, 832000, China
| | - Huan Tian
- College of Food, Shihezi University, Xinjiang, 832000, China
| | - Chunhui Shan
- College of Food, Shihezi University, Xinjiang, 832000, China.
| |
Collapse
|
18
|
Lu X, Liu W, Wang T, Zhang J, Li X, Zhang W. Systemic Long-Distance Signaling and Communication Between Rootstock and Scion in Grafted Vegetables. FRONTIERS IN PLANT SCIENCE 2020; 11:460. [PMID: 32431719 PMCID: PMC7214726 DOI: 10.3389/fpls.2020.00460] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/27/2020] [Indexed: 05/06/2023]
Abstract
Grafting is widely used in fruit, vegetable, and flower propagation to improve biotic and abiotic stress resistance, yield, and quality. At present, the systemic changes caused by grafting, as well as the mechanisms and effects of long-distance signal transport between rootstock and scion have mainly been investigated in model plants (Arabidopsis thaliana and Nicotiana benthamiana). However, these aspects of grafting vary when different plant materials are grafted, so the study of model plants provides only a theoretical basis and reference for the related research of grafted vegetables. The dearth of knowledge about the transport of signaling molecules in grafted vegetables is inconsistent with the rapid development of large-scale vegetable production, highlighting the need to study the mechanisms regulating the rootstock-scion interaction and long-distance transport. The rapid development of molecular biotechnology and "omics" approaches will allow researchers to unravel the physiological and molecular mechanisms involved in the rootstock-scion interaction in vegetables. We summarize recent progress in the study of the physiological aspects (e.g., hormones and nutrients) of the response in grafted vegetables and focus in particular on long-distance molecular signaling (e.g., RNA and proteins). This review provides a theoretical basis for studies of the rootstock-scion interaction in grafted vegetables, as well as provide guidance for rootstock breeding and selection to meet specific demands for efficient vegetable production.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenna Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Yang Y, Saand MA, Abdelaal WB, Zhang J, Wu Y, Li J, Fan H, Wang F. iTRAQ-based comparative proteomic analysis of two coconut varieties reveals aromatic coconut cold-sensitive in response to low temperature. J Proteomics 2020; 220:103766. [DOI: 10.1016/j.jprot.2020.103766] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/02/2020] [Accepted: 03/28/2020] [Indexed: 11/28/2022]
|
20
|
Wang Y, Wang L, Xing N, Wu X, Wu X, Wang B, Lu Z, Xu P, Tao Y, Li G, Wang Y. A universal pipeline for mobile mRNA detection and insights into heterografting advantages under chilling stress. HORTICULTURE RESEARCH 2020; 7:13. [PMID: 32025316 PMCID: PMC6994652 DOI: 10.1038/s41438-019-0236-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/08/2019] [Accepted: 12/05/2019] [Indexed: 05/04/2023]
Abstract
Heterografting has long been used to enhance the chilling tolerance of temperature-sensitive crops, including watermelon, whose mechanism is known to involve bidirectional long-distance mRNA movements. Despite several studies reporting on mobile mRNA (mb-mRNA) profiles in plants, accurate identification of mb-mRNAs is challenging owing to an array of technical problems. Here, we developed a bioinformatical pipeline that took most of the known technical concerns into consideration and is considered to be a universal tool for mb-mRNA detection in heterografts. By applying this pipeline to a commercial watermelon-bottle gourd heterografting system, we detected 130 and 1144 mb-mRNAs upwardly and 167 and 1051 mb-mRNAs downwardly transmitted under normal and chilling-stress conditions, respectively. Quantitative real-time PCR indicated a high accuracy rate (88.2%) of mb-mRNA prediction with our pipeline. We further revealed that the mobility of mRNAs was not associated with their abundance. Functional annotation and classification implied that scions may convey the stress signal to the rootstock, subsequently triggering energy metabolism reprogramming and abscisic acid-mediated stress responses by upward movement of effective mRNAs, ultimately leading to enhanced chilling tolerance. This study provides a universal tool for mb-mRNA detection in plant heterografting systems and novel insights into heterografting advantages under chilling stress.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Lingping Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Nailin Xing
- Institute of Vegetables, Ningbo Academy of Agricultural Sciences, Ningbo, 315040 China
| | - Xiaohua Wu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Xinyi Wu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Baogen Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Zhongfu Lu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Pei Xu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
- State Key Laboratory for Quality and Safety of Agroproducts, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
- Present Address: College of Life Sciences, China Jiliang University, Hangzhou, 310018 China
| | - Ye Tao
- Biozeron Biotechnology Co., Ltd., Shanghai, 201800 China
| | - Guojing Li
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
- State Key Laboratory for Quality and Safety of Agroproducts, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Yuhong Wang
- Institute of Vegetables, Ningbo Academy of Agricultural Sciences, Ningbo, 315040 China
| |
Collapse
|
21
|
Xiao X, Lv J, Xie J, Feng Z, Ma N, Li J, Yu J, Calderón-Urrea A. Transcriptome Analysis Reveals the Different Response to Toxic Stress in Rootstock Grafted and Non-Grafted Cucumber Seedlings. Int J Mol Sci 2020; 21:ijms21030774. [PMID: 31991638 PMCID: PMC7037640 DOI: 10.3390/ijms21030774] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 11/20/2022] Open
Abstract
Autotoxicity of root exudates is one of the main reasons for consecutive monoculture problem (CMP) in cucumber under greenhouse cultivation. Rootstock grafting may improve the tolerance of cucumber plants to autotoxic stress. To verify the enhanced tolerance to autotoxic stress and illuminate relevant molecular mechanism, a transcriptomic comparative analysis was performed between rootstock grafted (RG) and non-grafted (NG) cucumber plants by a simulation of exogenous cinnamic acid (CA). The present study confirmed that relatively stable plant growth, biomass accumulation, chlorophyll content, and photosynthesis was observed in RG than NG under CA stress. We identified 3647 and 2691 differentially expressed genes (DEGs) in NG and RG cucumber plants when compared to respective control, and gene expression patterns of RNA-seq was confirmed by qRT-PCR. Functional annotations revealed that DEGs response to CA stress were enriched in pathways of plant hormone signal transduction, MAPK signaling pathway, phenylalanine metabolism, and plant-pathogen interaction. Interestingly, the significantly enriched pathway of photosynthesis-related, carbon and nitrogen metabolism only identified in NG, and most of DEGs were down-regulated. However, most of photosynthesis, Calvin cycle, glycolysis, TCA cycle, and nitrogen metabolism-related DEGs exhibited not or slightly down-regulated in RG. In addition, several stress-related transcription factor families of AP2/ERF, bHLH, bZIP, MYB. and NAC were uniquely triggered in the grafted cucumbers. Overall, the results of this study suggest that rootstock grafting improve the tolerance of cucumber plants to autotoxic stress by mediating down-regulation of photosynthesis, carbon, and nitrogen metabolism-related DEGs and activating the function of stress-related transcription factor. The transcriptome dataset provides an extensive sequence resource for further studies of autotoxic mechanism at molecular level.
Collapse
Affiliation(s)
- Xuemei Xiao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (X.X.); (J.L.); (Z.F.); (N.M.)
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (X.X.); (J.L.); (Z.F.); (N.M.)
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (X.X.); (J.L.); (Z.F.); (N.M.)
| | - Zhi Feng
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (X.X.); (J.L.); (Z.F.); (N.M.)
| | - Ning Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (X.X.); (J.L.); (Z.F.); (N.M.)
| | - Ju Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (X.X.); (J.L.); (Z.F.); (N.M.)
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (X.X.); (J.L.); (Z.F.); (N.M.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: ; Tel.: +86-0931-7632188
| | - Alejandro Calderón-Urrea
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China;
- Department of Biology, College of Science and Mathematics, California State University, Fresno, CA 97340, USA
| |
Collapse
|
22
|
Comparative Transcriptome Analyses Revealed Conserved and Novel Responses to Cold and Freezing Stress in Brassica napus L. G3-GENES GENOMES GENETICS 2019; 9:2723-2737. [PMID: 31167831 PMCID: PMC6686917 DOI: 10.1534/g3.119.400229] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oil rapeseed (Brassica napus L.) is a typical winter biennial plant, with high cold tolerance during vegetative stage. In recent years, more and more early-maturing rapeseed varieties were planted across China. Unfortunately, the early-maturing rapeseed varieties with low cold tolerance have higher risk of freeze injury in cold winter and spring. Little is known about the molecular mechanisms for coping with different low-temperature stress conditions in rapeseed. In this study, we investigated 47,328 differentially expressed genes (DEGs) of two early-maturing rapeseed varieties with different cold tolerance treated with cold shock at chilling (4°) and freezing (−4°) temperatures, as well as chilling and freezing stress following cold acclimation or control conditions. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that two conserved (the primary metabolism and plant hormone signal transduction) and two novel (plant-pathogen interaction pathway and circadian rhythms pathway) signaling pathways were significantly enriched with differentially-expressed transcripts. Our results provided a foundation for understanding the low-temperature stress response mechanisms of rapeseed. We also propose new ideas and candidate genes for genetic improvement of rapeseed tolerance to cold stresses.
Collapse
|
23
|
iTRAQ-based quantitative proteomics analysis of cold stress-induced mechanisms in grafted watermelon seedlings. J Proteomics 2019; 192:311-320. [DOI: 10.1016/j.jprot.2018.09.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/05/2018] [Accepted: 09/20/2018] [Indexed: 12/21/2022]
|
24
|
Li M, Ji L, Jia Z, Yang X, Meng Q, Guo S. Constitutive expression of CaHSP22.5 enhances chilling tolerance in transgenic tobacco by promoting the activity of antioxidative enzymes. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:575-585. [PMID: 32290996 DOI: 10.1071/fp17226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/29/2017] [Indexed: 05/24/2023]
Abstract
Chilling stress limits the productivity and geographical distribution of many organisms throughout the world. In plants, the small heat shock proteins (sHSPs) belong to a group of proteins known as chaperones. The sweet pepper (Capsicum annuum L.) cDNA clone CaHSP22.5, which encodes an endoplasmic reticulum-located sHSP (ER-sHSP), was isolated and introduced into tobacco (Nicotiana tabacum L.) plants and Escherichia coli. The performance index and the maximal efficiency of PSII photochemistry (Fv/Fm) were higher and the accumulation of H2O2 and superoxide radicals (O2-) was lower in the transgenic lines than in the untransformed plants under chilling stress, which suggested that CaHSP22.5 accumulation enhanced photochemical activity and oxidation resistance. However, purified CaHSP22.5 could not directly reduce the contents of H2O2 and O2- in vitro. Additionally, heterologously expressed recombinant CaHSP22.5 enhanced E. coli viability under oxidative stress, helping to elucidate the cellular antioxidant function of CaHSP22.5 in vivo. At the same time, antioxidant enzyme activity was higher, which was consistent with the lower relative electrolyte conductivity and malondialdehyde contents of the transgenic lines compared with the wild-type. Furthermore, constitutive expression of CaHSP22.5 decreased the expression of other endoplasmic reticulum molecular chaperones, which indicated that the constitutive expression of ER-sHSP alleviated endoplasmic reticulum stress caused by chilling stress in plants. We hypothesise that CaHSP22.5 stabilises unfolded proteins as a chaperone and increases the activity of reactive oxygen species-scavenging enzymes to avoid oxidation damage under chilling stress, thereby suggesting that CaHSP22.5 could be useful for improving the tolerance of chilling-sensitive plant types.
Collapse
Affiliation(s)
- Meifang Li
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Lusha Ji
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Zefeng Jia
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Xinghong Yang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | - Shangjing Guo
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|