1
|
Ahmad Z, Shareen, Ganie IB, Firdaus F, Ramakrishnan M, Shahzad A, Ding Y. Enhancing Withanolide Production in the Withania Species: Advances in In Vitro Culture and Synthetic Biology Approaches. PLANTS (BASEL, SWITZERLAND) 2024; 13:2171. [PMID: 39124289 PMCID: PMC11313931 DOI: 10.3390/plants13152171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Withanolides are naturally occurring steroidal lactones found in certain species of the Withania genus, especially Withania somnifera (commonly known as Ashwagandha). These compounds have gained considerable attention due to their wide range of therapeutic properties and potential applications in modern medicine. To meet the rapidly growing demand for withanolides, innovative approaches such as in vitro culture techniques and synthetic biology offer promising solutions. In recent years, synthetic biology has enabled the production of engineered withanolides using heterologous systems, such as yeast and bacteria. Additionally, in vitro methods like cell suspension culture and hairy root culture have been employed to enhance withanolide production. Nevertheless, one of the primary obstacles to increasing the production of withanolides using these techniques has been the intricacy of the biosynthetic pathways for withanolides. The present article examines new developments in withanolide production through in vitro culture. A comprehensive summary of viable traditional methods for producing withanolide is also provided. The development of withanolide production in heterologous systems is examined and emphasized. The use of machine learning as a potent tool to model and improve the bioprocesses involved in the generation of withanolide is then discussed. In addition, the control and modification of the withanolide biosynthesis pathway by metabolic engineering mediated by CRISPR are discussed.
Collapse
Affiliation(s)
- Zishan Ahmad
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.A.); (M.R.)
| | - Shareen
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China;
| | - Irfan Bashir Ganie
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (I.B.G.); (A.S.)
| | - Fatima Firdaus
- Chemistry Department, Lucknow University, Lucknow 226007, India;
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.A.); (M.R.)
| | - Anwar Shahzad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (I.B.G.); (A.S.)
| | - Yulong Ding
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.A.); (M.R.)
| |
Collapse
|
2
|
Amani S, Mohebodini M, Khademvatan S, Jafari M, Kumar V. Modifications in gene expression and phenolic compounds content by methyl jasmonate and fungal elicitors in Ficus carica. Cv. Siah hairy root cultures. BMC PLANT BIOLOGY 2024; 24:520. [PMID: 38853268 PMCID: PMC11163756 DOI: 10.1186/s12870-024-05178-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND One of the most effective strategies to increase phytochemicals production in plant cultures is elicitation. In the present study, we studied the effect of abiotic and biotic elicitors on the growth, key biosynthetic genes expression, antioxidant capacity, and phenolic compounds content in Rhizobium (Agrobacterium) rhizogenes-induced hairy roots cultures of Ficus carica cv. Siah. METHODS The elicitors included methyl jasmonate (MeJA) as abiotic elicitor, culture filtrate and cell extract of fungus Piriformospora indica as biotic elicitors were prepared to use. The cultures of F. carica hairy roots were exposed to elicitores at different time points. After elicitation treatments, hairy roots were collected, and evaluated for growth index, total phenolic (TPC) and flavonoids (TFC) content, antioxidant activity (2,2-diphenyl-1-picrylhydrazyl, DPPH and ferric ion reducing antioxidant power, FRAP assays), expression level of key phenolic/flavonoid biosynthesis genes, and high-performance liquid chromatography (HPLC) analysis of some main phenolic compounds in comparison to control. RESULTS Elicitation positively or negatively affected the growth, content of phenolic/flavonoid compounds and DPPH and FRAP antioxidant activities of hairy roots cultures in depending of elicitor concentration and exposure time. The maximum expression level of chalcone synthase (CHS: 55.1), flavonoid 3'-hydroxylase (F3'H: 34.33) genes and transcription factors MYB3 (32.22), Basic helix-loop-helix (bHLH: 45.73) was induced by MeJA elicitation, whereas the maximum expression level of phenylalanine ammonia-lyase (PAL: 26.72) and UDP-glucose flavonoid 3-O-glucosyltransferase (UFGT: 27.57) genes was obtained after P. indica culture filtrate elicitation. The P. indica elicitation also caused greatest increase in the content of gallic acid (5848 µg/g), caffeic acid (508.2 µg/g), rutin (43.5 µg/g), quercetin (341 µg/g), and apigenin (1167 µg/g) phenolic compounds. CONCLUSIONS This study support that elicitation of F. carica cv. Siah hairy roots can be considered as an effective biotechnological method for improved phenolic/flavonoid compounds production, and of course this approach requires further research.
Collapse
Affiliation(s)
- Shahla Amani
- Department of Horticulture Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Mehdi Mohebodini
- Department of Horticulture Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Shahram Khademvatan
- Cellular and Molecular Research Center, Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
| | - Morad Jafari
- Department of Plant Production and Genetics, Urmia University, Urmia, Iran
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| |
Collapse
|
3
|
Kumari P, Deepa N, Trivedi PK, Singh BK, Srivastava V, Singh A. Plants and endophytes interaction: a "secret wedlock" for sustainable biosynthesis of pharmaceutically important secondary metabolites. Microb Cell Fact 2023; 22:226. [PMID: 37925404 PMCID: PMC10625306 DOI: 10.1186/s12934-023-02234-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
Many plants possess immense pharmacological properties because of the presence of various therapeutic bioactive secondary metabolites that are of great importance in many pharmaceutical industries. Therefore, to strike a balance between meeting industry demands and conserving natural habitats, medicinal plants are being cultivated on a large scale. However, to enhance the yield and simultaneously manage the various pest infestations, agrochemicals are being routinely used that have a detrimental impact on the whole ecosystem, ranging from biodiversity loss to water pollution, soil degradation, nutrient imbalance and enormous health hazards to both consumers and agricultural workers. To address the challenges, biological eco-friendly alternatives are being looked upon with high hopes where endophytes pitch in as key players due to their tight association with the host plants. The intricate interplay between plants and endophytic microorganisms has emerged as a captivating subject of scientific investigation, with profound implications for the sustainable biosynthesis of pharmaceutically important secondary metabolites. This review delves into the hidden world of the "secret wedlock" between plants and endophytes, elucidating their multifaceted interactions that underpin the synthesis of bioactive compounds with medicinal significance in their plant hosts. Here, we briefly review endophytic diversity association with medicinal plants and highlight the potential role of core endomicrobiome. We also propose that successful implementation of in situ microbiome manipulation through high-end techniques can pave the way towards a more sustainable and pharmaceutically enriched future.
Collapse
Affiliation(s)
- Poonam Kumari
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Nikky Deepa
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prabodh Kumar Trivedi
- Division of Plant Biotechnology, Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2753, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91, Stockholm, Sweden.
| | - Akanksha Singh
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
4
|
Jeyasri R, Muthuramalingam P, Karthick K, Shin H, Choi SH, Ramesh M. Methyl jasmonate and salicylic acid as powerful elicitors for enhancing the production of secondary metabolites in medicinal plants: an updated review. PLANT CELL, TISSUE AND ORGAN CULTURE 2023; 153:447-458. [PMID: 37197003 PMCID: PMC10026785 DOI: 10.1007/s11240-023-02485-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/03/2023] [Indexed: 05/19/2023]
Abstract
Plant secondary metabolites are bioactive scaffolds that are crucial for plant survival in the environment and to maintain a defense mechanism from predators. These compounds are generally present in plants at a minimal level and interestingly, they are found to have a wide variety of therapeutic values for humans. Several medicinal plants are used for pharmaceutical purposes due to their affordability, fewer adverse effects, and vital role in traditional remedies. Owing to this reason, these plants are exploited at a high range worldwide and therefore many medicinal plants are on the threatened list. There is a need of the hour to tackle this major problem, one effective approach called elicitation can be used to enhance the level of existing and novel plant bioactive compounds using different types of elicitors namely biotic and abiotic. This process can be generally achieved by in vitro and in vivo experiments. The current comprehensive review provides an overview of biotic and abiotic elicitation strategies used in medicinal plants, as well as their effects on secondary metabolites enhancement. Further, this review mainly deals with the enhancement of biomass and biosynthesis of different bioactive compounds by methyl jasmonate (MeJA) and salicylic acid (SA) as elicitors of wide medicinal plants in in vitro by using different cultures. The present review was suggested as a significant groundwork for peers working with medicinal plants by applying elicitation strategies along with advanced biotechnological approaches.
Collapse
Affiliation(s)
- Rajendran Jeyasri
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu 630 003 India
| | - Pandiyan Muthuramalingam
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52725 South Korea
- Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju, 52725 South Korea
| | - Kannan Karthick
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu 630 003 India
| | - Hyunsuk Shin
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52725 South Korea
- Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju, 52725 South Korea
| | - Sung Hwan Choi
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52725 South Korea
- Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju, 52725 South Korea
| | - Manikandan Ramesh
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu 630 003 India
| |
Collapse
|
5
|
Singh M, Jayant K, Singh D, Bhutani S, Poddar NK, Chaudhary AA, Khan SUD, Adnan M, Siddiqui AJ, Hassan MI, Khan FI, Lai D, Khan S. Withania somnifera (L.) Dunal (Ashwagandha) for the possible therapeutics and clinical management of SARS-CoV-2 infection: Plant-based drug discovery and targeted therapy. Front Cell Infect Microbiol 2022; 12:933824. [PMID: 36046742 PMCID: PMC9421373 DOI: 10.3389/fcimb.2022.933824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) pandemic has killed huge populations throughout the world and acts as a high-risk factor for elderly and young immune-suppressed patients. There is a critical need to build up secure, reliable, and efficient drugs against to the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Bioactive compounds of Ashwagandha [Withania somnifera (L.) Dunal] may implicate as herbal medicine for the management and treatment of patients infected by SARS-CoV-2 infection. The aim of the current work is to update the knowledge of SARS-CoV-2 infection and information about the implication of various compounds of medicinal plant Withania somnifera with minimum side effects on the patients' organs. The herbal medicine Withania somnifera has an excellent antiviral activity that could be implicated in the management and treatment of flu and flu-like diseases connected with SARS-CoV-2. The analysis was performed by systematically re-evaluating the published articles related to the infection of SARS-CoV-2 and the herbal medicine Withania somnifera. In the current review, we have provided the important information and data of various bioactive compounds of Withania somnifera such as Withanoside V, Withanone, Somniferine, and some other compounds, which can possibly help in the management and treatment of SARS-CoV-2 infection. Withania somnifera has proved its potential for maintaining immune homeostasis of the body, inflammation regulation, pro-inflammatory cytokines suppression, protection of multiple organs, anti-viral, anti-stress, and anti-hypertensive properties. Withanoside V has the potential to inhibit the main proteases (Mpro) of SARS-CoV-2. At present, synthetic adjuvant vaccines are used against COVID-19. Available information showed the antiviral activity in Withanoside V of Withania somnifera, which may explore as herbal medicine against to SARS-CoV-2 infection after standardization of parameters of drug development and formulation in near future.
Collapse
Affiliation(s)
- Manali Singh
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
- Department of Biochemistry, C.B.S.H, G.B Pant University of Agriculture and Technology, Pantnagar, Uttrakhand, India
| | - Kuldeep Jayant
- Department of Agricultural and Food Engineering, IIT Kharagpur, West Bengal, Kharagpur, India
| | - Dipti Singh
- Department of Biochemistry, C.B.S.H, G.B Pant University of Agriculture and Technology, Pantnagar, Uttrakhand, India
| | - Shivani Bhutani
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Faez Iqbal Khan
- Department of Biological Sciences, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou, China
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Shahanavaj Khan
- Department of Health Sciences, Novel Global Community Educational Foundation 7 Peterlee Place, Hebersham, NSW, Australia
- Department of Medical Lab Technology, Indian Institute of Health and Technology (IIHT), Deoband, Saharanpur, UP, India
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Production of bioactive plant secondary metabolites through in vitro technologies-status and outlook. Appl Microbiol Biotechnol 2021; 105:6649-6668. [PMID: 34468803 PMCID: PMC8408309 DOI: 10.1007/s00253-021-11539-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 12/31/2022]
Abstract
Medicinal plants have been used by mankind since ancient times, and many bioactive plant secondary metabolites are applied nowadays both directly as drugs, and as raw materials for semi-synthetic modifications. However, the structural complexity often thwarts cost-efficient chemical synthesis, and the usually low content in the native plant necessitates the processing of large amounts of field-cultivated raw material. The biotechnological manufacturing of such compounds offers a number of advantages like predictable, stable, and year-round sustainable production, scalability, and easier extraction and purification. Plant cell and tissue culture represents one possible alternative to the extraction of phytochemicals from plant material. Although a broad commercialization of such processes has not yet occurred, ongoing research indicates that plant in vitro systems such as cell suspension cultures, organ cultures, and transgenic hairy roots hold a promising potential as sources for bioactive compounds. Progress in the areas of biosynthetic pathway elucidation and genetic manipulation has expanded the possibilities to utilize plant metabolic engineering and heterologous production in microorganisms. This review aims to summarize recent advances in the in vitro production of high-value plant secondary metabolites of medicinal importance. Key points • Bioactive plant secondary metabolites are important for current and future use in medicine • In vitro production is a sustainable alternative to extraction from plants or costly chemical synthesis • Current research addresses plant cell and tissue culture, metabolic engineering, and heterologous production
Collapse
|
7
|
Tripathi D, Meena RP, Pandey-Rai S. Short term UV-B radiation mediated modulation of physiological traits and withanolides production in Withania coagulans (L.) Dunal under in-vitro condition. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1823-1835. [PMID: 34393390 PMCID: PMC8354842 DOI: 10.1007/s12298-021-01046-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 06/01/2023]
Abstract
UNLABELLED Accumulation of secondary metabolites is a key process in the growth and development of plants under different biotic/abiotic constraints. Many studies highlighted the regulatory potential of UV-B treatment towards the secondary metabolism of plants. In the present study, we examined the impact of UV-B on the physiology and secondary metabolism of Withania coagulans, which is an important ayurvedic plant with high anti-diabetic potential. Results showed that in-vitro UV-B exposure negatively influenced chlorophyll content and photosynthetic machinery. However, Fv/Fm ratio was found non-significantly altered up to 3 h UV-B exposure. The maximum lipid peroxidation level was recorded with 46.8% higher malondialdehyde content in the plants supplemented with 5 h UV-B radiation, that was indicated the oxidative stress in W. coagulans. Conversely, UV-B treatment significantly increased the plant's stress protective compounds like carotenoids, anthocyanin, phenol and proline, in W. coagulans. Free radical scavenging activity was also significantly increased ~ 18% than the control with 3 h UV-B treatment. The maximum antioxidative enzymes activities were observed with the short-term (up to 3 h) UV-B treatment. Specifically, UV-B radiation exposure significantly increased the content of withaferin A and withanolide A in W. coagulans with maximum 1.38 and 3.42-folds, respectively. Additionally, withanolides biosynthesis related genes transcript levels were found over-expressed under the response of UV-B elicitation. The acquired results suggested that short-term UV-B supplementation triggers secondary metabolism along with combating oxidative stress via improving the antioxidative defense system in W. coagulans. Also, UV-B can be used as an efficient abiotic elicitor to increase pharmaceutical compounds (withanolides) production. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01046-7.
Collapse
Affiliation(s)
- Deepika Tripathi
- Laboratory of Morphogenesis, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005 Uttar Pradesh India
| | - Ram Prasad Meena
- Laboratory of Morphogenesis, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005 Uttar Pradesh India
| | - Shashi Pandey-Rai
- Laboratory of Morphogenesis, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005 Uttar Pradesh India
| |
Collapse
|
8
|
Namdeo AG, Ingawale DK. Ashwagandha: Advances in plant biotechnological approaches for propagation and production of bioactive compounds. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113709. [PMID: 33346029 DOI: 10.1016/j.jep.2020.113709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 09/12/2020] [Accepted: 12/15/2020] [Indexed: 05/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Withania somnifera is one of the most extensively delved Ayurvedic medicine. Apart from rejuvenation and increasing longevity, it has several other properties such as immunomodulation, anti-cancer, anti-stress and neuroprotection. Because of its prevailing use and increasing demand, it becomes prudent to scientifically evaluate and document both its propagation and production of desired phytoconstituents. AIM OF THE STUDY This review aims to highlight the research progress achieved on various biotechnological and tissue culture aspects of Withania somnifera and to cover up-to-date information regarding in-vitro propagation and production of withanolides. MATERIALS AND METHODS Significant published studies were identified for the years 2000-2018 using Elsevier-Science Direct, Pubmed and Google scholar and several research studies in our laboratory. Following keywords such as "plant extracts", "in vitro cultures", "callus and suspension culture", "micropropagation", "hairy root cultures" were used. Further, "Withania somnifera", "secondary metabolites specially withanolides", "molecular techniques" and "in vitro conservation" were used to cross-reference the keywords. RESULTS Ashwagandha comprises a broad spectrum of phytochemicals with a wide range of pharmacological properties. W. somnifera seeds have reduced viability and germination rates; thus, its regular cultivation method fails to achieve commercial demands mainly for the production of desired phytoconstituents. Cultivation of plant cells/tissues under in vitro conditions and development of various biotechnological strategies will help to build an attractive alternative to provide adequate quality and quantity raw materials. Recently, a large number of in vitro protocols has developed for W. somnifera not only for its propagation but for the production of secondary metabolites as well. Present work highlights a variety of biotechnological strategies both for prompt propagation and production of different bioactive secondary metabolites. CONCLUSION The present review focuses on the development and opportunities in various biotechnological approaches to accomplish the global demand of W. somnifera and its secondary metabolites. This review underlines the advances in plant biotechnological approaches for the propagation of W. somnifera and production of its bioactive compounds.
Collapse
Affiliation(s)
- Ajay G Namdeo
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed to be University, Erandawane, Pune, 411038, India.
| | - Deepa K Ingawale
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed to be University, Erandawane, Pune, 411038, India
| |
Collapse
|
9
|
Amani S, Mohebodini M, Khademvatan S, Jafari M, Kumar V. Piriformospora indica based elicitation for overproduction of phenolic compounds by hairy root cultures of Ficus carica. J Biotechnol 2020; 327:43-53. [PMID: 33387592 DOI: 10.1016/j.jbiotec.2020.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/26/2023]
Abstract
Ficus carica L. is an important source of phenolic and flavonoid compounds with valuable pharmaceutical application across various diseases. The current study was carried out to investigate the influence of Piriformospora indica elicitation on growth, production of phenolic compounds, antioxidant capacity, and expression level of flavonoid biosynthetic pathway genes in hairy root (HR) cultures of F. carica. The maximum improvement in accumulation of phenolic compounds was observed when HR culture of Ficus carica L. was exposed to 2% culture filtrate of P. indica for 72 h: gallic acid (80.5- fold), caffeic acid (26.2-fold), coumaric acid (4.5-fold), and cinnamic acid (60.1-fold), apigenin (27.6-fold) and rutin (5.7-fold). While the highest levels of chlorogenic acid (4.9-fold) and quercetin flavonoid (8.8-fold) were obtained after 48 h elicitation with culture filtrate and cell extract of P. indica at 6% (v/v), respectively. The analysis of biosynthetic genes revealed that the exposure to fungal elicitors resulted in up-regulation of phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), UDP-glucose flavonoid 3-O-glucosyltransferase (UFGT) and MYB3 transcription factor. This study shows the potential of P. indica as an efficacious elicitor for enhancing the secondary metabolites production by F. carica HRs.
Collapse
Affiliation(s)
- Shahla Amani
- Department of Horticulture Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mehdi Mohebodini
- Department of Horticulture Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Shahram Khademvatan
- Cellular and Molecular Research Center & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
| | - Morad Jafari
- Department of Plant Production and Genetics, Urmia University, Urmia, Iran
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| |
Collapse
|
10
|
Tripathi MK, Singh P, Sharma S, Singh TP, Ethayathulla AS, Kaur P. Identification of bioactive molecule from Withania somnifera (Ashwagandha) as SARS-CoV-2 main protease inhibitor. J Biomol Struct Dyn 2020; 39:5668-5681. [PMID: 32643552 PMCID: PMC7441797 DOI: 10.1080/07391102.2020.1790425] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 is the causative agent of COVID-19 and has been declared as pandemic disease by World Health Organization. Lack of targeted therapeutics and vaccines for COVID-2019 have triggered the scientific community to develop new vaccines or drugs against this novel virus. Many synthetic compounds and antimalarial drugs are undergoing clinical trials. The traditional medical practitioners widely use Indian medicinal plant Withania somnifera (Ashwagandha) natural constituents, called withanolides for curing various diseases. The main protease (Mpro) of SARS-CoV-2 plays a vital role in disease propagation by processing the polyproteins which are required for its replication. Hence, it denotes a significant target for drug discovery. In the present study, we evaluate the potential of 40 natural chemical constituents of Ashwagandha to explore a possible inhibitor against main protease of SARS-CoV-2 by adopting the computational approach. The docking study revealed that four constituents of Ashwagandha; Withanoside II (-11.30 Kcal/mol), Withanoside IV (-11.02 Kcal/mol), Withanoside V (-8.96 Kcal/mol) and Sitoindoside IX (-8.37 Kcal/mol) exhibited the highest docking energy among the selected natural constituents. Further, MD simulation study of 100 ns predicts Withanoside V possess strong binding affinity and hydrogen-bonding interactions with the protein active site and indicates its stability in the active site. The binding free energy score also correlates with the highest score of -87.01 ± 5.01 Kcal/mol as compared to other selected compounds. In conclusion, our study suggests that Withanoside V in Ashwagandha may be serve as a potential inhibitor against Mpro of SARS-CoV-2 to combat COVID-19 and may have an antiviral effect on nCoV.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Pushpendra Singh
- ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Tej P Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - A S Ethayathulla
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
11
|
Penicillium sp. YJM-2013 induces ginsenosides biosynthesis in Panax ginseng adventitious roots by inducing plant resistance responses. CHINESE HERBAL MEDICINES 2020; 12:257-264. [PMID: 36119014 PMCID: PMC9476754 DOI: 10.1016/j.chmed.2020.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/19/2019] [Accepted: 02/12/2020] [Indexed: 01/30/2023] Open
Abstract
Objective Fusarium oxysporum is a common pathogenic fungus in ginseng cultivation. Both pathogens and antagonistic fungi have been reported to induce plant resistance responses, thereby promoting the accumulation of secondary metabolites. The purpose of this experiment is to compare the advantages of one of the two fungi, in order to screen out more effective elicitors. The mechanism of fungal elicitor-induced plant resistance response is supplemented. Methods A gradient dilution and the dural culture were carried out to screen strains. The test strain was identified by morphology and 18 s rDNA. The effect of different concentrations (0, 50, 100, 200, 400 mg/L) of Penicillium sp. YJM-2013 and F. oxysporum on fresh weight and ginsenosides accumulation were tested. Signal molecules transduction, expression of transcription factors and functional genes were investigated to study the induction mechanism of fungal elicitors. Results Antagonistic fungi of F. oxysporum was identified as Penicillium sp. YJM-2013, which reduced root biomass. The total ginsenosides content of Panax ginseng adventitious roots reached the maximum (48.95 ± 0.97 mg/g) treated with Penicillium sp. YJM-2013 at 200 mg/L, higher than control by 2.59-fold, in which protopanoxadiol-type ginsenosides (PPD) were increased by 4.57 times. Moreover, Penicillium sp. YJM-2013 activated defense signaling molecules, up-regulated the expression of PgWRKY 1, 2, 3, 5, 7, 9 and functional genes in ginsenosides synthesis. Conclusion Compared with the pathogenic fungi F. oxysporum, antagonistic fungi Penicillium sp. YJM-2013 was more conducive to the accumulation of ginsenosides in P. ginseng adventitious roots. Penicillium sp. YJM-2013 promoted the accumulation of ginsenosides by intensifying the generation of signal molecules, activating the expression of transcription factors and functional genes.
Collapse
|
12
|
Shaikh S, Shriram V, Khare T, Kumar V. Biotic elicitors enhance diosgenin production in Helicteres isora L. suspension cultures via up-regulation of CAS and HMGR genes. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:593-604. [PMID: 32205933 PMCID: PMC7078398 DOI: 10.1007/s12298-020-00774-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 01/23/2020] [Accepted: 02/13/2020] [Indexed: 05/10/2023]
Abstract
In an attempt to find an alternative and potent source of diosgenin, a steroidal saponin in great demand for its pharmaceutical importance, Helicteres isora suspension cultures were explored for diosgenin extraction. The effect of biotic elicitors on the biosynthesis of diosgenin, in suspension cultures of H. isora was studied. Bacterial as well as fungal elicitors such as Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae and Aspergillus niger were applied at varying concentrations to investigate their effects on diosgenin content. The HPLC based quantification of the treated samples proved that amongst the biotic elicitors, E. coli (1.5%) proved best with a 9.1-fold increase in diosgenin content over respective control cultures. Further, the scaling-up of the suspension culture to shake-flask and ultimately to bioreactor level were carried out for production of diosgenin. During all the scaling-up stages, diosgenin yield obtained was in the range between 7.91 and 8.64 mg l-1, where diosgenin content was increased with volume of the medium. The quantitative real-time PCR (qRT-PCR) analysis showed biotic elicitors induced the expression levels of regulatory genes in diosgenin biosynthetic pathway, the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and cycloartenol synthase (CAS), which can be positively correlated with elicited diosgenin contents in those cultures. The study holds significance as H. isora represents a cleaner and easy source of diosgenin where unlike other traditional sources, it is not admixed with other steroidal saponins, and the scaled-up levels of diosgenin achieved herein have the potential to be explored commercially.
Collapse
Affiliation(s)
- Samrin Shaikh
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune, 411016 India
| | - Varsha Shriram
- Department of Botany, Prof. Ramkrishna More College (Savitribai Phule Pune University), Akurdi, Pune, 411044 India
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune, 411016 India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune, 411016 India
| |
Collapse
|
13
|
Innate endophytic fungus, Aspergillus terreus as biotic elicitor of withanolide A in root cell suspension cultures of Withania somnifera. Mol Biol Rep 2019; 46:1895-1908. [PMID: 30706360 DOI: 10.1007/s11033-019-04641-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/24/2019] [Indexed: 12/16/2022]
Abstract
In the present study, root cell suspension cultures of W. somnifera were elicited with mycelial extract (1% w/v) and culture filtrate (5% v/v) of their native endophytic fungus Aspergillus terreus 2aWF in shake flask. Culture filtrate of A. terreus 2aWF significantly elicits withanolide A at 6H (12.20 ± 0.52 µg/g FCB). However, with A. terreus 2aWF mycelial extract, withanolide A content was higher at 24H (10.29 µg/g FCB). Withanolide A content was maximum with salicylic acid (0.1 mM) treatment at 24H (8.3 ± 0.20 µg/g FCB). Further, expression analysis of withanolide pathway genes, hydrogen peroxide production, and lipid peroxidation was carried out after 48H of elicitation with 2aWF mycelial extract and culture filtrate. The expression levels of withanolides biosynthetic pathway genes, viz. HMGR, DXR, FPPS, SQS, SQE, CAS, SMT1, STE1 and CYP710A1 were quantified by real time PCR at 48H of elicitation. In all the treatments, the expression levels of key genes were significantly upregulated as compared to untreated suspension cells. Hydrogen peroxide was noticeably enhanced in SA, mycelia extract and culture filtrate, at 20% (115 ± 4.40 nM/g FCB), 42% (137.5 ± 3.62 nM/g FCB), and 27% (122.8 ± 1.25 nM/g FCB) respectively; however, lipid peroxidation was 0.288 ± 0.014, 0.305 ± 0.041 and 0.253 ± 0.007 (µM/gm FCB) respectively, higher than the control (0.201 ± 0.007 µM/gm FCB).
Collapse
|
14
|
Bhardwaj P, Goswami N, Narula P, Jain CK, Mathur A. Zinc oxide nanoparticles (ZnO NP) mediated regulation of bacosides biosynthesis and transcriptional correlation of HMG-CoA reductase gene in suspension culture of Bacopa monnieri. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:148-156. [PMID: 29982171 DOI: 10.1016/j.plaphy.2018.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 06/08/2023]
Abstract
Bacopa monnieri (L.) Wettst. is a well documented nootropic plant, extensive known for alleviating symptoms of neurological disorder, along with other symptomatic relief. This property is attributed to the active phytocompounds, saponins (bacoside A) present in the plant. However, lack of stringent validation guidelines in most of the countries bring to the market, formulations differing in phytocompounds yield, thereby suggesting possible variation in therapeutic efficacy. The in-vitro suspension cultures of the Bacopa monnieri, provide an ease of scale-up, but regulating saponin yield is a stringent task. The aim of the study is to explore the effects of different concentrations (0, 0.25, 0.50, 0.75 and 1.0 ppm) of zinc oxide nanoparticles (ZnO NP) (24 nm in size), in regulating growth rate, bacoside yield and transcriptional profile of HMG CoA reductasegene in the suspension cells of Bacopa monnieri. Results showed a linear correlation between Bacoside A yield and ZnO NP concentrations with around 2 fold increase in total bacoside A concentration at 1 ppm. Also, ZnO NP supplemented suspension cells showed variation in the specific growth rate. Neuroprotective properties, analyzed using methanolic extracts of suspension cells again obtrude the extract of ZnO NP supplemented (0.75 ppm and 1 ppm) culture for better response in alleviating oxidative stress mediated damage to neuronal cells. ZnO NP supplemented system showed lower expression of HMG CoA reductasegene (the rate limiting step in bacoside A biosynthesis) but higher concentration of bacoside A, suggesting possible role of ZnO NP in isoprenoid pathway than MVA pathways.
Collapse
Affiliation(s)
- Pragya Bhardwaj
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, A-10, Sector-62, Noida, Uttar Pradesh, 201307, India
| | - Navendu Goswami
- Department of Physics & Materials Science & Engineering, Jaypee Institute of Information Technology, Noida, A-10, Sector-62, Noida, Uttar Pradesh, 201307, India
| | - Pankhuri Narula
- Kusuma School of Biological Sciences (KSBS), Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Chakresh Kumar Jain
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, A-10, Sector-62, Noida, Uttar Pradesh, 201307, India
| | - Ashwani Mathur
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, A-10, Sector-62, Noida, Uttar Pradesh, 201307, India.
| |
Collapse
|