1
|
Amato V, Mahalath S, Zhang L, Rushton PJ, Shen QJ. Structure and Functions of NDR1/HIN1-Like (NHL) Proteins in Plant Development and Response to Environmental Stresses. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40255187 DOI: 10.1111/pce.15569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/27/2025] [Accepted: 04/08/2025] [Indexed: 04/22/2025]
Abstract
The NON-RACE-SPECIFIC DISEASE RESISTANCE 1/harpin-induced 1-LIKE (NHL) gene family plays pivotal roles, including pathogen resistance, abiotic stress tolerance, and developmental regulation, underscoring their functional versatility in developmental and physiological processes of plants. NHL proteins often localize to the plasma membrane and contain conserved motifs, including the LEA2 and transmembrane domains, enabling dynamic interactions with signalling molecules and transcription factors. The ability of NHL proteins to dimerize and oligomerize further enhances their regulatory potential in signalling pathways. This review explores the structural and functional diversity of NHL proteins including their localizations, interacting proteins, and responses to abiotic and biotic stresses, ion transportation, seed germination, and responses to phytohormones. Future research integrating phylogenetics, and advanced tools including artificial intelligence will unlock the full potential of this gene family for breeding climate-resilient crops and agricultural sustainability.
Collapse
Affiliation(s)
- Victoria Amato
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Shantel Mahalath
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Liyuan Zhang
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Paul J Rushton
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Qingxi J Shen
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| |
Collapse
|
2
|
Song S, Li Y, Zhang Y, Liu F, Zhu QH, Zhang X, Sun J, Li Y. Transcriptome-Based Gene Modules and Soluble Sugar Content Analyses Reveal the Defense Response of Cotton Leaves to Verticillium dahliae. Int J Mol Sci 2024; 25:13326. [PMID: 39769091 PMCID: PMC11679845 DOI: 10.3390/ijms252413326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Verticillium dahliae is a soil-borne phytopathogenic fungus causing destructive Verticillium wilt disease that greatly threats cotton production worldwide. The mechanism of cotton resistance to Verticillium wilt is very complex and requires further research. In this study, RNA-sequencing was used to investigate the defense responses of cotton leaves using varieties resistant (Zhongzhimian 2, or Z2) or susceptible (Xinluzao 7, or X7) to V. dahliae. The leaf samples were collected at 48 and 72 hpi (hours post infection) from the two varieties infected by V. dahliae (strain Vd991) or treated by water. Compared to X7, Z2 had less genes responsive to V. dahliae infection at 72 hpi and had no DEGs (differentially expressed genes) at 48 hpi. WGCNA (Weighted Gene Co-Expression Network Analysis) revealed seven key gene modules which were responsible for the resistance of Z2 and susceptibility of X7. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis of these modules found that several reported disease resistance pathways were found to be up-regulated in Z2, with some of those pathways down-regulated in X7. Unexpectedly, several photosynthesis-related pathways were significantly up-regulated in the leaves of X7 infected by V. dahliae, leading to different profiles of glucose content, which was significantly decreased at 72 hpi and 48 hpi in X7 and Z2, respectively. These results suggest that the leaves of resistant varieties have a slower and different response to V. dahliae compared to those of the susceptible variety, as well as that the translocation of sugars produced by photosynthesis in cotton leaves might vary between the two varieties. Additionally, several HUB genes regulating disease response were identified, including NDR1/HIN1-like protein 12, DELLA protein, cytochrome P450 family protein and LRR receptor-like serine/threonine-protein kinase genes, which have been reported to be related to disease resistance in other plants, which might serve as potential candidates for breeding cotton disease resistance.
Collapse
Affiliation(s)
- Shenglong Song
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (S.S.); (Y.L.); (Y.Z.); (F.L.); (X.Z.)
| | - Yongtai Li
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (S.S.); (Y.L.); (Y.Z.); (F.L.); (X.Z.)
| | - Yong Zhang
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (S.S.); (Y.L.); (Y.Z.); (F.L.); (X.Z.)
| | - Feng Liu
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (S.S.); (Y.L.); (Y.Z.); (F.L.); (X.Z.)
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, P.O. Box 1700, Canberra 2601, Australia;
| | - Xinyu Zhang
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (S.S.); (Y.L.); (Y.Z.); (F.L.); (X.Z.)
| | - Jie Sun
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (S.S.); (Y.L.); (Y.Z.); (F.L.); (X.Z.)
| | - Yanjun Li
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (S.S.); (Y.L.); (Y.Z.); (F.L.); (X.Z.)
| |
Collapse
|
3
|
Wu F, Mai Y, Chen C, Xia R. SynGAP: a synteny-based toolkit for gene structure annotation polishing. Genome Biol 2024; 25:218. [PMID: 39138517 PMCID: PMC11323386 DOI: 10.1186/s13059-024-03359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Genome sequencing has become a routine task for biologists, but the challenge of gene structure annotation persists, impeding accurate genomic and genetic research. Here, we present a bioinformatics toolkit, SynGAP (Synteny-based Gene structure Annotation Polisher), which uses gene synteny information to accomplish precise and automated polishing of gene structure annotation of genomes. SynGAP offers exceptional capabilities in the improvement of gene structure annotation quality and the profiling of integrative gene synteny between species. Furthermore, an expression variation index is designed for comparative transcriptomics analysis to explore candidate genes responsible for the development of distinct traits observed in phylogenetically related species.
Collapse
Affiliation(s)
- Fengqi Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510640, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510640, Guangdong, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510640, Guangdong, China
| | - Yingxiao Mai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510640, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510640, Guangdong, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510640, Guangdong, China
| | - Chengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510640, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510640, Guangdong, China.
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510640, Guangdong, China.
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510640, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510640, Guangdong, China.
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
4
|
Lee S, Kim J, Kim MS, Min CW, Kim ST, Choi SB, Lee JH, Choi D. The Phytophthora nucleolar effector Pi23226 targets host ribosome biogenesis to induce necrotrophic cell death. PLANT COMMUNICATIONS 2023; 4:100606. [PMID: 37087572 PMCID: PMC10504586 DOI: 10.1016/j.xplc.2023.100606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/15/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Pathogen effectors target diverse subcellular organelles to manipulate the plant immune system. Although the nucleolus has emerged as a stress marker and several effectors are localized in the nucleolus, the roles of nucleolar-targeted effectors remain elusive. In this study, we showed that Phytophthora infestans infection of Nicotiana benthamiana results in nucleolar inflation during the transition from the biotrophic to the necrotrophic phase. Multiple P. infestans effectors were localized in the nucleolus: Pi23226 induced cell death in N. benthamiana and nucleolar inflation similar to that observed in the necrotrophic stage of infection, whereas its homolog Pi23015 and a deletion mutant (Pi23226ΔC) did not induce cell death or affect nucleolar size. RNA immunoprecipitation and individual-nucleotide-resolution UV crosslinking and immunoprecipitation sequencing analysis indicated that Pi23226 bound to the 3' end of 25S rRNA precursors, resulting in accumulation of unprocessed 27S pre-rRNAs. The nucleolar stress marker NAC082 was strongly upregulated under Pi23226-expressing conditions. Pi23226 subsequently inhibited global protein translation in host cells by interacting with ribosomes. Pi23226 enhanced P. infestans pathogenicity, indicating that Pi23226-induced ribosome malfunction and cell death were beneficial for pathogenesis in the host. Our results provide evidence for the molecular mechanism underlying RNA-binding effector activity in host ribosome biogenesis and lead to new insights into the nucleolar action of effectors in pathogenesis.
Collapse
Affiliation(s)
- Soeui Lee
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaehwan Kim
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Myung-Shin Kim
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Programs in Agricultural Genomics, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea; Division of Bioscience and Bioinformatics, Myongji University, Yongin 449-728, Republic of Korea
| | - Cheol Woo Min
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Sang-Bong Choi
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 449-728, Republic of Korea
| | - Joo Hyun Lee
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea.
| | - Doil Choi
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
5
|
Vuong UT, Iswanto ABB, Nguyen Q, Kang H, Lee J, Moon J, Kim SH. Engineering plant immune circuit: walking to the bright future with a novel toolbox. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:17-45. [PMID: 36036862 PMCID: PMC9829404 DOI: 10.1111/pbi.13916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Plant pathogens destroy crops and cause severe yield losses, leading to an insufficient food supply to sustain the human population. Apart from relying on natural plant immune systems to combat biological agents or waiting for the appropriate evolutionary steps to occur over time, researchers are currently seeking new breakthrough methods to boost disease resistance in plants through genetic engineering. Here, we summarize the past two decades of research in disease resistance engineering against an assortment of pathogens through modifying the plant immune components (internal and external) with several biotechnological techniques. We also discuss potential strategies and provide perspectives on engineering plant immune systems for enhanced pathogen resistance and plant fitness.
Collapse
Affiliation(s)
- Uyen Thi Vuong
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Arya Bagus Boedi Iswanto
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Quang‐Minh Nguyen
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Hobin Kang
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Jihyun Lee
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Jiyun Moon
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Sang Hee Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
- Division of Life ScienceGyeongsang National UniversityJinjuRepublic of Korea
| |
Collapse
|
6
|
Zhang X, Xue Y, Wang H, Nisa Z, Jin X, Yu L, Liu X, Yu Y, Chen C. Genome-wide identification and characterization of NHL gene family in response to alkaline stress, ABA and MEJA treatments in wild soybean ( Glycine soja). PeerJ 2022; 10:e14451. [PMID: 36518280 PMCID: PMC9744164 DOI: 10.7717/peerj.14451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/01/2022] [Indexed: 12/05/2022] Open
Abstract
Background NDR1/HIN1-like (NHL) family genes are known to be involved in pathogen induced plant responses to biotic stress. Even though the NHL family genes have been identified and characterized in plant defense responses in some plants, the roles of these genes associated with the plant abiotic stress tolerance in wild soybean is not fully established yet, especially in response to alkaline stress. Methods We identified the potential NHL family genes by using the Hidden Markov model and wild soybean genome. The maximum-likelihood phylogenetic tree and conserved motifs were generated by using the MEME online server and MEGA 7.0 software, respectively. Furthermore, the syntenic analysis was generated with Circos-0.69. Then we used the PlantCARE online software to predict and analyze the regulatory cis-acting elements in promoter regions. Hierarchical clustering trees was generated using TM4: MeV4.9 software. Additionally, the expression levels of NHL family genes under alkaline stress, ABA and MEJA treatment were identified by qRT-PCR. Results In this study, we identified 59 potential NHL family genes in wild soybean. We identified that wild soybean NHL family genes could be mainly classified into five groups as well as exist with conserved motifs. Syntenic analysis of NHL family genes revealed genes location on 18 chromosomes and presence of 65 pairs of duplication genes. Moreover, NHL family genes consisted of a variety of putative hormone-related and abiotic stress responsive elements, where numbers of methyl jasmonate (MeJA) and abscisic acid (ABA) responsive elements were significantly larger than other elements. We confirmed the regulatory roles of NHL family genes in response to alkaline stress, ABA and MEJA treatment. In conclusion, we identified and provided valuable information on the wild soybean NHL family genes, and established a foundation to further explore the potential roles of NHL family genes in crosstalk with MeJA or ABA signal transduction mechanisms under alkaline stress.
Collapse
Affiliation(s)
- Xu Zhang
- Harbin Normal University, Harbin, Heilongjiang, China
| | - Yongguo Xue
- Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Haihang Wang
- Harbin Normal University, Harbin, Heilongjiang, China
| | | | - Xiaoxia Jin
- Harbin Normal University, Harbin, Heilongjiang, China
| | - Lijie Yu
- Harbin Normal University, Harbin, Heilongjiang, China
| | - Xinlei Liu
- Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yang Yu
- Shenyang University, Shenyang, China
| | - Chao Chen
- Harbin Normal University, Harbin, Heilongjiang, China
| |
Collapse
|
7
|
Klink VP, Alkharouf NW, Lawrence KS, Lawaju BR, Sharma K, Niraula PM, McNeece BT. The heterologous expression of conserved Glycine max (soybean) mitogen activated protein kinase 3 (MAPK3) paralogs suppresses Meloidogyne incognita parasitism in Gossypium hirsutum (upland cotton). Transgenic Res 2022; 31:457-487. [PMID: 35763120 PMCID: PMC9489592 DOI: 10.1007/s11248-022-00312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022]
Abstract
Two conserved Glycine max (soybean) mitogen activated protein kinase 3 (MAPK3) paralogs function in defense to the parasitic soybean cyst nematode Heterodera glycines. Gene Ontology analyses of RNA seq data obtained from MAPK3-1-overexpressing (OE) and MAPK3-2-OE roots compared to their control, as well as MAPK3-1-RNA interference (RNAi) and MAPK3-2-RNAi compared to their control, hierarchically orders the induced and suppressed genes, strengthening the hypothesis that their heterologous expression in Gossypium hirsutum (upland cotton) would impair parasitism by the root knot nematode (RKN) Meloidogyne incognita. MAPK3-1 expression (E) in G. hirsutum suppresses the production of M. incognita root galls, egg masses, and second stage juveniles (J2s) by 80.32%, 82.37%, and 88.21%, respectfully. Unexpectedly, egg number increases by 28.99% but J2s are inviable. MAPK3-2-E effects are identical, statistically. MAPK3-1-E and MAPK3-2-E decreases root mass 1.49-fold and 1.55-fold, respectively, as compared to the pRAP15-ccdB-E control. The reproductive factor (RF) of M. incognita for G. hirsutum roots expressing MAPK3-1-E or MAPK3-2-E decreases 60.39% and 50.46%, respectively, compared to controls. The results are consistent with upstream pathogen activated molecular pattern (PAMP) triggered immunity (PTI) and effector triggered immunity (ETI) functioning in defense to H. glycines. The experiments showcase the feasibility of employing MAPK3, through heterologous expression, to combat M. incognita parasitism, possibly overcoming impediments otherwise making G. hirsutum's defense platform deficient. MAPK homologs are identified in other important crop species for future functional analyses.
Collapse
Affiliation(s)
- Vincent P. Klink
- USDA ARS NEA BARC Molecular Plant Pathology Laboratory, Building 004 Room 122 BARC-West, 10300 Baltimore Ave., Beltsville, MD 20705 USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762 USA
- Present Address: Center for Computational Sciences High Performance Computing Collaboratory, Mississippi State University, Mississippi State, MS 39762 USA
| | - Nadim W. Alkharouf
- Department of Computer and Information Sciences, Towson University, Towson, MD 21252 USA
| | - Kathy S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL 36849 USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL 36849 USA
| | - Bisho R. Lawaju
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL 36849 USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762 USA
- Present Address: Department of Plant Pathology, North Dakota State University, 1402 Albrecht Blvd., Walster Hall 306, Fargo, ND 58102 USA
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762 USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762 USA
- Present Address: Cereal Disease Laboratory, 1551 Lindig Street, Saint Paul, MN 55108 USA
| | - Prakash M. Niraula
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762 USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762 USA
- Present Address: Department of Biological Sciences, Delaware State University, 1200 North Dupont Highway, Science Center 164, Dover, DE 19901 USA
| | - Brant T. McNeece
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762 USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762 USA
- Present Address: Nutrien Ag Solutions, 737 Blaylock Road, Winterville, MS 38703 USA
| |
Collapse
|
8
|
Niraula PM, McNeece BT, Sharma K, Alkharouf NW, Lawrence KS, Klink VP. The central circadian regulator CCA1 functions in Glycine max during defense to a root pathogen, regulating the expression of genes acting in effector triggered immunity (ETI) and cell wall metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:198-220. [PMID: 35704989 DOI: 10.1016/j.plaphy.2022.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Expression of the central circadian oscillator components CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), TIMING OF CAB1 (TOC1), GIGANTEA (GI), and CONSTANS (CO) occurs in Glycine max root cells (syncytia) parasitized by the nematode Heterodera glycines while undergoing resistance, indicating a defense role. GmCCA1-1 relative transcript abundance (RTA) in roots experiencing overexpression (OE) or RNA interference (RNAi) is characterized by rhythmic oscillations, compared to a ribosomal protein gene (GmRPS21) control. A GmCCA1-1 RTA change, advancing by 12 h, exists in H. glycines-infected as compared to uninfected controls in wild-type, H. glycines-resistant, G. max[Peking/PI 548402]. The G. max[Peking/PI 548402] transgenic controls exhibit the RTA change by 4 h post infection (hpi), not consistently occurring in the H. glycines-susceptible G. max[Williams 82/PI 518671] until 56 hpi. GmCCA1-1 expression is observed to be reduced in H. glycines-infected GmCCA1-1-OE roots as compared to non-infected transgenic roots with no significant change observed among RNAi roots. The GmCCA1-1 expression in transgenic GmCCA1-1-OE roots remains higher than control and RNAi roots. Decreased GmCCA1-1 mRNA among infected roots shows the altered expression is targeted by H. glycines. Gene expression of proven defense genes including 9 different mitogen activated protein kinases (GmMAPKs), NON-RACE SPECIFIC DISEASE RESISTANCE 1 (GmNDR1-1), RPM1-INTERACTING PROTEIN 4 (GmRIN4-4), and the secreted xyloglucan endotransglycosylase/hydrolase 43 (GmXTH43) in GmCCA1-1-OE and GmCCA1-1-RNAi roots, compared to controls, reveal a significant role of GmCCA1-1 expression in roots undergoing defense to H. glycines parasitism. The observation that GmCCA1-1 regulates GmXTH43 expression links the central circadian oscillator to the functionality of the secretion system.
Collapse
Affiliation(s)
- Prakash M Niraula
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Brant T McNeece
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Nadim W Alkharouf
- Department of Computer and Information Sciences, Towson University, Towson, MD, 21252, USA.
| | - Katherine S Lawrence
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL, 36849, USA.
| | - Vincent P Klink
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA; USDA-ARS-NEA-BARC Molecular Plant Pathology Laboratory Building 004, Room 122, BARC-West, 10300 Baltimore Ave., Beltsville, MD, 20705, USA; Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, 39762, USA; Center for Computational Sciences High Performance Computing Collaboratory, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
9
|
Khatri R, Pant SR, Sharma K, Niraula PM, Lawaju BR, Lawrence KS, Alkharouf NW, Klink VP. Glycine max Homologs of DOESN'T MAKE INFECTIONS 1, 2, and 3 Function to Impair Heterodera glycines Parasitism While Also Regulating Mitogen Activated Protein Kinase Expression. FRONTIERS IN PLANT SCIENCE 2022; 13:842597. [PMID: 35599880 PMCID: PMC9114929 DOI: 10.3389/fpls.2022.842597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Glycine max root cells developing into syncytia through the parasitic activities of the pathogenic nematode Heterodera glycines underwent isolation by laser microdissection (LM). Microarray analyses have identified the expression of a G. max DOESN'T MAKE INFECTIONS3 (DMI3) homolog in syncytia undergoing parasitism but during a defense response. DMI3 encodes part of the common symbiosis pathway (CSP) involving DMI1, DMI2, and other CSP genes. The identified DMI gene expression, and symbiosis role, suggests the possible existence of commonalities between symbiosis and defense. G. max has 3 DMI1, 12 DMI2, and 2 DMI3 paralogs. LM-assisted gene expression experiments of isolated syncytia under further examination here show G. max DMI1-3, DMI2-7, and DMI3-2 expression occurring during the defense response in the H. glycines-resistant genotypes G.max [Peking/PI548402] and G.max [PI88788] indicating a broad and consistent level of expression of the genes. Transgenic overexpression (OE) of G. max DMI1-3, DMI2-7, and DMI3-2 impairs H. glycines parasitism. RNA interference (RNAi) of G. max DMI1-3, DMI2-7, and DMI3-2 increases H. glycines parasitism. The combined opposite outcomes reveal a defense function for these genes. Prior functional transgenic analyses of the 32-member G. max mitogen activated protein kinase (MAPK) gene family has determined that 9 of them act in the defense response to H. glycines parasitism, referred to as defense MAPKs. RNA-seq analyses of root RNA isolated from the 9 G. max defense MAPKs undergoing OE or RNAi reveal they alter the relative transcript abundances (RTAs) of specific DMI1, DMI2, and DMI3 paralogs. In contrast, transgenically-manipulated DMI1-3, DMI2-7, and DMI3-2 expression influences MAPK3-1 and MAPK3-2 RTAs under certain circumstances. The results show G. max homologs of the CSP, and defense pathway are linked, apparently involving co-regulated gene expression.
Collapse
Affiliation(s)
- Rishi Khatri
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Shankar R. Pant
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Prakash M. Niraula
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Bisho R. Lawaju
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Kathy S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Nadim W. Alkharouf
- Department of Computer and Information Sciences, Towson University, Towson, MD, United States
| | - Vincent P. Klink
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
- USDA ARS NEA BARC Molecular Plant Pathology Laboratory, Beltsville, MD, United States
- Center for Computational Sciences High Performance Computing Collaboratory, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
10
|
Zhang Y, Zhao Q, Zhang J, Niu L, Yang J, Liu X, Xing G, Zhong X, Yang X. Enhanced resistance to soybean cyst nematode in transgenic soybean via host-induced silencing of vital Heterodera glycines genes. Transgenic Res 2022; 31:239-248. [PMID: 35133563 DOI: 10.1007/s11248-022-00298-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/26/2022] [Indexed: 12/16/2022]
Abstract
Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is the most economically damaging pathogen affecting soybean production worldwide. Host-induced gene silencing provides a promising approach to confer resistance to plant parasitic nematodes. In the present study, we produced stable transgenic soybean plants individually harboring the inverted repeats of three essential H. glycines genes, Hg-rps23, Hg-snb1, and Hg-cpn1, and evaluated their resistance to SCN infection. Molecular characterization confirmed the stable integration of the hairpin double stranded (ds) RNA in host plants. Inoculation assays with SCN race 3 showed significant reduction of female index (FI, 11.84 ~ 17.47%) on the roots of T4 transgenic plants, with 73.29 ~ 81.90% reduction for the three RNA interference (RNAi) constructs, compared to non-transformed plants (NT, 65.43%). Enhanced resistance to SCN race 3 was further confirmed in subsequent generations (T5) of transgenic soybean. Moreover, when inoculated with SCN race 4 which was considered highly virulent to most of soybean germplasms and varieties, transgenic soybean plants also exhibited reduced FIs (9.96 ~ 23.67%) and increased resistance, relative to the NT plants (46.46%). Consistently, significant down-regulation in transcript levels of the Hg-rps23, Hg-snb1, Hg-cpn1 genes were observed in the nematodes feeding on the transgenic roots, suggesting a broad-spectrum resistance mediated by the host-mediated silencing of vital H. glycines genes. There were no significant differences in morphological traits between transgenic and NT soybean plants under conditions with negligible SCN infection. In summary, our results demonstrate the effectiveness of host-induced silencing of essential H. glycines genes to enhance broad-spectrum SCN resistance in stable transgenic soybean plants, without negative consequences on the agronomic performance.
Collapse
Affiliation(s)
- Yuanyu Zhang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Qianqian Zhao
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jinhua Zhang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Lu Niu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jing Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xiaomei Liu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Guojie Xing
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xiaofang Zhong
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Xiangdong Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
11
|
Klink VP, Darwish O, Alkharouf NW, Lawaju BR, Khatri R, Lawrence KS. Conserved oligomeric Golgi (COG) complex genes functioning in defense are expressed in root cells undergoing a defense response to a pathogenic infection and exhibit regulation my MAPKs. PLoS One 2021; 16:e0256472. [PMID: 34437620 PMCID: PMC8389442 DOI: 10.1371/journal.pone.0256472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/06/2021] [Indexed: 12/21/2022] Open
Abstract
The conserved oligomeric Golgi (COG) complex maintains correct Golgi structure and function during retrograde trafficking. Glycine max has 2 paralogs of each COG gene, with one paralog of each gene family having a defense function to the parasitic nematode Heterodera glycines. Experiments presented here show G. max COG paralogs functioning in defense are expressed specifically in the root cells (syncytia) undergoing the defense response. The expressed defense COG gene COG7-2-b is an alternate splice variant, indicating specific COG variants are important to defense. Transcriptomic experiments examining RNA isolated from COG overexpressing and RNAi roots show some COG genes co-regulate the expression of other COG complex genes. Examining signaling events responsible for COG expression, transcriptomic experiments probing MAPK overexpressing roots show their expression influences the relative transcript abundance of COG genes as compared to controls. COG complex paralogs are shown to be found in plants that are agriculturally relevant on a world-wide scale including Manihot esculenta, Zea mays, Oryza sativa, Triticum aestivum, Hordeum vulgare, Sorghum bicolor, Brassica rapa, Elaes guineensis and Saccharum officinalis and in additional crops significant to U.S. agriculture including Beta vulgaris, Solanum tuberosum, Solanum lycopersicum and Gossypium hirsutum. The analyses provide basic information on COG complex biology, including the coregulation of some COG genes and that MAPKs functioning in defense influence their expression. Furthermore, it appears in G. max and likely other crops that some level of neofunctionalization of the duplicated genes is occurring. The analysis has identified important avenues for future research broadly in plants.
Collapse
Affiliation(s)
- Vincent P. Klink
- USDA ARS NEA BARC Molecular Plant Pathology Laboratory, Beltsville, MD, United States of America
| | - Omar Darwish
- Department of Mathematics Computer Science, Texas Woman’s University, Denton, TX, United States of America
| | - Nadim W. Alkharouf
- Department of Computer and Information Sciences, Towson University, Towson, MD, United States of America
| | - Bisho R. Lawaju
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States of America
| | - Rishi Khatri
- Department of Biological Sciences, Mississippi State University, Mississippi, MS, United States of America
| | - Kathy S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States of America
| |
Collapse
|
12
|
Yang B, Yang S, Guo B, Wang Y, Zheng W, Tian M, Dai K, Liu Z, Wang H, Ma Z, Wang Y, Ye W, Dong S, Wang Y. The Phytophthora effector Avh241 interacts with host NDR1-like proteins to manipulate plant immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1382-1396. [PMID: 33586843 DOI: 10.1111/jipb.13082] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/12/2021] [Indexed: 05/27/2023]
Abstract
Plant pathogens rely on effector proteins to suppress host innate immune responses and facilitate colonization. Although the Phytophthora sojae RxLR effector Avh241 promotes Phytophthora infection, the molecular basis of Avh241 virulence remains poorly understood. Here we identified non-race specific disease resistance 1 (NDR1)-like proteins, the critical components in plant effector-triggered immunity (ETI) responses, as host targets of Avh241. Avh241 interacts with NDR1 in the plasma membrane and suppresses NDR1-participated ETI responses. Silencing of GmNDR1s increases the susceptibility of soybean to P. sojae infection, and overexpression of GmNDR1s reduces infection, which supports its positive role in plant immunity against P. sojae. Furthermore, we demonstrate that GmNDR1 interacts with itself, and Avh241 probably disrupts the self-association of GmNDR1. These data highlight an effective counter-defense mechanism by which a Phytophthora effector suppresses plant immune responses, likely by disturbing the function of NDR1 during infection.
Collapse
Affiliation(s)
- Bo Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sen Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Baodian Guo
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuyin Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenyue Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengjun Tian
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaixin Dai
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zehan Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haonan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenchuan Ma
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
13
|
Niraula PM, Zhang X, Jeremic D, Lawrence KS, Klink VP. Xyloglucan endotransglycosylase/hydrolase increases tightly-bound xyloglucan and chain number but decreases chain length contributing to the defense response that Glycine max has to Heterodera glycines. PLoS One 2021; 16:e0244305. [PMID: 33444331 PMCID: PMC7808671 DOI: 10.1371/journal.pone.0244305] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
Abstract
The Glycine max xyloglucan endotransglycosylase/hydrolase (EC 2.4.1.207), GmXTH43, has been identified through RNA sequencing of RNA isolated through laser microdissection of Heterodera glycines-parasitized root cells (syncytia) undergoing the process of defense. Experiments reveal that genetically increasing XTH43 transcript abundance in the H. glycines-susceptible genotype G. max[Williams 82/PI 518671] decreases parasitism. Experiments presented here show decreasing XTH43 transcript abundance through RNA interference (RNAi) in the H. glycines-resistant G. max[Peking/PI 548402] increases susceptibility, but it is unclear what role XTH43 performs. The experiments presented here show XTH43 overexpression decreases the relative length of xyloglucan (XyG) chains, however, there is an increase in the amount of those shorter chains. In contrast, XTH43 RNAi increases XyG chain length. The experiments show that XTH43 has the capability to function, when increased in its expression, to limit XyG chain extension. This outcome would likely impair the ability of the cell wall to expand. Consequently, XTH43 could provide an enzymatically-driven capability to the cell that would allow it to limit the ability of parasitic nematodes like H. glycines to develop a feeding structure that, otherwise, would facilitate parasitism. The experiments presented here provide experimentally-based proof that XTHs can function in ways that could be viewed as being able to limit the expansion of the cell wall.
Collapse
Affiliation(s)
- Prakash M. Niraula
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi State, United States of America
| | - Xuefeng Zhang
- Department of Sustainable Bioproducts, Mississippi State University, Starkville, Mississippi State, United States of America
| | - Dragica Jeremic
- Department of Sustainable Bioproducts, Mississippi State University, Starkville, Mississippi State, United States of America
| | - Katherine S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, United States of America
| | - Vincent P. Klink
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi State, United States of America
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi State, United States of America
- Center for Computational Sciences High Performance Computing Collaboratory, Starkville, Mississippi State, United States of America
| |
Collapse
|
14
|
Niraula PM, Sharma K, McNeece BT, Troell HA, Darwish O, Alkharouf NW, Lawrence KS, Klink VP. Mitogen activated protein kinase (MAPK)-regulated genes with predicted signal peptides function in the Glycine max defense response to the root pathogenic nematode Heterodera glycines. PLoS One 2020; 15:e0241678. [PMID: 33147292 PMCID: PMC7641413 DOI: 10.1371/journal.pone.0241678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/19/2020] [Indexed: 01/19/2023] Open
Abstract
Glycine max has 32 mitogen activated protein kinases (MAPKs), nine of them exhibiting defense functions (defense MAPKs) to the plant parasitic nematode Heterodera glycines. RNA seq analyses of transgenic G. max lines overexpressing (OE) each defense MAPK has led to the identification of 309 genes that are increased in their relative transcript abundance by all 9 defense MAPKs. Here, 71 of those genes are shown to also have measurable amounts of transcript in H. glycines-induced nurse cells (syncytia) produced in the root that are undergoing a defense response. The 71 genes have been grouped into 7 types, based on their expression profile. Among the 71 genes are 8 putatively-secreted proteins that include a galactose mutarotase-like protein, pollen Ole e 1 allergen and extensin protein, endomembrane protein 70 protein, O-glycosyl hydrolase 17 protein, glycosyl hydrolase 32 protein, FASCICLIN-like arabinogalactan protein 17 precursor, secreted peroxidase and a pathogenesis-related thaumatin protein. Functional transgenic analyses of all 8 of these candidate defense genes that employ their overexpression and RNA interference (RNAi) demonstrate they have a role in defense. Overexpression experiments that increase the relative transcript abundance of the candidate defense gene reduces the ability that the plant parasitic nematode Heterodera glycines has in completing its life cycle while, in contrast, RNAi of these genes leads to an increase in parasitism. The results provide a genomic analysis of the importance of MAPK signaling in relation to the secretion apparatus during the defense process defense in the G. max-H. glycines pathosystem and identify additional targets for future studies.
Collapse
Affiliation(s)
- Prakash M. Niraula
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States of America
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States of America
| | - Brant T. McNeece
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States of America
| | - Hallie A. Troell
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States of America
| | - Omar Darwish
- Department of Mathematics and Computer Science, Texas Women’s University, Denton, TX, United States of America
| | - Nadim W. Alkharouf
- Department of Computer and Information Sciences, Towson University, Towson, MD, United States of America
| | - Katherine S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States of America
| | - Vincent P. Klink
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States of America
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, United States of America
- Center for Computational Sciences High Performance Computing Collaboratory, Mississippi State University, Starkville, MS, United States of America
| |
Collapse
|
15
|
Sharma K, Niraula PM, Troell HA, Adhikari M, Alshehri HA, Alkharouf NW, Lawrence KS, Klink VP. Exocyst components promote an incompatible interaction between Glycine max (soybean) and Heterodera glycines (the soybean cyst nematode). Sci Rep 2020; 10:15003. [PMID: 32929168 PMCID: PMC7490361 DOI: 10.1038/s41598-020-72126-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 08/17/2020] [Indexed: 11/24/2022] Open
Abstract
Vesicle and target membrane fusion involves tethering, docking and fusion. The GTPase SECRETORY4 (SEC4) positions the exocyst complex during vesicle membrane tethering, facilitating docking and fusion. Glycine max (soybean) Sec4 functions in the root during its defense against the parasitic nematode Heterodera glycines as it attempts to develop a multinucleate nurse cell (syncytium) serving to nourish the nematode over its 30-day life cycle. Results indicate that other tethering proteins are also important for defense. The G. max exocyst is encoded by 61 genes: 5 EXOC1 (Sec3), 2 EXOC2 (Sec5), 5 EXOC3 (Sec6), 2 EXOC4 (Sec8), 2 EXOC5 (Sec10) 6 EXOC6 (Sec15), 31 EXOC7 (Exo70) and 8 EXOC8 (Exo84) genes. At least one member of each gene family is expressed within the syncytium during the defense response. Syncytium-expressed exocyst genes function in defense while some are under transcriptional regulation by mitogen-activated protein kinases (MAPKs). The exocyst component EXOC7-H4-1 is not expressed within the syncytium but functions in defense and is under MAPK regulation. The tethering stage of vesicle transport has been demonstrated to play an important role in defense in the G. max-H. glycines pathosystem, with some of the spatially and temporally regulated exocyst components under transcriptional control by MAPKs.
Collapse
Affiliation(s)
- Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
- USDA-ARS Cereal Disease Laboratory, University of Minnesota, 1551 Lindig Street, St. Paul, MN, 55108, USA
| | - Prakash M Niraula
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
- Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research and Extension Center, Texas A&M University, 2415 E. Hwy. 83, Weslaco, TX, 78596, USA
| | - Hallie A Troell
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Mandeep Adhikari
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Hamdan Ali Alshehri
- Department of Mathematics and Computer Science, Texas Women's University, Denton, TX, 76204, USA
| | - Nadim W Alkharouf
- Department of Computer and Information Sciences, Towson University, Towson, MD, 21252, USA
| | - Kathy S Lawrence
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL, 36849, USA
| | - Vincent P Klink
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, 39762, USA.
- Center for Computational Sciences High Performance Computing Collaboratory, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
16
|
Niraula PM, Lawrence KS, Klink VP. The heterologous expression of a soybean (Glycine max) xyloglucan endotransglycosylase/hydrolase (XTH) in cotton (Gossypium hirsutum) suppresses parasitism by the root knot nematode Meloidogyne incognita. PLoS One 2020; 15:e0235344. [PMID: 32628728 PMCID: PMC7337317 DOI: 10.1371/journal.pone.0235344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/14/2020] [Indexed: 11/18/2022] Open
Abstract
A Glycine max (soybean) hemicellulose modifying gene, xyloglucan endotransglycoslase/hydrolase (XTH43), has been identified as being expressed within a nurse cell known as a syncytium developing within the soybean root undergoing the process of defense to infection by the parasitic nematode, Heterodera glycines. The highly effective nature of XTH43 overexpression in suppressing H. glycines parasitism in soybean has led to experiments examining whether the heterologous expression of XTH43 in Gossypium hirsutum (upland cotton) could impair the parasitism of Meloidogyne incognita, that form a different type of nurse cell called a giant cell that is enclosed within a swollen root structure called a gall. The heterologous transgenic expression of XTH43 in cotton resulted in an 18% decrease in the number of galls, 70% decrease in egg masses, 64% decrease in egg production and a 97% decrease in second stage juvenile (J2) production as compared to transgenic controls. The heterologous XTH43 expression does not significantly affect root mass. The results demonstrate XTH43 expression functions effectively in impairing the development of M. incognita at numerous life cycle stages occurring within the cotton root. The experiments reveal that there are highly conserved aspects of the defense response of G. max that can function effectively in G. hirsutum to impair M. incognita having a different method of parasitism.
Collapse
Affiliation(s)
- Prakash M. Niraula
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Katherine S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, United States of America
| | - Vincent P. Klink
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, United States of America
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, United States of America
- Center for Computational Sciences High Performance Computing Collaboratory, Mississippi State University, Mississippi State, Mississippi, United States of America
| |
Collapse
|
17
|
Couttolenc-Brenis E, Carrión GL, Villain L, Ortega-Escalona F, Ramírez-Martínez D, Mata-Rosas M, Méndez-Bravo A. Prehaustorial local resistance to coffee leaf rust in a Mexican cultivar involves expression of salicylic acid-responsive genes. PeerJ 2020; 8:e8345. [PMID: 32002327 PMCID: PMC6982411 DOI: 10.7717/peerj.8345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022] Open
Abstract
Background
In Mexico, coffee leaf rust (CLR) is the main disease that affects the Arabica coffee crop. In this study, the local response of two Mexican cultivars of Coffea arabica (Oro Azteca and Garnica) in the early stages of Hemileia vastatrix infection was evaluated.
Methods
We quantified the development of fungal structures in locally-infected leaf disks from both cultivars, using qRT-PCR to measure the relative expression of two pathogenesis recognition genes (CaNDR1 and CaNBS-LRR) and three genes associated with the salicylic acid (SA)-related pathway (CaNPR1, CaPR1, and CaPR5).
Results
Resistance of the cv. Oro Azteca was significantly higher than that of the cv. Garnica, with 8.2% and 53.3% haustorial detection, respectively. In addition, the non-race specific disease resistance gene (CaNDR1), a key gene for the pathogen recognition, as well as the genes associated with SA, CaNPR1, CaPR1, and CaPR5, presented an increased expression in response to infection by H. vastatrix in cv. Oro Azteca if comparing with cv. Garnica. Our results suggest that Oro Azteca’s defense mechanisms could involve early recognition of CLR by NDR1 and the subsequent activation of the SA signaling pathway.
Collapse
Affiliation(s)
- Edgar Couttolenc-Brenis
- Red de Manejo Biotecnológico de Recursos, Instituto de Ecología, A.C., Xalapa, Veracruz, México
- Instituto Nacional de Investigaciones Forestales Agrìcolas y Pecuarias, C.E. Cotaxtla, Veracruz, México
| | - Gloria L. Carrión
- Red de Biodiversidad y Sistemática de Hongos, Instituto de Ecología, A.C., Xalapa, Veracruz, México
| | - Luc Villain
- La Recherche Agronomique pour le Développement, UMR, RPB, CIRAD, Montpellier, France
| | | | - Daniel Ramírez-Martínez
- Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | - Martín Mata-Rosas
- Red de Manejo Biotecnológico de Recursos, Instituto de Ecología, A.C., Xalapa, Veracruz, México
| | - Alfonso Méndez-Bravo
- CONACYT-Escuela Nacional de Estudios Superiores Unidad Morelia, Laboratorio Nacional de Análisis y Síntesis Ecológica, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| |
Collapse
|
18
|
Lawaju BR, Niraula P, Lawrence GW, Lawrence KS, Klink VP. The Glycine max Conserved Oligomeric Golgi (COG) Complex Functions During a Defense Response to Heterodera glycines. FRONTIERS IN PLANT SCIENCE 2020; 11:564495. [PMID: 33262774 PMCID: PMC7686354 DOI: 10.3389/fpls.2020.564495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/02/2020] [Indexed: 05/07/2023]
Abstract
The conserved oligomeric Golgi (COG) complex, functioning in retrograde trafficking, is a universal structure present among eukaryotes that maintains the correct Golgi structure and function. The COG complex is composed of eight subunits coalescing into two sub-complexes. COGs1-4 compose Sub-complex A. COGs5-8 compose Sub-complex B. The observation that COG interacts with the syntaxins, suppressors of the erd2-deletion 5 (Sed5p), is noteworthy because Sed5p also interacts with Sec17p [alpha soluble NSF attachment protein (α-SNAP)]. The α-SNAP gene is located within the major Heterodera glycines [soybean cyst nematode (SCN)] resistance locus (rhg1) and functions in resistance. The study presented here provides a functional analysis of the Glycine max COG complex. The analysis has identified two paralogs of each COG gene. Functional transgenic studies demonstrate at least one paralog of each COG gene family functions in G. max during H. glycines resistance. Furthermore, treatment of G. max with the bacterial effector harpin, known to function in effector triggered immunity (ETI), leads to the induced transcription of at least one member of each COG gene family that has a role in H. glycines resistance. In some instances, altered COG gene expression changes the relative transcript abundance of syntaxin 31. These results indicate that the G. max COG complex functions through processes involving ETI leading to H. glycines resistance.
Collapse
Affiliation(s)
- Bisho Ram Lawaju
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Prakash Niraula
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Gary W. Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Kathy S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Vincent P. Klink
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
- Center for Computational Sciences High Performance Computing Collaboratory, Mississippi State University, Starkville, MS, United States
- *Correspondence: Vincent P. Klink, ;
| |
Collapse
|
19
|
Dhar N, Short DPG, Mamo BE, Corrion AJ, Wai CM, Anchieta A, VanBuren R, Day B, Ajwa H, Subbarao KV, Klosterman SJ. Arabidopsis defense mutant ndr1-1 displays accelerated development and early flowering mediated by the hormone gibberellic acid. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:200-213. [PMID: 31203885 DOI: 10.1016/j.plantsci.2019.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
NONRACE-SPECIFIC DISEASE RESISTANCE (NDR1) is a widely characterized gene that plays a key role in defense against multiple bacterial, fungal, oomycete and nematode plant pathogens. NDR1 is required for activation of resistance by multiple NB and LRR-containing (NLR) protein immune sensors and contributes to basal defense. The role of NDR1 in positively regulating salicylic acid (SA)-mediated plant defense responses is well documented. However, ndr1-1 plants flower earlier and show accelerated development in comparison to wild type (WT) Arabidopsis plants, indicating that NDR1 is a negative regulator of flowering and growth. Exogenous application of gibberellic acid (GA) further accelerates the early flowering phenotype in ndr1-1 plants, while the GA biosynthesis inhibitor paclobutrazol attenuated the early flowering phenotype of ndr1-1, but not to WT levels, suggesting partial resistance to paclobutrazol and enhanced GA response in ndr1-1 plants. Mass spectroscopy analyses confirmed that ndr1-1 plants have 30-40% higher levels of GA3 and GA4, while expression of various GA metabolic genes and major flowering regulatory genes is also altered in the ndr1-1 mutant. Taken together this study provides evidence of crosstalk between the ndr1-1-mediated defense and GA-regulated developmental programs in plants.
Collapse
Affiliation(s)
- Nikhilesh Dhar
- Department of Plant Pathology, University of California, Davis, Salinas, CA, 93905, United States.
| | - Dylan P G Short
- Department of Plant Pathology, University of California, Davis, Salinas, CA, 93905, United States.
| | - Bullo Erena Mamo
- Department of Plant Pathology, University of California, Davis, Salinas, CA, 93905, United States.
| | - Alex J Corrion
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48823, United States; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48823, United States.
| | - Ching Man Wai
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48823, United States; Department of Horticulture, Michigan State University, East Lansing, MI, 48823, United States.
| | - Amy Anchieta
- USDA-ARS, 1636 E. Alisal St, Salinas, CA, 93905, United States.
| | - Robert VanBuren
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48823, United States; Department of Horticulture, Michigan State University, East Lansing, MI, 48823, United States.
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48823, United States; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48823, United States.
| | - Husein Ajwa
- Department of Plant Pathology, University of California, Davis, Salinas, CA, 93905, United States.
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, Salinas, CA, 93905, United States.
| | | |
Collapse
|
20
|
Ciaghi S, Schwelm A, Neuhauser S. Transcriptomic response in symptomless roots of clubroot infected kohlrabi (Brassica oleracea var. gongylodes) mirrors resistant plants. BMC PLANT BIOLOGY 2019; 19:288. [PMID: 31262271 PMCID: PMC6604361 DOI: 10.1186/s12870-019-1902-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 06/23/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Clubroot disease caused by Plasmodiophora brassicae (Phytomyxea, Rhizaria) is one of the economically most important diseases of Brassica crops. The formation of hypertrophied roots accompanied by altered metabolism and hormone homeostasis is typical for infected plants. Not all roots of infected plants show the same phenotypic changes. While some roots remain uninfected, others develop galls of diverse size. The aim of this study was to analyse and compare the intra-plant heterogeneity of P. brassicae root galls and symptomless roots of the same host plants (Brassica oleracea var. gongylodes) collected from a commercial field in Austria using transcriptome analyses. RESULTS Transcriptomes were markedly different between symptomless roots and gall tissue. Symptomless roots showed transcriptomic traits previously described for resistant plants. Genes involved in host cell wall synthesis and reinforcement were up-regulated in symptomless roots indicating elevated tolerance against P. brassicae. By contrast, genes involved in cell wall degradation and modification processes like expansion were up-regulated in root galls. Hormone metabolism differed between symptomless roots and galls. Brassinosteroid-synthesis was down-regulated in root galls, whereas jasmonic acid synthesis was down-regulated in symptomless roots. Cytokinin metabolism and signalling were up-regulated in symptomless roots with the exception of one CKX6 homolog, which was strongly down-regulated. Salicylic acid (SA) mediated defence response was up-regulated in symptomless roots, compared with root gall tissue. This is probably caused by a secreted benzoic acid/salicylic acid methyl transferase from the pathogen (PbBSMT), which was one of the highest expressed pathogen genes in gall tissue. The PbBSMT derived Methyl-SA potentially leads to increased pathogen tolerance in uninfected roots. CONCLUSIONS Infected and uninfected roots of clubroot infected plants showed transcriptomic differences similar to those previously described between clubroot resistant and susceptible hosts. The here described intra-plant heterogeneity suggests, that for a better understanding of clubroot disease targeted, spatial analyses of clubroot infected plants will be vital in understanding this economically important disease.
Collapse
Affiliation(s)
- Stefan Ciaghi
- University of Innsbruck, Institute of Microbiology, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Arne Schwelm
- University of Innsbruck, Institute of Microbiology, Technikerstraße 25, 6020 Innsbruck, Austria
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Linnean Centre for Plant Biology, P.O. Box 7080, SE-75007 Uppsala, Sweden
| | - Sigrid Neuhauser
- University of Innsbruck, Institute of Microbiology, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
21
|
McNeece BT, Sharma K, Lawrence GW, Lawrence KS, Klink VP. The mitogen activated protein kinase (MAPK) gene family functions as a cohort during the Glycine max defense response to Heterodera glycines. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 137:25-41. [PMID: 30711881 DOI: 10.1016/j.plaphy.2019.01.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/10/2018] [Accepted: 01/14/2019] [Indexed: 05/23/2023]
Abstract
Mitogen activated protein kinases (MAPKs) play important signal transduction roles. However, little is known regarding how they influence the gene expression of other family members and the relationship to a biological process, including the Glycine max defense response to Heterodera glycines. Transcriptomics have identified MAPK gene expression occurring within root cells undergoing a defense response to a pathogenic event initiated by H. glycines in the allotetraploid Glycine max. Functional analyses are presented for its 32 MAPKs revealing 9 have a defense role, including homologs of Arabidopsis thaliana MAPK (MPK) MPK2, MPK3, MPK4, MPK5, MPK6, MPK13, MPK16 and MPK20. Defense signaling occurring through pathogen activated molecular pattern (PAMP) triggered immunity (PTI) and effector triggered immunity (ETI) have been determined in relation to these MAPKs. Five different types of gene expression relate to MAPK expression, influencing PTI and ETI gene expression and proven defense genes including an ABC-G transporter, 20S membrane fusion particle components, glycoside biosynthesis, carbon metabolism, hemicellulose modification, transcription and secretion. The experiments show MAPKs broadly influence defense MAPK gene expression, including the co-regulation of parologous MAPKs and reveal its relationship to proven defense genes. The experiments reveal each defense MAPK induces the expression of a G. max homolog of a PATHOGENESIS RELATED1 (PR1), itself shown to function in defense in the studied pathosystem.
Collapse
Affiliation(s)
- Brant T McNeece
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Gary W Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Kathy S Lawrence
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL, 36849, USA
| | - Vincent P Klink
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
22
|
Lawaju BR, Lawrence KS, Lawrence GW, Klink VP. Harpin-inducible defense signaling components impair infection by the ascomycete Macrophomina phaseolina. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:331-348. [PMID: 29936240 DOI: 10.1016/j.plaphy.2018.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 05/23/2023]
Abstract
Soybean (Glycine max) infection by the charcoal rot (CR) ascomycete Macrophomina phaseolina is enhanced by the soybean cyst nematode (SCN) Heterodera glycines. We hypothesized that G. max genetic lines impairing infection by M. phaseolina would also limit H. glycines parasitism, leading to resistance. As a part of this M. phaseolina resistance process, the genetic line would express defense genes already proven to impair nematode parasitism. Using G. max[DT97-4290/PI 642055], exhibiting partial resistance to M. phaseolina, experiments show the genetic line also impairs H. glycines parasitism. Furthermore, comparative studies show G. max[DT97-4290/PI 642055] exhibits induced expression of the effector triggered immunity (ETI) gene NON-RACE SPECIFIC DISEASE RESISTANCE 1/HARPIN INDUCED1 (NDR1/HIN1) that functions in defense to H. glycines as compared to the H. glycines and M. phaseolina susceptible line G. max[Williams 82/PI 518671]. Other defense genes that are induced in G. max[DT97-4290/PI 642055] include the pathogen associated molecular pattern (PAMP) triggered immunity (PTI) genes ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), NONEXPRESSOR OF PR1 (NPR1) and TGA2. These observations link G. max defense processes that impede H. glycines parasitism to also potentially function toward impairing M. phaseolina pathogenicity. Testing this hypothesis, G. max[Williams 82/PI 518671] genetically engineered to experimentally induce GmNDR1-1, EDS1-2, NPR1-2 and TGA2-1 expression leads to impaired M. phaseolina pathogenicity. In contrast, G. max[DT97-4290/PI 642055] engineered to experimentally suppress the expression of GmNDR1-1, EDS1-2, NPR1-2 and TGA2-1 by RNA interference (RNAi) enhances M. phaseolina pathogenicity. The results show components of PTI and ETI impair both nematode and M. phaseolina pathogenicity.
Collapse
Affiliation(s)
- Bisho R Lawaju
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, College of Agriculture and Life Sciences, Mississippi State, MS, 39762, USA.
| | - Kathy S Lawrence
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL, 36849, USA.
| | - Gary W Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Vincent P Klink
- Department of Biological Sciences, College of Arts and Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
23
|
Alshehri HA, Alkharouf NW, Darwish O, McNeece BT, Klink VP. MAPKDB: A MAP kinase database for signal transduction element identification. Bioinformation 2018; 15:338-341. [PMID: 31249436 PMCID: PMC6589469 DOI: 10.6026/97320630015338] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 12/02/2022] Open
Abstract
The mitogen activated protein kinase (MAPK) cascade is a central signal transduction platform, ubiquitous within the eukaryotes. MAPKs function prominently in different essential cellular processes such as proliferation, differentiation, survival and defense to pathogen attack. The 32 MAPKs of Glycine max (soybean) have been examined functionally to determine if they have any defense role, focusing in on infection by the plant-parasitic nematode Heterodera glycines. Of these 32 MAPKs, 9 have been shown to have a defense function. Hence, the Mitogen Activated Protein Kinase database (MAPKDB) has been developed to assist in such research. The MAPKDB allows users to search the annotations with sequence data for G. max transgenic lines undergoing overexpression (OE) or RNA interference (RNAi) of its defense map kinases. These defense MAPKs include map kinase 2 (MPK2), MPK3, MPK4, MPK5, MPK6, MPK13, MPK16, and MPK20. The database also contains data analysis information for each sample that helps to detect the differential expression of the genes identified within these samples. The database also contains data for each sample that helps to detect the differential expression of the genes identified within these samples. The database has been developed to manage G. max MAPK sequences with sequence alignment for 18 different samples along with two additional OE and RNAi control experiments for a total of 20.
Collapse
Affiliation(s)
- Hamdan Ali Alshehri
- Department of Computer and Information Sciences, Towson University, Towson, MD 21252, USA
| | - Nadim W Alkharouf
- Department of Computer and Information Sciences, Towson University, Towson, MD 21252, USA
| | - Omar Darwish
- Department of Mathematics and Computer Science, Texas Woman’s University, Denton, TX 76204
| | - Brant T. McNeece
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Vincent P. Klink
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
- Center for Computational Sciences High Performance Computing Collaboratory,
Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
24
|
Aljaafri WAR, McNeece BT, Lawaju BR, Sharma K, Niruala PM, Pant SR, Long DH, Lawrence KS, Lawrence GW, Klink VP. A harpin elicitor induces the expression of a coiled-coil nucleotide binding leucine rich repeat (CC-NB-LRR) defense signaling gene and others functioning during defense to parasitic nematodes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 121:161-175. [PMID: 29107936 DOI: 10.1016/j.plaphy.2017.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 05/23/2023]
Abstract
The bacterial effector harpin induces the transcription of the Arabidopsis thaliana NON-RACE SPECIFIC DISEASE RESISTANCE 1/HARPIN INDUCED1 (NDR1/HIN1) coiled-coil nucleotide binding leucine rich repeat (CC-NB-LRR) defense signaling gene. In Glycine max, Gm-NDR1-1 transcripts have been detected within root cells undergoing a natural resistant reaction to parasitism by the syncytium-forming nematode Heterodera glycines, functioning in the defense response. Expressing Gm-NDR1-1 in Gossypium hirsutum leads to resistance to Meloidogyne incognita parasitism. In experiments presented here, the heterologous expression of Gm-NDR1-1 in G. hirsutum impairs Rotylenchulus reniformis parasitism. These results are consistent with the hypothesis that Gm-NDR1-1 expression functions broadly in generating a defense response. To examine a possible relationship with harpin, G. max plants topically treated with harpin result in induction of the transcription of Gm-NDR1-1. The result indicates the topical treatment of plants with harpin, itself, may lead to impaired nematode parasitism. Topical harpin treatments are shown to impair G. max parasitism by H. glycines, M. incognita and R. reniformis and G. hirsutum parasitism by M. incognita and R. reniformis. How harpin could function in defense has been examined in experiments showing it also induces transcription of G. max homologs of the proven defense genes ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), TGA2, galactinol synthase, reticuline oxidase, xyloglucan endotransglycosylase/hydrolase, alpha soluble N-ethylmaleimide-sensitive fusion protein (α-SNAP) and serine hydroxymethyltransferase (SHMT). In contrast, other defense genes are not directly transcriptionally activated by harpin. The results indicate harpin induces pathogen associated molecular pattern (PAMP) triggered immunity (PTI) and effector-triggered immunity (ETI) defense processes in the root, activating defense to parasitic nematodes.
Collapse
Affiliation(s)
- Weasam A R Aljaafri
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Brant T McNeece
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Bisho R Lawaju
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Prakash M Niruala
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Shankar R Pant
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| | - David H Long
- Albaugh, LLC, 4060 Dawkins Farm Drive, Olive Branch, MS 38654, United States.
| | - Kathy S Lawrence
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL 36849, United States.
| | - Gary W Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Vincent P Klink
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| |
Collapse
|