1
|
Dal Corso J, Newton RJ, Zerkle AL, Chu D, Song H, Song H, Tian L, Tong J, Di Rocco T, Claire MW, Mather TA, He T, Gallagher T, Shu W, Wu Y, Bottrell SH, Metcalfe I, Cope HA, Novak M, Jamieson RA, Wignall PB. Repeated pulses of volcanism drove the end-Permian terrestrial crisis in northwest China. Nat Commun 2024; 15:7628. [PMID: 39223125 PMCID: PMC11368959 DOI: 10.1038/s41467-024-51671-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
The Permo-Triassic mass extinction was linked to catastrophic environmental changes and large igneous province (LIP) volcanism. In addition to the widespread marine losses, the Permo-Triassic event was the most severe terrestrial ecological crisis in Earth's history and the only known mass extinction among insects, but the cause of extinction on land remains unclear. In this study, high-resolution Hg concentration records and multiple-archive S-isotope analyses of sediments from the Junggar Basin (China) provide evidence of repeated pulses of volcanic-S (acid rain) and increased Hg loading culminating in a crisis of terrestrial biota in the Junggar Basin coeval with the interval of LIP emplacement. Minor S-isotope analyses are, however, inconsistent with total ozone layer collapse. Our data suggest that LIP volcanism repeatedly stressed end-Permian terrestrial environments in the ~300 kyr preceding the marine extinction locally via S-driven acidification and deposition of Hg, and globally via pulsed addition of CO2.
Collapse
Affiliation(s)
- Jacopo Dal Corso
- School of Earth and Environment, University of Leeds, Leeds, UK.
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences Wuhan, Wuhan, China.
| | - Robert J Newton
- School of Earth and Environment, University of Leeds, Leeds, UK.
| | - Aubrey L Zerkle
- School of Earth and Environmental Sciences and Centre for Exoplanet Science, University of St Andrews, St Andrews, UK
- Blue Marble Space Institute of Science, Seattle, WA, USA
| | - Daoliang Chu
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences Wuhan, Wuhan, China
| | - Haijun Song
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences Wuhan, Wuhan, China
| | - Huyue Song
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences Wuhan, Wuhan, China
| | - Li Tian
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences Wuhan, Wuhan, China
| | - Jinnan Tong
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences Wuhan, Wuhan, China
| | - Tommaso Di Rocco
- School of Earth and Environmental Sciences and Centre for Exoplanet Science, University of St Andrews, St Andrews, UK
- Geochemistry and Isotope Geology Department, Geosciences Center, University of Göttingen, Göttingen, Germany
| | - Mark W Claire
- School of Earth and Environmental Sciences and Centre for Exoplanet Science, University of St Andrews, St Andrews, UK
- Blue Marble Space Institute of Science, Seattle, WA, USA
| | - Tamsin A Mather
- Department of Earth Sciences, University of Oxford, Oxford, UK
| | - Tianchen He
- School of Earth and Environment, University of Leeds, Leeds, UK
- College of Oceanography, Hohai University, Nanjing, China
| | | | - Wenchao Shu
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences Wuhan, Wuhan, China
| | - Yuyang Wu
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences Wuhan, Wuhan, China
| | | | - Ian Metcalfe
- Division of Earth Science, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Helen A Cope
- School of Earth and Environment, University of Leeds, Leeds, UK
| | - Martin Novak
- Department of Environmental Geochemistry and Biogeochemistry, Czech Geological Survey, Prague, Czech Republic
| | | | - Paul B Wignall
- School of Earth and Environment, University of Leeds, Leeds, UK
| |
Collapse
|
2
|
Chowardhara B, Saha B, Awasthi JP, Deori BB, Nath R, Roy S, Sarkar S, Santra SC, Hossain A, Moulick D. An assessment of nanotechnology-based interventions for cleaning up toxic heavy metal/metalloid-contaminated agroecosystems: Potentials and issues. CHEMOSPHERE 2024; 359:142178. [PMID: 38704049 DOI: 10.1016/j.chemosphere.2024.142178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/22/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Heavy metals (HMs) are among the most dangerous environmental variables for a variety of life forms, including crops. Accumulation of HMs in consumables and their subsequent transmission to the food web are serious concerns for scientific communities and policy makers. The function of essential plant cellular macromolecules is substantially hampered by HMs, which eventually have a detrimental effect on agricultural yield. Among these HMs, three were considered, i.e., arsenic, cadmium, and chromium, in this review, from agro-ecosystem perspective. Compared with conventional plant growth regulators, the use of nanoparticles (NPs) is a relatively recent, successful, and promising method among the many methods employed to address or alleviate the toxicity of HMs. The ability of NPs to reduce HM mobility in soil, reduce HM availability, enhance the ability of the apoplastic barrier to prevent HM translocation inside the plant, strengthen the plant's antioxidant system by significantly enhancing the activities of many enzymatic and nonenzymatic antioxidants, and increase the generation of specialized metabolites together support the effectiveness of NPs as stress relievers. In this review article, to assess the efficacy of various NP types in ameliorating HM toxicity in plants, we adopted a 'fusion approach', in which a machine learning-based analysis was used to systematically highlight current research trends based on which an extensive literature survey is planned. A holistic assessment of HMs and NMs was subsequently carried out to highlight the future course of action(s).
Collapse
Affiliation(s)
- Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh-792103, India.
| | - Bedabrata Saha
- Plant Pathology and Weed Research Department, Newe Ya'ar Research Centre, Agricultural Research Organization, Ramat Yishay-3009500, Israel.
| | - Jay Prakash Awasthi
- Department of Botany, Government College Lamta, Balaghat, Madhya Pradesh 481551, India.
| | - Biswajit Bikom Deori
- Department of Environmental Science, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India.
| | - Ratul Nath
- Department of Life-Science, Dibrugarh University, Dibrugarh, Assam-786004, India.
| | - Swarnendu Roy
- Department of Botany, University of North Bengal, P.O.- NBU, Dist- Darjeeling, West Bengal, 734013, India.
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus, Kolkata, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| |
Collapse
|
3
|
Bos R, Zheng W, Lindström S, Sanei H, Waajen I, Fendley IM, Mather TA, Wang Y, Rohovec J, Navrátil T, Sluijs A, van de Schootbrugge B. Climate-forced Hg-remobilization associated with fern mutagenesis in the aftermath of the end-Triassic extinction. Nat Commun 2024; 15:3596. [PMID: 38678037 PMCID: PMC11519498 DOI: 10.1038/s41467-024-47922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
The long-term effects of the Central Atlantic Magmatic Province, a large igneous province connected to the end-Triassic mass-extinction (201.5 Ma), remain largely elusive. Here, we document the persistence of volcanic-induced mercury (Hg) pollution and its effects on the biosphere for ~1.3 million years after the extinction event. In sediments recovered in Germany (Schandelah-1 core), we record not only high abundances of malformed fern spores at the Triassic-Jurassic boundary, but also during the lower Jurassic Hettangian, indicating repeated vegetation disturbance and stress that was eccentricity-forced. Crucially, these abundances correspond to increases in sedimentary Hg-concentrations. Hg-isotope ratios (δ202Hg, Δ199Hg) suggest a volcanic source of Hg-enrichment at the Triassic-Jurassic boundary but a terrestrial source for the early Jurassic peaks. We conclude that volcanically injected Hg across the extinction was repeatedly remobilized from coastal wetlands and hinterland areas during eccentricity-forced phases of severe hydrological upheaval and erosion, focusing Hg-pollution in the Central European Basin.
Collapse
Affiliation(s)
- Remco Bos
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Princetonlaan 8, 3584, CB, Utrecht, The Netherlands.
| | - Wang Zheng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 300072, Tianjin, China.
| | - Sofie Lindström
- Department of Geosciences and Natural Resource Management, Copenhagen University, Øster Voldgade 10, DK-1350, Copenhagen K, Denmark
| | - Hamed Sanei
- Lithospheric Organic Carbon (LOC) Group, Department of Geoscience, Aarhus University, Høegh-Guldbergs gade 2, 8000C, Aarhus, Denmark
| | - Irene Waajen
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Princetonlaan 8, 3584, CB, Utrecht, The Netherlands
| | - Isabel M Fendley
- Department of Earth Sciences, University of Oxford, Parks Road, Oxford, OX1 3PR, UK
- Department of Geosciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Tamsin A Mather
- Department of Earth Sciences, University of Oxford, Parks Road, Oxford, OX1 3PR, UK
| | - Yang Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 300072, Tianjin, China
| | - Jan Rohovec
- Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, Prague, 6 165 00, Czech Republic
| | - Tomáš Navrátil
- Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, Prague, 6 165 00, Czech Republic
| | - Appy Sluijs
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Princetonlaan 8, 3584, CB, Utrecht, The Netherlands
| | - Bas van de Schootbrugge
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Princetonlaan 8, 3584, CB, Utrecht, The Netherlands
| |
Collapse
|
4
|
Belaid A, Bekir K, Beltifa A, Sedrati M, Santana Rodríguez JJ, Ben Mansour H. Physicochemical and ecotoxicological approaches for Moknine Continental Sebkha in Tunisia. JOURNAL OF WATER AND HEALTH 2024; 22:785-796. [PMID: 38678430 DOI: 10.2166/wh.2024.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/06/2024] [Indexed: 04/30/2024]
Abstract
Degradation of water quality is an emerging issue in many developing countries. In this context, industrial and domestic effluents heavily contaminate the coast of Moknine Continental Sebkha in Tunisia. The present study aimed to biomonitor the seawater quality of the Moknine Continental Sebkha coast using physicochemical and ecotoxicological approaches. The ecotoxicological assessment was performed using three species representing different trophic levels, namely Vibrio fischeri, Selenastrum capricornutum, and Lepidium sativum. In the physicochemical analysis such as BOD (biochemical oxygen demand), COD (chemical oxygen demand), TSS (total suspended solids), TOC (total organic carbon), NO3- (nitrate), AOX (adsorbable organic halogen), the recorded levels of pH and total suspended solids did not comply with the Tunisian standard (NT.09.11/1983). The ecotoxicological data confirmed that the tested water samples displayed toxicity to two test indicators L. sativum and S. capricornutum. A targeted chemical screening of the Moknine Continental Sebkha coast previously performed revealed the presence of total mercury, four phthalate acid esters, and one non-phthalate plasticizer, a fact that could explain the observed ecotoxicological effects and therefore might harm the biotic area and the health of the surrounding population.
Collapse
Affiliation(s)
- Afifa Belaid
- UR Analysis and Process Applied on the Environment (UR17ES32), Higher Institute of Applied Sciences and Technology, University of Monastir, Mahdia, Tunisia
| | - Karima Bekir
- UR Analysis and Process Applied on the Environment (UR17ES32), Higher Institute of Applied Sciences and Technology, University of Monastir, Mahdia, Tunisia
| | - Asma Beltifa
- UR Analysis and Process Applied on the Environment (UR17ES32), Higher Institute of Applied Sciences and Technology, University of Monastir, Mahdia, Tunisia
| | - Mouncef Sedrati
- Geo-Ocean UMR 6538, CNRS, Ifremer, UBO - UBS, Plouzane, France
| | - José Juan Santana Rodríguez
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria 35017, Spain
| | - Hedi Ben Mansour
- UR Analysis and Process Applied on the Environment (UR17ES32), Higher Institute of Applied Sciences and Technology, University of Monastir, Mahdia, Tunisia; Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria 35017, Spain E-mail:
| |
Collapse
|
5
|
Kapoor RT, Ahmad A, Shakoor A, Paray BA, Ahmad P. Nitric Oxide and Strigolactone Alleviate Mercury-Induced Oxidative Stress in Lens culinaris L. by Modulating Glyoxalase and Antioxidant Defense System. PLANTS (BASEL, SWITZERLAND) 2023; 12:1894. [PMID: 37176951 PMCID: PMC10181142 DOI: 10.3390/plants12091894] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 05/15/2023]
Abstract
Developmental activities have escalated mercury (Hg) content in the environment and caused food security problems. The present investigation describes mercury-incited stress in Lens culinaris (lentil) and its mitigation by supplementation of sodium nitroprusside (SNP) and strigolactone (GR24). Lentil exposure to Hg decreased root and shoot length, relative water content and biochemical variables. Exogenous application of SNP and GR24 alone or in combination enhanced all of the aforementioned growth parameters. Hg treatment increased electrolyte leakage and malondialdehyde content, but this significantly decreased with combined application (Hg + SNP + GR24). SNP and GR24 boosted mineral uptake and reduced Hg accumulation, thus minimizing the adverse impacts of Hg. An increase in mineral accretion was recorded in lentil roots and shoots in the presence of SNP and GR24, which might support the growth of lentil plants under Hg stress. Hg accumulation was decreased in lentil roots and shoots by supplementation of SNP and GR24. The methylglyoxal level was reduced in lentil plants with increase in glyoxalase enzymes. Antioxidant and glyoxylase enzyme activities were increased by the presence of SNP and GR24. Therefore, synergistic application of nitric oxide and strigolactone protected lentil plants against Hg-incited oxidative pressure by boosting antioxidant defense and the glyoxalase system, which assisted in biochemical processes regulation.
Collapse
Affiliation(s)
- Riti Thapar Kapoor
- Plant Physiology Laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, Uttar Pradesh, India
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, 25198 Lleida, Spain
| | - Bilal Ahamad Paray
- Zoology Department, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Parvaiz Ahmad
- Department of Botany, Govt. Degree College, Pulwama 192301, Jammu and Kashmir, India
| |
Collapse
|
6
|
Singh AD, Khanna K, Kour J, Dhiman S, Bhardwaj T, Devi K, Sharma N, Kumar P, Kapoor N, Sharma P, Arora P, Sharma A, Bhardwaj R. Critical review on biogeochemical dynamics of mercury (Hg) and its abatement strategies. CHEMOSPHERE 2023; 319:137917. [PMID: 36706814 DOI: 10.1016/j.chemosphere.2023.137917] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/21/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Mercury (Hg) is among the naturally occurring heavy metal with elemental, organic, and inorganic distributions in the environment. Being considered a global pollutant, high pools of Hg-emissions ranging from >6000 to 8000 Mg Hg/year get accumulated by the natural and anthropogenic activities in the atmosphere. These toxicants have high persistence, toxicity, and widespread contamination in the soil, water, and air resources. Hg accumulation inside the plant parts amplifies the traces of toxic elements in the linking food chains, leads to Hg exposure to humans, and acts as a potential genotoxic, neurotoxic and carcinogenic entity. However, excessive Hg levels are equally toxic to the plant system and severely disrupt the physiological and metabolic processes in plants. Thus, a plausible link between Hg-concentration and its biogeochemical behavior is highly imperative to analyze the plant-soil interactions. Therefore, it is requisite to bring these toxic contaminants in between the acceptable limits to safeguard the environment. Plants efficiently incorporate or absorb the bioavailable Hg from the soil thus a constructive understanding of Hg uptake, translocation/sequestration involving specific heavy metal transporters, and detoxification mechanisms are drawn. Whereas recent investigations in biological remediation of Hg provide insights into the potential associations between the plants and microbes. Furthermore, intense research on Hg-induced antioxidants, protein networks, metabolic mechanisms, and signaling pathways is required to understand these bioremediations techniques. This review sheds light on the mercury (Hg) sources, pollution, biogeochemical cycles, its uptake, translocation, and detoxification methods with respect to its molecular approaches in plants.
Collapse
Affiliation(s)
- Arun Dev Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Jaspreet Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shalini Dhiman
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Tamanna Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kamini Devi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Neerja Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Pardeep Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Nitika Kapoor
- P.G. Department of Botany, Hans Raj Mahila Maha Vidyalaya, Jalandhar, Punjab, India
| | - Priyanka Sharma
- School of Bioengineering Sciences and Research, MIT-ADT University, Pune, Maharashtra, India
| | - Priya Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
7
|
Cui L, Tian X, Xie H, Cong X, Cui L, Wu H, Wang J, Li B, Zhao J, Cui Y, Feng X, Li YF. Cardamine violifolia as a potential Hg hyperaccumulator and the cellular responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160940. [PMID: 36528102 DOI: 10.1016/j.scitotenv.2022.160940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Cardamine violifolia belongs to the Brassicaceae family and is a selenium (Se) hyperaccumulator found in Enshi, China. In this study, C. violifolia was found to accumulate mercury (Hg) in its roots and aboveground parts at concentrations up to 6000 μg/g. In the seedling and mature stages, the bioaccumulation factors (BAFS) of Hg reached 1.8-223, while the translocation factor (TF) for Hg reached 1.5. We observed a significant positive correlation between THg concentrations in plant tissues and those in the soil (r2 = 0.71-0.84). Synchrotron radiation X-ray fluorescence with focused X-ray (μ-SRXRF) showed that Hg was translocated from the roots to shoots through the vascular bundle and was transported through the leaf veins in leaves. Transmission electron microscopy showed that root cells were more tolerant to Hg than leaf cells. These findings provide insights into the mechanisms of Hg hyperaccumulation in C. violifolia. Overall, we demonstrated that C. violifolia is a promising Hg hyperaccumulator that may be used for phytoremediating Hg-contaminated farmlands.
Collapse
Affiliation(s)
- Liwei Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xue Tian
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, Beijing 100049, China; Beijing Metallomics Facility, Chinese Academy of Sciences, Beijing 100049, China; National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxin Xie
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, Beijing 100049, China; Beijing Metallomics Facility, Chinese Academy of Sciences, Beijing 100049, China; National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Cong
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi 445000, Hubei, China; National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lihong Cui
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Han Wu
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, Heilongjiang, China
| | - Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China
| | - Bai Li
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, Beijing 100049, China; Beijing Metallomics Facility, Chinese Academy of Sciences, Beijing 100049, China; National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jiating Zhao
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, Beijing 100049, China; Beijing Metallomics Facility, Chinese Academy of Sciences, Beijing 100049, China; National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yanshan Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China
| | - Yu-Feng Li
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, Beijing 100049, China; Beijing Metallomics Facility, Chinese Academy of Sciences, Beijing 100049, China; National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Liu T, Chen Q, Zhang L, Liu X, Liu C. The toxicity of selenium and mercury in Suaeda salsa after 7-days exposure. Comp Biochem Physiol C Toxicol Pharmacol 2021; 244:109022. [PMID: 33631342 DOI: 10.1016/j.cbpc.2021.109022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Abstract
Mercury is one of the major pollutants in the ocean, selenium causes toxicity beyond a certain limit, but there are few comparative toxic studies between them in halophytes. The study was to investigate the toxic effects of selenium (Se4+) and mercury (Hg2+) in halophyte Suaeda salsa at the level of genes, proteins and metabolites after exposure for 7 days. By integrating the results of proteomics and metabolomics, the pathway changed under different treatments were revealed. In Se4+-treated group, the changed 3 proteins and 10 metabolites participated in the process of substance metabolism (amino acid, pyrimidine), citrate cycle, pentose phosphate pathway, photosynthesis, energy, and protein biosynthesis. In Hg2+-treated group, the changed 10 proteins and 10 metabolites were related to photosynthesis, glycolysis, substance metabolism (cysteine and methionine, amino acid, pyrimidine), ATP synthesis and binding, tolerance, sugar-phosphatase activity, and citrate cycle. In Se4++ Hg2+-treated group, the changed 5 proteins an 12 metabolites involved in stress defence, iron ion binding, mitochondrial respiratory chain, structural constituent of ribosome, citrate cycle, and amino acid metabolism. Furthermore, the separate and combined selenium and mercury both inhibited growth of S. salsa, enhanced activity of antioxidant enzymes (superoxide dismutase, peroxidase and catalase), and disturbed osmotic regulation through the genes of choline monoxygenase and betaine aldehyde dehydrogenase. Our experiments also showed selenium could induce synergistic effects in S. salsa. In all, we successfully characterized the effects of selenium and mercury in plant which was helpful to evaluate the toxicity and interaction of marine pollutants.
Collapse
Affiliation(s)
- Ting Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qian Chen
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai 264025, PR China
| | - Linbao Zhang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, PR China
| | - Xiaoli Liu
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai 264025, PR China.
| | - Chunming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China.
| |
Collapse
|
9
|
Methneni N, Morales-González JA, Jaziri A, Mansour HB, Fernandez-Serrano M. Persistent organic and inorganic pollutants in the effluents from the textile dyeing industries: Ecotoxicology appraisal via a battery of biotests. ENVIRONMENTAL RESEARCH 2021; 196:110956. [PMID: 33675797 DOI: 10.1016/j.envres.2021.110956] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/08/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Today, the textile industry is considered as a leading economic sector in Tunisia. However, this sector demands a huge volume of water and a wide spectrum of chemicals, which is converted into potentially toxic wastewater leading to environmental perturbation and human health toxicity. Assessment of the environmental risks associated with textile wastewater becomes a necessity. In this study, textile dyeing wastewater samples were collected before and after the physico-chemical treatment carried out by textile companies located in Monastir-city-Tunisia and subjected to chemical analyzes in order to determine their physicochemical characteristics and the content of metals and textile dyes. The ecotoxicological assessment was performed using four organisms, namely Selenastrum capricornutum, Vibrio fischeri, Daphnia magna and Lepidium sativum, to represent different trophic levels. Based on chemical data, some physicochemical parameters (e.g. TSS, COD and TSS levels) and metals (e.g. Cr, Hg and Sb) in the textile dyeing effluents were revealed not in compliance with the Tunisian standard. Moreover, high quantities of three disperse dyes have been detected even in the textile dyeing wastewater samples before and after treatments. The ecotoxicological data confirmed that the textile dyeing influents displayed toxic effects to all the test organisms, with Selenastrum capricornutum being the most sensitive organism. While, the above toxic effects were decreased slightly when evaluating the treated effluents. Metals and textile disperse dyes could be associated with the observed toxic effects of the textile influents and effluents. In fact, the treatment process applied by the evaluated companies was only partially efficient at removing metals, disperse dyes and effluent ecotoxicity, suggesting potential risks to aquatic biota. These findings emphasize the importance of applying integrated chemical and biological approaches for continuous evaluation of the toxicity of the treated effluents to predict hazards on the environment.
Collapse
Affiliation(s)
- Nosra Methneni
- Research Unit of Analysis and Process Applied to the Environment-APAE (UR17ES32) Higher Institute of Applied Sciences and Technology Mahdia, University of Monastir, Monastir, Tunisia; Department of Chemical Engineering, Faculty of Sciences, University of Granada, Spain
| | | | - Ahlem Jaziri
- Research Unit of Analysis and Process Applied to the Environment-APAE (UR17ES32) Higher Institute of Applied Sciences and Technology Mahdia, University of Monastir, Monastir, Tunisia
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to the Environment-APAE (UR17ES32) Higher Institute of Applied Sciences and Technology Mahdia, University of Monastir, Monastir, Tunisia
| | | |
Collapse
|
10
|
Shahid M, Khalid S, Bibi I, Bundschuh J, Khan Niazi N, Dumat C. A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: Ecotoxicology and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134749. [PMID: 32000322 DOI: 10.1016/j.scitotenv.2019.134749] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/18/2019] [Accepted: 09/29/2019] [Indexed: 05/09/2023]
Abstract
Environmental contamination by a non-essential and non-beneficial, although potentially toxic mercury (Hg), is becoming a great threat to the living organisms at a global scale. Owing to its various uses in numerous industrial processes, high amount of Hg is released into different environmental compartments. Environmental Hg contamination can result in food chain contamination, especially due to its accumulation in edible plant parts. Consumption of Hg-rich food is a key source of Hg exposure to humans. Since Hg does not possess any identified biological role and has genotoxic and carcinogenic potential, it is critical to monitor its biogeochemical behavior in the soil-plant system and its influence in terms of possible food chain contamination and human exposure. This review traces a plausible link among Hg levels, its chemical speciation and phytoavailability in soil, accumulation in plants, phytotoxicity and detoxification of Hg inside the plant. The role of different enzymatic (peroxidase, catalase, ascorbate peroxidase, superoxide dismutase, glutathione peroxidase) and non-enzymatic (glutathione, phytochelatins, proline and ascorbic acid) antioxidants has also been elucidated with respect to enhanced generation of reactive radicles and resulting oxidative stress. The review also outlines Hg build-up in edible plant tissues and associated health risks. The biogeochemical role of Hg in the soil-plant system and associated health risks have been described with well summarized and up-to-date data in 12 tables and 4 figures. We believe that this comprehensive review article and meta-analysis of Hg data can be greatly valuable for scientists, researchers, policymakers and graduate-level students.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari-61100, Pakistan.
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari-61100, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Jochen Bundschuh
- UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, Queensland 4350, Australia
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba, Queensland, Australia.
| | - Camille Dumat
- Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP), UMR5044, Université J. Jaurès - Toulouse II, 5 allée Machado A., 31058 Toulouse, cedex 9, France; Université de Toulouse, INP-ENSAT, Avenue de l'Agrobiopole, 31326 Auzeville-Tolosane, France; Association Réseau-Agriville (http://reseau-agriville.com/), France
| |
Collapse
|
11
|
Kumar S, Prasad S, Yadav KK, Shrivastava M, Gupta N, Nagar S, Bach QV, Kamyab H, Khan SA, Yadav S, Malav LC. Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches - A review. ENVIRONMENTAL RESEARCH 2019; 179:108792. [PMID: 31610391 DOI: 10.1016/j.envres.2019.108792] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/12/2019] [Accepted: 10/01/2019] [Indexed: 05/23/2023]
Abstract
This review emphasizes the role of toxic metal remediation approaches due to their broad sustainability and applicability. The rapid developmental processes can incorporate a large quantity of hazardous and unseen heavy metals in all the segments of the environment, including soil, water, air and plants. The released hazardous heavy metals (HHMs) entered into the food chain and biomagnified into living beings via food and vegetable consumption and originate potentially health-threatening effects. The physical and chemical remediation approaches are restricted and localized and, mainly applied to wastewater and soils and not the plant. The nanotechnological, biotechnological and genetical approaches required to more rectification and sustainability. A cellular, molecular and nano-level understanding of the pathways and reactions are responsible for potentially toxic metals (TMs) accumulation. These approaches can enable the development of crop varieties with highly reduced concentrations of TMs in their consumable foods and vegetables. As a critical analysis by authors observed that nanoparticles could provide very high adaptability for both in-situ and ex-situ remediation of hazardous heavy metals (HHMs) in the environment. These methods could be used for the improvement of the inbuilt genetic potential and phytoremediation ability of plants by developing transgenic. These biological processes involve the transfer of gene of interest, which plays a role in hazardous metal uptake, transport, stabilization, inactivation and accumulation to increased host tolerance. This review identified that use of nanoremediation and combined biotechnological and, transgenic could help to enhance phytoremediation efficiency in a sustainable way.
Collapse
Affiliation(s)
- Sandeep Kumar
- Centre for Environment Science and Climate Resilient Agriculture, Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Shiv Prasad
- Centre for Environment Science and Climate Resilient Agriculture, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Krishna Kumar Yadav
- Institute of Environment and Development Studies, Bundelkhand University, Kanpur Road, Jhansi 284128, India.
| | - Manoj Shrivastava
- Centre for Environment Science and Climate Resilient Agriculture, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Neha Gupta
- Institute of Environment and Development Studies, Bundelkhand University, Kanpur Road, Jhansi 284128, India
| | - Shivani Nagar
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Quang-Vu Bach
- Institute of Research and Development, Duy Tan University, Danang 550000, Viet Nam.
| | - Hesam Kamyab
- UTM Razak School of Engineering and Advanced Technology, Universiti Teknologi Malaysia, Malaysia
| | - Shakeel A Khan
- Centre for Environment Science and Climate Resilient Agriculture, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Sunita Yadav
- Centre for Environment Science and Climate Resilient Agriculture, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Lal Chand Malav
- National Bureau of Soil Survey and Land Use Planning, Nagpur, India
| |
Collapse
|
12
|
Rodriguez E, Sousa M, Gomes A, Azevedo R, Mariz-Ponte N, Sario S, Mendes RJ, Santos C. Genotoxic endpoints in a Pb-accumulating pea cultivar: insights into Pb 2+ contamination limits. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:32368-32373. [PMID: 31605360 DOI: 10.1007/s11356-019-06465-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Lead (Pb) persists among the most hazardous contaminant metals. Pb-induced genotoxic effects remain a matter of debate as they are a major cause of plant growth impairment, but assessing Pb genotoxicity requires the selection of Pb-sensitive genotoxic biomarkers. Seedlings of the ecotoxicological model species Pisum sativum L. were exposed to Pb2+ (≤ 2000 mg L-1). Flow cytometry (FCM) revealed that 28 days after, Pb2+ arrested root cell cycle at G2 but no eu/aneuploidies were found. Comet assay and FCM-clastogenicity assays showed that Pb2+ increased DNA breaks in roots at concentrations as low as 20 mg L-1. Leaves showed no variation in DNA-ploidy or cell cycle progression but had increased DNA breaks at the highest Pb2+ dose. We conclude that both Comet assay and the full-peak coefficient of variation (FPCV) were the most relevant endpoints of Pb-phytogenotoxicity. Also, the Pb-induced DNA breaks may be related with the arrest at the G2-checkpoint. Data will be relevant to better define Pb2+ ecogenotoxicological effects and their measuring tools and may contribute to a regulatory debate of this pollutant limits.
Collapse
Affiliation(s)
- Eleazar Rodriguez
- LBC, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Márcia Sousa
- Department of Biology and LAQV/REQUIMTE, Faculty of Sciences of University of Porto, Rua do Campo Alegre 1021/1055, 4169-007, Porto, Portugal
| | - Anicia Gomes
- Department of Biology and LAQV/REQUIMTE, Faculty of Sciences of University of Porto, Rua do Campo Alegre 1021/1055, 4169-007, Porto, Portugal
| | - Raquel Azevedo
- LBC, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Nuno Mariz-Ponte
- Department of Biology and LAQV/REQUIMTE, Faculty of Sciences of University of Porto, Rua do Campo Alegre 1021/1055, 4169-007, Porto, Portugal
| | - Sara Sario
- Department of Biology and LAQV/REQUIMTE, Faculty of Sciences of University of Porto, Rua do Campo Alegre 1021/1055, 4169-007, Porto, Portugal
- CITAB-Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801, Vila Real, Portugal
| | - Rafael José Mendes
- Department of Biology and LAQV/REQUIMTE, Faculty of Sciences of University of Porto, Rua do Campo Alegre 1021/1055, 4169-007, Porto, Portugal.
- CITAB-Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801, Vila Real, Portugal.
| | - Conceição Santos
- Department of Biology and LAQV/REQUIMTE, Faculty of Sciences of University of Porto, Rua do Campo Alegre 1021/1055, 4169-007, Porto, Portugal
| |
Collapse
|
13
|
Lindström S, Sanei H, van de Schootbrugge B, Pedersen GK, Lesher CE, Tegner C, Heunisch C, Dybkjær K, Outridge PM. Volcanic mercury and mutagenesis in land plants during the end-Triassic mass extinction. SCIENCE ADVANCES 2019; 5:eaaw4018. [PMID: 31681836 PMCID: PMC6810405 DOI: 10.1126/sciadv.aaw4018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 09/13/2019] [Indexed: 06/01/2023]
Abstract
During the past 600 million years of Earth history, four of five major extinction events were synchronous with volcanism in large igneous provinces. Despite improved temporal frameworks for these events, the mechanisms causing extinctions remain unclear. Volcanic emissions of greenhouse gases, SO2, and halocarbons are generally considered as major factors in the biotic crises, resulting in global warming, acid deposition, and ozone layer depletion. Here, we show that pulsed elevated concentrations of mercury in marine and terrestrial sediments across the Triassic-Jurassic boundary in southern Scandinavia and northern Germany correlate with intense volcanic activity in the Central Atlantic Magmatic Province. The increased levels of mercury-the most genotoxic element on Earth-also correlate with high occurrences of abnormal fern spores, indicating severe environmental stress and genetic disturbance in the parent plants. We conclude that this offers compelling evidence that emissions of toxic volcanogenic substances contributed to the end-Triassic biotic crisis.
Collapse
Affiliation(s)
- Sofie Lindström
- Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark
| | - Hamed Sanei
- Department of Geoscience, Aarhus University, Hoegh-Guldbergs Gade 2, DK-8000 Aarhus C, Denmark
| | - Bas van de Schootbrugge
- Department of Earth Sciences, Marine Palynology and Paleoceanography, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, Netherlands
| | - Gunver K. Pedersen
- Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark
| | - Charles E. Lesher
- Department of Geoscience, Aarhus University, Hoegh-Guldbergs Gade 2, DK-8000 Aarhus C, Denmark
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Christian Tegner
- Department of Geoscience, Aarhus University, Hoegh-Guldbergs Gade 2, DK-8000 Aarhus C, Denmark
| | - Carmen Heunisch
- State Authority for Mining, Energy and Geology, Stilleweg 2, D-30655 Hannover, Germany
| | - Karen Dybkjær
- Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark
| | - Peter M. Outridge
- Geological Survey of Canada, Natural Resources Canada, 601 Booth Street, Ottawa, Ontario K1A 0E8, Canada
| |
Collapse
|
14
|
Mahbub KR, Bahar MM, Megharaj M, Labbate M. Are the existing guideline values adequate to protect soil health from inorganic mercury contamination? ENVIRONMENT INTERNATIONAL 2018; 117:10-15. [PMID: 29704752 DOI: 10.1016/j.envint.2018.04.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Currently, data that guide safe concentration ranges for inorganic mercury in the soil are lacking and subsequently, threaten soil health. In the present study, a species sensitivity distribution (SSD) approach was applied to estimate critical mercury concentration that has little (HC5) or no effect (PNEC) on soil biota. Recently published terrestrial toxicity data were incorporated in the approach. Considering total mercury content in soils, the estimated HC5 was 0.6 mg/kg, and the PNEC was 0.12-0.6 mg/kg. Whereas, when only water-soluble mercury fractions were considered, these values were 0.04 mg/kg and 0.008-0.04 mg/kg, respectively.
Collapse
Affiliation(s)
| | - Md Mezbaul Bahar
- Global Center for Environmental Remediation, Research and Innovation Division, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Mallavarapu Megharaj
- Global Center for Environmental Remediation, Research and Innovation Division, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Maurizio Labbate
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|