1
|
Vallejos V, Fuentes F, Sancho-Knapik D, Gago J, Ramírez CF, Rivera BK, Cavieres LA, Galmés J, Peguero-Pina JJ, Gil-Pelegrín E, Sáez PL. Hydraulic and Photosynthetic Performance of Antarctic Plants Under Successive Freeze-Thaw Cycles. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40195619 DOI: 10.1111/pce.15528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/29/2025] [Accepted: 03/23/2025] [Indexed: 04/09/2025]
Abstract
Climate change projections predict warming and increased weather variability, mainly in polar regions, altering freeze-thaw patterns. However, the effects of rising temperatures and more frequent freeze-thaw events on the water and CO2 management of Antarctic plants remain unclear. To address this, we conducted a laboratory experiment to investigate how growth temperature (5°C and 15°C) and successive freeze-thaw cycles influence the hydraulic and photosynthetic performance of Deschampsia antarctica (D. antarctica) and Colobanthus quitensis (C. quitensis). Our results showed that warmer conditions improved hydraulic and photosynthetic performance in both species, driven by anatomical adjustments in leaf xylem vessels. Additionally, plants exposed to successive freeze-thaw cycles exhibited a coordinated decline in whole-plant hydraulic conductivity and leaf gas exchange, regardless of growth temperature. The magnitude of changes (%) in photosynthetic traits after freeze-thaw cycles varied between species, with D. antarctica showing similar responses at both growth temperatures, while C. quitensis experienced more pronounced changes at the lower temperature. Overall, these findings suggest that while Antarctic plants benefit from warmer temperatures, repeated freeze-thaw events could disrupt their hydraulic balance and limit photosynthesis, particularly under natural environmental conditions.
Collapse
Affiliation(s)
- Valentina Vallejos
- Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, y Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
- Instituto de Ecología y Biodiversidad-IEB, Concepción, Chile
| | - Francisca Fuentes
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Ciencias Agronómicas y Recursos Naturales, Instituto de Agroindustria, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco, Chile
| | - Domingo Sancho-Knapik
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain
| | - Jorge Gago
- ECOBIOSIS, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Constanza F Ramírez
- Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, y Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
- Instituto de Ecología y Biodiversidad-IEB, Concepción, Chile
| | - Betsy K Rivera
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Ciencias Agronómicas y Recursos Naturales, Instituto de Agroindustria, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco, Chile
| | - Lohengrin A Cavieres
- Instituto de Ecología y Biodiversidad-IEB, Concepción, Chile
- Research Group on Plant Biology under Mediterranean Conditions, INAGEA-Universitat de les Illes Balears, Balearic Islands, Spain
| | - Jeroni Galmés
- ECOBIOSIS, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - José Javier Peguero-Pina
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain
| | - Eustaquio Gil-Pelegrín
- Departamento de Biología Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, Spain
| | - Patricia L Sáez
- Instituto de Ecología y Biodiversidad-IEB, Concepción, Chile
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Ciencias Agronómicas y Recursos Naturales, Instituto de Agroindustria, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
2
|
Wang AY, Li SQ, Cui HX, Liu YN, Lu YJ, Hao GY. Divergence in leaf and cambium phenologies among three temperate tree species of different wood types with special reference to xylem hydraulics. FRONTIERS IN PLANT SCIENCE 2025; 16:1562873. [PMID: 40098642 PMCID: PMC11911365 DOI: 10.3389/fpls.2025.1562873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025]
Abstract
Leaf and cambium phenologies are both important aspects of tree environmental adaptation in temperate areas. Temperate tree species with non-porous, diffuse-porous and ring-porous woods diverge substantially in the strategy of coping with freezing-induced hydraulic dysfunction, which can be closely associated with the timing of both leaf phenology and xylogenesis. Nevertheless, we still know little about the potential differences in the intra-annual process of xylogenesis among species of the three functional groups as well as its association with leaf phenology. Here, we monitored leaf phenology and xylogenesis in a non-porous (Pinus), a diffuse-porous (Populus), and a ring-porous (Ulmus) temperate tree species in a common garden. The results showed clear divergences in leaf and cambium phenologies and their chronological orders among the three species. The two hardwood species exhibited earlier bud burst and leaf unfolding than the conifer. The cambial activity of the ring-porous species began earlier than the diffuse-porous species, although the leaf phenology of the diffuse-porous species was earlier. The conifer species showed the latest bud break but the initiation of cambium activity was the earliest, which can be attributed to its strong resistance to freezing-induced embolism in the tracheid-based xylem. The leaf phenology preceded the onset of cambial activity in the Populus species, which was permitted by the ability of diffuse-porous species in largely retaining the stem hydraulic function over the winter. In contrast, the Ulmus species with ring-porous wood had to restore its severely hampered stem hydraulic function by winter embolism before leaf flush. The results revealed that leaf and cambium phenologies are closely interconnected due to the coordination between xylem water transport and leaf water demand. These findings contribute to a better understanding of the divergent adaptive strategies of temperate trees with different wood types.
Collapse
Affiliation(s)
- Ai-Ying Wang
- College of Life Science and Bioengineering, Shenyang University, Shenyang, Liaoning, China
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Bioengineering, Shenyang University, Shenyang, Liaoning, China
| | - Si-Qi Li
- College of Life Science and Bioengineering, Shenyang University, Shenyang, Liaoning, China
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Bioengineering, Shenyang University, Shenyang, Liaoning, China
| | - Han-Xiao Cui
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ya-Nan Liu
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yi-Jun Lu
- College of Life Science and Bioengineering, Shenyang University, Shenyang, Liaoning, China
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Bioengineering, Shenyang University, Shenyang, Liaoning, China
| | - Guang-You Hao
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
3
|
Zhao Q, Chen J, Kang J, Kang S. Trade-Offs Between Hydraulic Efficiency and Safety in Cotton ( Gossypium hirsutum L.) Stems Under Elevated CO 2 and Salt Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:298. [PMID: 39861651 PMCID: PMC11768702 DOI: 10.3390/plants14020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Plants respond to environmental changes by altering the anatomical structure of the xylem and its hydraulic properties. While numerous studies have explored the effects of individual environmental factors on crops, the combined interactions of these factors remain underexplored. As climate change intensifies, the occurrence of salt stress is becoming more frequent, alongside a rise in atmospheric CO2 concentration. This study aims to investigate the effects of elevated CO2 and salt stress on the hydraulic traits and xylem anatomical structures of cotton stems. Potted cotton plants were exposed to different CO2 concentrations (aC: 400 ppm; eC: 800 ppm) and salinity levels (aS: 0‱ soil salinity; eS: 6‱ soil salinity). The study found that under eC and eS conditions, a trade-off exists between hydraulic efficiency and safety in cotton stems, which may be partially attributed to xylem anatomical structures. Specifically, eS significantly reduced stem hydraulic conductivity under aC conditions and decreased vessel diameter but increased the proportion of small-diameter vessels and enhanced implosion resistance ((t/b)2), which strengthened the xylem's resistance to salt-induced embolism. eC altered the response pattern of xylem hydraulic conductivity and embolism resistance to salt stress, with increased vessel diameter enhancing hydraulic conductivity but reducing xylem resistance to embolism. These findings enhance our comprehension of plant hydraulic adaptation under future climatic conditions and provide new insights into the trade-offs between xylem structure and function.
Collapse
Affiliation(s)
- Qing Zhao
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China; (Q.Z.); (J.C.); (J.K.)
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China
| | - Jinliang Chen
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China; (Q.Z.); (J.C.); (J.K.)
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China
| | - Jian Kang
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China; (Q.Z.); (J.C.); (J.K.)
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China
| | - Shaozhong Kang
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China; (Q.Z.); (J.C.); (J.K.)
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China
| |
Collapse
|
4
|
Walde MG, Lehmann MM, Gessler A, Vitasse Y, Diao H. Stable Isotope Labelling Reveals Water and Carbon Fluxes in Temperate Tree Saplings Before Budbreak. PLANT, CELL & ENVIRONMENT 2025; 48:805-817. [PMID: 39351616 PMCID: PMC11615418 DOI: 10.1111/pce.15173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/08/2024] [Accepted: 09/11/2024] [Indexed: 12/06/2024]
Abstract
Despite considerable experimental effort, the physiological mechanisms governing temperate tree species' water and carbon dynamics before the onset of the growing period remain poorly understood. We applied 2H-enriched water during winter dormancy to the soil of four potted European tree species. After 8 weeks of chilling, hydrogen isotopes in stem, twig and bud water were measured six times during 2 consecutive weeks of forcing conditions (Experiment 1). Additionally, we pulse-labelled above-ground plant tissues using 2H-enriched water vapour and 13C-enriched CO2 7 days after exposure to forcing conditions to trace atmospheric water and carbon uptake (Experiment 2). Experiment 1 revealed soil water incorporation into the above-ground organs of all species during the chilling phase and significant species-specific differences in water allocation during the forcing conditions, which we attributed to differences in structural traits. Experiment 2 illustrated water vapour incorporation into all above-ground tissue of all species. However, the incorporation of carbon was found for evergreen saplings only. Our results suggest that temperate trees take up and reallocate soil water and absorb atmospheric water to maintain sufficient above-ground tissue hydration during winter. Therefore, our findings provide new insights into the water allocation dynamics of temperate trees during early spring.
Collapse
Affiliation(s)
- Manuel G. Walde
- Ecosystem Ecology, Forest Dynamics, Swiss Federal Institute for ForestSnow and Landscape Research WSLBirmensdorfSwitzerland
| | - Marco M. Lehmann
- Ecosystem Ecology, Forest Dynamics, Swiss Federal Institute for ForestSnow and Landscape Research WSLBirmensdorfSwitzerland
| | - Arthur Gessler
- Ecosystem Ecology, Forest Dynamics, Swiss Federal Institute for ForestSnow and Landscape Research WSLBirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsETH Zurich (Swiss Federal Institute of Technology)ZurichSwitzerland
| | - Yann Vitasse
- Ecosystem Ecology, Forest Dynamics, Swiss Federal Institute for ForestSnow and Landscape Research WSLBirmensdorfSwitzerland
- Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
| | - Haoyu Diao
- Ecosystem Ecology, Forest Dynamics, Swiss Federal Institute for ForestSnow and Landscape Research WSLBirmensdorfSwitzerland
| |
Collapse
|
5
|
Cheng X, Jiang L, Liu W, Song X, Kumpiene J, Luo C. Phytoremediation of trichloroethylene in the soil/groundwater environment: Progress, problems, and potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176566. [PMID: 39362566 DOI: 10.1016/j.scitotenv.2024.176566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Trichloroethylene (TCE) poses a significant environmental threat in groundwater and soil, necessitating effective remediation strategies. Phytoremediation offers a cost-effective and environmentally friendly approach to remediation. However, the mechanisms governing plant uptake, volatilisation, and degradation of TCE remain poorly understood. This review explores the mechanisms of TCE phytoremediation, metabolic pathways, and influencing factors, emphasizing future research directions to improve the understanding of TCE phytoremediation. The results showed that although the proportion of TCE phytovolatilisation is limited, it is important at sites chronically contaminated with TCE. The rhizosphere is a key microzone for pollutant redox reactions that significantly enhance its effectiveness when its characteristics are fully utilised and manipulated through reinforcement. Future research should focus on manipulating microbial communities through methods such as the application of endophytic bacteria and genetic modification. However, practical applications are in their infancy and further investigation is needed. Furthermore, many findings are based on non-uniform parameters or unstandardised methods, making them difficult to compare. Therefore, future studies should provide more standardised experimental parameters and employ accurate and standardised methods to develop suitable prediction models, enhancing data comparability and deepening our understanding of plant detoxification mechanisms.
Collapse
Affiliation(s)
- Xianghui Cheng
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Longfei Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wuxing Liu
- CAS Key Laboratory of Soil Environment & Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xin Song
- CAS Key Laboratory of Soil Environment & Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jurate Kumpiene
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå 97187, Sweden
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
6
|
Li Z, Luo D, Ibrahim MM, Luo X, Deng R, Wang C, Hou E. Seasonal changes in hydraulic functions of eight temperate tree species: divergent responses to freeze-thaw cycles in spring and autumn. TREE PHYSIOLOGY 2024; 44:tpae132. [PMID: 39394964 DOI: 10.1093/treephys/tpae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/22/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Freeze-thaw cycles (FTCs) are the major seasonal environment stress in the temperate and boreal forests, inducing hydraulic dysfunction and limiting tree growth and distribution. There are two types of FTCs in the field: FTCs with increasing temperature from winter to spring (spring FTCs); and FTCs with decreasing temperature from autumn to winter (autumn FTCs). While previous studies have evaluated the hydraulic function during the growing season, its seasonal changes and how it adapts to different types of FTCs remain unverified. To fill this knowledge gap, the eight tree species from three wood types (ring- and diffuse-porous, tracheid) were selected in a temperate forest undergoing seasonal FTCs. We measured the branch hydraulic traits in spring, summer, autumn, and early, middle and late winter. Ring-porous trees always showed low native hydraulic conductance (Kbranch), and high percentage loss of maximum Kbranch (PLCB) and water potential that loss of 50% maximum Kbranch (P50B) in non-growing seasons (except summer). Kbranch decreased, and PLCB and P50B increased in diffuse-porous trees after several spring FTCs. In tracheid trees, Kbranch decreased after spring FTCs while the P50B did not change. All sampled trees gradually recovered their hydraulic functions from spring to summer. Kbranch, PLCB and P50B of diffuse-porous and tracheid trees were relatively constant after autumn FTCs, indicating almost no effect of autumn FTCs on hydraulic functions. These results suggested that hydraulic functions of temperate trees showed significant seasonal changes, and spring FTCs induced more hydraulic damage (except ring-porous trees) than autumn FTCs, which should be determined by the number of FTCs and trees' vitality before FTCs. These findings advance our understanding of seasonal changes in hydraulic functions and how they cope with different types of FTC in temperate forests.
Collapse
Affiliation(s)
- Zhimin Li
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China
- Center for Ecological Research, College of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Dandan Luo
- Center for Ecological Research, College of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Muhammed Mustapha Ibrahim
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China
| | - Xianzhen Luo
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China
| | - Rufang Deng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China
| | - Chuankuan Wang
- Center for Ecological Research, College of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Enqing Hou
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China
| |
Collapse
|
7
|
Ma B, Lv Q, Zhang R, Zhang J, Wang Y, Cai J. Effect of freeze-thaw treatments with different conditions on frost fatigue in three diffuse-porous trees. TREE PHYSIOLOGY 2024; 44:tpae115. [PMID: 39244748 DOI: 10.1093/treephys/tpae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/21/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
In addition to inducing xylem embolism, freeze-thaw events can cause frost fatigue phenomena. Freezing temperature, freezing times, number of freeze-thaw cycles and frost drought can affect the level of freeze-thaw-induced embolism, but it is unknown whether there is an effect on frost fatigue. We assessed whether these frost-related factors changed frost fatigue in the three diffuse-porous species by simulating freeze-thaw treatments under different conditions. We also proposed a new metric, embolism area, in place of embolism resistance, to more accurately quantify the shift of the vulnerability curve after experiencing freeze-thaw-induced embolism and refilling. Frost fatigue caused vulnerability curves of all species to change from S-shaped to double S-shaped or even R-shaped curves. When exposed to a freeze-thaw event, Acer truncatum showed strong resistance to frost fatigue; in contrast, Populus (I-101 × 84 K) and Liriodendron chinense were more vulnerable. Changing freezing temperature and times did not impact the response to frost fatigue in the three species, but a greater number of freeze-thaw cycles and more severe frost drought significantly exacerbated their fatigue degree. Considering that frost fatigue may be a widespread phenomenon among temperate diffuse-porous species, more work is needed in the future to reveal the mechanisms of frost fatigue.
Collapse
Affiliation(s)
- Bolong Ma
- College of Forestry, Northwest A&F University, Tai Cheng Road No. 3, Yangling, Shaanxi 712100, China
| | - Qingzi Lv
- College of Forestry, Northwest A&F University, Tai Cheng Road No. 3, Yangling, Shaanxi 712100, China
| | - Ruihan Zhang
- College of Forestry, Northwest A&F University, Tai Cheng Road No. 3, Yangling, Shaanxi 712100, China
| | - Junyao Zhang
- College of Forestry, Northwest A&F University, Tai Cheng Road No. 3, Yangling, Shaanxi 712100, China
| | - Yue Wang
- College of Forestry, Northwest A&F University, Tai Cheng Road No. 3, Yangling, Shaanxi 712100, China
| | - Jing Cai
- College of Forestry, Northwest A&F University, Tai Cheng Road No. 3, Yangling, Shaanxi 712100, China
- Qinling National Forest Ecosystem Research Station, Northwest A&F University, Tai Cheng Road No. 3, Yangling, Shaanxi 712100, China
| |
Collapse
|
8
|
Lin S, Wang H, Dai J, Ge Q. Spring wood phenology responds more strongly to chilling temperatures than bud phenology in European conifers. TREE PHYSIOLOGY 2024; 44:tpad146. [PMID: 38079514 DOI: 10.1093/treephys/tpad146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/19/2023] [Accepted: 12/01/2023] [Indexed: 02/09/2024]
Abstract
A comparative assessment of bud and wood phenology could aid a better understanding of tree growth dynamics. However, the reason for asynchronism or synchronism in leaf and cambial phenology remains unclear. To test the assumption that the temporal relationship between the budburst date and the onset date of wood formation is due to their common or different responses to environmental factors, we constructed a wood phenology dataset from previous literature, and compared it with an existing bud phenology dataset in Europe. We selected three common conifers (Larix decidua Mill., Picea abies (L.) H. Karst. and Pinus sylvestris L.) in both datasets and analyzed 909 records of the onset of wood formation at 47 sites and 238,720 records of budburst date at 3051 sites. We quantified chilling accumulation (CA) and forcing requirement (FR) of budburst and onset of wood formation based on common measures of CA and FR. We then constructed negative exponential CA-FR curves for bud and wood phenology separately. The results showed that the median, variance and probability distribution of CA-FR curves varied significantly between bud and wood phenology for three conifers. The different FR under the same chilling condition caused asynchronous bud and wood phenology. Furthermore, the CA-FR curves manifested that wood phenology was more sensitive to chilling than bud phenology. Thus, the FR of the onset of wood formation increases more than that of budburst under the same warming scenarios, explaining the stronger earlier trends in the budburst date than the onset date of woody formation simulated by the process-based model. Our work not only provides a possible explanation for asynchronous bud and wood phenology from the perspective of organ-specific responses to chilling and forcing, but also develops a phenological model for predicting both bud and wood phenology with acceptable uncertainties.
Collapse
Affiliation(s)
- Shaozhi Lin
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, 19A, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Huanjiong Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
| | - Junhu Dai
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, 19A, Yuquan Road, Shijingshan District, Beijing 100049, China
- China-Pakistan Joint Research Center on Earth Sciences, Chinese Academy of Sciences - Higher Education Commission of Pakistan, Sector H-9, East Service Road, Islamabad 45320, Pakistan
| | - Quansheng Ge
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
9
|
Li Z, Luo D, Ibrahim MM, Hou E, Wang C. Adaptive strategies to freeze-thaw cycles in branch hydraulics of tree species coexisting in a temperate forest. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108223. [PMID: 38043252 DOI: 10.1016/j.plaphy.2023.108223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/04/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
Freeze-thaw cycles (FTCs) limit the distribution and survival of temperate tree species. Tree species with different wood types coexist in temperate forests and are subjected to the same FTCs. It is essential to understand how these trees differentially cope with xylem hydraulic failure induced by FTCs in the field. The branch hydraulic traits and nonstructural carbohydrate concentration of six coexisting tree species in a temperate forest were measured from mid-winter to early spring when the FTCs occurred from January to April. The percentage loss of hydraulic conductivity (PLC) was lower, and the water potential inducing a 50% loss of hydraulic conductivity (P50) was more negative in tracheid trees than in ring- and diffuse-porous trees, suggesting tracheid trees with narrow tracheid diameters showed less vulnerable to embolism and provided a lower degree of hydraulic failure during FTCs (stronger resistance). Ring-porous trees always showed lower hydraulic conductivity and higher PLC and P50, and these traits did not change during FTCs, suggesting that they might lose the hydraulic functions in winter and abandon the last year xylem. The P50 in diffuse-porous increased after several FTCs (frost fatigue), but that in tracheid species continued to increase (or even decrease) until the end of FTCs (69 cycles), suggesting that tracheid trees were less sensitive to frost fatigue than diffuse-porous trees. Soluble sugar concentration in deciduous trees negatively correlated with PLC at the end of FTCs, indicating that the effect of soluble sugar on refilling embolism occurred in early spring. While the soluble sugar concentration of deciduous trees decreased, that of two evergreen tracheid trees gradually increased, possibly due to the winter photosynthesis of evergreen leaves. Our results suggest temperate trees adopt different strategies to cope with the same FTCs. These findings enrich the understanding of plant hydraulics and carbon physiology in winter and provide insights into the response of different species coexisting in temperate forests under climate change.
Collapse
Affiliation(s)
- Zhimin Li
- Center for Ecological Research, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Dandan Luo
- Center for Ecological Research, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Muhammed Mustapha Ibrahim
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Enqing Hou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Chuankuan Wang
- Center for Ecological Research, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
10
|
Dai Y, Wang L, Wan X. Maintenance of xylem hydraulic function during winter in the woody bamboo Phyllostachys propinqua McClure. PeerJ 2023; 11:e15979. [PMID: 37719123 PMCID: PMC10504893 DOI: 10.7717/peerj.15979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/08/2023] [Indexed: 09/19/2023] Open
Abstract
Background Frost is a common environmental stress for temperate plants. Xylem embolism occurs in many overwintering plants due to freeze-thaw cycles, so coping with freeze-thaw-induced embolisms is essential for the survival of temperate plants. Methods This study was conducted on Phyllostachys propinqua McClure, a woody bamboo species that was grown under natural frost conditions to explore its responses to winter embolisms. From autumn to the following spring, the following measurements were recorded: predawn branch and leaf embolism, branch and leaf relative water content (RWC), root pressure and soil temperature, xylem sap osmotic potential, branch and leaf electrolyte leakage (EL), branch nonstructural carbohydrate (NSC) content and leaf net photosynthetic rate. Results P. propinqua had a mean vessel diameter of 68.95 ±1.27 µm but did not suffer severe winter embolism, peaking around 60% in winter (January), with a distinct reduction in March when root pressure returned. Leaves had a more severe winter embolism, up to 90%. Leaf RWC was much lower in winter, and leaf EL was significantly higher than branch EL in all seasons. Root pressure remained until November when soil temperature reached 9 °C, then appeared again in March when soil temperatures increased from -6 °C (January) to 11 °C. Xylem sap osmotic potential decreased from autumn to winter, reaching a minimum in March, and then increasing again. Soluble sugar (SS) concentration increased throughout the winter, peaked in March, and then decreased. Conclusions These results suggest that (1) there is a hydraulic segmentation between the stem and leaf, which could prevent stem water loss and further embolization in winter; (2) maintenance of root pressure in early winter played an important role in reducing the effect of freeze-thaw cycles on the winter embolism; (3) the physiological process that resulted in a decrease in xylem sap osmotic potential and tissue water content, and an accumulation of SS associated with cold acclimation also aided in reducing the extent of freeze-thaw-induced embolism. All these strategies could be helpful for the maintenance of xylem hydraulic function of this bamboo species during winter.
Collapse
Affiliation(s)
- Yongxin Dai
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, China
| | - Lin Wang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, China
| | - Xianchong Wan
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
11
|
Cui B, Wang X, Su Y, Gong C, Zhang D, Ouyang Z, Wang X. Responses of tree growth, leaf area and physiology to pavement in Ginkgo biloba and Platanus orientalis. FRONTIERS IN PLANT SCIENCE 2022; 13:1003266. [PMID: 36531361 PMCID: PMC9751631 DOI: 10.3389/fpls.2022.1003266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Trees growing on paved lands endure many environmental stresses in the urban environment. However, the morphological and physiological mechanisms underlying tree adaptation to pavement in the field are less known. In this study, we investigated 40 sites where Ginkgo biloba and Platanus orientalis grow on adjacent pairs of paved and vegetated plots in parks and roadsides in Beijing, China. Relative to the vegetated land, the mean increments in the diameter at breast height and height in the paved land were significantly decreased by 44.5% and 31.9% for G. biloba and 31.7% and 60.1% for P. orientalis, respectively. These decreases are related to both the decrease in assimilation products due to the reductions in leaf area, leaf total nitrogen content, and chlorophyll content and the increase in energy cost due to the synthesis of more soluble sugar and proline for mitigating stress. The increase in leaf soluble sugar content, proline content, and δ13C indicated that trees could adapt to the paved land through the regulation of osmotic balance and the enhancement of water-use efficiency. Piecewise structural equation models showed that trees growing on the paved land are stressed by compounding impacts of the leaf morphological and physiological changes. Therefore, it is critical to explore the complex response of plant morphological and physiological traits to the pavement-induced stress for improving tree health in urban greening.
Collapse
Affiliation(s)
- Bowen Cui
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xuming Wang
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Yuebo Su
- Shenzhen Academy of Environmental Sciences, Shenzhen, China
| | - Cheng Gong
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Danhong Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyun Ouyang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoke Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Beijing Urban Ecosystem Research Station, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Jing M, Zhu L, Liu S, Cao Y, Zhu Y, Yan W. Warming-induced drought leads to tree growth decline in subtropics: Evidence from tree rings in central China. FRONTIERS IN PLANT SCIENCE 2022; 13:964400. [PMID: 36212337 PMCID: PMC9539437 DOI: 10.3389/fpls.2022.964400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Subtropical forests provide diverse ecosystem services to human society. However, how subtropical tree species respond to climate change is still unclear. Using a dendrochronological method, we studied the radial growth patterns and species-specific responses of four main tree species in subtropical China to recent warming and drought. Results showed that the long-term drought caused by global warming and reduced precipitation since 1997 had resulted in the growth decline of Pinus massoniana, Castanea henryi and Castanopsis eyrei but not for Liquidambar formosana. Four species had similar sensitivities to the previous year and the current year, which is probably due to the carryover effect and temporal autocorrelation of climate data. Tree growth was positively correlated with growing season precipitation and relative humidity while negatively correlated with vapor pressure deficit. The negative relationship of tree radial growth with temperatures in the previous and current summer and the positive correlation with precipitation gradually strengthened after 1997. Therefore, we highlighted that drought-induced tree decline in subtropical forests is probably a common phenomenon, and it needed to verify by more tree-ring studies on a large scale. The species-specific responses of tree radial growth to climate change are not obvious, but they still should be considered in regional carbon balance and forest dynamics. Considering future climate change, species that are more drought tolerant should be considered as potential plantation species.
Collapse
Affiliation(s)
- Mengdan Jing
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha, China
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Liangjun Zhu
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha, China
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Shuguang Liu
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha, China
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Yang Cao
- Institute of Soil and Water Conservation, Northwest A&F University, Xianyang, Shaanxi, China
| | - Yu Zhu
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha, China
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Wende Yan
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha, China
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
13
|
Wang S, Fan Y, Du S, Zhao K, Liu Q, Yao W, Zheng T, Han Y. PtaERF194 inhibits plant growth and enhances drought tolerance in poplar. TREE PHYSIOLOGY 2022; 42:1678-1692. [PMID: 35220440 DOI: 10.1093/treephys/tpac026] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
The water deficits limit the growth and development of agricultural and forest organisms. The AP2/ethylene response factor (ERF) family has been identified as one of the largest plant-specific transcription factors (TFs) essential for plant development and stress response. The function of PtaERF194 in growth and drought tolerance was detected in the overexpression (OX) and RNA interference (RNAi) transgenic poplar 717 hybrids (Populus tremula × Populus alba). Plant growth, stem vessels, water-use efficiency (WUE), chlorophyll content and PtaERF194 co-expressed genes were analyzed using morphological, physiological and molecular methods. Overexpression seedlings showed a shorter and smaller phenotype along with smaller and more vessels compared with the wild-type (WT). Physiological indices indicated that OX with low transpiration and stomatal conductance improved the tolerance to drought by enhancing WUE, limiting water loss and maintaining high water potential. A total of 12 differentially expressed genes co-expressed with PtaERF194 were identified, and they worked together to regulate drought tolerance through the abscisic acid signaling and reactive oxygen species scavenging processes. However, RNAi plants showed similar morphology and physiology to WT, suggesting that the function of PtaERF194 was redundant with other ERF TFs. The findings of the current study may shed new light on the positive function of ERF TFs in plant drought stress tolerance.
Collapse
Affiliation(s)
- Shengji Wang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yan Fan
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Shuhui Du
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Kai Zhao
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Qiang Liu
- College of Forestry, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Wenjing Yao
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Tangchun Zheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Youzhi Han
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| |
Collapse
|
14
|
Weithmann G, Link RM, Banzragch BE, Würzberg L, Leuschner C, Schuldt B. Soil water availability and branch age explain variability in xylem safety of European beech in Central Europe. Oecologia 2022; 198:629-644. [PMID: 35212818 PMCID: PMC8956530 DOI: 10.1007/s00442-022-05124-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/24/2022] [Indexed: 12/17/2022]
Abstract
Xylem embolism resistance has been identified as a key trait with a causal relation to drought-induced tree mortality, but not much is known about its intra-specific trait variability (ITV) in dependence on environmental variation. We measured xylem safety and efficiency in 300 European beech (Fagus sylvatica L.) trees across 30 sites in Central Europe, covering a precipitation reduction from 886 to 522 mm year−1. A broad range of variables that might affect embolism resistance in mature trees, including climatic and soil water availability, competition, and branch age, were examined. The average P50 value varied by up to 1 MPa between sites. Neither climatic aridity nor structural variables had a significant influence on P50. However, P50 was less negative for trees with a higher soil water storage capacity, and positively related to branch age, while specific conductivity (Ks) was not significantly associated with either of these variables. The greatest part of the ITV for xylem safety and efficiency was attributed to random variability within populations. We conclude that the influence of site water availability on P50 and Ks is low in European beech, and that the high degree of within-population variability for P50, partly due to variation in branch age, hampers the identification of a clear environmental signal.
Collapse
Affiliation(s)
- Greta Weithmann
- Plant Ecology, Albrecht Von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073, Göttingen, Germany
| | - Roman M Link
- Plant Ecology, Albrecht Von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073, Göttingen, Germany.,Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz, 97082, Würzburg, Germany
| | - Bat-Enerel Banzragch
- Plant Ecology, Albrecht Von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073, Göttingen, Germany
| | - Laura Würzberg
- Plant Ecology, Albrecht Von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073, Göttingen, Germany
| | - Christoph Leuschner
- Plant Ecology, Albrecht Von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073, Göttingen, Germany.,Centre for Biodiversity and Sustainable Land Use (CBL), University of Goettingen, 37075, Göttingen, Germany
| | - Bernhard Schuldt
- Plant Ecology, Albrecht Von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073, Göttingen, Germany. .,Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz, 97082, Würzburg, Germany.
| |
Collapse
|
15
|
Ganthaler A, Bär A, Dämon B, Losso A, Nardini A, Dullin C, Tromba G, von Arx G, Mayr S. Alpine dwarf shrubs show high proportions of nonfunctional xylem: Visualization and quantification of species-specific patterns. PLANT, CELL & ENVIRONMENT 2022; 45:55-68. [PMID: 34783044 DOI: 10.1111/pce.14226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Xylem conductive capacity is a key determinant of plant hydraulic function and intimately linked to photosynthesis and productivity, but can be impeded by temporary or permanent conduit dysfunctions. Here we show that persistent xylem dysfunctions in unstressed plants are frequent in Alpine dwarf shrubs and occur in various but species-specific cross-sectional patterns. Combined synchrotron micro-computed tomography (micro-CT) imaging, xylem staining, and flow measurements in saturated samples of six widespread Ericaceae species evidence a high proportion (19%-50%) of hydraulically nonfunctional xylem areas in the absence of drought stress, with regular distribution of dysfunctions between or within growth rings. Dysfunctions were only partly reversible and reduced the specific hydraulic conductivity to 1.38 to 3.57 ×10-4 m2 s-1 MPa-1 . Decommission of inner growth rings was clearly related to stem age and a higher vulnerability to cavitation of older rings, while the high proportion of nonfunctional conduits in each annual ring needs further investigations. The lower the xylem fraction contributing to the transport function, the higher was the hydraulic efficiency of conducting xylem areas. Improved understanding of the functional lifespan of xylem elements and the prevalence and nature of dysfunctions is critical to correctly assess structure-function relationships and whole-plant hydraulic strategies.
Collapse
Affiliation(s)
- Andrea Ganthaler
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Andreas Bär
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Birgit Dämon
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Adriano Losso
- Department of Botany, University of Innsbruck, Innsbruck, Austria
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| | - Christian Dullin
- Elettra-Sincrotrone Trieste, Basovizza, Italy
- Institute for Diagnostic and Interventional Radiology, University Medical Center, Göttingen, Germany
- Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
- Diagnostic and Interventional Radiology, University Hospital, Heidelberg, Germany
| | | | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
16
|
Buttó V, Millan M, Rossi S, Delagrange S. Contrasting Carbon Allocation Strategies of Ring-Porous and Diffuse-Porous Species Converge Toward Similar Growth Responses to Drought. FRONTIERS IN PLANT SCIENCE 2021; 12:760859. [PMID: 34975943 PMCID: PMC8716880 DOI: 10.3389/fpls.2021.760859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Extreme climatic events that are expected under global warming expose forest ecosystems to drought stress, which may affect the growth and productivity. We assessed intra-annual growth responses of trees to soil water content in species belonging to different functional groups of tree-ring porosity. We pose the hypothesis that species with contrasting carbon allocation strategies, which emerge from different relationships between wood traits and canopy architecture, display divergent growth responses to drought. We selected two diffuse-porous species (Acer saccharum and Betula alleghaniensis) and two ring-porous species (Quercus rubra and Fraxinus americana) from the mixed forest of Quebec (Canada). We measured anatomical wood traits and canopy architecture in eight individuals per species and assessed tree growth sensitivity to water balance during 2008-2017 using the standardized precipitation evapotranspiration index (SPEI). Stem elongation in diffuse-porous species mainly depended upon the total number of ramifications and hydraulic diameter of the tree-ring vessels. In ring-porous species, stem elongation mainly depended upon the productivity of the current year, i.e., number of vessels and basal area increment. Diffuse-porous and ring-porous species had similar responses to soil water balance. The effect of soil water balance on tree growth changed during the growing season. In April, decreasing soil temperature linked to wet conditions could explain the negative relationship between SPEI and tree growth. In late spring, greater water availability affected carbon partitioning, by promoting the formation of larger xylem vessels in both functional groups. Results suggest that timings and duration of drought events affect meristem growth and carbon allocation in both functional groups. Drought induces the formation of fewer xylem vessels in ring-porous species, and smaller xylem vessels in diffuse-porous species, the latter being also prone to a decline in stem elongation due to a reduced number of ramifications. Indeed, stem elongation of diffuse-porous species is influenced by environmental conditions of the previous year, which determine the total number of ramifications during the current year. Drought responses in different functional groups are thus characterized by different drivers, express contrasting levels of resistance or resilience, but finally result in an overall similar loss of productivity.
Collapse
Affiliation(s)
- Valentina Buttó
- Département des Sciences Naturelles, Institut des Sciences de la Forêt Tempérée, Université du Québec en Outaouais, Ripon, QC, Canada
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Mathilde Millan
- Département des Sciences Naturelles, Institut des Sciences de la Forêt Tempérée, Université du Québec en Outaouais, Ripon, QC, Canada
| | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Sylvain Delagrange
- Département des Sciences Naturelles, Institut des Sciences de la Forêt Tempérée, Université du Québec en Outaouais, Ripon, QC, Canada
| |
Collapse
|