1
|
Laing RA, Foster MJ, Hassani MA, Kotzen B, Huang W, Shea T, Schaffner SF, Cerar T, Freimark L, Ruzic-Sabljic E, Liveris D, Reed KD, Branda JA, Steere AC, Wormser GP, Strle F, Sabeti PC, Earl A, Schwartz I, Strle K, Lemieux JE. Complex exchanges among plasmids and clonal expansion of lineages shape the population structure and virulence of Borrelia burgdorferi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635312. [PMID: 39974970 PMCID: PMC11838331 DOI: 10.1101/2025.01.29.635312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Background In the United States, Borrelia burgdorferi (Bb) is the principal etiologic agent of Lyme disease. The complex structure of Bb genomes has posed challenges for genomic studies because homology among the bacterium's many plasmids, which account for ~40% of the genome by length, has made them difficult to sequence and assemble. Results We used long-read sequencing to generate near-complete assemblies of 62 isolates of human-derived Bb and collected public genomes with plasmid sequences. We characterized genetic diversity and population structure in the resulting set of 82 plasmid-complete Borrelia burgdorferi sensu stricto genomes. The Bb core genome is encoded by a chromosome and the conserved plasmids cp26, lp54, and lp17; the accessory genome is encoded by all other plasmids and the distal arm of the chromosome. Near-complete genomes reveal that the most granular Bb genotypes are clonal expansions of complex rearrangements among accessory genome elements. Ribosomal spacer types (RST) represent multiple collections of such genotypes, whereas OspC types are usually clonal. Structural rearrangements are non-randomly distributed throughout the genome, with cp32 plasmids undergoing dense exchanges and most linear plasmids, except lp54, sharing blocks among themselves and with the distal arm of the chromosome. OspC type A strains, known to possess greater virulence in humans, are distinguished by the presence of lp28-1 and lp56. Rearrangements among plasmids tended to preserve gene content, suggesting functional constraints among gene networks. Using k-partite graph decompositions, we identified gene sets with correlation patterns suggestive of conserved functional modules. Conclusions Long-read assemblies reveal that Bb population genetic structure results from clonal expansion of lineages that have undergone complex rearrangements among plasmid-encoded accessory genome elements. Genetic structure is preserved among genes even when plasmid rearrangements occur, suggesting that selection among epistatic loci maintains functional genetic networks. The analysis of near-complete genomes assembled using long-read sequencing methods advances our understanding of Bb biology and Lyme disease pathogenesis by providing the first detailed view of population variation in previously inaccessible areas of the Bb genome.
Collapse
Affiliation(s)
- Rachel A. Laing
- Massachusetts General Hospital, Harvard Medical School
- Broad Institute of MIT and Harvard
| | - Michael J. Foster
- Massachusetts General Hospital, Harvard Medical School
- Broad Institute of MIT and Harvard
| | - M. Amine Hassani
- Massachusetts General Hospital, Harvard Medical School
- Broad Institute of MIT and Harvard
| | - Benjamin Kotzen
- Massachusetts General Hospital, Harvard Medical School
- Broad Institute of MIT and Harvard
| | - Weihua Huang
- New York Medical College
- East Carolina University
| | | | | | | | | | | | | | | | | | | | | | | | - Pardis C. Sabeti
- Broad Institute of MIT and Harvard
- Harvard University
- Harvard T.H.Chan School of Public Health
| | | | | | | | - Jacob E. Lemieux
- Massachusetts General Hospital, Harvard Medical School
- Broad Institute of MIT and Harvard
| |
Collapse
|
2
|
Hoornstra D, Kuleshov KV, Fingerle V, Hepner S, Wagemakers A, Strube C, Castillo-Ramírez S, Bockenstedt LK, Telford SR, Sprong H, Platonov AE, Margos G, Hovius JW. Combining short- and long-read sequencing unveils geographically structured diversity in Borrelia miyamotoi. iScience 2024; 27:110616. [PMID: 39262806 PMCID: PMC11388275 DOI: 10.1016/j.isci.2024.110616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/10/2024] [Accepted: 07/26/2024] [Indexed: 09/13/2024] Open
Abstract
Borrelia miyamotoi is an emerging Ixodes tick-borne human pathogen in the Northern hemisphere. The aim of the current study was to compare whole genome sequences of B. miyamotoi isolates from different continents. Using a combination of Illumina and PacBio platforms and a novel genome assembly and plasmid typing pipeline, we reveal that the 21 sequenced B. miyamotoi isolates and publically available B. miyamotoi genomes from North America, Asia, and Europe form genetically distinct populations and cluster according to their geographical origin, where distinct Ixodes species are endemic. We identified 20 linear and 17 circular plasmid types and the presence of specific plasmids for isolates originating from different continents. Linear plasmids lp12, lp23, lp41, and lp72 were core plasmids found in all isolates, with lp41 consistently containing the vmp expression site. Our data provide insights into the genetic basis of vector competence, virulence, and pathogenesis of B. miyamotoi.
Collapse
Affiliation(s)
- Dieuwertje Hoornstra
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, the Netherlands
| | | | - Volker Fingerle
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
- German National Reference Centre for Borrelia, Oberschleissheim, Germany
| | - Sabrina Hepner
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
- German National Reference Centre for Borrelia, Oberschleissheim, Germany
| | - Alex Wagemakers
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, the Netherlands
| | | | | | | | - Sam R. Telford
- Tufts Cummings School of Veterinary Medicine, Grafton, MA, USA
| | - Hein Sprong
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | | | - Gabriele Margos
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
- German National Reference Centre for Borrelia, Oberschleissheim, Germany
| | - Joppe W. Hovius
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology & Infectious Diseases, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Rattner R, Thapa SP, Dang T, Osman F, Selvaraj V, Maheshwari Y, Pagliaccia D, Espindola AS, Hajeri S, Chen J, Coaker G, Vidalakis G, Yokomi R. Genome analysis of Spiroplasma citri strains from different host plants and its leafhopper vectors. BMC Genomics 2021; 22:373. [PMID: 34022804 PMCID: PMC8140453 DOI: 10.1186/s12864-021-07637-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spiroplasma citri comprises a bacterial complex that cause diseases in citrus, horseradish, carrot, sesame, and also infects a wide array of ornamental and weed species. S. citri is transmitted in a persistent propagative manner by the beet leafhopper, Neoaliturus tenellus in North America and Circulifer haematoceps in the Mediterranean region. Leafhopper transmission and the pathogen's wide host range serve as drivers of genetic diversity. This diversity was examined in silico by comparing the genome sequences of seven S. citri strains from the United States (BR12, CC-2, C5, C189, LB 319, BLH-13, and BLH-MB) collected from different hosts and times with other publicly available spiroplasmas. RESULTS Phylogenetic analysis using 16S rRNA sequences from 39 spiroplasmas obtained from NCBI database showed that S. citri strains, along with S. kunkelii and S. phoeniceum, two other plant pathogenic spiroplasmas, formed a monophyletic group. To refine genetic relationships among S. citri strains, phylogenetic analyses with 863 core orthologous sequences were performed. Strains that clustered together were: CC-2 and C5; C189 and R8-A2; BR12, BLH-MB, BLH-13 and LB 319. Strain GII3-3X remained in a separate branch. Sequence rearrangements were observed among S. citri strains, predominantly in the center of the chromosome. One to nine plasmids were identified in the seven S. citri strains analyzed in this study. Plasmids were most abundant in strains isolated from the beet leafhopper, followed by strains from carrot, Chinese cabbage, horseradish, and citrus, respectively. All these S. citri strains contained one plasmid with high similarity to plasmid pSci6 from S. citri strain GII3-3X which is known to confer insect transmissibility. Additionally, 17 to 25 prophage-like elements were identified in these genomes, which may promote rearrangements and contribute to repetitive regions. CONCLUSIONS The genome of seven S. citri strains were found to contain a single circularized chromosome, ranging from 1.58 Mbp to 1.74 Mbp and 1597-2232 protein-coding genes. These strains possessed a plasmid similar to pSci6 from the GII3-3X strain associated with leafhopper transmission. Prophage sequences found in the S. citri genomes may contribute to the extension of its host range. These findings increase our understanding of S. citri genetic diversity.
Collapse
Affiliation(s)
- Rachel Rattner
- Crop Diseases, Pests, and Genetics Research Unit, San Joaquin Valley Agricultural Sciences Center, USDA Agricultural Research Service, Parlier, CA, 93648, USA
| | - Shree Prasad Thapa
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Tyler Dang
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Fatima Osman
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Vijayanandraj Selvaraj
- Crop Diseases, Pests, and Genetics Research Unit, San Joaquin Valley Agricultural Sciences Center, USDA Agricultural Research Service, Parlier, CA, 93648, USA
| | - Yogita Maheshwari
- Crop Diseases, Pests, and Genetics Research Unit, San Joaquin Valley Agricultural Sciences Center, USDA Agricultural Research Service, Parlier, CA, 93648, USA
| | - Deborah Pagliaccia
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Andres S Espindola
- Department of Entomology & Plant Pathology and Institute of Biosecurity and Microbial Forensics, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Subhas Hajeri
- Citrus Pest Detection Program, Central California Tristeza Eradication Agency, Tulare, CA, 93274, USA
| | - Jianchi Chen
- Crop Diseases, Pests, and Genetics Research Unit, San Joaquin Valley Agricultural Sciences Center, USDA Agricultural Research Service, Parlier, CA, 93648, USA
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Georgios Vidalakis
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Raymond Yokomi
- Crop Diseases, Pests, and Genetics Research Unit, San Joaquin Valley Agricultural Sciences Center, USDA Agricultural Research Service, Parlier, CA, 93648, USA.
| |
Collapse
|
4
|
Hodzic E, Imai DM, Escobar E. Generality of Post-Antimicrobial Treatment Persistence of Borrelia burgdorferi Strains N40 and B31 in Genetically Susceptible and Resistant Mouse Strains. Infect Immun 2019; 87:e00442-19. [PMID: 31308087 PMCID: PMC6759297 DOI: 10.1128/iai.00442-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/11/2019] [Indexed: 01/22/2023] Open
Abstract
A basic feature of infection caused by Borrelia burgdorferi, the etiological agent of Lyme borreliosis, is that persistent infection is the rule in its many hosts. The ability to persist and evade host immune clearance poses a challenge to effective antimicrobial treatment. A link between therapy failure and the presence of persister cells has started to emerge. There is growing experimental evidence that viable but noncultivable spirochetes persist following treatment with several different antimicrobial agents. The current study utilized the mouse model to evaluate if persistence occurs following antimicrobial treatment in disease-susceptible (C3H/HeJ [C3H]) and disease-resistant (C57BL/6 [B6]) mouse strains infected with B. burgdorferi strains N40 and B31 and to confirm the generality of this phenomenon, as well as to assess the persisters' clinical relevance. The status of infection was evaluated at 12 and 18 months after treatment. The results demonstrated that persistent spirochetes remain viable for up to 18 months following treatment, as well as being noncultivable. The phenomenon of persistence in disease-susceptible C3H mice is equally evident in disease-resistant B6 mice and not unique to any particular B. burgdorferi strain. The results also demonstrate that, following antimicrobial treatment, both strains of B. burgdorferi, N40 and B31, lose one or more plasmids. The study demonstrated that noncultivable spirochetes can persist in a host following antimicrobial treatment for a long time but did not demonstrate their clinical relevance in a mouse model of chronic infection. The clinical relevance of persistent spirochetes beyond 18 months following antimicrobial treatment requires further studies in other animal models.
Collapse
Affiliation(s)
- Emir Hodzic
- Real-Time PCR Research and Diagnostic Core Facility, School of Veterinary Medicine, University of California at Davis, Davis, California, USA
| | - Denise M Imai
- Comparative Pathology Laboratory, School of Veterinary Medicine, University of California at Davis, Davis, California, USA
| | - Edlin Escobar
- Real-Time PCR Research and Diagnostic Core Facility, School of Veterinary Medicine, University of California at Davis, Davis, California, USA
| |
Collapse
|
5
|
Whole genome sequence and comparative analysis of Borrelia burgdorferi MM1. PLoS One 2018; 13:e0198135. [PMID: 29889842 PMCID: PMC5995427 DOI: 10.1371/journal.pone.0198135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/14/2018] [Indexed: 11/21/2022] Open
Abstract
Lyme disease is caused by spirochaetes of the Borrelia burgdorferi sensu lato genospecies. Complete genome assemblies are available for fewer than ten strains of Borrelia burgdorferi sensu stricto, the primary cause of Lyme disease in North America. MM1 is a sensu stricto strain originally isolated in the midwestern United States. Aside from a small number of genes, the complete genome sequence of this strain has not been reported. Here we present the complete genome sequence of MM1 in relation to other sensu stricto strains and in terms of its Multi Locus Sequence Typing. Our results indicate that MM1 is a new sequence type which contains a conserved main chromosome and 15 plasmids. Our results include the first contiguous 28.5 kb assembly of lp28-8, a linear plasmid carrying the vls antigenic variation system, from a Borrelia burgdorferi sensu stricto strain.
Collapse
|
6
|
Röttgerding F, Wagemakers A, Koetsveld J, Fingerle V, Kirschfink M, Hovius JW, Zipfel PF, Wallich R, Kraiczy P. Immune evasion of Borrelia miyamotoi: CbiA, a novel outer surface protein exhibiting complement binding and inactivating properties. Sci Rep 2017; 7:303. [PMID: 28331202 PMCID: PMC5428533 DOI: 10.1038/s41598-017-00412-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 02/27/2017] [Indexed: 12/13/2022] Open
Abstract
Borrelia (B.) miyamotoi, an emerging tick-borne relapsing fever spirochete, resists complement-mediated killing. To decipher the molecular principles of immune evasion, we sought to identify determinants contributing to complement resistance. Employing bioinformatics, we identified a gene encoding for a putative Factor H-binding protein, termed CbiA (complement binding and inhibitory protein A). Functional analyses revealed that CbiA interacted with complement regulator Factor H (FH), C3, C3b, C4b, C5, and C9. Upon binding to CbiA, FH retained its cofactor activity for Factor I-mediated inactivation of C3b. The Factor H-binding site within CbiA was mapped to domain 20 whereby the C-terminus of CbiA was involved in FH binding. Additionally, CbiA directly inhibited the activation of the classical pathway and the assembly of the terminal complement complex. Of importance, CbiA displayed inhibitory activity when ectopically produced in serum-sensitive B. garinii G1, rendering this surrogate strain resistant to human serum. In addition, long-term in vitro cultivation lead to an incremental loss of the cbiA gene accompanied by an increase in serum susceptibility. In conclusion, our data revealed a dual strategy of B. miyamotoi to efficiently evade complement via CbiA, which possesses complement binding and inhibitory activities.
Collapse
Affiliation(s)
- Florian Röttgerding
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
| | - Alex Wagemakers
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Joris Koetsveld
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Volker Fingerle
- National Reference Center for Borrelia, Oberschleißheim, Germany
| | | | - Joppe W Hovius
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany.,Friedrich Schiller University, Jena, Germany
| | - Reinhard Wallich
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany.
| |
Collapse
|
7
|
Casjens SR, Gilcrease EB, Vujadinovic M, Mongodin EF, Luft BJ, Schutzer SE, Fraser CM, Qiu WG. Plasmid diversity and phylogenetic consistency in the Lyme disease agent Borrelia burgdorferi. BMC Genomics 2017; 18:165. [PMID: 28201991 PMCID: PMC5310021 DOI: 10.1186/s12864-017-3553-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/03/2017] [Indexed: 01/13/2023] Open
Abstract
Background Bacteria from the genus Borrelia are known to harbor numerous linear and circular plasmids. We report here a comparative analysis of the nucleotide sequences of 236 plasmids present in fourteen independent isolates of the Lyme disease agent B. burgdorferi. Results We have sequenced the genomes of 14 B. burgdorferi sensu stricto isolates that carry a total of 236 plasmids. These individual isolates carry between seven and 23 plasmids. Their chromosomes, the cp26 and cp32 circular plasmids, as well as the lp54 linear plasmid, are quite evolutionarily stable; however, the remaining plasmids have undergone numerous non-homologous and often duplicative recombination events. We identify 32 different putative plasmid compatibility types among the 236 plasmids, of which 15 are (usually) circular and 17 are linear. Because of past rearrangements, any given gene, even though it might be universally present in these isolates, is often found on different linear plasmid compatibility types in different isolates. For example, the arp gene and the vls cassette region are present on plasmids of four and five different compatibility types, respectively, in different isolates. A majority of the plasmid types have more than one organizationally different subtype, and the number of such variants ranges from one to eight among the 18 linear plasmid types. In spite of this substantial organizational diversity, the plasmids are not so variable that every isolate has a novel version of every plasmid (i.e., there appears to be a limited number of extant plasmid subtypes). Conclusions Although there have been many past recombination events, both homologous and nonhomologous, among the plasmids, particular organizational variants of these plasmids correlate with particular chromosomal genotypes, suggesting that there has not been rapid horizontal transfer of whole linear plasmids among B. burgdorferi lineages. We argue that plasmid rearrangements are essentially non-revertable and are present at a frequency of only about 0.65% that of single nucleotide changes, making rearrangement-derived novel junctions (mosaic boundaries) ideal phylogenetic markers in the study of B. burgdorferi population structure and plasmid evolution and exchange. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3553-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Division of Microbiology and Immunology, Pathology Department and Biology Department, University of Utah School of Medicine, Room 2200 K Emma Eccles Jones Medical Research Building, 15 North Medical Drive East, Salt Lake City, UT, 84112, USA. .,Biology Department, University of Utah, Salt Lake City, UT, USA.
| | - Eddie B Gilcrease
- Division of Microbiology and Immunology, Pathology Department and Biology Department, University of Utah School of Medicine, Room 2200 K Emma Eccles Jones Medical Research Building, 15 North Medical Drive East, Salt Lake City, UT, 84112, USA
| | - Marija Vujadinovic
- Division of Microbiology and Immunology, Pathology Department and Biology Department, University of Utah School of Medicine, Room 2200 K Emma Eccles Jones Medical Research Building, 15 North Medical Drive East, Salt Lake City, UT, 84112, USA.,Present Address: Janssen Disease and Vaccines, Pharmaceutical Companies of Johnson and Johnson, Leiden, The Netherlands
| | - Emmanuel F Mongodin
- Institute for Genome Sciences, University of Maryland BioPark, Baltimore, MD, USA
| | - Benjamin J Luft
- Department of Medicine, Health Science Center, Stony Brook University, Stony Brook, NY, USA
| | - Steven E Schutzer
- Department of Medicine, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ, 07103, USA
| | - Claire M Fraser
- Institute for Genome Sciences, University of Maryland BioPark, Baltimore, MD, USA
| | - Wei-Gang Qiu
- Department of Biology, The Graduate Center, City University of New York City, New York, NY, USA.,Department of Biological Sciences and Center for Translational and Basic Research, Hunter College of the City University of New York City, New York, NY, USA
| |
Collapse
|
8
|
Ružić-Sabljić E, Maraspin V, Stupica D, Rojko T, Bogovič P, Strle F, Cerar T. Comparison of MKP and BSK-H media for the cultivation and isolation of Borrelia burgdorferi sensu lato. PLoS One 2017; 12:e0171622. [PMID: 28170447 PMCID: PMC5295711 DOI: 10.1371/journal.pone.0171622] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/23/2017] [Indexed: 11/18/2022] Open
Abstract
The isolation of B. burgdorferi sensu lato requires the use of complex cultivation media. The aim of the study was to compare the usefulness of BSK-H (a commercial medium produced by HiMedia, India) and MKP medium. MKP and BSK-H media were prepared in accordance with the relevant protocols. Borrelia strains and skin culture biopsies were simultaneously inoculated into both media, incubated and checked for growth. Borrelial growth characteristics, isolation rates and characteristics of the isolated borreliae were analysed and compared. Initially, numbers of spirochaetes were higher in BSK-H than in MKP; however, in comparison with MKP, the strains subcultured in BSK-H medium were more frequently irregular, thin and non-motile, and rapidly died. In addition, the borrelial isolation rate from erythema migrans skin samples was higher in MKP than in BSK-H medium (108/171, 63.2% versus 70/171, 40.9%; p<0.0001). The far most frequently isolated species was Borrelia afzelii (92.9% and 97.2% strains isolated from BSK-H and MKP, respectively). Comparison of strains cultured from individual patients in both media showed differences in plasmid contents in 9/46 (19.6%) strain pairs, and protein profiles differed in 30/43 (69.8%) strain pairs, most often in the expression of OspC (in 27/28 patients OspC was expressed only in strains growing in MKP). BSK-H medium supports the growth of borrelial strains but MKP is superior with regard to the isolation rate, morphology and motility of strains. BSK-H medium supports fast initial growth of borreliae but this is followed by rapid deformation and death of the spirochaetes.
Collapse
Affiliation(s)
- Eva Ružić-Sabljić
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| | - Vera Maraspin
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Daša Stupica
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tereza Rojko
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Petra Bogovič
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Franc Strle
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tjaša Cerar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
9
|
Abstract
Borrelia burgdorferisensu lato is the causative agent of Lyme borreliosis, multisystem disorder characterized by a wide spectrum of clinical manifestations. Different borrelia species can lead to distinct clinical presentations, but some species were associated with defined clinical manifestation likeBorrelia afzeliiwith skin manifestations,Borrelia gariniiwith central nervous system disorders andBorrelia burgdorferisensu stricto with Lyme arthritis.Ixodesticks represent the main vectors ofB. burgdorferisensu lato; wild animals, lizards and birds are the natural reservoir of borrelia. Genotyping of borrelia strains is of great importance for epidemiological, clinical, and evolutionary studies. Numerous methods are available for the genotyping ofB. burgdorferisensu lato based either on whole genome or PCR based typing. Typing methods differ in their approach and target, many of them were implemented more or less successfully for diagnostic purposes.
Collapse
|
10
|
Molloy EM, Casjens SR, Cox CL, Maxson T, Ethridge NA, Margos G, Fingerle V, Mitchell DA. Identification of the minimal cytolytic unit for streptolysin S and an expansion of the toxin family. BMC Microbiol 2015. [PMID: 26204951 PMCID: PMC4513790 DOI: 10.1186/s12866-015-0464-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Streptolysin S (SLS) is a cytolytic virulence factor produced by the human pathogen Streptococcus pyogenes and other Streptococcus species. Related "SLS-like" toxins have been characterized in select strains of Clostridium and Listeria, with homologous clusters bioinformatically identified in a variety of other species. SLS is a member of the thiazole/oxazole-modified microcin (TOMM) family of natural products. The structure of SLS has yet to be deciphered and many questions remain regarding its structure-activity relationships. RESULTS In this work, we assessed the hemolytic activity of a series of C-terminally truncated SLS peptides expressed in SLS-deficient S. pyogenes. Our data indicate that while the N-terminal poly-heterocyclizable (NPH) region of SLS substantially contributes to its bioactivity, the variable C-terminal region of the toxin is largely dispensable. Through genome mining we identified additional SLS-like clusters in diverse Firmicutes, Spirochaetes and Actinobacteria. Among the Spirochaete clusters, naturally truncated SLS-like precursors were found in the genomes of three Lyme disease-causing Borrelia burgdorferi sensu lato (Bbsl) strains. Although unable to restore hemolysis in SLS-deficient S. pyogenes, a Bbsl SLS-like precursor peptide was converted to a cytolysin using purified SLS biosynthetic enzymes. A PCR-based screen demonstrated that SLS-like clusters are substantially more prevalent in Bbsl than inferred from publicly available genome sequences. CONCLUSIONS The mutagenesis data described herein indicate that the minimal cytolytic unit of SLS encompasses the NPH region of the core peptide. Interestingly, this region is found in all characterized TOMM cytolysins, as well as the novel putative TOMM cytolysins we discovered. We propose that this conserved region represents the defining feature of the SLS-like TOMM family. We demonstrate the cytolytic potential of a Bbsl SLS-like precursor peptide, which has a core region of similar length to the SLS minimal cytolytic unit, when modified with purified SLS biosynthetic enzymes. As such, we speculate that some Borrelia have the potential to produce a TOMM cytolysin, although the biological significance of this finding remains to be determined. In addition to providing new insight into the structure-activity relationships of SLS, this study greatly expands the cytolysin group of TOMMs.
Collapse
Affiliation(s)
- Evelyn M Molloy
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Sherwood R Casjens
- Division of Microbiology and Immunology, Department of Pathology, University of Utah Medical School, Salt Lake City, UT, 84112, USA.
| | - Courtney L Cox
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Tucker Maxson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Nicole A Ethridge
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Gabriele Margos
- Bavarian Health and Food Safety Authority, National Reference Centre for Borrelia, Oberschleissheim, Germany.
| | - Volker Fingerle
- Bavarian Health and Food Safety Authority, National Reference Centre for Borrelia, Oberschleissheim, Germany.
| | - Douglas A Mitchell
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
11
|
Hodzic E. Lyme Borreliosis: Is there a preexisting (natural) variation in antimicrobial susceptibility among Borrelia burgdorferi strains? Bosn J Basic Med Sci 2015; 15:1-13. [PMID: 26295288 DOI: 10.17305/bjbms.2015.594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 06/29/2015] [Accepted: 06/30/2015] [Indexed: 12/31/2022] Open
Abstract
The development of antibiotics changed the world of medicine and has saved countless human and animal lives. Bacterial resistance/tolerance to antibiotics have spread silently across the world and has emerged as a major public health concern. The recent emergence of pan-resistant bacteria can overcome virtually any antibiotic and poses a major problem for their successful control. Selection for antibiotic resistance may take place where an antibiotic is present: in the skin, gut, and other tissues of humans and animals and in the environment. Borrelia burgdorferi, the etiological agents of Lyme borreliosis, evades host immunity and establishes persistent infections in its mammalian hosts. The persistent infection poses a challenge to the effective antibiotic treatment, as demonstrated in various animal models. An increasingly heterogeneous subpopulation of replicatively attenuated spirochetes arises following treatment, and these persistent antimicrobial tolerant/resistant spirochetes are non-cultivable. The non-cultivable spirochetes resurge in multiple tissues at 12 months after treatment, with B. burgdorferi-specific DNA copy levels nearly equivalent to those found in shame-treated experimental animals. These attenuated spirochetes remain viable, but divide slowly, thereby being tolerant to antibiotics. Despite the continued non-cultivable state, RNA transcription of multiple B. burgdorferi genes was detected in host tissues, spirochetes were acquired by xenodiagnostic ticks, and spirochetal forms could be visualized within ticks and mouse tissues. A number of host cytokines were up- or down-regulated in tissues of both shame- and antibiotic-treated mice in the absence of histopathology, indicating a lack of host response to the presence of antimicrobial tolerant/resistant spirochetes.
Collapse
Affiliation(s)
- Emir Hodzic
- Real-Time PCR Research & Diagnostics Core Facility, School of Veterinary Medicine, University of California, Davis.
| |
Collapse
|
12
|
Schüler W, Bunikis I, Weber-Lehman J, Comstedt P, Kutschan-Bunikis S, Stanek G, Huber J, Meinke A, Bergström S, Lundberg U. Complete genome sequence of Borrelia afzelii K78 and comparative genome analysis. PLoS One 2015; 10:e0120548. [PMID: 25798594 PMCID: PMC4370689 DOI: 10.1371/journal.pone.0120548] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/23/2015] [Indexed: 02/04/2023] Open
Abstract
The main Borrelia species causing Lyme borreliosis in Europe and Asia are Borrelia afzelii, B. garinii, B. burgdorferi and B. bavariensis. This is in contrast to the United States, where infections are exclusively caused by B. burgdorferi. Until to date the genome sequences of four B. afzelii strains, of which only two include the numerous plasmids, are available. In order to further assess the genetic diversity of B. afzelii, the most common species in Europe, responsible for the large variety of clinical manifestations of Lyme borreliosis, we have determined the full genome sequence of the B. afzelii strain K78, a clinical isolate from Austria. The K78 genome contains a linear chromosome (905,949 bp) and 13 plasmids (8 linear and 5 circular) together presenting 1,309 open reading frames of which 496 are located on plasmids. With the exception of lp28-8, all linear replicons in their full length including their telomeres have been sequenced. The comparison with the genomes of the four other B. afzelii strains, ACA-1, PKo, HLJ01 and Tom3107, as well as the one of B. burgdorferi strain B31, confirmed a high degree of conservation within the linear chromosome of B. afzelii, whereas plasmid encoded genes showed a much larger diversity. Since some plasmids present in B. burgdorferi are missing in the B. afzelii genomes, the corresponding virulence factors of B. burgdorferi are found in B. afzelii on other unrelated plasmids. In addition, we have identified a species specific region in the circular plasmid, cp26, which could be used for species determination. Different non-coding RNAs have been located on the B. afzelii K78 genome, which have not previously been annotated in any of the published Borrelia genomes.
Collapse
Affiliation(s)
| | - Ignas Bunikis
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | | | | | - Gerold Stanek
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | | | | | - Sven Bergström
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | |
Collapse
|
13
|
Borges V, Ferreira R, Nunes A, Sousa-Uva M, Abreu M, Borrego MJ, Gomes JP. Effect of long-term laboratory propagation on Chlamydia trachomatis genome dynamics. INFECTION GENETICS AND EVOLUTION 2013; 17:23-32. [PMID: 23542454 DOI: 10.1016/j.meegid.2013.03.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 02/26/2013] [Accepted: 03/20/2013] [Indexed: 11/17/2022]
Abstract
It is assumed that bacterial strains maintained in the laboratory for long time shape their genome in a different fashion from the nature-circulating strains. Here, we analyzed the impact of long-term in vitro propagation on the genome of the obligate intracellular pathogen Chlamydia trachomatis. We fully-sequenced the genome of a historical prototype strain (L2/434/Bu) and a clinical isolate (E/CS88), before and after one-year of serial in vitro passaging (up to 3500 bacterial generations). We observed a slow adaptation of C. trachomatis to the in vitro environment, which was essentially governed by four mutations for L2/434/Bu and solely one mutation for E/CS88, corresponding to estimated mutation rates from 3.84 × 10(-10) to 1.10 × 10(-9) mutations per base pair per generation. In a speculative basis, the mutations likely conferred selective advantage as: (i) mathematical modeling showed that selective advantage is mandatory for frequency increase of a mutated clone; (ii) transversions and non-synonymous mutations were overrepresented; (iii) two non-synonymous mutations affected the genes CTL0084 and CTL0610, encoding a putative transferase and a protein likely implicated in transcription regulation respectively, which are families known to be highly prone to undergone laboratory-derived advantageous mutations in other bacteria; and (iv) the mutation for E/CS88 is located likely in the regulatory region of a virulence gene (CT115/incD) believed to play a role in subverting the host cell machinery. Nevertheless, we found no significant differences in the growth rate, plasmid load, and attachment/entry rate, between strains before and after their long-term laboratory propagation. Of note, from the mixture of clones in E/CS88 initial population, an inactivating mutation in the virulence gene CT135 evolved to 100% prevalence, unequivocally indicating that this gene is superfluous for C. trachomatis survival in vitro. Globally, C. trachomatis revealed a slow in vitro adaptation that only modestly modifies the in vivo-derived genomic evolutionary landscape.
Collapse
Affiliation(s)
- Vítor Borges
- Department of Infectious Diseases, National Institute of Health, Av Padre Cruz, 1649-016 Lisbon, Portugal
| | | | | | | | | | | | | |
Collapse
|
14
|
Nolte O. Nucleic Acid Amplification Based Diagnostic of Lyme (Neuro-)borreliosis - Lost in the Jungle of Methods, Targets, and Assays? Open Neurol J 2012; 6:129-39. [PMID: 23230454 PMCID: PMC3514706 DOI: 10.2174/1874205x01206010129] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 06/22/2012] [Accepted: 07/02/2012] [Indexed: 11/30/2022] Open
Abstract
Laboratory based diagnosis of infectious diseases usually relies on culture of the disease causing micro-organism, followed by identification and susceptibility testing. Since Borrelia burgdorferi sensu lato, the etiologic agent of Lyme disease or Lyme borreliosis, requires very specific culture conditions (e.g. specific liquid media, long term cul-ture) traditional bacteriology is often not done on a routine basis. Instead, confirmation of the clinical diagnosis needs ei-ther indirect techniques (like serology or measurement of cellular activity in the presence of antigens) or direct but culture independent techniques, like microscopy or nucleic acid amplification techniques (NAT), with polymerase chain reaction (PCR) being the most frequently applied NAT method in routine laboratories. NAT uses nucleic acids of the disease causing micro-organism as template for amplification, isolated from various sources of clinical specimens. Although the underlying principle, adoption of the enzymatic process running during DNA duplication prior to prokaryotic cell division, is comparatively easy, a couple of ‘pitfalls’ is associated with the technique itself as well as with interpretation of the results. At present, no commercial, CE-marked and sufficiently validated PCR assay is available. A number of homebrew assays have been published, which are different in terms of target (i.e. the gene targeted by the amplification primers), method (nested PCR, PCR followed by hybridization, real-time PCR) and validation criteria. Inhibitory compounds may lead to false negative results, if no appropriate internal control is included. Carry-over of amplicons, insufficient handling and workflow and/or insufficiently validated targets/primers may result in false positive results. Different targets may yield different analytical sensitivity, depending, among other factors, of the redundancy of a target gene in the genome. Per-formance characteristics (e.g. analytical sensitivity and specificity, clinical sensitivity and specificity, reproducibility, etc.) are, if available, only applicable to a specific assay, running in a specific laboratory. Finally, not only the NAT/PCR method itself, but also the process of DNA isolation from the specimen, is highly diverse and may have fundamental im-pact on the (expected) PCR result. Of concern are distribution effects of DNA, in particular, if only low numbers of bacte-ria/genomes are present in a sample, as it is the case for instance in cerebrospinal fluids. For the ordering physician and for the patient requesting PCR analysis, these ‘pitfalls’ are usually invisible. As a conse-quence, the reported result (i.e. PCR negative or positive for B. burgdorferi) is hard to interpret, especially, if the reported PCR result is contradictory to the clinical diagnosis or other laboratory findings. Moreover, due to the high number of dif-ferent assays in use, two laboratories, testing the same specimen, might come to different PCR results. The current paper wants to summarize the available PCR/NAT assays for the detection of B. burgdorferi DNA in clinical specimens, with special attention to neurologic disorders, and to discuss the difficulties in PCR analysis and result inter-pretation, associated thereof. In view of growing numbers of patients who are diagnosed of having Lyme disease, and ac-knowledging a substantial growth in knowledge regarding other tick- or vector-borne pathogens, which might be able to induce symptoms comparable to Lyme (neuro-)borreliosis, efforts are urgently needed to standardize and harmonize methods for B. burgdorferi nucleic acid amplification.
Collapse
Affiliation(s)
- Oliver Nolte
- Labor Dr. Brunner, Mainaustrabe 48 a/b, DE-78464, Konstanz, Germany
| |
Collapse
|
15
|
Sperling J, Middelveen M, Klein D, Sperling F. Evolving perspectives on lyme borreliosis in Canada. Open Neurol J 2012; 6:94-103. [PMID: 23091570 PMCID: PMC3474999 DOI: 10.2174/1874205x01206010094] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 06/22/2012] [Accepted: 07/02/2012] [Indexed: 12/20/2022] Open
Abstract
With cases now documented in every province, Lyme borreliosis (LB) is emerging as a serious public health risk in Canada. Controversy over the contribution of LB to the burden of chronic disease is maintained by difficulty in capturing accurate Canadian statistics, especially early clinical cases of LB. The use of dogs as sentinel species demon-strates that potential contact with Borrelia burgdorferi spirochetes, as detected by C6 peptide, extends across the country. Dissemination of infected ticks by migratory birds and rapid establishment of significant levels of infection have been well described. Canadian public health response has focused on identification of established populations of the tick vectors, Ixodes scapularis and I. pacificus, on the assumption that these are the only important vectors of the disease across Canada. Strains of B. burgdorferi circulating in Canada and the full range of their reservoir species and coinfections remain to be explored. Ongoing surveys and historical records demonstrate that Borrelia-positive Ixodes species are regu-larly present in regions of Canada that have previously been considered to be outside of the ranges of these species in re-cent modeling efforts. We present data demonstrating that human cases of LB are found across the nation. Consequently, physician education and better early diagnoses are needed to prevent long term sequelae. An international perspective will be paramount for developing improved Canadian guidelines that recognize the complexity and diversity of Lyme borreliosis.
Collapse
Affiliation(s)
- Jlh Sperling
- Department of Biological Sciences, University of Alberta, Edmonton, Canada ; Canadian Lyme Disease Foundation, West Kelowna, British Columbia, Canada
| | | | | | | |
Collapse
|
16
|
Detection of established virulence genes and plasmids to differentiate Borrelia burgdorferi strains. Infect Immun 2012; 80:1519-29. [PMID: 22290150 DOI: 10.1128/iai.06326-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Borrelia burgdorferi sensu stricto is the major causative agent of Lyme disease in the United States, while B. garinii and B. afzelii are more prevalent in Europe. The highly complex genome of B. burgdorferi is comprised of a linear chromosome and a large number of variably sized linear and circular plasmids. Many plasmids of this spirochete are unstable during its culture in vitro. Given that many of the B. burgdorferi virulence factors identified to date are plasmid encoded, spirochetal plasmid content determination is essential for genetic analysis of Lyme pathogenesis. Although PCR-based assays facilitate plasmid profiling of sequenced B. burgdorferi strains, a rapid genetic content determination strategy for nonsequenced strains has not yet been described. In this study, we combined pulsed-field gel electrophoresis (PFGE) and Southern hybridization for detection of genes encoding known virulence factors, ribosomal RNA gene spacer restriction fragment length polymorphism types (RSTs), ospC group determination, and sequencing of the variable dbpA and ospC genes. We show that two strains isolated from the same tick and both originally named N40 are in fact very distinct. Furthermore, we failed to detect bbk32, which encodes a fibronectin-binding adhesin, in one "N40" strain. Thus, two distinct strains that show different plasmid profiles, as determined by PFGE and PCR, were isolated from the same tick and vary in their ospC and dbpA sequences. However, both belong to group RST3B.
Collapse
|