1
|
Lam MMC, Salisbury SM, Treat LP, Wick RR, Judd LM, Wyres KL, Brisse S, Walker KA, Miller VL, Holt KE. Genomic and functional analysis of rmp locus variants in Klebsiella pneumoniae. Genome Med 2025; 17:36. [PMID: 40205597 PMCID: PMC11984045 DOI: 10.1186/s13073-025-01461-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 03/19/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Klebsiella pneumoniae is an opportunistic pathogen and a leading cause of healthcare-associated infections in hospitals, which are frequently antimicrobial resistant (AMR). Exacerbating the public health threat posed by K. pneumoniae, some strains also harbour additional hypervirulence determinants typically acquired via mobile genetic elements such as the well-characterised large virulence plasmid KpVP-1. The rmpADC locus is considered a key virulence feature of K. pneumoniae and is associated with upregulated capsule expression and the hypermucoid phenotype, which can enhance virulence by contributing to serum resistance. Typically such strains have been susceptible to all antimicrobials besides ampicillin; however, the recent emergence of AMR hypermucoid strains is concerning. METHODS Here, we investigate the genetic diversity, evolution, mobilisation and prevalence of rmpADC, in a dataset of 14,000 genomes from isolates of the Klebsiella pneumoniae species complex, and describe the RmST virulence typing scheme for tracking rmpADC variants for the purposes of genomic surveillance. Additionally, we examine the functionality of representatives for variants of rmpADC introduced into a mutant strain lacking its native rmpADC locus. RESULTS The rmpADC locus was detected in 7% of the dataset, mostly from genomes of K. pneumoniae and a very small number of K. variicola and K. quasipneumoniae. Sequence variants of rmpADC grouped into five distinct lineages (rmp1, rmp2, rmp2A, rmp3 and rmp4) that corresponded to unique mobile elements, and were differentially distributed across different populations (i.e. clonal groups) of K. pneumoniae. All variants were demonstrated to produce enhanced capsule production and hypermucoviscosity. CONCLUSIONS These results provide an overview of the diversity and evolution of a prominent K. pneumoniae virulence factor and support the idea that screening for rmpADC in K. pneumoniae isolates and genomes is valuable to monitor the emergence and spread of hypermucoid K. pneumoniae, including AMR strains.
Collapse
Affiliation(s)
- Margaret M C Lam
- Department of Infectious Diseases, School of Translational Medicine, Monash University, The Burnet Institute, Level 285 Commercial Rd, Melbourne, 3004, Australia.
| | - Stephen M Salisbury
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Logan P Treat
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Ryan R Wick
- Department of Infectious Diseases, School of Translational Medicine, Monash University, The Burnet Institute, Level 285 Commercial Rd, Melbourne, 3004, Australia
| | - Louise M Judd
- Department of Infectious Diseases, School of Translational Medicine, Monash University, The Burnet Institute, Level 285 Commercial Rd, Melbourne, 3004, Australia
| | - Kelly L Wyres
- Department of Infectious Diseases, School of Translational Medicine, Monash University, The Burnet Institute, Level 285 Commercial Rd, Melbourne, 3004, Australia
- Centre to Impact AMR, Monash University, Melbourne, Australia
| | - Sylvain Brisse
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Université Paris Cité, Paris, France
| | - Kimberly A Walker
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Virginia L Miller
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Kathryn E Holt
- Department of Infectious Diseases, School of Translational Medicine, Monash University, The Burnet Institute, Level 285 Commercial Rd, Melbourne, 3004, Australia
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
2
|
Ovchinnikova OG, Treat LP, Teelucksingh T, Clarke BR, Miner TA, Whitfield C, Walker KA, Miller VL. Hypermucoviscosity Regulator RmpD Interacts with Wzc and Controls Capsular Polysaccharide Chain Length. mBio 2023; 14:e0080023. [PMID: 37140436 PMCID: PMC10294653 DOI: 10.1128/mbio.00800-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Abstract
Klebsiella pneumoniae is a leading cause of nosocomial infections, including pneumonia, bacteremia, and urinary tract infections. Treatment options are increasingly restricted by the high prevalence of resistance to frontline antibiotics, including carbapenems, and the recently identified plasmid-conferred colistin resistance. The classical pathotype (cKp) is responsible for most of the nosocomial infections observed globally, and these isolates are often multidrug resistant. The hypervirulent pathotype (hvKp) is a primary pathogen capable of causing community-acquired infections in immunocompetent hosts. The hypermucoviscosity (HMV) phenotype is strongly associated with the increased virulence of hvKp isolates. Recent studies demonstrated that HMV requires capsule (CPS) synthesis and the small protein RmpD but is not dependent on the increased amount of capsule associated with hvKp. Here, we identified the structure of the capsular and extracellular polysaccharide isolated from hvKp strain KPPR1S (serotype K2) with and without RmpD. We found that the polymer repeat unit structure is the same in both strains and that it is identical to the K2 capsule. However, the chain length of CPS produced by strains expressing rmpD demonstrates more uniform length. This property was reconstituted in CPS from Escherichia coli isolates that possess the same CPS biosynthesis pathway as K. pneumoniae but naturally lack rmpD. Furthermore, we demonstrate that RmpD binds Wzc, a conserved capsule biosynthesis protein required for CPS polymerization and export. Based on these observations, we present a model for how the interaction of RmpD with Wzc could impact CPS chain length and HMV. IMPORTANCE Infections caused by Klebsiella pneumoniae continue to be a global public health threat; the treatment of these infections is complicated by the high frequency of multidrug resistance. K. pneumoniae produces a polysaccharide capsule required for virulence. Hypervirulent isolates also have a hypermucoviscous (HMV) phenotype that increases virulence, and we recently demonstrated that a horizontally acquired gene, rmpD, is required for HMV and hypervirulence but that the identity of the polymeric product(s) in HMV isolates is uncertain. Here, we demonstrate that RmpD regulates capsule chain length and interacts with Wzc, a part of the capsule polymerization and export machinery shared by many pathogens. We further show that RmpD confers HMV and regulates capsule chain length in a heterologous host (E. coli). As Wzc is a conserved protein found in many pathogens, it is possible that RmpD-mediated HMV and increased virulence may not be restricted to K. pneumoniae.
Collapse
Affiliation(s)
- Olga G. Ovchinnikova
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Logan P. Treat
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Tanisha Teelucksingh
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Bradley R. Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Taryn A. Miner
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Kimberly A. Walker
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Virginia L. Miller
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Silva-Rohwer AR, Held K, Yakhnin H, Babitzke P, Vadyvaloo V. CsrA-Mediated Translational Activation of the hmsE mRNA Enhances HmsD-Dependent C-di-GMP-Enabled Biofilm Production in Yersinia pestis. J Bacteriol 2023; 205:e0010523. [PMID: 37191545 PMCID: PMC10294631 DOI: 10.1128/jb.00105-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
The plague bacterium, Yersinia pestis, forms a biofilm-mediated blockage in the flea foregut that enhances its transmission by fleabite. Biofilm formation is positively controlled by cyclic di-GMP (c-di-GMP), which is synthesized by the diguanylate cyclases (DGC), HmsD and HmsT. While HmsD primarily promotes biofilm-mediated blockage of fleas, HmsT plays a more minor role in this process. HmsD is a component of the HmsCDE tripartite signaling system. HmsC and HmsE posttranslationally inhibit or activate HmsD, respectively. HmsT-dependent c-di-GMP levels and biofilm formation are positively regulated by the RNA-binding protein CsrA. In this study we determined whether CsrA positively regulates HmsD-dependent biofilm formation through interactions with the hmsE mRNA. Gel mobility shift assays determined that CsrA binds specifically to the hmsE transcript. RNase T1 footprint assays identified a single CsrA binding site and CsrA-induced structural changes in the hmsE leader region. Translational activation of the hmsE mRNA was confirmed in vivo using plasmid-encoded inducible translational fusion reporters and by HmsE protein expression studies. Furthermore, mutation of the CsrA binding site in the hmsE transcript significantly reduced HmsD-dependent biofilm formation. These results suggest that CsrA binding leads to structural changes in the hmsE mRNA that enhance its translation to enable increased HmsD-dependent biofilm formation. Given the requisite function of HmsD in biofilm-mediated flea blockage, this CsrA-dependent increase in HmsD activity underscores that complex and conditionally defined modulation of c-di-GMP synthesis within the flea gut is required for Y. pestis transmission. IMPORTANCE Mutations enhancing c-di-GMP biosynthesis drove the evolution of Y. pestis to flea-borne transmissibility. c-di-GMP-dependent biofilm-mediated blockage of the flea foregut enables regurgitative transmission of Y. pestis by fleabite. The Y. pestis diguanylate cyclases (DGC), HmsT and HmsD, which synthesize c-di-GMP, play significant roles in transmission. Several regulatory proteins involved in environmental sensing, as well as signal transduction and response regulation, tightly control DGC function. An example is CsrA, a global posttranscriptional regulator that modulates carbon metabolism and biofilm formation. CsrA integrates alternative carbon usage metabolism cues to activate c-di-GMP biosynthesis through HmsT. Here, we demonstrated that CsrA additionally activates hmsE translation to promote c-di-GMP biosynthesis through HmsD. This emphasizes that a highly evolved regulatory network controls c-di-GMP synthesis and Y. pestis transmission.
Collapse
Affiliation(s)
- Amelia R. Silva-Rohwer
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Kiara Held
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Viveka Vadyvaloo
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| |
Collapse
|
4
|
Bertram R, Neumann B, Schuster CF. Status quo of tet regulation in bacteria. Microb Biotechnol 2022; 15:1101-1119. [PMID: 34713957 PMCID: PMC8966031 DOI: 10.1111/1751-7915.13926] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 11/27/2022] Open
Abstract
The tetracycline repressor (TetR) belongs to the most popular, versatile and efficient transcriptional regulators used in bacterial genetics. In the tetracycline (Tc) resistance determinant tet(B) of transposon Tn10, tetR regulates the expression of a divergently oriented tetA gene that encodes a Tc antiporter. These components of Tn10 and of other natural or synthetic origins have been used for tetracycline-dependent gene regulation (tet regulation) in at least 40 bacterial genera. Tet regulation serves several purposes such as conditional complementation, depletion of essential genes, modulation of artificial genetic networks, protein overexpression or the control of gene expression within cell culture or animal infection models. Adaptations of the promoters employed have increased tet regulation efficiency and have made this system accessible to taxonomically distant bacteria. Variations of TetR, different effector molecules and mutated DNA binding sites have enabled new modes of gene expression control. This article provides a current overview of tet regulation in bacteria.
Collapse
Affiliation(s)
- Ralph Bertram
- Institute of Clinical Hygiene, Medical Microbiology and InfectiologyParacelsus Medical UniversityProf.‐Ernst‐Nathan‐Straße 1Nuremberg90419Germany
| | - Bernd Neumann
- Institute of Clinical Hygiene, Medical Microbiology and InfectiologyParacelsus Medical UniversityProf.‐Ernst‐Nathan‐Straße 1Nuremberg90419Germany
| | - Christopher F. Schuster
- Department of Infectious DiseasesDivision of Nosocomial Pathogens and Antibiotic ResistancesRobert Koch InstituteBurgstraße 37Wernigerode38855Germany
| |
Collapse
|
5
|
Mathew B, Aoyagi KL, Fisher MA. Yersinia pestis Lipopolysaccharide Remodeling Confers Resistance to a Xenopsylla cheopis Cecropin. ACS Infect Dis 2021; 7:2536-2545. [PMID: 34319069 DOI: 10.1021/acsinfecdis.1c00275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fleas are major vectors of Yersinia pestis, the causative agent of plague. It has been proposed that Y. pestis has developed the ability to overcome the innate immune responses of fleas. Despite the fact that they transmit a number of bacterial infections, very little is known about the immune responses in fleas. In this study, we describe the antimicrobial activities of a cecropin from Xenopsylla cheopis (cheopin), an efficient vector for Y. pestis in the wild. This is the first cecropin-class antimicrobial peptide described from Siphonaptera insects. Cheopin showed potent activity against Gram-negative bacteria but little activity against wild-type Y. pestis KIM6+. Deletion of the aminoarabinose operon, which is responsible for the 4-amino-4-deoxy-l-arabinose (Ara4N) modification of LPS, rendered Y. pestis highly susceptible to cheopin. Confocal microscopy and whole cell binding assays indicated that Ara4N modification reduces the affinity of cheopin for Y. pestis. Further, cheopin only permeabilized bacterial membranes in the absence of Ara4N-modified LPS, which was correlated with bacterial killing. This study provides insights into innate immunity of the flea and evidence for the crucial role of Ara4N modification of Y. pestis LPS in conferring resistance against flea antimicrobial peptides.
Collapse
Affiliation(s)
- Basil Mathew
- Department of Pathology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Kari L. Aoyagi
- Department of Pathology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Mark A. Fisher
- Department of Pathology, University of Utah, Salt Lake City, Utah 84112, United States
- ARUP Laboratories, Salt Lake City, Utah 84112, United States
| |
Collapse
|
6
|
CsrA Enhances Cyclic-di-GMP Biosynthesis and Yersinia pestis Biofilm Blockage of the Flea Foregut by Alleviating Hfq-Dependent Repression of the hmsT mRNA. mBio 2021; 12:e0135821. [PMID: 34340543 PMCID: PMC8406273 DOI: 10.1128/mbio.01358-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Plague-causing Yersinia pestis is transmitted through regurgitation when it forms a biofilm-mediated blockage in the foregut of its flea vector. This biofilm is composed of an extracellular polysaccharide substance (EPS) produced when cyclic-di-GMP (c-di-GMP) levels are elevated. The Y. pestis diguanylate cyclase enzymes HmsD and HmsT synthesize c-di-GMP. HmsD is required for biofilm blockage formation but contributes minimally to in vitro biofilms. HmsT, however, is necessary for in vitro biofilms and contributes to intermediate rates of biofilm blockage. C-di-GMP synthesis is regulated at the transcriptional and posttranscriptional levels. In this, the global RNA chaperone, Hfq, posttranscriptionally represses hmsT mRNA translation. How c-di-GMP levels and biofilm blockage formation is modulated by nutritional stimuli encountered in the flea gut is unknown. Here, the RNA-binding regulator protein CsrA, which controls c-di-GMP-mediated biofilm formation and central carbon metabolism responses in many Gammaproteobacteria, was assessed for its role in Y. pestis biofilm formation. We determined that CsrA was required for markedly greater c-di-GMP and EPS levels when Y. pestis was cultivated on alternative sugars implicated in flea biofilm blockage metabolism. Our assays, composed of mobility shifts, quantification of mRNA translation, stability, and abundance, and epistasis analyses of a csrA hfq double mutant strain substantiated that CsrA represses hfq mRNA translation, thereby alleviating Hfq-dependent repression of hmsT mRNA translation. Additionally, a csrA mutant exhibited intermediately reduced biofilm blockage rates, resembling an hmsT mutant. Hence, we reveal CsrA-mediated control of c-di-GMP synthesis in Y. pestis as a tiered, posttranscriptional regulatory process that enhances biofilm blockage-mediated transmission from fleas.
Collapse
|
7
|
Walker KA, Treat LP, Sepúlveda VE, Miller VL. The Small Protein RmpD Drives Hypermucoviscosity in Klebsiella pneumoniae. mBio 2020; 11:e01750-20. [PMID: 32963003 PMCID: PMC7512549 DOI: 10.1128/mbio.01750-20] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022] Open
Abstract
Klebsiella pneumoniae has a remarkable ability to cause a wide range of human diseases. It is divided into two broad classes: classical strains that are a notable problem in health care settings due to multidrug resistance, and hypervirulent (hv) strains that are historically drug sensitive but able to establish disease in immunocompetent hosts. Alarmingly, there has been an increased frequency of clinical isolates that have both drug resistance and hv-associated genes. One such gene, rmpA, encodes a transcriptional regulator required for maximal capsule (cps) gene expression and confers hypermucoviscosity (HMV). This link has resulted in the assumption that HMV is caused by elevated capsule production. However, we recently reported a new cps regulator, RmpC, and ΔrmpC mutants have reduced cps expression but retain HMV, suggesting that capsule production and HMV may be separable traits. Here, we report the identification of a small protein, RmpD, that is essential for HMV but does not impact capsule. RmpD is 58 residues with a putative N-terminal transmembrane domain and highly positively charged C-terminal half, and it is conserved among other hv K. pneumoniae strains. Expression of rmpD in trans complements both ΔrmpD and ΔrmpA mutants for HMV, suggesting that RmpD is the key driver of this phenotype. The rmpD gene is located between rmpA and rmpC, within an operon regulated by RmpA. These data, combined with our previous work, suggest a model in which the RmpA-associated phenotypes are largely due to RmpA activating the expression of rmpD to produce HMV and rmpC to stimulate cps expression.IMPORTANCE Capsule is a critical virulence factor in Klebsiella pneumoniae, in both antibiotic-resistant classical strains and hypervirulent strains. Hypervirulent strains usually have a hypermucoviscosity (HMV) phenotype that contributes to their heightened virulence capacity, but the production of HMV is not understood. The transcriptional regulator RmpA is required for HMV and also activates capsule gene expression, leading to the assumption that HMV is caused by hyperproduction of capsule. We have identified a new gene (rmpD) required for HMV but not for capsule production. This distinction between HMV and capsule production will promote a better understanding of the mechanisms of hypervirulence, which is in great need given the alarming increase in clinical isolates with both drug resistance and hypervirulence traits.
Collapse
Affiliation(s)
- Kimberly A Walker
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Logan P Treat
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Victoria E Sepúlveda
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Virginia L Miller
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
8
|
A Survey of Antimicrobial Resistance Determinants in Category A Select Agents, Exempt Strains, and Near-Neighbor Species. Int J Mol Sci 2020; 21:ijms21051669. [PMID: 32121349 PMCID: PMC7084191 DOI: 10.3390/ijms21051669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 01/02/2023] Open
Abstract
A dramatic increase in global antimicrobial resistance (AMR) has been well documented. Of particular concern is the dearth of information regarding the spectrum and prevalence of AMR within Category A Select Agents. Here, we performed a survey of horizontally and vertically transferred AMR determinants among Category A agents and their near neighbors. Microarrays provided broad spectrum screening of 127 Francisella spp., Yersinia spp., and Bacillus spp. strains for the presence/absence of 500+ AMR genes (or families of genes). Detecting a broad variety of AMR genes in each genus, microarray analysis also picked up the presence of an engineered plasmid in a Y. pestis strain. High resolution melt analysis (HRMA) was also used to assess the presence of quinolone resistance-associated mutations in 100 of these strains. Though HRMA was able to detect resistance-causing point mutations in B. anthracis strains, it was not capable of discriminating these point mutations from other nucleotide substitutions (e.g., arising from sequence differences in near neighbors). Though these technologies are well-established, to our knowledge, this is the largest survey of Category A agents and their near-neighbor species for genes covering multiple mechanisms of AMR.
Collapse
|
9
|
Temperature Control of psaA Expression by PsaE and PsaF in Yersinia pestis. J Bacteriol 2019; 201:JB.00217-19. [PMID: 31138630 PMCID: PMC6657601 DOI: 10.1128/jb.00217-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/22/2019] [Indexed: 12/19/2022] Open
Abstract
Y. pestis is a Gram-negative bacterial pathogen that causes bubonic plague. As a vector-borne pathogen, Y. pestis fluctuates between an arthropod vector (flea) and mammalian host. As such, Y. pestis must recognize environmental signals encountered within each host environment and respond by appropriately regulating gene expression. PsaA is a key Y. pestis mammalian virulence determinant that forms fimbriae. Our work provides evidence that Y. pestis utilizes multiple posttranscriptional mechanisms to regulate the levels of two PsaA regulatory proteins in response to both temperature and pH. This study offers insight into mechanisms that bacteria utilize to sense environmental cues and regulate the expression of determinants required for mammalian disease. PsaA, the subunit of the fimbria originally referred to as the “pH 6 antigen,” is required for full virulence of Yersinia pestis during bubonic plague. The expression of psaA is dependent upon specific environmental signals, and while the signals (high temperature and acidic pH) are defined, the mechanisms underlying this regulation remain unclear. In the closely related species Yersinia pseudotuberculosis, psaA transcription requires two regulatory genes, psaE and psaF, and it is speculated that posttranscriptional regulation of PsaE and/or PsaF contributes to the regulation of psaA transcription. Few studies have examined the regulation of psaA expression in Y. pestis, and prior to this work, the roles of psaE and psaF in Y. pestis had not been defined. The data presented here show that both psaE and psaF are required for psaA transcription in Y. pestis and that the impact of temperature and pH is mediated through discrete posttranscriptional effects on PsaE and PsaF. By generating antibodies that recognize endogenous PsaE and PsaF, we determined that the levels of both proteins are impacted by temperature and pH. High temperature is required for psaE and psaF translation via discrete mechanisms mediated by the mRNA 5′ untranslated region (UTR) upstream of each gene. Additionally, levels of PsaE and PsaF are impacted by pH. We show that PsaF enhances the stability of PsaE, and thus, both PsaE and PsaF are required for psaA transcription. Our data indicate that the environmental signals (temperature and pH) impact the expression of psaA by affecting the translation of psaE and psaF and the stability of PsaE and PsaF. IMPORTANCEY. pestis is a Gram-negative bacterial pathogen that causes bubonic plague. As a vector-borne pathogen, Y. pestis fluctuates between an arthropod vector (flea) and mammalian host. As such, Y. pestis must recognize environmental signals encountered within each host environment and respond by appropriately regulating gene expression. PsaA is a key Y. pestis mammalian virulence determinant that forms fimbriae. Our work provides evidence that Y. pestis utilizes multiple posttranscriptional mechanisms to regulate the levels of two PsaA regulatory proteins in response to both temperature and pH. This study offers insight into mechanisms that bacteria utilize to sense environmental cues and regulate the expression of determinants required for mammalian disease.
Collapse
|
10
|
A Klebsiella pneumoniae Regulatory Mutant Has Reduced Capsule Expression but Retains Hypermucoviscosity. mBio 2019; 10:mBio.00089-19. [PMID: 30914502 PMCID: PMC6437046 DOI: 10.1128/mbio.00089-19] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The polysaccharide capsule is an essential virulence factor for Klebsiella pneumoniae in both community-acquired hypervirulent strains as well as health care-associated classical strains that are posing significant challenges due to multidrug resistance. Capsule production is known to be transcriptionally regulated by a number of proteins, but very little is known about how these proteins collectively control capsule production. RmpA and RcsB are two known regulators of capsule gene expression, and RmpA is required for the hypermucoviscous (HMV) phenotype in hypervirulent K. pneumoniae strains. In this report, we confirmed that these regulators performed their anticipated functions in the ATCC 43816 derivative, KPPR1S: rcsB and rmpA mutants are HMV negative and have reduced capsule gene expression. We also identified a novel transcriptional regulator, RmpC, encoded by a gene near rmpA The ΔrmpC strain has reduced capsule gene expression but retains the HMV phenotype. We further showed that a regulatory cascade exists in which KvrA and KvrB, the recently characterized MarR-like regulators, and RcsB contribute to capsule regulation through regulation of the rmpA promoter and through additional mechanisms. In a murine pneumonia model, the regulator mutants have a range of colonization defects, suggesting that they regulate virulence factors in addition to capsule. Further testing of the rmpC and rmpA mutants revealed that they have distinct and overlapping functions and provide evidence that HMV is not dependent on overproduction of capsule. This distinction will facilitate a better understanding of HMV and how it contributes to enhanced virulence of hypervirulent strains.IMPORTANCE Klebsiella pneumoniae continues to be a substantial public health threat due to its ability to cause health care-associated and community-acquired infections combined with its ability to acquire antibiotic resistance. Novel therapeutics are needed to combat this pathogen, and a greater understanding of its virulence factors is required for the development of new drugs. A key virulence factor for K. pneumoniae is the capsule, and community-acquired hypervirulent strains produce a capsule that causes hypermucoidy. We report here a novel capsule regulator, RmpC, and provide evidence that capsule production and the hypermucoviscosity phenotype are distinct processes. Infection studies showing that this and other capsule regulator mutants have a range of phenotypes indicate that additional virulence factors are in their regulons. These results shed new light on the mechanisms controlling capsule production and introduce targets that may prove useful for the development of novel therapeutics for the treatment of this increasingly problematic pathogen.
Collapse
|
11
|
Schulte M, Sterzenbach T, Miskiewicz K, Elpers L, Hensel M, Hansmeier N. A versatile remote control system for functional expression of bacterial virulence genes based on the tetA promoter. Int J Med Microbiol 2019; 309:54-65. [DOI: 10.1016/j.ijmm.2018.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/21/2018] [Accepted: 11/14/2018] [Indexed: 11/16/2022] Open
|
12
|
Anjuwon-Foster BR, Tamayo R. A genetic switch controls the production of flagella and toxins in Clostridium difficile. PLoS Genet 2017; 13:e1006701. [PMID: 28346491 PMCID: PMC5386303 DOI: 10.1371/journal.pgen.1006701] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 04/10/2017] [Accepted: 03/16/2017] [Indexed: 12/15/2022] Open
Abstract
In the human intestinal pathogen Clostridium difficile, flagella promote adherence to intestinal epithelial cells. Flagellar gene expression also indirectly impacts production of the glucosylating toxins, which are essential to diarrheal disease development. Thus, factors that regulate the expression of the flgB operon will likely impact toxin production in addition to flagellar motility. Here, we report the identification a "flagellar switch" that controls the phase variable production of flagella and glucosylating toxins. The flagellar switch, located upstream of the flgB operon containing the early stage flagellar genes, is a 154 bp invertible sequence flanked by 21 bp inverted repeats. Bacteria with the sequence in one orientation expressed flagellum and toxin genes, produced flagella, and secreted the toxins ("flg phase ON"). Bacteria with the sequence in the inverse orientation were attenuated for flagellar and toxin gene expression, were aflagellate, and showed decreased toxin secretion ("flg phase OFF"). The orientation of the flagellar switch is reversible during growth in vitro. We provide evidence that gene regulation via the flagellar switch occurs post-transcription initiation and requires a C. difficile-specific regulatory factor to destabilize or degrade the early flagellar gene mRNA when the flagellar switch is in the OFF orientation. Lastly, through mutagenesis and characterization of flagellar phase locked isolates, we determined that the tyrosine recombinase RecV, which catalyzes inversion at the cwpV switch, is also responsible for inversion at the flagellar switch in both directions. Phase variable flagellar motility and toxin production suggests that these important virulence factors have both advantageous and detrimental effects during the course of infection.
Collapse
Affiliation(s)
- Brandon R. Anjuwon-Foster
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
13
|
Walker KA, Griggs LA, Obrist M, Bode A, Summers RP, Miller VL. The YsrS Paralog DygS Has the Capacity To Activate Expression of the Yersinia enterocolitica Ysa Type III Secretion System. J Bacteriol 2016; 198:1725-1734. [PMID: 27044629 PMCID: PMC4886761 DOI: 10.1128/jb.00240-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/28/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The Yersinia enterocolitica Ysa type III secretion system (T3SS) is associated with intracellular survival, and, like other characterized T3SSs, it is tightly controlled. Expression of the ysa genes is only detected following growth at low temperatures (26°C) and in high concentrations of sodium chloride (290 mM) in the medium. The YsrSTR phosphorelay (PR) system is required for ysa expression and likely responds to NaCl. During our investigations into the Ysr PR system, we discovered that genes YE3578 and YE3579 are remarkably similar to ysrR and ysrS, respectively, and are probably a consequence of a gene duplication event. The amino acid differences between YE3578 and ysrR are primarily clustered into two short regions. The differences between YE3579 and ysrS are nearly all located in the periplasmic sensing domain; the cytoplasmic domains are 98% identical. We investigated whether these paralogs were capable of activating ysa gene expression. We found that the sensor paralog, named DygS, is capable of compensating for loss of ysrS, but the response regulator paralog, DygR, cannot complement a ysrR gene deletion. In addition, YsrR, but not DygR, interacts with the histidine phosphorelay protein YsrT. Thus, DygS likely activates ysa gene expression in response to a signal other than NaCl and provides an example of a phosphorelay system in which two sensor kinases feed into the same regulatory pathway. IMPORTANCE All organisms need mechanisms to promote survival in changing environments. Prokaryotic phosphorelay systems are minimally comprised of a histidine kinase (HK) that senses an extracellular stimulus and a response regulator (RR) but can contain three or more proteins. Through gene duplication, a unique hybrid HK was created. We show that, while the hybrid appears to retain all of the phosphorelay functions, it responds to a different signal than the original. Both HKs transmit the signal to the same RR, which activates a promoter that transcribes a set of genes encoding a type III secretion system (T3SS) whose function is not yet evident. The significance of this work lies in finding that two HKs regulate this T3SS, highlighting its importance.
Collapse
Affiliation(s)
- Kimberly A Walker
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Lauren A Griggs
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Markus Obrist
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Addys Bode
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - R Patrick Summers
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Virginia L Miller
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
14
|
Abstract
The transcriptional regulator RovA positively regulates transcription of the Yersinia enterocolitica virulence gene inv. Invasin, encoded by inv, is important for establishment of Y. enterocolitica infection. However, a rovA mutant is more attenuated for virulence than an inv mutant, implying that RovA regulates additional virulence genes. When the Y. enterocolitica RovA regulon was defined by microarray analysis, YE1984 and YE1985 were among the genes identified as being upregulated by RovA. Since these genes are homologous to Xenorhabdus nematophila cytotoxin genes xaxA and xaxB, we named them yaxA and yaxB, respectively. In this work, we demonstrate the effects of YaxAB on the course of infection in the murine model. While a yaxAB mutant (ΔyaxAB) is capable of colonizing mice at the same level as the wild type, it slightly delays the course of infection and results in differing pathology in the spleen. Further, we found that yaxAB encode a probable cytotoxin capable of lysing mammalian cells, that both YaxA and YaxB are required for cytotoxic activity, and that the two proteins associate. YaxAB-mediated cell death occurs via osmotic lysis through the formation of distinct membrane pores. In silico tertiary structural analysis identified predicted structural homology between YaxA and proteins in pore-forming toxin complexes from Bacillus cereus (HBL-B) and Escherichia coli (HlyE). Thus, it appears that YaxAB function as virulence factors by inducing cell lysis through the formation of pores in the host cell membrane. This characterization of YaxAB supports the hypothesis that RovA regulates expression of multiple virulence factors in Y. enterocolitica.
Collapse
|
15
|
Lane MC, Lenz JD, Miller VL. Proteolytic processing of the Yersinia pestis YapG autotransporter by the omptin protease Pla and the contribution of YapG to murine plague pathogenesis. J Med Microbiol 2013; 62:1124-1134. [PMID: 23657527 PMCID: PMC3749520 DOI: 10.1099/jmm.0.056275-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 05/07/2013] [Indexed: 11/18/2022] Open
Abstract
Autotransporter protein secretion represents one of the simplest forms of secretion across Gram-negative bacterial membranes. Once secreted, autotransporter proteins either remain tethered to the bacterial surface or are released following proteolytic cleavage. Autotransporters possess a diverse array of virulence-associated functions such as motility, cytotoxicity, adherence and autoaggregation. To better understand the role of autotransporters in disease, our research focused on the autotransporters of Yersinia pestis, the aetiological agent of plague. Y. pestis strain CO92 has nine functional conventional autotransporters, referred to as Yaps for Yersinia autotransporter proteins. Three Yaps have been directly implicated in virulence using established mouse models of plague infection (YapE, YapJ and YapK). Whilst previous studies from our laboratory have shown that most of the CO92 Yaps are cell associated, YapE and YapG are processed and released by the omptin protease Pla. In this study, we identified the Pla cleavage sites in YapG that result in many released forms of YapG in Y. pestis, but not in the evolutionarily related gastrointestinal pathogen, Yersinia pseudotuberculosis, which lacks Pla. Furthermore, we showed that YapG does not contribute to Y. pestis virulence in established mouse models of bubonic and pneumonic infection. As Y. pestis has a complex life cycle involving a wide range of mammalian hosts and a flea vector for transmission, it remains to be elucidated whether YapG has a measurable role in any other stage of plague disease.
Collapse
Affiliation(s)
- M. Chelsea Lane
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jonathan D. Lenz
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Division of Biology and Biomedical Sciences, Washington University, St Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University, St Louis, MO 63110, USA
| | - Virginia L. Miller
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
16
|
Lawrenz MB, Pennington J, Miller VL. Acquisition of omptin reveals cryptic virulence function of autotransporter YapE in Yersinia pestis. Mol Microbiol 2013; 89:276-87. [PMID: 23701256 DOI: 10.1111/mmi.12273] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2013] [Indexed: 02/02/2023]
Abstract
Autotransporters, the largest family of secreted proteins in Gram-negative bacteria, perform a variety of functions, including adherence, cytotoxicity and immune evasion. In Yersinia pestis the autotransporter YapE has adhesive properties and contributes to disease in the mouse model of bubonic plague. Here, we demonstrate that omptin cleavage of Y. pestis YapE is required to mediate bacterial aggregation and adherence to eukaryotic cells. We demonstrate that omptin cleavage is specific for the Y. pestis and Y. pseudotuberculosis YapE orthologues but is not conserved in the Yersinia enterocolitica protein. We also show that cleavage of YapE occurs in Y. pestis but not in the enteric Yersinia species, and requires the omptin Pla (plasminogen activator protease), which is encoded on the Y. pestis-specific plasmid pPCP1. Together, these data show that post-translation modification of YapE appears to be specific to Y. pestis, was acquired along with the acquisition of pPCP1 during the divergence of Y. pestis from Y. pseudotuberculosis, and are the first evidence of a novel mechanism to regulate bacterial adherence.
Collapse
Affiliation(s)
- Matthew B Lawrenz
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA.
| | | | | |
Collapse
|
17
|
A phenotype at last: essential role for the Yersinia enterocolitica Ysa type III secretion system in a Drosophila melanogaster S2 cell model. Infect Immun 2013; 81:2478-87. [PMID: 23630961 DOI: 10.1128/iai.01454-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The highly pathogenic Yersinia enterocolitica strains have a chromosomally encoded type III secretion system (T3SS) that is expressed and functional in vitro only when the bacteria are cultured at 26 °C. Mutations that render this system nonfunctional are slightly attenuated in the mouse model of infection only following an oral inoculation and only at early time points postinfection. The discrepancy between the temperature required for the Ysa gene expression and the physiological temperature required for mammalian model systems has made defining the role of this T3SS challenging. Therefore, we explored the use of Drosophila S2 cells as a model system for studying Ysa function. We show here that Y. enterocolitica is capable of infecting S2 cells and replicating intracellularly to high levels, an unusual feature of this pathogen. Importantly, we show that the Ysa T3SS is required for robust intracellular replication. A secretion-deficient mutant lacking the secretin gene, ysaC, is defective in replication within S2 cells, marking the first demonstration of a pronounced Ysa-dependent virulence phenotype. Establishment of S2 cells as a model for Y. enterocolitica infection provides a versatile tool to elucidate the role of the Ysa T3SS in the life cycle of this gastrointestinal pathogen.
Collapse
|