1
|
Woo SD, Park HS, Yang EM, Ban GY, Park HS. 8-Iso-prostaglandin F2α as a biomarker of type 2 low airway inflammation and remodeling in adult asthma. Ann Allergy Asthma Immunol 2024; 133:73-80.e2. [PMID: 38615737 DOI: 10.1016/j.anai.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Although 8-iso-prostaglandin F2a has been proposed as a potential biomarker for oxidative stress in airway diseases, its specific role in asthma remains poorly understood. OBJECTIVE To evaluate the diagnostic potential of 8-iso-prostaglandin F2a in assessing airway inflammation, airway remodeling, airway hyperresponsiveness, and oxidative stress in asthma. METHODS Blood and urine concentrations of 8-iso-prostaglandin F2a were quantified using liquid chromatography-tandem mass spectrometry in 128 adults with asthma who had maintained antiasthma medications. Their correlations with clinical data, sputum cell counts, lung function parameters, and serum markers of epithelial/neutrophil activity and airway remodeling were then analyzed. RESULTS The urinary 8-iso-prostaglandin F2a concentrations were significantly higher in patients with noneosinophilic asthma than in those with eosinophilic asthma (P < .05). The area under the curve was 0.678, indicating moderate diagnostic accuracy for noneosinophilic asthma. There were significant correlations with neutrophilic inflammation markers and airway remodeling markers (all P < .05). Negative correlations were observed with forced expiratory volume in 1 second (%), forced expiratory volume in 1 second/forced vital capacity, forced expiratory flow at 25% to 75% of forced vital capacity, and serum club cell protein 16 levels (all P < .05). High 8-iso-prostaglandin F2a concentrations were also noted in obese and smoking subgroups (all P < .05). However, the serum 8-iso-prostaglandin F2a concentrations were not correlated with these asthma-related parameters. CONCLUSION Urinary 8-iso-prostaglandin F2a concentrations are a potential biomarker for phenotyping severe asthma, particularly noneosinophilic asthma, offering oxidative stress-induced epithelial inflammation/remodeling as an additional target in asthma management.
Collapse
Affiliation(s)
- Seong-Dae Woo
- Department of Pulmonary, Allergy, and Critical Care Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Hee Sun Park
- Department of Pulmonary, Allergy, and Critical Care Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Eun-Mi Yang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ga-Young Ban
- Department of Pulmonary, Allergy, and Critical Care Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine Institute for Life Sciences, Seoul, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
2
|
Wang Y, Wang A, Zhang M, Zeng H, Lu Y, Liu L, Li J, Deng L. Artesunate attenuates airway resistance in vivo and relaxes airway smooth muscle cells in vitro via bitter taste receptor-dependent calcium signalling. Exp Physiol 2018; 104:231-243. [PMID: 30379382 DOI: 10.1113/ep086824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 10/18/2018] [Indexed: 01/20/2023]
Abstract
NEW FINDINGS What is the central question of this study? The aim of this study was to evaluate artesunate for its use as a bronchodilator in asthma treatment. What is the main finding and its importance? We found that artesunate reduces airway resistance in both normal and ovalbumin-treated Balb/c mice in vivo. Artesunate reduces traction force while inducing Ca2+ influx into cultured airway smooth muscle cells in vitro, most probably via the bitter taste receptor. These findings provide important evidence at both animal and cellular levels that artesunate might potentially be used as a bronchodilator for treating obstructive airway diseases, such as asthma. ABSTRACT Following the surprising discovery that bitter taste receptors (TAS2Rs) expressed in the lung and can be stimulated to relax airway smooth muscle cells (ASMCs), there is great interest in searching for a bitter taste receptor agonist as a new bronchodilator for asthma therapy. Among the great many other natural bitter substances, artesunate is of special interest to be evaluated for this purpose because of its pharmacological value as a derivative from the well-known anti-malarial, artemisinin. Therefore, in this study we treated either normal or ovalbumin (OVA)-induced asthmatic Balb/c mice in vivo with artesunate (30, 60 or 120 μg) via aerosol inhalation. Subsequently, we measured the airway resistance of the mice in the presence or absence of artesunate. In addition, we treated either mouse or human ASMCs cultured in vitro with artesunate (0.25-2.0 mM) and then measured the traction force and [Ca2+ ]i flux of the cells in the presence or absence of artesunate. The results demonstrate that artesunate attenuated airway resistance in a dose-dependent manner in both the normal and the OVA-treated mice, but more potently in the latter. The in vivo efficacy of artesunate at 120 μg was comparable to that of the conventional bronchodilator, salbutamol, at 3 μg in terms of the reduction in airway resistance. Artesunate also reduced traction force and induced an increase in [Ca2+ ]i in the cultured ASMCs, which was mediated, at least in part, by TAS2R signalling in the human ASMCs. These results together suggest that artesunate might potentially be a cheap and safe bronchodilator to complement the current therapy of asthma.
Collapse
Affiliation(s)
- Yue Wang
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, 213164, China.,School of Pharmaceutical Engineering and Life Science & School of Nursing, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Aili Wang
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, 213164, China.,School of Pharmaceutical Engineering and Life Science & School of Nursing, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Ming Zhang
- Department of Thoracic and Cardiovascular Surgery, Changzhou No. 2 People's Hospital, Affiliated to Nanjing Medical University, Changzhou, Jiangsu, 213003, China
| | - Huilong Zeng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Yun Lu
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Lei Liu
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Jingjing Li
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Linhong Deng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, 213164, China.,School of Pharmaceutical Engineering and Life Science & School of Nursing, Changzhou University, Changzhou, Jiangsu, 213164, China
| |
Collapse
|
3
|
Wang Y, Lu Y, Luo M, Shi X, Pan Y, Zeng H, Deng L. Evaluation of pharmacological relaxation effect of the natural product naringin on in vitro cultured airway smooth muscle cells and in vivo ovalbumin-induced asthma Balb/c mice. Biomed Rep 2016; 5:715-722. [PMID: 28101344 DOI: 10.3892/br.2016.797] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/29/2016] [Indexed: 12/23/2022] Open
Abstract
Asthma has become a common chronic respiratory disease worldwide and its prevalence is predicted to continue increasing in the next decade, particularly in developing countries. A key component in asthma therapy is to alleviate the excessive bronchial airway narrowing ultimately due to airway smooth muscle contraction, which is often facilitated by a smooth muscle relaxant, such as the β2-adrenergic agonists. Recently, bitter taste receptor (TAS2R) agonists, including saccharin and chloroquine, have been found to potently relax the airway smooth muscle cells (ASMCs) via intracellular Ca2+ signaling. This inspires a great interest in screening the vast resource of natural bitter substances for potential bronchodilatory drugs. In the present study, the relaxation effect of naringin, a compound extracted from common grapefruit, on ASMCs cultured in vitro or bronchial airways of Balb/c mice in vivo was evaluated. The results demonstrated that, when exposed to increasing doses of naringin (0.125, 0.25, 0.5 and 1.0 mM), the traction force generated by the cultured ASMCs decreased progressively, while the intracellular calcium flux signaling in the ASMCs increased. When inhaled at increasing doses (15, 30 and 60 µg), naringin also dose-dependently reduced the bronchial airway resistance of the normal and ovalbumin-induced asthma Balb/c mice in response to challenge with methacholine. In conclusion, these findings indicate that naringin was able to effectively relax murine ASMCs in vitro and in vivo, thus suggesting that it is a promising drug agent to be further investigated in the development of novel bronchodilators for the treatment of asthma.
Collapse
Affiliation(s)
- Yue Wang
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu 213164, P.R. China; School of Nursing, Changzhou University, Changzhou, Jiangsu 213164, P.R. China; School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu 213164, P.R. China
| | - Yun Lu
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu 213164, P.R. China; School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu 213164, P.R. China
| | - Mingzhi Luo
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu 213164, P.R. China
| | - Xiaohao Shi
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu 213164, P.R. China
| | - Yan Pan
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu 213164, P.R. China
| | - Huilong Zeng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu 213164, P.R. China; School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu 213164, P.R. China
| | - Linhong Deng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu 213164, P.R. China; School of Nursing, Changzhou University, Changzhou, Jiangsu 213164, P.R. China; School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu 213164, P.R. China
| |
Collapse
|
4
|
Jonasson S, Gustafsson A, Koch B, Bucht A. Inhalation exposure of nano-scaled titanium dioxide (TiO2) particles alters the inflammatory responses in asthmatic mice. Inhal Toxicol 2013; 25:179-91. [PMID: 23480194 DOI: 10.3109/08958378.2013.770939] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Titanium dioxide (TiO2) nanoparticles (NPs) are regarded as relatively non-toxic in concentrations occurring in occupational environments. Nevertheless, it is conceivable that adverse health effects may develop in sensitive populations such as individuals with respiratory diseases. OBJECTIVE We investigated whether single or repeated exposure to TiO2 could aggravate inflammatory responses in naïve mice and mice with ovalbumin (OVA)-induced airway inflammation. METHODS Exposure to aerosolized TiO2 was performed during OVA sensitization, before, or during the OVA challenge period. The effects on respiratory physiology, inflammatory cells in bronchoalveolar lavage (BAL) and inflammatory mediators in BAL and serum were assessed 24 h after the last OVA challenge or TiO2 exposure. RESULTS A single exposure of TiO2 had a marked effect on responses in peripheral airways and increasing infiltration of neutrophils in airways of naïve animals. Marked aggravation of airway responses was also observed in animals with allergic disease provided that the single dose TiO2 was given before allergen challenge. Repeated exposures to TiO2 during sensitization diminished the OVA-induced airway eosinophilia and airway hyperresponsiveness but concomitant exposure to TiO2 during the OVA challenge period resulted in neutrophilic airway inflammation and a decline in general health condition as indicated by the loss of body weight. CONCLUSION We conclude that inhalation of TiO2 may aggravate respiratory diseases and that the adverse health effects are highly dependent on dose and timing of exposure. Our data imply that inhalation of NPs may increase the risk for individuals with allergic airway disease to develop symptoms of severe asthma.
Collapse
Affiliation(s)
- Sofia Jonasson
- Division of CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden.
| | | | | | | |
Collapse
|
5
|
Basu S, Nachat-Kappes R, Caldefie-Chézet F, Vasson MP. Eicosanoids and adipokines in breast cancer: from molecular mechanisms to clinical considerations. Antioxid Redox Signal 2013; 18:323-60. [PMID: 22746381 DOI: 10.1089/ars.2011.4408] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chronic inflammation is one of the foremost risk factors for different types of malignancies, including breast cancer. Additional risk factors of this pathology in postmenopausal women are weight gain, obesity, estrogen secretion, and an imbalance in the production of adipokines, such as leptin and adiponectin. Various signaling products of transcription factor, nuclear factor-kappaB, in particular inflammatory eicosanoids, reactive oxygen species (ROS), and cytokines, are thought to be involved in chronic inflammation-induced cancer. Together, these key components have an influence on inflammatory reactions in malignant tissue damage when their levels are deregulated endogenously. Prostaglandins (PGs) are well recognized in inflammation and cancer, and they are solely biosynthesized through cyclooxygenases (COXs) from arachidonic acid. Concurrently, ROS give rise to bioactive isoprostanes from arachidonic acid precursors that are also involved in acute and chronic inflammation, but their specific characteristics in breast cancer are less demonstrated. Higher aromatase activity, a cytochrome P-450 enzyme, is intimately connected to tumor growth in the breast through estrogen synthesis, and is interrelated to COXs that catalyze the formation of both inflammatory and anti-inflammatory PGs such as PGE(2), PGF(2α), PGD(2), and PGJ(2) synchronously under the influence of specific mediators and downstream enzymes. Some of the latter compounds upsurge the intracellular cyclic adenosine monophosphate concentration and appear to be associated with estrogen synthesis. This review discusses the role of COX- and ROS-catalyzed eicosanoids and adipokines in breast cancer, and therefore ranges from their molecular mechanisms to clinical aspects to understand the impact of inflammation.
Collapse
Affiliation(s)
- Samar Basu
- Biochemistry, Molecular Biology and Nutrition, University of Auvergne, Clermont-Ferrand, France.
| | | | | | | |
Collapse
|
6
|
Jonasson S, Koch B, Bucht A. Inhalation of chlorine causes long-standing lung inflammation and airway hyperresponsiveness in a murine model of chemical-induced lung injury. Toxicology 2013; 303:34-42. [DOI: 10.1016/j.tox.2012.10.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 10/23/2012] [Accepted: 10/25/2012] [Indexed: 02/06/2023]
|
7
|
Nachat-Kappes R, Pinel A, Combe K, Lamas B, Farges MC, Rossary A, Goncalves-Mendes N, Caldefie-Chezet F, Vasson MP, Basu S. Effects of enriched environment on COX-2, leptin and eicosanoids in a mouse model of breast cancer. PLoS One 2012; 7:e51525. [PMID: 23272114 PMCID: PMC3521763 DOI: 10.1371/journal.pone.0051525] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 11/05/2012] [Indexed: 12/21/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) and adipokines have been implicated in breast cancer. This study investigated a possible link between COX-2 and adipokines in the development of mammary tumors. A model of environmental enrichment (EE), known to reduce tumor growth was used for a syngeneic murine model of mammary carcinoma. 3-week-old, female C57BL/6 mice were housed in standard environment (SE) or EE cages for 9 weeks and transplanted orthotopically with syngeneic EO771 adenocarcinoma cells into the right inguinal mammary fat pad. EE housing influenced mammary gland development with a decrease in COX-2 expressing cells and enhanced side-branching and advanced development of alveolar structures of the mammary gland. Tumor volume and weight were decreased in EE housed mice and were associated with a reduction in COX-2 and Ki67 levels, and an increase in caspase-3 levels. In tumors of SE mice, high COX-2 expression correlated with enhanced leptin detection. Non-tumor-bearing EE mice showed a significant increase in adiponectin levels but no change in those of leptin, F(2)-isoprostanes, PGF(2α), IL-6, TNF-α, PAI-1, and MCP-1 levels. Both tumor-bearing groups (SE and EE housing) had increased resistin, IL-6, TNF-α, PAI-1 and MCP-1 levels irrespective of the different housing environment demonstrating higher inflammatory response due to the presence of the tumor. This study demonstrates that EE housing influenced normal mammary gland development and inhibited mammary tumor growth resulting in a marked decrease in intratumoral COX-2 activity and an increase in the plasma ratio of adiponectin/leptin levels.
Collapse
Affiliation(s)
- Rachida Nachat-Kappes
- Chaire d’Excellence Program, Biochemistry, Molecular Biology and Nutrition, Université d'Auvergne, Unité de Nutrition Humaine, Equipe ECRIN, CLARA, CRNH Auvergne; INRA, UMR, UNH, CRNH Auvergne, Clermont-Ferrand, France
| | - Alexandre Pinel
- Chaire d’Excellence Program, Biochemistry, Molecular Biology and Nutrition, Université d'Auvergne, Unité de Nutrition Humaine, Equipe ECRIN, CLARA, CRNH Auvergne; INRA, UMR, UNH, CRNH Auvergne, Clermont-Ferrand, France
| | - Kristell Combe
- Chaire d’Excellence Program, Biochemistry, Molecular Biology and Nutrition, Université d'Auvergne, Unité de Nutrition Humaine, Equipe ECRIN, CLARA, CRNH Auvergne; INRA, UMR, UNH, CRNH Auvergne, Clermont-Ferrand, France
| | - Bruno Lamas
- Chaire d’Excellence Program, Biochemistry, Molecular Biology and Nutrition, Université d'Auvergne, Unité de Nutrition Humaine, Equipe ECRIN, CLARA, CRNH Auvergne; INRA, UMR, UNH, CRNH Auvergne, Clermont-Ferrand, France
| | - Marie-Chantal Farges
- Chaire d’Excellence Program, Biochemistry, Molecular Biology and Nutrition, Université d'Auvergne, Unité de Nutrition Humaine, Equipe ECRIN, CLARA, CRNH Auvergne; INRA, UMR, UNH, CRNH Auvergne, Clermont-Ferrand, France
| | - Adrien Rossary
- Chaire d’Excellence Program, Biochemistry, Molecular Biology and Nutrition, Université d'Auvergne, Unité de Nutrition Humaine, Equipe ECRIN, CLARA, CRNH Auvergne; INRA, UMR, UNH, CRNH Auvergne, Clermont-Ferrand, France
| | - Nicolas Goncalves-Mendes
- Chaire d’Excellence Program, Biochemistry, Molecular Biology and Nutrition, Université d'Auvergne, Unité de Nutrition Humaine, Equipe ECRIN, CLARA, CRNH Auvergne; INRA, UMR, UNH, CRNH Auvergne, Clermont-Ferrand, France
| | - Florence Caldefie-Chezet
- Chaire d’Excellence Program, Biochemistry, Molecular Biology and Nutrition, Université d'Auvergne, Unité de Nutrition Humaine, Equipe ECRIN, CLARA, CRNH Auvergne; INRA, UMR, UNH, CRNH Auvergne, Clermont-Ferrand, France
| | - Marie-Paule Vasson
- Chaire d’Excellence Program, Biochemistry, Molecular Biology and Nutrition, Université d'Auvergne, Unité de Nutrition Humaine, Equipe ECRIN, CLARA, CRNH Auvergne; INRA, UMR, UNH, CRNH Auvergne, Clermont-Ferrand, France
- Centre de Lutte Contre le Cancer Jean Perrin, Unité de Nutrition, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Service Nutrition, Clermont-Ferrand, France
| | - Samar Basu
- Chaire d’Excellence Program, Biochemistry, Molecular Biology and Nutrition, Université d'Auvergne, Unité de Nutrition Humaine, Equipe ECRIN, CLARA, CRNH Auvergne; INRA, UMR, UNH, CRNH Auvergne, Clermont-Ferrand, France
- Oxidative Stress and Inflammation, Department of Public Health and Caring Sciences, Faculty of Medicine, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Deletion of FoxN1 in the thymic medullary epithelium reduces peripheral T cell responses to infection and mimics changes of aging. PLoS One 2012; 7:e34681. [PMID: 22514652 PMCID: PMC3326029 DOI: 10.1371/journal.pone.0034681] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 03/08/2012] [Indexed: 01/01/2023] Open
Abstract
Aging increases susceptibility to infection, in part because thymic involution culminates in reduced naïve T-lymphocyte output. Thymic epithelial cells (TECs) are critical to ensure normal maturation of thymocytes and production of peripheral T cells. The forkhead-class transcription factor, encoded by FoxN1, regulates development, differentiation, and function of TECs, both in the prenatal and postnatal thymus. We recently showed that expression of FoxN1, by keratin 14 (K14)-expressing epithelial cells is essential for maintenance of thymic medullary architecture, and deletion of FoxN1 in K14 promoter-driven TECs inhibited development of mature TECs and reduced the number of total thymocytes. These findings are reminiscent of changes observed during normal thymic aging. In the current report, we compared the effects of K14-driven FoxN1 deletion on peripheral T cell function in response to influenza virus infection with those associated with normal aging in a mouse model. FoxN1-deleted mice had reduced numbers of peripheral CD62L+CD44− naïve T-cells. In addition, during influenza infection, these animals had reduced antigen-specific CD8+ T-cell and IgG responses to influenza virus, combined with increased lung injury, weight loss and mortality. These findings paralleled those observed in aged wild type mice, providing the first evidence that K14-mediated FoxN1 deletion causes changes in T-cell function that mimic those in aging during an immune response to challenge with an infectious agent.
Collapse
|
9
|
Shim YM, Paige M, Hanna H, Kim SH, Burdick MD, Strieter RM. Role of LTB₄ in the pathogenesis of elastase-induced murine pulmonary emphysema. Am J Physiol Lung Cell Mol Physiol 2010; 299:L749-59. [PMID: 20817777 DOI: 10.1152/ajplung.00116.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Exaggerated levels of the leukotriene B₄ (LTB₄) frequently coexist at sites of inflammation and tissue remodeling. Therefore, we hypothesize that the LTB₄ pathway plays an important role in the pathogenesis of neutrophilic inflammation that contributes to pulmonary emphysema. In this study, significant levels of LTB₄ were detected in human lung tissues with emphysema compared with lungs without emphysema (9,497 ± 2,839 vs. 4,142 ± 1,173 pg/ml, n = 9 vs. 10, P = 0.04). To further determine the biological role of LTB₄ in the pathogenesis of emphysema, we compared the lungs of wild-type (WT) and LTA₄ hydrolase-/- mice (LTB₄ deficient, LTA₄H-/-) exposed to intranasal elastase or vehicle control. We found that intranasal elastase induced accumulation of LTB₄ in the lungs and caused progressively worsening emphysema between 14 and 28 days after elastase exposure in WT mice but not in LTA₄H-/- mice. Premortem physiology documented increased lung compliance in elastase-exposed WT mice compared with elastase-exposed LTA₄H-/- mice as measured by Flexivent (0.058 ± 0.005 vs. 0.041 ± 0.002 ml/cmH₂O pressure). Postmortem morphometry documented increased total lung volume and alveolar sizes in elastase-exposed WT mice compared with elastase-exposed LTA₄H-/- mice as measured by volume displacement and alveolar chord length assessment. Furthermore, elastase-exposed LTA₄H-/- mice were found to have significantly delayed influx of the CD45(high)CD11b(high)Ly6G(high) leukocytes compatible with neutrophils compared with elastase-exposed WT mice. Mechanistic insights to these phenotypes were provided by demonstrating protection from elastase-induced murine emphysema with neutrophil depletion in the elastase-exposed WT mice and by demonstrating time-dependent modulation of cysteinyl leukotriene biosynthesis in the elastase-exposed LTA₄H-/- mice compared with elastase-exposed WT mice. Together, these findings demonstrated that LTB₄ played an important role in promoting the pathogenesis of pulmonary emphysema associated with neutrophilic pulmonary inflammation.
Collapse
Affiliation(s)
- Y Michael Shim
- Dept. of Medicine, Univ. of Virginia, Charlottesville, 22908-0546, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Brussino L, Badiu I, Sciascia S, Bugiani M, Heffler E, Guida G, Malinovschi A, Bucca C, Rolla G. Oxidative stress and airway inflammation after allergen challenge evaluated by exhaled breath condensate analysis. Clin Exp Allergy 2010; 40:1642-7. [PMID: 20726860 DOI: 10.1111/j.1365-2222.2010.03604.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Allergen exposure may increase airway oxidative stress, which causes lipid membrane peroxidation and an increased formation of 8-isoprostane. OBJECTIVE The aim of the study was to investigate oxidative stress induced by allergen challenge in mild asthmatics, by measuring 8-isoprostane in exhaled breath condensate (EBC), and to examine their relationship with mediators derived from arachidonic acid. Methods 8-isoprostane, cysteinyl leukotrienes (cys-LTs) and prostaglandin E2 (PGE(2) ) concentrations in EBC were measured at baseline and after allergen challenge in 12 patients with mild allergic asthma sensitized to cat allergen. RESULTS At 24 h after allergen challenge, compared with baseline values, EBC 8-isoprostane increased [48.64 pg/mL (44.14-53.61) vs. 21.56 pg/mL (19.92, 23.35), P<0.001], cys-LTs increased [27.37 pg/mL (24.09-31.10) vs. 13.28 pg/mL (11.32, 15.57), P<0.001] and PGE(2) decreased [18.69 pg/mL (12.26, 28.50) vs. 39.95 pg/mL (34.37, 46.43), P<0.001]. The trend of increasing 8-isoprostane after allergen challenge was significantly correlated with the trend of increasing cys-LTs (R(2) =0.85, P<0.001) whereas the trend of decreasing PGE(2) after allergen challenge was significantly correlated with the trend of increasing cys-LTs (R(2) =0.52, P=0.001). CONCLUSIONS AND CLINICAL RELEVANCE The increase in EBC 8-isoprostane observed after allergen challenge indicates that allergen exposure increases airway oxidative stress in allergic asthma. The strict correlation between cys-LTs and 8-isoprostane underlines the relationship between allergic inflammation and oxidative stress. A shift of arachidonic acid metabolism towards lipoxygenase pathway is induced by the allergen challenge. Airway oxidative stress occurs after allergen challenge even in patients with mild intermittent allergic asthma.
Collapse
Affiliation(s)
- L Brussino
- Department of Biomedical Sciences and Human Oncology, Allergy and Clinical Immunology, University of Torino & AO Mauriziano Umberto I, Largo Turati 62, Turin, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Obesity is associated with increased systemic and airway oxidative stress, which may result from a combination of adipokine imbalance, comorbidities, and reduced antioxidant defenses. While obesity-mediated increased oxidative stress plays an important role in the pathogenesis of vascular disease and nonalcoholic hepatic steatosis, little is known of how it may affect the lung. Contrary to what has previously been thought, the combination of obesity and asthma, both chronic inflammatory diseases, does not necessarily result in a synergistic effect, leading to even greater oxidative stress. However, most available studies have compared the levels of oxidative stress biomarkers on stable asthma patients, and it is possible that the interaction of oxidative stress between obesity and asthma is not readily detectable under basal conditions. We propose that obesity-mediated oxidative stress, which may affect the lung function of asthmatic subjects by increasing airway inflammation and reducing the effectiveness of inhaled corticosteroids, may become evident during exposure to an aggravating factor or during periods of asthma exacerbation. Understanding whether obesity-mediated oxidative stress has a mechanistic role in the association between obesity and asthma will help in the formation of public health policies and increase our capacity to develop therapeutic interventions that improve the life of obese asthmatic subjects.
Collapse
Affiliation(s)
- Fernando Holguin
- University of Pittsburgh Medical Center, 3452 Fifth Ave., Pittsburgh, PA 15213, USA.
| | | |
Collapse
|