1
|
Zhou J, Jiang S, Liu D, Li X, Zhou Z, Wang Z, Wang H. Bidirectional Mendelian Randomization Analysis of Genetic Proxies of Plasma Fatty Acids and Pre-Eclampsia Risk. Nutrients 2024; 16:3748. [PMID: 39519582 PMCID: PMC11547509 DOI: 10.3390/nu16213748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Previous studies have reported associations between fatty acids and the risk of pre-eclampsia. However, the causality of these associations remains uncertain. This study postulates a causal relationship between specific plasma fatty acids and pre-eclampsia or other maternal hypertensive disorders (PE-HTPs). To test this hypothesis, two-sample bidirectional Mendelian randomization (MR) analyses were employed to determine the causality effects. METHODS Single-nucleotide polymorphisms associated with PE-HTPs and fatty acids were obtained from a genome-wide association study (GWAS) of European ancestry. Bidirectional MR analyses were conducted using methods such as inverse variance weighted, MR-Egger, weighted median, simple mode, and weighted mode. Sensitivity analyses, including tests for heterogeneity, horizontal pleiotropy, and co-localization, were conducted to assess the robustness of MR results. RESULTS The analyses revealed causal relationships between PE-HTPs and several fatty acids, including monounsaturated fatty acid (MUFA), omega-6 fatty acid (n-6 FA), linoleic acid (LA), docosahexaenoic acid (DHA), and the PUFA/MUFA ratio. Genetically predicted higher risk of PE-HTPs was significantly associated with lower plasma n-6 FA (OR = 0.96, 95% CI: 0.93-0.99), particularly LA (OR = 0.95, 95% CI: 0.92-0.98). Conversely, increased DHA (OR = 0.86, 95% CI: 0.78-0.96) and a higher PUFA/MUFA ratio (OR = 0.86, 95% CI: 0.76-0.98) were associated with a reduced risk of PE-HTPs. Elevated MUFA levels (OR = 1.12, 95% CI: 1.00-1.25) were related to an increased risk. CONCLUSIONS This study provides robust genetic evidence supporting bidirectional causal relationships between PE-HTPs and specific plasma fatty acids, underscoring the critical role of fatty acid metabolism in maternal hypertensive disorders.
Collapse
Affiliation(s)
- Jingqi Zhou
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (J.Z.); (S.J.); (X.L.); (Z.Z.)
| | - Shuo Jiang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (J.Z.); (S.J.); (X.L.); (Z.Z.)
| | - Dangyun Liu
- Department of Central Laboratory, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an 223300, China;
| | - Xinyi Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (J.Z.); (S.J.); (X.L.); (Z.Z.)
| | - Ziyi Zhou
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (J.Z.); (S.J.); (X.L.); (Z.Z.)
| | - Zhiheng Wang
- Clinical Laboratory, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200090, China
| | - Hui Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (J.Z.); (S.J.); (X.L.); (Z.Z.)
| |
Collapse
|
2
|
Gaddy JA, Moore RE, Lochner JS, Rogers LM, Noble KN, Giri A, Aronoff DM, Cliffel D, Eastman AJ. Palmitate and group B Streptococcus synergistically and differentially induce IL-1β from human gestational membranes. Front Immunol 2024; 15:1409378. [PMID: 38855112 PMCID: PMC11158625 DOI: 10.3389/fimmu.2024.1409378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/10/2024] [Indexed: 06/11/2024] Open
Abstract
Introduction Rupture of the gestational membranes often precedes major pregnancy complications, including preterm labor and preterm birth. One major cause of inflammation in the gestational membranes, chorioamnionitis (CAM) is often a result of bacterial infection. The commensal bacterium Streptococcus agalactiae, or Group B Streptococcus (GBS) is a leading infectious cause of CAM. Obesity is on the rise worldwide and roughly 1 in 4 pregnancy complications is related to obesity, and individuals with obesity are also more likely to be colonized by GBS. The gestational membranes are comprised of several distinct cell layers which are, from outermost to innermost: maternally-derived decidual stromal cells (DSCs), fetal cytotrophoblasts (CTBs), fetal mesenchymal cells, and fetal amnion epithelial cells (AECs). In addition, the gestational membranes have several immune cell populations; macrophages are the most common phagocyte. Here we characterize the effects of palmitate, the most common long-chain saturated fatty acid, on the inflammatory response of each layer of the gestational membranes when infected with GBS, using human cell lines and primary human tissue. Results Palmitate itself slightly but significantly augments GBS proliferation. Palmitate and GBS co-stimulation synergized to induce many inflammatory proteins and cytokines, particularly IL-1β and matrix metalloproteinase 9 from DSCs, CTBs, and macrophages, but not from AECs. Many of these findings are recapitulated when treating cells with palmitate and a TLR2 or TLR4 agonist, suggesting broad applicability of palmitate-pathogen synergy. Co-culture of macrophages with DSCs or CTBs, upon co-stimulation with GBS and palmitate, resulted in increased inflammatory responses, contrary to previous work in the absence of palmitate. In whole gestational membrane biopsies, the amnion layer appeared to dampen immune responses from the DSC and CTB layers (the choriodecidua) to GBS and palmitate co-stimulation. Addition of the monounsaturated fatty acid oleate, the most abundant monounsaturated fatty acid in circulation, dampened the proinflammatory effect of palmitate. Discussion These studies reveal a complex interplay between the immunological response of the distinct layers of the gestational membrane to GBS infection and that such responses can be altered by exposure to long-chain saturated fatty acids. These data provide insight into how metabolic syndromes such as obesity might contribute to an increased risk for GBS disease during pregnancy.
Collapse
Affiliation(s)
- Jennifer A. Gaddy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Tennessee Valley Healthcare Systems, Department of Veterans Affairs, Nashville, TN, United States
| | - Rebecca E. Moore
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Publications Division, American Chemical Society, Washington, DC, United States
| | - Jonathan S. Lochner
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Lisa M. Rogers
- Department Internal Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kristen N. Noble
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ayush Giri
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - David M. Aronoff
- Department Internal Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - David Cliffel
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Alison J. Eastman
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
3
|
Kabir Y, Shaykhon N, Atkin S. Biomarkers of Pre-eclampsia in Pregnant Women With Gestational Diabetes and Pre-existing Type 2 Diabetes: A Systematic Review. Cureus 2024; 16:e53207. [PMID: 38425589 PMCID: PMC10902745 DOI: 10.7759/cureus.53207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Pre-eclampsia (PE) is one of the leading causes of maternal and perinatal health morbidity, producing more than 4.6% of complications in pregnancy worldwide. This systematic review was conducted to determine the significance of specific biomarkers in predicting PE in gestational diabetes mellitus (GDM) and type 2 diabetes mellitus (DM). The review measured and explained the significant abnormalities in lipids, blood glucose, cytokines, inflammatory markers, placental proteins, urinary proteins, and other serum biomarkers that contribute to the development of PE in GDM and type 2 DM populations. We searched CINAHL, EMBASE, Medline, Maternity and Infant care, Scopus, and Web of Science. Studies were included if they had a measurable component in the blood serum or urine of women who developed PE and suffered from GDM or pre-existing type 2 DM. A narrative synthesis was conducted instead of a meta-analysis due to the high heterogeneity of data from the studies. A total of 2,593 studies were screened, producing eight relevant studies. Twenty-seven different biomarkers were investigated from the study group of 40 to 1,344 participants. No single biomarker was identified; however, there is a need for further research on specific biomarkers of PE, especially in CRP, FABP4, and microalbuminuria in the GDM-PE group and calprotectin in the type 2 DM population. Many biomarkers were identified as practical in predicting PE when combined with other biomarkers and more data are required to verify the predictability of the diagnostic markers in pregnant women.
Collapse
Affiliation(s)
- Yasmin Kabir
- Medicine and Surgery, Royal College of Surgeons in Ireland, Manama, BHR
| | - Norhan Shaykhon
- Medicine and Surgery, Royal College of Surgeons in Ireland, Manama, BHR
| | - Stephen Atkin
- Medicine and Surgery, Royal College of Surgeons in Ireland, Manama, BHR
| |
Collapse
|
4
|
Easton ZJW, Sarr O, Zhao L, Buzatto AZ, Luo X, Zhao S, Li L, Regnault TRH. An Integrated Multi-OMICS Approach Highlights Elevated Non-Esterified Fatty Acids Impact BeWo Trophoblast Metabolism and Lipid Processing. Metabolites 2023; 13:883. [PMID: 37623828 PMCID: PMC10456680 DOI: 10.3390/metabo13080883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023] Open
Abstract
Maternal obesity and gestational diabetes mellitus (GDM) are linked with impaired placental function and early onset of non-communicable cardiometabolic diseases in offspring. Previous studies have highlighted that the dietary non-esterified fatty acids (NEFAs) palmitate (PA) and oleate (OA), key dietary metabolites associated with maternal obesity and GDM, are potential modulators of placental lipid processing. Using the BeWo cell line model, the current study integrated transcriptomic (mRNA microarray), metabolomic, and lipidomic readouts to characterize the underlying impacts of exogenous PA and OA on placental villous trophoblast cell metabolism. Targeted gas chromatography and thin-layer chromatography highlighted that saturated and monounsaturated NEFAs differentially impact BeWo cell lipid profiles. Furthermore, cellular lipid profiles differed when exposed to single and multiple NEFA species. Additional multi-omic analyses suggested that PA exposure is associated with enrichment in β-oxidation pathways, while OA exposure is associated with enrichment in anti-inflammatory and antioxidant pathways. Overall, this study further demonstrated that dietary PA and OA are important regulators of placental lipid metabolism. Encouraging appropriate dietary advice and implementing dietary interventions to maintain appropriate placental function by limiting excessive exposure to saturated NEFAs remain crucial in managing at-risk obese and GDM pregnancies.
Collapse
Affiliation(s)
- Zachary J. W. Easton
- Department of Physiology and Pharmacology, Western University, Medical Sciences Building Room 216, London, ON N6A 5C1, Canada; (Z.J.W.E.); (O.S.); (L.Z.)
| | - Ousseynou Sarr
- Department of Physiology and Pharmacology, Western University, Medical Sciences Building Room 216, London, ON N6A 5C1, Canada; (Z.J.W.E.); (O.S.); (L.Z.)
| | - Lin Zhao
- Department of Physiology and Pharmacology, Western University, Medical Sciences Building Room 216, London, ON N6A 5C1, Canada; (Z.J.W.E.); (O.S.); (L.Z.)
| | - Adriana Zardini Buzatto
- The Metabolomics Innovation Centre (TMIC), University of Alberta, Edmonton, AB T6G 2G2, Canada; (A.Z.B.); (X.L.); (S.Z.); (L.L.)
| | - Xian Luo
- The Metabolomics Innovation Centre (TMIC), University of Alberta, Edmonton, AB T6G 2G2, Canada; (A.Z.B.); (X.L.); (S.Z.); (L.L.)
| | - Shuang Zhao
- The Metabolomics Innovation Centre (TMIC), University of Alberta, Edmonton, AB T6G 2G2, Canada; (A.Z.B.); (X.L.); (S.Z.); (L.L.)
| | - Liang Li
- The Metabolomics Innovation Centre (TMIC), University of Alberta, Edmonton, AB T6G 2G2, Canada; (A.Z.B.); (X.L.); (S.Z.); (L.L.)
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Timothy R. H. Regnault
- Department of Physiology and Pharmacology, Western University, Medical Sciences Building Room 216, London, ON N6A 5C1, Canada; (Z.J.W.E.); (O.S.); (L.Z.)
- Department of Obstetrics and Gynaecology, Western University, B2-401 London Health Science Centre-Victoria Hospital, 800 Commissioners Rd E, London, ON N6H 5W9, Canada
- Children’s Health Research Institute, 800 Commissioners Rd E, London, ON N6C 2V5, Canada
- Lawson Health Research Institute, 750 Base Line Rd E, London, ON N6C 2R5, Canada
| |
Collapse
|
5
|
Dionne G, Calder M, Betts DH, Rafea BA, Watson AJ. Expression and localization of NRF2/Keap1 signalling pathway genes in mouse preimplantation embryos exposed to free fatty acids. Gene Expr Patterns 2022; 46:119281. [PMID: 36243294 DOI: 10.1016/j.gep.2022.119281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/06/2022] [Accepted: 10/07/2022] [Indexed: 11/04/2022]
Abstract
Obese women experience greater incidence of infertility, with reproductive tracts exposing preimplantation embryos to elevated free fatty acids (FFA) such as palmitic acid (PA) and oleic acid (OA). PA treatment impairs mouse preimplantation development in vitro, while OA co-treatment rescues blastocyst development of PA treated embryos. In the present study, we investigated the effects of PA and OA treatment on NRF2/Keap1 localization, and relative antioxidant enzyme (Glutathione peroxidase; Gpx1, Catalase; Cat, Superoxide dismutase; Sod1 and γ-Glutamylcysteine ligase catalytic unit; Gclc) mRNA levels, during in vitro mouse preimplantation embryo development. Female mice were superovulated, mated, and embryos cultured in the presence of bovine Serum albumin (BSA) control or PA, or OA, alone (each at 100 μM) or PA + OA combined (each at 100 μM) treatment. NRF2 displayed nuclear localization at all developmental stages, whereas Keap1 primarily displayed cytoplasmic localization throughout control mouse preimplantation development in vitro. Relative transcript levels of Nrf2, Keap1, and downstream antioxidants significantly increased throughout control mouse preimplantation development in vitro. PA treatment significantly decreased blastocyst development and the levels of nuclear NRF2, while OA and PA + OA treatments did not. PA and OA treatments did not impact relative mRNA levels of Nrf2, Keap1, Gpx1, Cat, Sod1 or Gclc. Our outcomes demonstrate that cultured mouse embryos display nuclear NRF2, but that PA treatment reduces nuclear NRF2 and thus likely impacts NRF2/KEAP1 stress response mechanisms. Further studies should investigate whether free fatty acid effects on NRF2/KEAP1 contribute to the reduced fertility displayed by obese patients.
Collapse
Affiliation(s)
- Grace Dionne
- Department of Obstetrics and Gynaecology, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London ON, N6A 5C1, Canada; The Children's Health Research Institute - Lawson Health Research Institute, London ON, N6C 2R5, Canada
| | - Michele Calder
- Department of Obstetrics and Gynaecology, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London ON, N6A 5C1, Canada; The Children's Health Research Institute - Lawson Health Research Institute, London ON, N6C 2R5, Canada
| | - Dean H Betts
- Department of Obstetrics and Gynaecology, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London ON, N6A 5C1, Canada; The Children's Health Research Institute - Lawson Health Research Institute, London ON, N6C 2R5, Canada
| | - Basim Abu Rafea
- Department of Obstetrics and Gynaecology, Canada; The Children's Health Research Institute - Lawson Health Research Institute, London ON, N6C 2R5, Canada
| | - Andrew J Watson
- Department of Obstetrics and Gynaecology, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London ON, N6A 5C1, Canada; The Children's Health Research Institute - Lawson Health Research Institute, London ON, N6C 2R5, Canada.
| |
Collapse
|
6
|
Watkins OC, Yong HEJ, Mah TKL, Cracknell-Hazra VKB, Pillai RA, Selvam P, Sharma N, Cazenave-Gassiot A, Bendt AK, Godfrey KM, Lewis RM, Wenk MR, Chan SY. Sex-Dependent Regulation of Placental Oleic Acid and Palmitic Acid Metabolism by Maternal Glycemia and Associations with Birthweight. Int J Mol Sci 2022; 23:8685. [PMID: 35955818 PMCID: PMC9369035 DOI: 10.3390/ijms23158685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023] Open
Abstract
Pregnancy complications such as maternal hyperglycemia increase perinatal mortality and morbidity, but risks are higher in males than in females. We hypothesized that fetal sex-dependent differences in placental palmitic-acid (PA) and oleic-acid (OA) metabolism influence such risks. Placental explants (n = 22) were incubated with isotope-labeled fatty acids (13C-PA or 13C-OA) for 24 or 48 h and the production of forty-seven 13C-PA lipids and thirty-seven 13C-OA lipids quantified by LCMS. Linear regression was used to investigate associations between maternal glycemia, BMI and fetal sex with 13C lipids, and between 13C lipids and birthweight centile. Placental explants from females showed greater incorporation of 13C-OA and 13C-PA into almost all lipids compared to males. Fetal sex also influenced relationships with maternal glycemia, with many 13C-OA and 13C-PA acylcarnitines, 13C-PA-diacylglycerols and 13C-PA phospholipids positively associated with glycemia in females but not in males. In contrast, several 13C-OA triacylglycerols and 13C-OA phospholipids were negatively associated with glycemia in males but not in females. Birthweight centile in females was positively associated with six 13C-PA and three 13C-OA lipids (mainly acylcarnitines) and was negatively associated with eight 13C-OA lipids, while males showed few associations. Fetal sex thus influences placental lipid metabolism and could be a key modulator of the impact of maternal metabolic health on perinatal outcomes, potentially contributing toward sex-specific adaptions in which females prioritize survival.
Collapse
Affiliation(s)
- Oliver C. Watkins
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Hannah E. J. Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore 117609, Singapore
| | - Tania Ken Lin Mah
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore 117609, Singapore
| | - Victoria K. B. Cracknell-Hazra
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore 117609, Singapore
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton SO17 1BJ, UK
| | - Reshma Appukuttan Pillai
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Preben Selvam
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Neha Sharma
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry and Precision Medicine TRP, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore
| | - Anne K. Bendt
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore
| | - Keith M. Godfrey
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton SO17 1BJ, UK
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Rohan M. Lewis
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton SO17 1BJ, UK
- Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Markus R. Wenk
- Department of Biochemistry and Precision Medicine TRP, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore
| | - Shiao-Yng Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore 117609, Singapore
| |
Collapse
|
7
|
Maternal Fibroblast Growth Factor 21 Levels Decrease during Early Pregnancy in Normotensive Pregnant Women but Are Higher in Preeclamptic Women-A Longitudinal Study. Cells 2022; 11:cells11142251. [PMID: 35883694 PMCID: PMC9322099 DOI: 10.3390/cells11142251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 12/04/2022] Open
Abstract
(1) Background: Fibroblast growth factor 21 (FGF-21) is an endocrine factor involved in glucose and lipid metabolism that exerts pleiotropic effects. The aim of this study was to investigate the serum FGF-21 profile in healthy and mild preeclamptic pregnant women at each trimester of pregnancy; (2) Methods: Serum FGF-21 levels were determined by ELISA in a nested case-control study within a longitudinal cohort study that included healthy (n = 54) and mild preeclamptic (n = 20) pregnant women, women at three months after delivery (n = 20) and eumenorrheic women during the menstrual cycle (n = 20); (3) Results: FGF-21 levels were significantly lower in the mid-luteal phase compared to the early follicular phase of the menstrual cycle in eumenorrheic women (p < 0.01). Maternal levels of FGF-21 were significantly lower in the first and second trimesters and peaked during the third trimester in healthy pregnant women (p < 0.01). Serum levels of FGF-21 in healthy pregnant were significantly lower in the first and second trimester of pregnancy compared with the follicular phase of the menstrual cycle and postpartum (p < 0.01). Serum FGF-21 levels were significantly higher in preeclamptic compared to healthy pregnant women during pregnancy (p < 0.01); (4) Conclusions: These results suggest that a peak of FGF-21 towards the end of pregnancy in healthy pregnancy and higher levels in preeclamptic women might play a critical role that contributes to protecting against the negatives effects of high concentrations of non-esterified fatty acids (NEFA) and hypertensive disorder. Furthermore, FGF-21 might play an important role in reproductive function in healthy eumenorrheic women during the menstrual cycle.
Collapse
|
8
|
Jiang L, Yan J. The relationship between free fatty acids and mitochondrial oxidative stress damage to trophoblast cell in preeclampsia. BMC Pregnancy Childbirth 2022; 22:273. [PMID: 35361155 PMCID: PMC8973543 DOI: 10.1186/s12884-022-04623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/25/2022] [Indexed: 11/11/2022] Open
Abstract
Aim To investigate the effects of free fatty acids on mitochondrial oxidative stress and the pathogenesis of preeclampsia. Methods Human primary trophoblast cells at 6–8 weeks of gestation were retrieved and cultured to 70–80% confluence, then incubated in serum from women with a normal pregnancy (normal pregnancy group), women with preeclampsia (PE group), and a combination of serum from women with 24 h preeclampsia-like symptoms and free fatty acids (FFA group). Mitochondrial membrane potential was assessed by fluorescent dye concurrent with detection of membrane channel conversion pore activity by fluorescence microscope. Enzyme labeling instruments and RT-PCR were used to detect mitochondrial DNA (mtDNA) levels. Results The preeclampsia and free fatty acids groups both exhibited significantly higher levels of mitochondria oxidative stress damage when compared to the normal pregnancy group. However, no significant differences in mitochondrial oxidative stress damage were observed between the FFA and PE groups. Conclusions Serum free fatty acids might play an important role in the pathogenesis of preeclampsia by enhancing mitochondrial oxidative stress damage.
Collapse
Affiliation(s)
- Lingling Jiang
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 18 Daoshan Rd, Fuzhou, Fujian, 350001, China
| | - Jianying Yan
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 18 Daoshan Rd, Fuzhou, Fujian, 350001, China.
| |
Collapse
|
9
|
Weingrill RB, Paladino SL, Souza MLR, Pereira EM, Marques ALX, Silva ECO, da Silva Fonseca EJ, Ursulino JS, Aquino TM, Bevilacqua E, Urschitz J, Silva JC, Borbely AU. Exosome-Enriched Plasma Analysis as a Tool for the Early Detection of Hypertensive Gestations. Front Physiol 2022; 12:767112. [PMID: 34970155 PMCID: PMC8712450 DOI: 10.3389/fphys.2021.767112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Hypertensive disorders of pregnancy are closely associated with prematurity, stillbirth, and maternal morbidity and mortality. The onset of hypertensive disorders of pregnancy (HDP) is generally noticed after the 20th week of gestation, limiting earlier intervention. The placenta is directly responsible for modulating local and systemic physiology by communicating using mechanisms such as the release of extracellular vesicles, especially exosomes. In this study, we postulated that an analysis of exosome-enriched maternal plasma could provide a more focused and applicable approach for diagnosing HDP earlier in pregnancy. Therefore, the peripheral blood plasma of 24 pregnant women (11 controls, 13 HDP) was collected between 20th and 24th gestational weeks and centrifuged for exosome enrichment. Exosome-enriched plasma samples were analyzed by Raman spectroscopy and by proton nuclear magnetic resonance metabolomics (1H NMR). Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to analyze the Raman data, from the spectral region of 600–1,800 cm–1, to determine its potential to discriminate between groups. Using principal component analysis, we were able to differentiate the two groups, with 89% of all variances found in the first three principal components. In patients with HDP, most significant differences in Raman bands intensity were found for sphingomyelin, acetyl CoA, methionine, DNA, RNA, phenylalanine, tryptophan, carotenoids, tyrosine, arginine, leucine, amide I and III, and phospholipids. The 1H NMR analysis showed reduced levels of D-glucose, L-proline, L-tyrosine, glycine, and anserine in HDP, while levels of 2-hydroxyvalerate, polyunsaturated fatty acids, and very-low-density lipoprotein (VLDL) were increased. 1H NMR results were able to assign an unknown sample to either the control or HDP groups at a precision of 88.3% using orthogonal partial least squares discriminant analysis and 87% using logistic regression analysis. Our results suggested that an analysis of exosome-enriched plasma could provide an initial assessment of placental function at the maternal-fetal interface and aid HDP diagnosis, prognosis, and treatment, as well as to detect novel, early biomarkers for HDP.
Collapse
Affiliation(s)
- Rodrigo Barbano Weingrill
- Programa de Pós-Graduação em Saúde e Meio Ambiente, Universidade da Região de Joinville - UNIVILLE, Joinville, Brazil.,Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Sandra Luft Paladino
- Programa de Pós-Graduação em Saúde e Meio Ambiente, Universidade da Região de Joinville - UNIVILLE, Joinville, Brazil
| | - Matheus Leite Ramos Souza
- Programa de Pós-Graduação em Saúde e Meio Ambiente, Universidade da Região de Joinville - UNIVILLE, Joinville, Brazil.,High Risky Gestation Ambulatory, Darcy Vargas Maternity, Joinville, Brazil
| | - Eduardo Manoel Pereira
- Programa de Pós-Graduação em Saúde e Meio Ambiente, Universidade da Região de Joinville - UNIVILLE, Joinville, Brazil
| | - Aldilane Lays Xavier Marques
- Cell Biology Laboratory, Institute of Health and Biological Sciences, Federal University of Alagoas, Maceió, Brazil
| | | | | | - Jeferson Santana Ursulino
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| | - Thiago Mendonça Aquino
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| | - Estela Bevilacqua
- Laboratory for Maternal-Fetal Interactions and Placenta Research, Department of Cellular and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Johann Urschitz
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Jean Carl Silva
- Programa de Pós-Graduação em Saúde e Meio Ambiente, Universidade da Região de Joinville - UNIVILLE, Joinville, Brazil.,High Risky Gestation Ambulatory, Darcy Vargas Maternity, Joinville, Brazil
| | - Alexandre Urban Borbely
- Cell Biology Laboratory, Institute of Health and Biological Sciences, Federal University of Alagoas, Maceió, Brazil
| |
Collapse
|
10
|
Mauro AK, Rengarajan A, Albright C, Boeldt DS. Fatty acids in normal and pathological pregnancies. Mol Cell Endocrinol 2022; 539:111466. [PMID: 34610360 DOI: 10.1016/j.mce.2021.111466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022]
Abstract
Long chain fatty acids, namely omega-3 and omega-6, are essential fatty acids and are necessary for proper pregnancy progression and fetal growth and development. Maternal fatty acid consumption and release of fatty acids from lipid stores provide increased availability of fatty acids for the placenta to transport to the growing fetus. Both omega-3 and omega-6 fatty acids are then utilized for generation of signaling molecules, such as eicosanoids, and for promoting of growth and developmental, most notably in the nervous system. Perturbations in fatty acid concentration and fatty acid signaling have been implicated in three major pregnancy complications - gestational diabetes, preeclampsia, and preterm birth. In this review we discuss the growing literature surrounding the role of fatty acids in normal and pathological pregnancies. Differences in maternal, placental, and fetal fatty acids and molecular regulation of fatty acid signaling and transport are presented. A look into novel fatty acid-based therapies for each of the highlighted disorders are discussed, and may present exciting bench to bedside alternatives to traditional pharmacological intervention.
Collapse
Affiliation(s)
- Amanda K Mauro
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA
| | - Aishwarya Rengarajan
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA
| | - Carly Albright
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA
| | - Derek S Boeldt
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA.
| |
Collapse
|
11
|
Kivelä J, Sormunen-Harju H, Girchenko PV, Huvinen E, Stach-Lempinen B, Kajantie E, Villa PM, Reynolds RM, Hämäläinen EK, Lahti-Pulkkinen M, Murtoniemi KK, Laivuori H, Eriksson JG, Räikkönen K, Koivusalo SB. Longitudinal Metabolic Profiling of Maternal Obesity, Gestational Diabetes, and Hypertensive Pregnancy Disorders. J Clin Endocrinol Metab 2021; 106:e4372-e4388. [PMID: 34185058 PMCID: PMC8530734 DOI: 10.1210/clinem/dgab475] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Indexed: 12/24/2022]
Abstract
CONTEXT Comprehensive assessment of metabolism in maternal obesity and pregnancy disorders can provide information about the shared maternal-fetal milieu and give insight into both maternal long-term health and intergenerational transmission of disease burden. OBJECTIVE To assess levels, profiles, and change in the levels of metabolic measures during pregnancies complicated by obesity, gestational diabetes (GDM), or hypertensive disorders. DESIGN, SETTING AND PARTICIPANTS A secondary analysis of 2 study cohorts, PREDO and RADIEL, including 741 pregnant women. MAIN OUTCOME MEASURES We assessed 225 metabolic measures by nuclear magnetic resonance in blood samples collected at median 13 [interquartile range (IQR) 12.4-13.7], 20 (IQR 19.3-23.0), and 28 (27.0-35.0) weeks of gestation. RESULTS Across all 3 time points women with obesity [body mass index (BMI) ≥ 30kg/m2] in comparison to normal weight (BMI 18.5-24.99 kg/m2) had significantly higher levels of most very-low-density lipoprotein-related measures, many fatty and most amino acids, and more adverse metabolic profiles. The change in the levels of most metabolic measures during pregnancy was smaller in obese than in normal weight women. GDM, preeclampsia, and chronic hypertension were associated with metabolic alterations similar to obesity. The associations of obesity held after adjustment for GDM and hypertensive disorders, but many of the associations with GDM and hypertensive disorders were rendered nonsignificant after adjustment for BMI and the other pregnancy disorders. CONCLUSIONS This study shows that the pregnancy-related metabolic change is smaller in women with obesity, who display metabolic perturbations already in early pregnancy. Metabolic alterations of obesity and pregnancy disorders resembled each other suggesting a shared metabolic origin.
Collapse
Affiliation(s)
- Jemina Kivelä
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Heidi Sormunen-Harju
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Polina V Girchenko
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Emilia Huvinen
- Teratology Information Service, Emergency Medicine, Department of Prehospital Emergency Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Beata Stach-Lempinen
- Department of Obstetrics and Gynecology, South Karelia Central Hospital, Lappeenranta, Finland
| | - Eero Kajantie
- PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki and Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Pia M Villa
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Hyvinkää Hospital at Helsinki and Uusimaa Hospital District, Hyvinkää, Finland
| | - Rebecca M Reynolds
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Esa K Hämäläinen
- Department of Clinical Chemistry, University of Eastern Finland, Kuopio, Finland
| | - Marius Lahti-Pulkkinen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Finnish National Institute for Health and Welfare, Helsinki, Finland
| | - Katja K Murtoniemi
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Obstetrics and Gynaecology, University of Turku and Turku University Hospital, Turku, Finland
| | - Hannele Laivuori
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital and Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Johan G Eriksson
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Saila B Koivusalo
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
12
|
Jääskeläinen T, Kärkkäinen O, Jokkala J, Klåvus A, Heinonen S, Auriola S, Lehtonen M, Hanhineva K, Laivuori H. A non-targeted LC-MS metabolic profiling of pregnancy: longitudinal evidence from healthy and pre-eclamptic pregnancies. Metabolomics 2021; 17:20. [PMID: 33515103 PMCID: PMC7846510 DOI: 10.1007/s11306-020-01752-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/25/2020] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Maternal metabolism changes substantially during pregnancy. However, few studies have used metabolomics technologies to characterize changes across gestation. OBJECTIVES AND METHODS We applied liquid chromatography-mass spectrometry (LC-MS) based non-targeted metabolomics to determine whether the metabolic profile of serum differs throughout the pregnancy between pre-eclamptic and healthy women in the FINNPEC (Finnish Genetics of Preeclampsia Consortium) Study. Serum samples were available from early and late pregnancy. RESULTS Progression of pregnancy had large-scale effects to the serum metabolite profile. Altogether 50 identified metabolites increased and 49 metabolites decreased when samples of early pregnancy were compared to samples of late pregnancy. The metabolic signatures of pregnancy were largely shared in pre-eclamptic and healthy women, only urea, monoacylglyceride 18:1 and glycerophosphocholine were identified to be increased in the pre-eclamptic women when compared to healthy controls. CONCLUSIONS Our study highlights the need of large-scale longitudinal metabolomic studies in non-complicated pregnancies before more detailed understanding of metabolism in adverse outcomes could be provided. Our findings are one of the first steps for a broader metabolic understanding of the physiological changes caused by pregnancy per se.
Collapse
Affiliation(s)
- Tiina Jääskeläinen
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland.
| | - Olli Kärkkäinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Jenna Jokkala
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Anton Klåvus
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Seppo Heinonen
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Department of Biochemistry, Food Chemistry and Food Development Unit, University of Turku, Turku, Finland
| | - Hannele Laivuori
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Technology, Tampere University Hospital and University of Tampere, Tampere, Finland
| |
Collapse
|
13
|
Jiang L, Lin J, Yan J, Lin X, Han Q, Zhang H. Prepregnancy body mass indexes are associated with perinatal outcomes in females with preeclampsia. Exp Ther Med 2020; 20:500-504. [PMID: 32509020 PMCID: PMC7271714 DOI: 10.3892/etm.2020.8677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/04/2020] [Indexed: 11/30/2022] Open
Abstract
The present study aimed to determine the clinical characteristics and perinatal outcomes of females with severe preeclampsia according to their pre-pregnancy body mass index (BMI). Data from 233 patients with severe preeclampsia were reviewed from the Inpatient Obstetrics Department. The data were divided into 3 groups according to the patients' pre-pregnancy BMI: Normal (BMI of 18-25 kg/m2; n=134); underweight (BMI <18 kg/m2; n=15); and overweight and obese (BMI >25 kg/m2; n=84). The incidence of dyslipidemia, amniotic fluid abnormalities and neonatal hospitalizations in the group of females who were overweight or obese before pregnancy were higher than those in the other groups (all P<0.05). In conclusion, the presence of dyslipidemia, excessive weight and obesity prior to pregnancy in patients with severe preeclampsia was associated with maternal and perinatal outcomes.
Collapse
Affiliation(s)
- Lingling Jiang
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Juan Lin
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Jianying Yan
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Xiaoqian Lin
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Qing Han
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Huale Zhang
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| |
Collapse
|
14
|
Menchetti L, Andoni E, Barbato O, Canali C, Quattrone A, Vigo D, Codini M, Curone G, Brecchia G. Energy homeostasis in rabbit does during pregnancy and pseudopregnancy. Anim Reprod Sci 2020; 218:106505. [PMID: 32507267 DOI: 10.1016/j.anireprosci.2020.106505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
Abstract
This study was conducted to evaluate the changing concentrations of metabolic hormones and metabolites in pregnant (P) and pseudopregnant (PP) rabbit does. Twenty-five New Zealand White rabbit does were submitted to artificial insemination (AI) and then classified as P (n = 15) or PP (n = 10). Blood samples were collected weekly until day 32 post AI. During pregnancy, leptin concentrations were greater on Days 14 and 21 (P < 0.05), while insulin was greater on days 21 and 32 post AI (P < 0.05) compared to PP does. The triiodothyronine/thyroxine (T3/T4) ratio was greater in the first and last week (P < 0.001); whereas, cortisol concentrations were greater in the last week of pregnancy and after parturition (P < 0.01) compared with that of PP does. Non-esterified fatty acids (NEFA) concentrations increased from day 7 until day 32 post AI (P < 0.05). Glucose concentrations were unchanged throughout pregnancy although concentrations were positively associated with litter size. These results indicate concentrations of hormones and metabolites change during pregnancy to ensure energy requirements are met for both the foetuses and the maternal tissues. Physiological hyperleptinemia, hyperinsulinemia, and changes in cortisol as well as thyroid hormones indicate there is an adaptation of metabolic functions induced by pregnancy. These adaptations could be mediated by gonadal steroids because changes mainly occur in the second half of pregnancy when the profile of the sex hormones differs between P and PP does.
Collapse
Affiliation(s)
- Laura Menchetti
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
| | - Egon Andoni
- Faculty of Veterinary Medicine, Agricultural University of Albania, Rr Paisi Vodica, Koder, 1029 Kamez, Albania
| | - Olimpia Barbato
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
| | - Claudio Canali
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
| | - Alda Quattrone
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
| | - Daniele Vigo
- Department of Veterinary Medicine, University of Milano, Via dell'Università, 6, 26900 Lodi, Italy
| | - Michela Codini
- Department of Pharmaceutical Sciences, University of Perugia, Via A. Fabretti 48, 06123, Perugia, Italy
| | - Giulio Curone
- Department of Veterinary Medicine, University of Milano, Via dell'Università, 6, 26900 Lodi, Italy
| | - Gabriele Brecchia
- Department of Veterinary Medicine, University of Milano, Via dell'Università, 6, 26900 Lodi, Italy.
| |
Collapse
|
15
|
Effect of Free Fatty Acids on Inflammatory Gene Expression and Hydrogen Peroxide Production by Ex Vivo Blood Mononuclear Cells. Nutrients 2020; 12:nu12010146. [PMID: 31947975 PMCID: PMC7019607 DOI: 10.3390/nu12010146] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/28/2019] [Accepted: 12/31/2019] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to assess free fatty acids’ (FAs) ex vivo anti-/proinflammatory capabilities and their influence on inflammatory gene expression and H2O2 production by human peripheral blood mononuclear cells (PBMCs). Anthropometric and clinical measurements were performed in 26 participants with metabolic syndrome. Isolated PBMCs were incubated ex vivo for 2 h with several free fatty acids—palmitic, oleic, α-linolenic, γ-linolenic, arachidonic and docosahexaenoic at 50 μM, and lipopolysaccharide (LPS) alone or in combination. H2O2 production and IL6, NFκB, TLR2, TNFα, and COX-2 gene expressions were determined. Palmitic, γ-linolenic, and arachidonic acids showed minor effects on inflammatory gene expression, whereas oleic, α-linolenic, and docosahexaenoic acids reduced proinflammatory gene expression in LPS-stimulated PBMCs. Arachidonic and α-linolenic acids treatment enhanced LPS-stimulated H2O2 production by PBMCs, while palmitic, oleic, γ-linolenic, and docosahexaenoic acids did not exert significant effects. Oleic, α-linolenic, and docosahexaenoic acids induced anti-inflammatory responses in PBMCs. Arachidonic and α-linolenic acids enhanced the oxidative status of LPS-stimulated PBMCs. In conclusion, PBMC ex vivo assays are useful to assess the anti-/proinflammatory and redox-modulatory effects of fatty acids or other food bioactive compounds.
Collapse
|
16
|
El Beltagy NS, El Deen Sadek SS, Zidan MA, Abd El Naby RE. Can serum free fatty acids assessment predict severe preeclampsia? ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2011.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Nermeen Saad El Beltagy
- Department of Obstetrics and Gynaecology, El Shatby Maternity University Hospital, Alexandria, 21526, Egypt
| | - Sameh Saad El Deen Sadek
- Department of Obstetrics and Gynaecology, El Shatby Maternity University Hospital, Alexandria, 21526, Egypt
| | - Mohamed Abbas Zidan
- Department of Biochemistry, Alexandria Faculty of Medicine, Alexandria UniversityAlexandria, 21531,
Egypt
| | - Rania Emad Abd El Naby
- Department of Obstetrics and Gynaecology, El Shatby Maternity University Hospital, Alexandria, 21526, Egypt
| |
Collapse
|
17
|
Hypoxia-induced microRNA-141 regulates trophoblast apoptosis, invasion, and vascularization by blocking CXCL12β/CXCR2/4 signal transduction. Biomed Pharmacother 2019; 116:108836. [PMID: 31004838 DOI: 10.1016/j.biopha.2019.108836] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/19/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND An impaired trophoblast invasion ability contributes to the development of pre-eclampsia (PE), and can be induced by the altered expression of various microRNAs (miRs). MiR-141 and CXCL12β (C-X-C motif chemokine ligand 12) signaling regulate trophoblast invasion and vascularization capabilities during PE pathogenesis; however, their interactions and underlying mechanisms of action remain unclear. We investigated how miR-141 modulates trophoblast invasion, with a focus on its interaction with CXCL12β signaling. METHODS A PE model was established by using HTR-8/SVneo cells, which were first cultured with 2% O2 for 48 h, and then with 5% O2. The expression of miR-141 in human villous trophoblast HTR-8/SVneo cells was modulated with mimics or an inhibitor, and analyzed by quantitative RT-PCR. CXCL12β levels were determined by ELISA. Cell apoptosis was determined by flow cytometry, and the invasion and vascularization capabilities of trophoblasts were evaluated by Transwell and tube formation assays, respectively. Binding of miR-141 with CXCL12β mRNA was verified by the dual luciferase assay. Protein levels were estimated by western blotting. RESULTS MiR-141 expression was significantly induced by hypoxia in HTR-8/SVneo cells. MiR-141 was found to promote apoptosis and inhibit the invasion and vascularization abilities of HTR-8/SVneo cells under conditions of hypoxia. MiR-141 could directly bind with the 3'UTR region of CXCL12β mRNA and inhibit its translation. In addition, we proved that miR-141 could inhibit the invasion and vascularization abilities, and promote the apoptosis of HTR-8/SVneo cells by targeting CXCL12β under hypoxic conditions. Furthermore, we demonstrated that arachidonic acid could reverse the invasion and apoptosis abilities of HTR-8/SVneo cells mediated by CXCL12β during hypoxia. In terms of mechanism, MiR-141 could downregulate MMP2, p62, and LC3B expression, and upregulate ROCK1 and RhoA expression in HTR-8/SVneo cells by targeting the CXCL12β gene during hypoxia. The effects of CXCL12βon HTR-8/SVneo cells could be reversed by arachidonic acid (ARA). CONCLUSION Induction of miR-141 by hypoxia promotes apoptosis, and inhibits the invasion and vascularization capabilities of HTR-8/SVneo cells by suppressing the CXCL12β and CXCR2/4 signaling pathways.
Collapse
|
18
|
Hegyi T, Weinberger B, Memon N, Carayannopoulos M, Huber AH, Kleinfeld AM. Plasma unbound free fatty acid profiles in premature infants before and after intralipid infusion. J Matern Fetal Neonatal Med 2018; 33:2320-2325. [PMID: 30554540 DOI: 10.1080/14767058.2018.1548599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background: Unbound free fatty acids (FFAu) are the bioactive fraction of plasma free fatty acids (FFA). Most plasma FFA are bound to albumin. Only when FFA dissociate from albumin, do they become biologically active.Objective: To measure the first FFAu profiles in human infants and to measure these profiles before and during intravenous administration of the soybean lipid, intralipid (IL).Study design: The study population was 16 premature infants, from a parent study of 130 infants with birth weights 500-2000 g and gestational age 23-34 weeks. The infants chosen had plasma samples of ≥120 µL (volume needed for each FFAu profile measurement) in the first day of life. Infants received IL infusions starting in the second day of life at 1 g/kg/day, increasing by 1-g/kg/day daily up to 3 g/kg/day. FFAu profiles were determined during IL infusion when plasma was available. Profiles are the concentrations of the nine most abundant long-chain FFAu and were determined using novel fluorescent probes.Results: Before intralipid infusion unbound myristic acid was the dominant FFAu, as high as 78% of the total FFAu (sum of the 9 FFAu). In contrast, unbound linoleic acid was 0% in all infants. With increasing infusion of IL to 3 g/kg/day, unbound linoleic increased to 26% of the total FFAu, with unbound oleic, myristic, and linolenic acid the second, third and fourth most abundant. The average total FFAu concentration also increased from 4 nM before intralipid to 53 nM at 3 g/kg/day. During IL infusion the FFAu profiles approached the fatty acid composition of intralipid at 3 g/kg/day.Conclusions: This first study of FFAu profiles in neonates revealed that before IL infusion unbound linoleic acid was zero in all 16 infants and levels of myristic acid were exceptionally large, as much as 78% of the total FFAu profile. These results suggest important and previously unrecognized roles of lipid metabolism in early development. Zero unbound linoleic acid before IL infusion may help promote closure of the ductus arteriosus but after IL infusion, synthesis of arachidonic from linoleic acid may tend to promote patency. The high levels of unbound myristate may be needed for immediate neonatal energy needs.
Collapse
Affiliation(s)
- Thomas Hegyi
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Barry Weinberger
- Division of Neonatal-Perinatal Medicine, Cohen Children's Medical Center, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Naureen Memon
- Mid Atlantic Neonatology Associates, Goryeb Children's Hospital, Morristown, NJ, USA
| | - Mary Carayannopoulos
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | | | | |
Collapse
|
19
|
Acar D, Tayyar A, Yuksel A, Atis Aydin A, Yıldırım G, Ekiz A, Dag I, Topcu G. Increased maternal C1q/TNF-related protein-1 (CTRP-1) serum levels in pregnancies with preeclampsia. J Matern Fetal Neonatal Med 2018; 33:639-644. [PMID: 30103635 DOI: 10.1080/14767058.2018.1498838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Objective: Metabolic changes and inflammation are involved in the pathogenesis of preeclampsia. Complement C1q tumor necrosis factor-related protein-1 (CTRP-1) is a pleiotropic molecule that possesses insulin-sensitizing effects and is also involved in lipid metabolism and inflammatory responses. The aim of the study was to investigate CTRP-1 levels in pregnancies with preeclampsia.Material and methods: Serum concentrations of CTRP-1 were measured in 29 pregnant women with early-onset preeclampsia (EOPE), 24 pregnant women with late-onset preeclampsia (LOPE), and 26 women with uncomplicated pregnancies using an enzyme-linked immunosorbent assay method.Results: Patients with both EOPE and LOPE had significantly higher serum concentrations of CTRP-1 compared to the healthy controls (p < .001). However, no significant difference was found between the EOPE and LOPE groups regarding CTRP-1 levels (p = 1.000). Correlation analysis showed that CTRP-1 levels were positively correlated with systolic blood pressure (p < .001), diastolic blood pressure (p < .001), and mean UtA PI (p < .001) but negatively correlated with gestational age at delivery (p = .001) and birth weight (p < .001).Conclusions: Serum CTRP-1 levels were significantly higher in patients with both EOPE and LOPE than in healthy pregnant women.
Collapse
Affiliation(s)
- Deniz Acar
- Maternal Fetal Medicine Unit, Health Sciences University Kanuni Sultan Suleyman Education and Research Hospital, Istanbul, Turkey
| | - Ahmet Tayyar
- Maternal Fetal Medicine Unit, Health Sciences University Kanuni Sultan Suleyman Education and Research Hospital, Istanbul, Turkey
| | - Aytac Yuksel
- Maternal Fetal Medicine Unit, Health Sciences University Kanuni Sultan Suleyman Education and Research Hospital, Istanbul, Turkey
| | - Alev Atis Aydin
- Maternal Fetal Medicine Unit, Health Sciences University Kanuni Sultan Suleyman Education and Research Hospital, Istanbul, Turkey
| | - Gokhan Yıldırım
- Maternal Fetal Medicine Unit, Health Sciences University Kanuni Sultan Suleyman Education and Research Hospital, Istanbul, Turkey
| | - Ali Ekiz
- Maternal Fetal Medicine Unit, Health Sciences University Kanuni Sultan Suleyman Education and Research Hospital, Istanbul, Turkey
| | | | - Goknur Topcu
- Department of Obstetrics and Gynecology, Health Sciences University Kanuni Sultan Suleyman Education and Research Hospital, Istanbul, Turkey
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Preeclampsia (PE) is a hypertensive disorder exclusive for pregnancy. It affects women all over the world and poses a great threat to life, both for mother and child. No definitive treatment exists and placenta delivery comprises the only known cure for PE. One of the most severe complications observed in preeclamptic women is the occurrence of cardiovascular diseases (CVDs) later in life. RECENT FINDINGS Both PE and CVDs share some of their pathogenic pathways and gene variations. Thus far, a number of publications have examined those relationships; however, almost all of them focus only on common risk factors. The precise pathomechanism and genetic basis of PE and its associated cardiovascular complications remain unknown. Therefore, the aim of this review is to unify and clarify the current state of knowledge and provide direction for future studies, especially those regarding the genetic aspect.
Collapse
Affiliation(s)
- Michalina Lisowska
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, Łódź, Poland.
| | - Tadeusz Pietrucha
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, Łódź, Poland
| | - Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, Łódź, Poland
| |
Collapse
|
21
|
Chavan-Gautam P, Rani A, Freeman DJ. Distribution of Fatty Acids and Lipids During Pregnancy. Adv Clin Chem 2018; 84:209-239. [PMID: 29478515 DOI: 10.1016/bs.acc.2017.12.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Maternal fatty acid and lipid metabolism undergoes changes during pregnancy to facilitate fetal growth and development. Different types of fatty acids have different roles in maintaining a successful pregnancy and they are incorporated into different forms of lipids for the purpose of storage and transport. This chapter aims to provide an understanding of the distribution and metabolism of fatty acids and lipids in the maternal, placental, and fetal compartments. We further describe how this distribution is altered in maternal obesity, preterm birth, and pregnancy complications such as gestational diabetes mellitus, preeclampsia, and intrauterine growth restriction.
Collapse
Affiliation(s)
- Preeti Chavan-Gautam
- Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed University, Pune, Maharashtra, India.
| | - Alka Rani
- Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed University, Pune, Maharashtra, India
| | - Dilys J Freeman
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
22
|
Colvin BN, Longtine MS, Chen B, Costa ML, Nelson DM. Oleate attenuates palmitate-induced endoplasmic reticulum stress and apoptosis in placental trophoblasts. Reproduction 2017; 153:369-380. [PMID: 28159805 DOI: 10.1530/rep-16-0576] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/02/2016] [Accepted: 01/03/2017] [Indexed: 12/24/2022]
Abstract
Pre-pregnancy obesity is increasingly common and predisposes pregnant women and offspring to gestational diabetes, pre-eclampsia, fetal growth abnormalities and stillbirth. Obese women exhibit elevated levels of the two most common dietary fatty acids, palmitate and oleate, and the maternal blood containing these nutrients bathes the surface of trophoblasts of placental villi in vivo We test the hypothesis that the composition and concentration of free fatty acids modulate viability and function of primary human villous trophoblasts in culture. We found that palmitate increases syncytiotrophoblast death, specifically by caspase-mediated apoptosis, whereas oleate does not cause enhanced cell death. Importantly, exposure to both fatty acids in equimolar amounts yielded no increase in death or apoptosis, suggesting that oleate can protect syncytiotrophoblasts from palmitate-induced death. We further found that palmitate, but not oleate or oleate with palmitate, increases endoplasmic reticulum (ER) stress, signaling through the unfolded protein response, and yielding CHOP-mediated induction of apoptosis. Finally, we show that oleate or oleate plus palmitate both lead to increased lipid droplets in syncytiotrophoblasts, whereas palmitate does not. The data show palmitate is toxic to human syncytiotrophoblasts, through the induction of ER stress and apoptosis mediated by CHOP, whereas oleate is not toxic, abrogates palmitate toxicity and induces fat accumulation. We speculate that our in vitro results offer pathways by which the metabolic milieu of the obese pregnant woman can yield villous trophoblast dysfunction and sub-optimal placental function.
Collapse
Affiliation(s)
| | - Mark S Longtine
- Department of Obstetrics and GynecologyWashington University School of Medicine, St Louis, Missouri, USA
| | - Baosheng Chen
- Department of Obstetrics and GynecologyWashington University School of Medicine, St Louis, Missouri, USA
| | - Maria Laura Costa
- Department of Obstetrics and GynecologyWashington University School of Medicine, St Louis, Missouri, USA.,Department of Obstetrics and GynecologyUniversidade Estadual de Campinas, Cidade Universitaria Zeferino Vaz, Campinas, Brazil
| | - D Michael Nelson
- Department of Obstetrics and GynecologyWashington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
23
|
Huber AH, Kleinfeld AM. Unbound free fatty acid profiles in human plasma and the unexpected absence of unbound palmitoleate. J Lipid Res 2017; 58:578-585. [PMID: 28082409 DOI: 10.1194/jlr.m074260] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/09/2017] [Indexed: 12/13/2022] Open
Abstract
We determined for the first time the profiles of the nine most abundant unbound FFAs (FFAus) in human plasma. Profiles were determined for a standard reference plasma of pooled healthy adults for which the Lipid MAPSMAPS Consortium had determined the total FFA profiles. Measurements were performed by using 20 different acrylodan-labeled fatty acid binding protein mutants (probes), which have complementary specificities for the nine FFAs that comprise more than 96% of long-chain plasma FFA. The acrylodan fluorescence emission for each probe changes upon binding a FFAu. The plasma concentrations of each of the nine FFAus were determined by combining the measured fluorescence ratios of the 20 probes. The total molar FFAu concentration accounted for <10-5 of the total FFA concentration, and the mole fractions of the FFAu profiles were substantially different than the total FFA profiles. Myristic acid, for example, comprises 22% of the unbound versus 2.8% of the total. The most surprising difference is our finding of zero unbound cis-9-palmitoleic acid (POA), whereas the total POA was 7.2%. An unidentified plasma component appears to specifically prevent the release of POA. FFAus are the physiologically active FFAs, and plasma FFAu profiles may provide novel information about human health.
Collapse
|
24
|
Mezouar D, Merzouk H, Merzouk AS, Merzouk SA, Belarbi B, Narce M. In vitro effects of vitamins C and E, n-3 and n-6 PUFA and n-9 MUFA on placental cell function and redox status in type 1 diabetic pregnant women. Placenta 2016; 42:114-21. [PMID: 27238721 DOI: 10.1016/j.placenta.2016.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/22/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
The aim of this investigation was to determine the in vitro effects of vitamin C and E, n-3 and n-6 PUFA and n-9 MUFA on placental cell proliferation and function in type 1 diabetes. Placenta tissues were collected from 30 control healthy and 30 type 1 diabetic women at delivery. Placental cells were isolated and were cultured in RPMI medium supplemented with vitamin C (50 μM), vitamin E (50 μM), n-3 PUFA (100 μM), n-6 PUFA (100 μM) or n-9 MUFA (100 μM). Cell proliferation, cell glucose uptake and intracellular oxidative status were investigated. Our results showed that basal placental cell proliferation, glucose uptake, malondialdehyde (MDA) and carbonyl proteins were higher while intracellular reduced glutathione (GSH) levels and catalase activities were lower in placentas from diabetic women as compared to controls. Vitamins C and E induced a modulation of placental cell proliferation and glucose consumption without affecting intracellular redox status in both diabetic and control groups. N-3 and n-6 PUFA diminished placental cell proliferation and enhanced intracellular oxidative stress while n-9 MUFA had no effects in the two groups. Co-administration of n-3 or n-6 PUFA and vitamin C or E were capable of reversing back the PUFA-decreased cell proliferation and normalizing placental cell function and redox status especially in diabetes. In conclusion, PUFA and antioxidant vitamin combinations may be beneficial in improving placenta function and in reducing placental oxidative stress in type 1 diabetic pregnancy.
Collapse
Affiliation(s)
- Djamila Mezouar
- Laboratory of Physiology, Physiopathology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University Abou-Bekr Belkaïd, Tlemcen 13000, Algeria
| | - Hafida Merzouk
- Laboratory of Physiology, Physiopathology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University Abou-Bekr Belkaïd, Tlemcen 13000, Algeria.
| | - Amel Saidi Merzouk
- Laboratory of Physiology, Physiopathology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University Abou-Bekr Belkaïd, Tlemcen 13000, Algeria
| | - Sid Ahmed Merzouk
- Department of Technical Sciences, Faculty of Engineering, University Abou-Bekr Belkaïd, Tlemcen 13000, Algeria
| | - Boumediene Belarbi
- Gynecology and Obstetrics Department, Mother and Infant Hospital Center, University Abou-Bekr Belkaïd, Tlemcen 13000, Algeria
| | - Michel Narce
- INSERM UMR866, "Lipids Nutrition Cancer," Faculty of Life, Earth and Environment Sciences, University of Burgundy, Dijon 21000, France
| |
Collapse
|
25
|
Badawy AAB. Tryptophan metabolism, disposition and utilization in pregnancy. Biosci Rep 2015; 35:e00261. [PMID: 26381576 PMCID: PMC4626867 DOI: 10.1042/bsr20150197] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/27/2015] [Accepted: 09/16/2015] [Indexed: 12/26/2022] Open
Abstract
Tryptophan (Trp) requirements in pregnancy are several-fold: (1) the need for increased protein synthesis by mother and for fetal growth and development; (2) serotonin (5-HT) for signalling pathways; (3) kynurenic acid (KA) for neuronal protection; (4) quinolinic acid (QA) for NAD(+) synthesis (5) other kynurenines (Ks) for suppressing fetal rejection. These goals could not be achieved if maternal plasma [Trp] is depleted. Although plasma total (free + albumin-bound) Trp is decreased in pregnancy, free Trp is elevated. The above requirements are best expressed in terms of a Trp utilization concept. Briefly, Trp is utilized as follows: (1) In early and mid-pregnancy, emphasis is on increased maternal Trp availability to meet the demand for protein synthesis and fetal development, most probably mediated by maternal liver Trp 2,3-dioxygenase (TDO) inhibition by progesterone and oestrogens. (2) In mid- and late pregnancy, Trp availability is maintained and enhanced by the release of albumin-bound Trp by albumin depletion and non-esterified fatty acid (NEFA) elevation, leading to increased flux of Trp down the K pathway to elevate immunosuppressive Ks. An excessive release of free Trp could undermine pregnancy by abolishing T-cell suppression by Ks. Detailed assessment of parameters of Trp metabolism and disposition and related measures (free and total Trp, albumin, NEFA, K and its metabolites and pro- and anti-inflammatory cytokines in maternal blood and, where appropriate, placental and fetal material) in normal and abnormal pregnancies may establish missing gaps in our knowledge of the Trp status in pregnancy and help identify appropriate intervention strategies.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, Wales, U.K.
| |
Collapse
|
26
|
Cheng Z, Abayasekara DRE, Elmes M, Kirkup S, Wathes DC. Effect of oleic acid supplementation on prostaglandin production in maternal endometrial and fetal allantochorion cells isolated from late gestation ewes. Placenta 2015; 36:1011-7. [PMID: 26242710 DOI: 10.1016/j.placenta.2015.07.128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/16/2015] [Accepted: 07/21/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Elevated circulating non-esterified fatty acids including oleic acid (OA) are associated with many pregnancy related complications. Prostaglandins (PGs) play crucial roles during parturition. We investigated the effect of OA supplementation on PG production using an in vitro model of ovine placenta. METHODS Maternal endometrium (ME) and fetal allantochorion (FC) were collected in late pregnancy (day 135). Confluent cells were cultured in serum-free medium supplemented with 0, 20 or 100 μM OA and challenged with control medium, oxytocin (OT, 250 nM), lipopolysaccharide (LPS, 0.1 μg/ml) or dexamethasone (DEX, 5 μM). Spent medium was harvested at 2 and 24 h after challenge for quantifying PGs. RESULTS In ME cells OA increased PGE2 production moderately but attenuated PGF2α production leading to a doubling of the PGE2:PGF2α ratio (E:F) (P < 0.01). Without OA, both OT and LPS stimulated PG production for about 3-fold (P < 0.01) without changing the E:F ratio. In the ME cells challenged with OT, OA decreased both PGE2 and PGF2α production by up to 70% (P < 0.01) whereas in LPS treated cells OA increased the E:F ratio. In FC cells PGE2 production at 2 h was stimulated by 100 μM OA (P < 0.05). In these cells LPS caused a 3-fold increase in PGE2 (P < 0.01), an effect which was completely inhibited by DEX. DISCUSSION OA supplementation favours basal PGE2 production in both ME and FC. In ME OA increased E:F ratios and antagonized the stimulatory effect of OT on PG production. This suggests that raised circulating OA may affect both the initiation and progression of parturition.
Collapse
Affiliation(s)
- Z Cheng
- Department of Production and Population Health, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL9 7TA, UK.
| | - D R E Abayasekara
- Department of Veterinary Basic Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - M Elmes
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leicestershire LE12 5RD, UK
| | - S Kirkup
- Department of Veterinary Basic Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - D C Wathes
- Department of Production and Population Health, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL9 7TA, UK
| |
Collapse
|
27
|
Yang X, Haghiac M, Glazebrook P, Minium J, Catalano PM, Hauguel-de Mouzon S. Saturated fatty acids enhance TLR4 immune pathways in human trophoblasts. Hum Reprod 2015. [PMID: 26202921 DOI: 10.1093/humrep/dev173] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
STUDY QUESTION What are the effects of fatty acids on placental inflammatory cytokine with respect to toll-like receptor-4/nuclear factor-kappa B (TLR4/NF-kB)? SUMMARY ANSWER Exogenous fatty acids induce a pro-inflammatory cytokine response in human placental cells in vitro via activation of TLR4 signaling pathways. WHAT IS KNOWN ALREADY The placenta is exposed to changes in circulating maternal fatty acid concentrations throughout pregnancy. Fatty acids are master regulators of innate immune pathways through recruitment of toll-like receptors and activation of cytokine synthesis. STUDY DESIGN, SIZE, DURATION Trophoblast cells isolated from 14 normal term human placentas were incubated with long chain fatty acids (FA) of different carbon length and degree of saturation. The expression and secretion of interleukin-6 (IL-6), IL-8 and tumor necrosis factor-alpha (TNF-α) were measured by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. Antibodies against TLR4 ligand binding domain, downstream signaling and anti-p65 NFkB-inhibitor were used to characterize the pathways of FA action. PARTICIPANTS/MATERIALS, SETTING, METHODS General approach used primary human term trophoblast cell culture. Methods and end-points used real-time quantitative PCR, cytokine measurements, immunohistochemistry, western blots. MAIN RESULTS AND THE ROLE OF CHANCE The long chain saturated fatty acids, stearic and palmitic (PA), stimulated the synthesis as well as the release of TNF-α, IL-6 and IL-8 by trophoblast cells (2- to 6-fold, P < 0.001). In contrast, the unsaturated (palmitoleic, oleic, linoleic) acids did not modify cytokine expression significantly. Palmitate-induced inflammatory effects were mediated via TLR4 activation, NF-kB phosphorylation and nuclear translocation. LIMITATIONS, REASONS FOR CAUTION TNF-α protein level was close to the limit of detection in the culture medium even when cells were cultured with PA. WIDER IMPLICATIONS OF THE FINDINGS These mechanisms open the way to a better understanding of how changes in maternal lipid homeostasis may regulate placental inflammatory status. STUDY FUNDING/COMPETING INTERESTS X.Y. was recipient of fellowship award from West China Second University Hospital, Sichuan University (NIH HD 22965-19). The authors have nothing else to disclose. TRIAL REGISTRATION NUMBER None.
Collapse
Affiliation(s)
- Xiaohua Yang
- Center for Reproductive Health, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109-1998, USA
| | - Maricela Haghiac
- Center for Reproductive Health, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109-1998, USA
| | - Patricia Glazebrook
- Center for Reproductive Health, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109-1998, USA
| | - Judi Minium
- Center for Reproductive Health, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109-1998, USA
| | - Patrick M Catalano
- Center for Reproductive Health, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109-1998, USA
| | - Sylvie Hauguel-de Mouzon
- Center for Reproductive Health, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109-1998, USA
| |
Collapse
|
28
|
Yan JY, Jiang LL. Expression of advanced glycation end products in placenta and concentration in maternal and umbilical serum in pre-eclampsia. J Obstet Gynaecol Res 2015; 41:843-9. [PMID: 25656432 DOI: 10.1111/jog.12651] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 10/23/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Jian-ying Yan
- Department of Obstetrics and Gynecology; Fujian Medical University Teaching Hospital Fujian Maternity and Child Health Hospital; Fuzhou Fujian China
| | - Ling-ling Jiang
- Department of Obstetrics and Gynecology; Fujian Medical University Teaching Hospital Fujian Maternity and Child Health Hospital; Fuzhou Fujian China
| |
Collapse
|
29
|
Food restriction during pregnancy in rabbits: Effects on hormones and metabolites involved in energy homeostasis and metabolic programming. Res Vet Sci 2015; 98:7-12. [DOI: 10.1016/j.rvsc.2014.11.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 08/07/2014] [Accepted: 11/26/2014] [Indexed: 11/17/2022]
|
30
|
Baschat AA. First-trimester screening for pre-eclampsia: moving from personalized risk prediction to prevention. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2015; 45:119-129. [PMID: 25627093 DOI: 10.1002/uog.14770] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- A A Baschat
- The Johns Hopkins Center for Fetal Therapy, Department of Gynecology and Obstetrics, The Johns Hopkins Hospital, 600 North Wolfe Street, Nelson 228, Baltimore, Maryland, 21287, USA.
| |
Collapse
|
31
|
Rafeeinia A, Tabandeh A, Khajeniazi S, Marjani A. Metabolic syndrome in preeclampsia women in gorgan. Open Biochem J 2015; 8:94-9. [PMID: 25553139 PMCID: PMC4279033 DOI: 10.2174/1874091x01408010094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 09/27/2014] [Accepted: 09/29/2014] [Indexed: 11/22/2022] Open
Abstract
The aim of study was to assess the metabolic syndrome in preeclampsia women. The study was performed on 50 women. The metabolic syndrome prevalence was 66%. Serum glucose, triglyceride and LDL-cholesterol levels significantly were increased and HDL- cholesterol level significantly was decreased in metabolic syndrome patients. These patients showed high prevalence of components of the syndrome. Our results show the importance of dyslipidemia in preeclampsia in overweight and obese women. Preeclampsia and cardiovascular disease are important problems for the health of women. It may be useful to give a treat to people with a high-normal blood pressure in early pregnancy.
Collapse
Affiliation(s)
- Arash Rafeeinia
- Department of Biochemistry and Biophysics, Metabolic Disorders Research Center, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan province, Iran
| | - Afsaneh Tabandeh
- Department of Gynecology, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan province, Iran
| | - Safoura Khajeniazi
- Department of Medical Biotechnology, Gorgan Faculty of Advanced Medical Science Technology, Golestan University of Medical Sciences, Gorgan, Golestan province, Iran
| | - Abdoljalal Marjani
- Department of Biochemistry and Biophysics, Metabolic Disorders Research Center, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan province, Iran
| |
Collapse
|
32
|
Ueki N, Takeda S, Koya D, Kanasaki K. The relevance of the Renin-Angiotensin system in the development of drugs to combat preeclampsia. Int J Endocrinol 2015; 2015:572713. [PMID: 26000015 PMCID: PMC4426891 DOI: 10.1155/2015/572713] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 03/28/2015] [Accepted: 03/28/2015] [Indexed: 12/14/2022] Open
Abstract
Preeclampsia is a hypertensive disorder that occurs during pregnancy. It has an unknown etiology and affects approximately 5-8% of pregnancies worldwide. The pathophysiology of preeclampsia is not yet known, and preeclampsia has been called "a disease of theories." The central symptom of preeclampsia is hypertension. However, the etiology of the hypertension is unknown. In this review, we analyze the molecular mechanisms of preeclampsia with a particular focus on the pathogenesis of the hypertension in preeclampsia and its association with the renin-angiotensin system. In addition, we propose potential alternative strategies to target the renin-angiotensin system, which is enhanced during pregnancy.
Collapse
Affiliation(s)
- Norikazu Ueki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa 920-0293, Japan
- Department of Obstetrics and Gynecology, Juntendo University, Tokyo 113-8431, Japan
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Juntendo University, Tokyo 113-8431, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa 920-0293, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa 920-0293, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Ishikawa 920-0293, Japan
- *Keizo Kanasaki:
| |
Collapse
|
33
|
Is there an association between liver type fatty acid binding protein and severity of preeclampsia? Arch Gynecol Obstet 2014; 291:1069-74. [DOI: 10.1007/s00404-014-3540-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022]
|
34
|
Lager S, Jansson T, Powell TL. Differential regulation of placental amino acid transport by saturated and unsaturated fatty acids. Am J Physiol Cell Physiol 2014; 307:C738-44. [PMID: 25143349 DOI: 10.1152/ajpcell.00196.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Fatty acids are critical for normal fetal development but may also influence placental function. We have previously reported that oleic acid (OA) stimulates amino acid transport in primary human trophoblasts (PHTs). In other tissues, saturated and unsaturated fatty acids have distinct effects on cellular signaling, for instance, palmitic acid (PA) but not OA reduces IκBα expression. We hypothesized that saturated and unsaturated fatty acids differentially affect trophoblast amino acid transport and cellular signaling. To test this hypothesis, PHTs were cultured in docosahexaenoic acid (DHA; 50 μM), OA (100 μM), or PA (100 μM). DHA and OA were also combined to test whether DHA could counteract the OA stimulatory effect on amino acid transport. The effects of fatty acids were compared against a vehicle control. Amino acid transport was measured by isotope-labeled tracers. Activation of inflammatory-related signaling pathways and the mechanistic target of rapamycin (mTOR) pathway were determined by Western blot analysis. Exposure of PHTs to DHA for 24 h reduced amino acid transport and phosphorylation of p38 MAPK, STAT3, mTOR, eukaryotic initiation factor 4E-binding protein 1, and ribosomal protein (rp)S6. In contrast, OA increased amino acid transport and phosphorylation of ERK, mTOR, S6 kinase 1, and rpS6. The combination of DHA with OA increased amino acid transport and rpS6 phosphorylation. PA did not affect amino acid transport but reduced IκBα expression. In conclusion, these fatty acids differentially regulated placental amino acid transport and cellular signaling. Taken together, these findings suggest that dietary fatty acids could alter the intrauterine environment by modifying placental function, thereby having long-lasting effects on the developing fetus.
Collapse
Affiliation(s)
- Susanne Lager
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, Texas
| | - Thomas Jansson
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, Texas
| | - Theresa L Powell
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, Texas
| |
Collapse
|
35
|
Ge J, Wang J, Xue D, Zhu Z, Chen Z, Li X, Su D, Du J. Why does a high-fat diet induce preeclampsia-like symptoms in pregnant rats. Neural Regen Res 2014; 8:1872-80. [PMID: 25206496 PMCID: PMC4145971 DOI: 10.3969/j.issn.1673-5374.2013.20.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/06/2013] [Indexed: 12/22/2022] Open
Abstract
Changes in neurotransmitter levels in the brain play an important role in epilepsy-like attacks after pregnancy-induced preeclampsia-eclampsia. Metabotropic glutamate receptor 1 participates in the onset of lipid metabolism disorder-induced preeclampsia. Pregnant rats were fed with a high-fat diet for 20 days. Thus, these pregnant rats experienced preeclampsia-like syndromes such as tension and proteinuria. Simultaneously, metabotropic glutamate receptor 1 mRNA and protein expressions were upregulated in the rat hippocampus. These findings indicate that increased sion of metabotropic glutamate receptor 1 promotes the occurrence of high-fat diet-induced preeclampsia in pregnant rats.
Collapse
Affiliation(s)
- Jing Ge
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning Province, China ; The General Hospital of Shenyang Military Region, Shenyang 110016, Liaoning Province, China
| | - Jun Wang
- The General Hospital of Shenyang Military Region, Shenyang 110016, Liaoning Province, China
| | - Dan Xue
- Department of Gynecology and Obstetrics, People's Liberation Army No. 202 Hosiptal, Shenyang 110003, Liaoning Province, China
| | - Zhengsheng Zhu
- Dantu District Sanitary Supervision Institute, Zhenjiang 212001, Jiangsu Provicne, China
| | - Zhenyu Chen
- Department of Gynecology and Obstetrics, People's Liberation Army No. 202 Hosiptal, Shenyang 110003, Liaoning Province, China
| | - Xiaoqiu Li
- The General Hospital of Shenyang Military Region, Shenyang 110016, Liaoning Province, China
| | - Dongfeng Su
- Department of Neurology, the 463 Hospital of Chinese PLA, Shenyang 110042, Liaoning Province, China
| | - Juan Du
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning Province, China
| |
Collapse
|
36
|
Ding X, Yang Z, Han Y, Yu H. Long-chain fatty acid oxidation changes in a β2 glycoprotein I-induced preeclampsia-like mouse model. Placenta 2014; 35:392-7. [DOI: 10.1016/j.placenta.2014.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/12/2014] [Accepted: 03/18/2014] [Indexed: 01/05/2023]
|
37
|
Stekkinger E, Scholten RR, van der Vlugt MJ, van Dijk APJ, Janssen MCH, Spaanderman MEA. Metabolic syndrome and the risk for recurrent pre-eclampsia: a retrospective cohort study. BJOG 2013; 120:979-86. [DOI: 10.1111/1471-0528.12189] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2013] [Indexed: 01/15/2023]
Affiliation(s)
- E Stekkinger
- Department of Obstetrics and Gynaecology; Deventer Hospital; Deventer; the Netherlands
| | - RR Scholten
- Department of Obstetrics and Gynaecology; Radboud University Medical Centre; Nijmegen; the Netherlands
| | - MJ van der Vlugt
- Department of Cardiology; Radboud University Medical Centre; Nijmegen; the Netherlands
| | - APJ van Dijk
- Department of Cardiology; Radboud University Medical Centre; Nijmegen; the Netherlands
| | - MCH Janssen
- Department of Internal Medicine; Radboud University Medical Centre; Nijmegen; the Netherlands
| | | |
Collapse
|
38
|
Lager S, Gaccioli F, Ramirez VI, Jones HN, Jansson T, Powell TL. Oleic acid stimulates system A amino acid transport in primary human trophoblast cells mediated by toll-like receptor 4. J Lipid Res 2012; 54:725-733. [PMID: 23275648 DOI: 10.1194/jlr.m033050] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Obese women have an increased risk to deliver large babies. However, the mechanisms underlying fetal overgrowth in these pregnancies are not well understood. Obese pregnant women typically have elevated circulating lipid levels. We tested the hypothesis that fatty acids stimulate placental amino acid transport, mediated via toll-like receptor 4 (TLR4) and mammalian target of rapamycin (mTOR) signaling pathways. Circulating NEFA levels and placental TLR4 expression were assessed in women with varying prepregnancy body mass index (BMI). The effects of oleic acid on system A and system L amino acid transport, and on the activation of the mTOR (4EBP1, S6K1, rpS6), TLR4 (IĸB, JNK, p38 MAPK), and STAT3 signaling pathways were determined in cultured primary human trophoblast cells. Maternal circulating NEFAs (n = 33), but not placental TLR4 mRNA expression (n = 16), correlated positively with BMI (P < 0.05). Oleic acid increased trophoblast JNK and STAT3 phosphorylation (P < 0.05), whereas mTOR activity was unaffected. Furthermore, oleic acid doubled trophoblast system A activity (P < 0.05), without affecting system L activity. siRNA-mediated silencing of TLR4 expression prevented the stimulatory effect of oleic acid on system A activity. Our data suggest that maternal fatty acids can increase placental nutrient transport via TLR4, thereby potentially affecting fetal growth.
Collapse
Affiliation(s)
- Susanne Lager
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX; Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Francesca Gaccioli
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX
| | - Vanessa I Ramirez
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX
| | - Helen N Jones
- Center for Molecular Fetal Therapy, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Thomas Jansson
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX
| | - Theresa L Powell
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX
| |
Collapse
|
39
|
Bueno AA, Ghebremeskel K, Bakheit KH, Elbashir MI, Adam I. Dimethyl acetals, an indirect marker of the endogenous antioxidant plasmalogen level, are reduced in blood lipids of Sudanese pre-eclamptic subjects whose background diet is high in carbohydrate. J OBSTET GYNAECOL 2012; 32:241-6. [PMID: 22369396 DOI: 10.3109/01443615.2011.641622] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In Sudanese women with (n = 60) and without (n = 65) pre-eclampsia, circulating lipids, plasma and red cell saturated and monounsaturated fatty (MUFA) acids and dimethyl acetals (DMAs) were investigated. DMAs are an indirect marker of levels of plasmalogens, endogenous antioxidants, which play a critical role in oxidative protection, and cholesterol homeostasis. The pre-eclamptics had higher C18:1n-9 (p < 0.001) and ΣMUFA (p < 0.01) in plasma free fatty acids, C16:1n-7, C18:1n-9, ΣMUFA; 16:0/16:1n-7 (p < 0.01) in erythrocyte choline phosphoglycerides (ePC) and 16:1n-7, 18:1n-7 and 16:0/16:1n-7 (p < 0.01) in erythrocyte ethanolamine phosphoglycerides (ePE). In contrast, the DMAs 18:0, 18:1 and ΣDMAs in ePE, and 16:0, 18:0 and ΣDMAs in ePC were reduced (p < 0.001) in the pre-eclamptic women. This study of pregnant women with high carbohydrate and low fat background diet suggests pre-eclampsia is associated with oxidative stress and enhanced activity of the microsomal enzyme stearyl-CoA desaturase (delta 9 desaturase), as assessed by palmitic/palmitoleic (C16:0/C16:n-1) and stearic/oleic (C18/C18:1n-9) ratios.
Collapse
Affiliation(s)
- A A Bueno
- Institute of Brain Chemistry and Human Nutrition, London Metropolitan University, UK.
| | | | | | | | | |
Collapse
|
40
|
Alasztics B, Kukor Z, Pánczél Z, Valent S. The pathophysiology of preeclampsia in view of the two-stage model. Orv Hetil 2012; 153:1167-76. [DOI: 10.1556/oh.2012.29415] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Preeclampsia is a common and severe disease in pregnancy, a major cause of maternal and fetal morbidity and mortality. The main features of the disease are de novo hypertension after the 20th gestational week and proteinuria, and it is frequently accompanied by edema and other subjective symptoms. The origin of the disease is the placenta, but its sequelae affect multiple organ systems. According to the two-stage model of preeclampsia, the abnormal and hypoperfused placenta (stage 1) releases factors to the bloodstream, which are responsible for the maternal symptoms (stage 2). Oxidative stress, impaired function of nitric-oxide synthase, cellular and humoral immunological factors play an important role in the pathophysiology of the placenta. Endothelial dysfunction is the common denominator of the clinical symptoms. The theory explains the origins of hypertension, proteinuria, edema and other symptoms as well. Orv. Hetil., 2012, 153, 1167–1176.
Collapse
Affiliation(s)
- Bálint Alasztics
- Semmelweis Egyetem Általános Orvostudományi Kar Budapest Fecske u. 41. 1084
| | - Zoltán Kukor
- Orvosi Vegytani, Molekuláris Biológiai és Patobiokémiai Intézet Budapest
| | - Zita Pánczél
- Semmelweis Egyetem, Általános Orvostudományi Kar II. Szülészeti és Nőgyógyászati Klinika Budapest
| | - Sándor Valent
- Semmelweis Egyetem, Általános Orvostudományi Kar II. Szülészeti és Nőgyógyászati Klinika Budapest
| |
Collapse
|
41
|
Kobayashi T, Fujimori K. Very long-chain-fatty acids enhance adipogenesis through coregulation of Elovl3 and PPARγ in 3T3-L1 cells. Am J Physiol Endocrinol Metab 2012; 302:E1461-71. [PMID: 22436697 DOI: 10.1152/ajpendo.00623.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Here, we show that Elovl3 (elongation of very long-chain fatty acids 3) was involved in the regulation of the progression of adipogenesis through activation of peroxisome proliferator-activated receptor (PPAR)γ in mouse adipocytic 3T3-L1 cells. The expression of the Elovl3 gene increased during adipogenesis, the expression pattern of which was similar to that of the PPARγ gene. Troglitazone, a PPARγ agonist, enhanced Elovl3 expression in adipocytes, as it did that of other PPARγ target genes. Promoter-reporter analysis demonstrated that three PPAR-responsive elements in the Elovl3 gene promoter had the potential to activate its expression in 3T3-L1 cells. Moreover, a chromatin immunoprecipitation assay revealed that PPARγ bound these PPAR-responsive elements of the Elovl3 promoter. When the Elovl3 mRNA level was suppressed by its siRNAs, the level of intracellular triglycerides was significantly decreased, and the expression levels of adipogenic, lipolytic, and lipogenic genes were also repressed. In a mammalian two-hybrid assay, C18:1 and C20:1 very long-chain fatty acids (VLCFAs), which are the products of Elovl3 and activated PPARγ function. In addition, these same VLCFAs could prevent the Elovl3 siRNA-mediated suppression of adipogenesis by enhancing the expression of adipogenic, lipolytic, and lipogenic genes in adipocytes. Moreover, this VLCFAs-mediated activation was repressed by a PPARγ antagonist. These results indicate that the expression of the Elovl3 gene was activated by PPARγ during adipogenesis. Elovl3-produced C18:1 and C20:1 VLCFAs acted as agonists of PPARγ in 3T3-L1 cells. Thus, the Elovl3-PPARγ cascade is a novel regulatory circuit for the regulation of adipogenesis through improvement of PPARγ function in adipocytes.
Collapse
Affiliation(s)
- Takeshi Kobayashi
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | | |
Collapse
|
42
|
Chemokine and free fatty acid levels in insulin-resistant state of successful pregnancy: a preliminary observation. Mediators Inflamm 2012; 2012:432575. [PMID: 22496600 PMCID: PMC3306909 DOI: 10.1155/2012/432575] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/31/2011] [Accepted: 11/10/2011] [Indexed: 01/12/2023] Open
Abstract
Increased insulin resistance and inflammatory action are observed in pregnancy-induced hypertension (PIH), but similar insulin resistance is observed also in successful pregnancy. To estimate insulin resistance and inflammatory activity in normal pregnancy and PIH, serum concentrations of free fatty acids (FFA; corrected with albumin to estimate unbound FFA), monocyte chemoattractant protein (MCP)-1, and high-molecular weight (HMW) adiponectin were measured in severe PIH patients with a BMI less than 25 kg/m2 and were measured 3 times during the course of pregnancy in women with normal pregnancies. FFA/albumin, MCP-1, and HMW adiponectin concentrations were significantly higher in PIH patients than in women with normal pregnancies. The 3 measurements of FFA/albumin showed a significant increase through the course of uncomplicated pregnancies. In contrast, MCP-1 and HMW adiponectin were significantly decreased during the course of pregnancy. These results suggest that the reduced MCP-1 concentration in normal pregnancy may be a pathway to inhibit the induction of pathological features from physiological insulin resistance and homeostatic inflammation.
Collapse
|
43
|
Ferreira GD, Orcy RB, Martins-Costa SH, Ramos JGL, Brum IS, Corleta HVE, Capp E. Insulin stimulation of Akt/PKB phosphorylation in the placenta of preeclampsia patients. SAO PAULO MED J 2011; 129:387-91. [PMID: 22249794 PMCID: PMC10868925 DOI: 10.1590/s1516-31802011000600004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 03/29/2011] [Accepted: 04/06/2011] [Indexed: 01/22/2023] Open
Abstract
CONTEXT AND OBJECTIVE Preeclampsia is a multi-systemic disease and one of the most frequent severe health problems during pregnancy. Binding of insulin triggers phosphorylation and activates cytoplasmic substrates such as phosphatidylinositol 3 kinase (PI3K). Phosphorylation of membrane phosphoinositide 2 (PIP2) to phosphoinositide 3 (PIP3) by PI3K starts Akt/PKB activation. Defects in phosphorylation of the insulin receptor and its substrates have an important role in insulin resistance. Studies have shown that insulin resistance is associated with preeclampsia and its pathophysiology. The aim here was to investigate insulin stimulation of the Akt/PKB pathway in the placenta, in normal and preeclampsia parturients. DESIGN AND SETTING Cross-sectional study in a tertiary public university hospital. METHODS Placentas were collected from 12 normal and 12 preeclampsia patients. These were stimulated and analyzed using Western blot to quantify the Akt/PKB phosphorylation. RESULTS The insulin stimulation was confirmed through comparing the stimulated group (1.14 ± 0.10) with the non-stimulated group (0.91 ± 0.08; P < 0.001). The phosphorylation of Akt/PKB did not differ between the placenta of the normal patients (1.26 ± 0.16) and those of the preeclampsia patients (1.01 ± 0.11; P = 0.237). CONCLUSIONS In vitro insulin stimulation of the human placenta has been well established. There was no difference in Akt/PKB phosphorylation, after stimulation with insulin, between placentas of normal and preeclampsia patients. Nevertheless, it cannot be ruled out that the Akt/PKB signaling pathway may have a role in the pathophysiology of preeclampsia, since the substrates of Akt/PKB still need to be investigated.
Collapse
Affiliation(s)
- Gustavo Dias Ferreira
- MSc, Molecular, Endocrine and Tumor Biology Laboratory, Universidade Federal do Rio Grande do Sul (UFRGS), and PhD Student in Gynecology and Molecular Obstetrics Laboratory, Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Rafael Bueno Orcy
- PhD. Physiologist, Molecular, Endocrine and Tumor Biology Laboratory, Universidade Federal do Rio Grande do Sul (UFRGS), and Researcher in Gynecology and Molecular Obstetrics Laboratory, Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Sérgio Hofmeister Martins-Costa
- MD, PhD. Adjunct Professor, Gynecology and Obstetrics Service, Hospital de Clínicas de Porto Alegre, and Department of Gynecology and Obstetrics, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - José Geraldo Lopes Ramos
- MD, PhD. Associate Professor, Gynecology and Obstetrics Service, Hospital de Clínicas de Porto Alegre, and Department of Gynecology and Obstetrics, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Ilma Simoni Brum
- MD, PhD. Associate Professor, Department of Physiology, Molecular, Endocrine and Tumor Biology Laboratory, Universidade Federal do Rio Grande do Sul (UFRGS), Gynecology and Molecular Obstetrics Laboratory, Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Helena von Eye Corleta
- MD. Associate Professor, Gynecology and Obstetrics Service, Hospital de Clínicas de Porto Alegre, and Department of Gynecology and Obstetrics, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Edison Capp
- MD, PhD. Associate Professor, Department of Gynecology and Obstetrics, Universidade Federal do Rio Grande do Sul (UFRGS), and Coordinator of Master's degree program in Biological Sciences (Physiology), Molecular, Endocrine and Tumor Biology Laboratory, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
44
|
Kaaja R. Lipid abnormalities in pre-eclampsia: implications for vascular health. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/clp.10.82] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
45
|
Abstract
Preeclampsia is one of the leading causes of obstetric morbidity and mortality. The placenta has a crucial role in the development of preeclampsia. Despite intensive researches the cause of disorder is still unknown. Insufficient NO synthesis may have a key role in pathogenesis. Endothelial NO synthesis (eNOS) is the primary isoenzyme expressed in human placenta, its known disturbances are discussed. Deficiency of substrate (arginine), cofactor (tetrahydrobiopterin, BH4) and calcium can decrease the NO synthesis. Serum levels of free fatty acids (FFA), asymmetric dimethylarginine, reactive oxygen species and glucose may increase in preeclamptic pregnancy. These substances decrease NO production by different ways. The reduced affinity of eNOS to the cofactor BH4 may lead to insufficient NO, but increased superoxide production in preeclamptic placentas. Polymorphisms of eNOS gene (D298E, -786T→C) were associated with preeclamptic complications (not adequately documented). Data suggest that smoking has protective role against preeclampsia. The mechanism is not clear, even the actions of smoking on eNOS are ambivalent. The expression of eNOS is decreased, while the phosphorylation of the activator Ser1177 and also the deactivator Thr495 are increased by cigarette smoke. The oxidative stress directly decreases NO levels. Smoking lowers serum FFA levels, thus the activity of eNOS may be increased. CO produced during smoking mimics the effect of NO and can compensate its absence partially.
Collapse
Affiliation(s)
- Zoltán Kukor
- Semmelweis Egyetem, Általános Orvostudományi Kar Orvosi Vegytani Molekuláris Biológiai és Patobiokémiai Intézet, Tűzoltó u. 37-47, Budapest.
| | | |
Collapse
|
46
|
Lei Q, Lv LJ, Zhang BY, Wen JY, Liu GC, Lin XH, Niu JM. Ante-partum and post-partum markers of metabolic syndrome in pre-eclampsia. J Hum Hypertens 2010; 25:11-7. [DOI: 10.1038/jhh.2010.29] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|