1
|
Reyes-Corral M, Gil-González L, González-Díaz Á, Tovar-Luzón J, Ayuso MI, Lao-Pérez M, Montaner J, de la Puerta R, Fernández-Torres R, Ybot-González P. Pretreatment with oleuropein protects the neonatal brain from hypoxia-ischemia by inhibiting apoptosis and neuroinflammation. J Cereb Blood Flow Metab 2025; 45:717-734. [PMID: 39157939 DOI: 10.1177/0271678x241270237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Hypoxic-ischemic (HI) encephalopathy is a cerebrovascular injury caused by oxygen deprivation to the brain and remains a major cause of neonatal mortality and morbidity worldwide. Therapeutic hypothermia is the current standard of care but it does not provide complete neuroprotection. Our aim was to investigate the neuroprotective effect of oleuropein (Ole) in a neonatal (seven-day-old) mouse model of HI. Ole, a secoiridoid found in olive leaves, has previously shown to reduce damage against cerebral and other ischemia/reperfusion injuries. Here, we administered Ole as a pretreatment prior to HI induction at 20 or 100 mg/kg. A week after HI, Ole significantly reduced the infarct area and the histological damage as well as white matter injury, by preserving myelination, microglial activation and the astroglial reactive response. Twenty-four hours after HI, Ole reduced the overexpression of caspase-3 and the proinflammatory cytokines IL-6 and TNF-α. Moreover, using UPLC-MS/MS we found that maternal supplementation with Ole during pregnancy and/or lactation led to the accumulation of its metabolite hydroxytyrosol in the brains of the offspring. Overall, our results indicate that pretreatment with Ole confers neuroprotection and can prevent HI-induced brain damage by modulating apoptosis and neuroinflammation.
Collapse
Affiliation(s)
- Marta Reyes-Corral
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
| | - Laura Gil-González
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
| | - Ángela González-Díaz
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
| | - Javier Tovar-Luzón
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
| | - María Irene Ayuso
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
- CIBERSAM, ISCIII (Spanish Network for Research in Mental Health), Seville, Spain
| | - Miguel Lao-Pérez
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
| | - Joan Montaner
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
- Department of Neurology, Virgen Macarena University Hospital, Seville, Spain
| | - Rocío de la Puerta
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Rut Fernández-Torres
- Departamento de Química Analítica, Facultad de Química, Universidad de Sevilla, Seville, Spain
| | - Patricia Ybot-González
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
- Spanish National Research Council (CSIC), Spain
| |
Collapse
|
2
|
Stepień AE, Trojniak J, Tabarkiewicz J. Anti-Oxidant and Anti-Cancer Properties of Flaxseed. Int J Mol Sci 2025; 26:1226. [PMID: 39940995 PMCID: PMC11818310 DOI: 10.3390/ijms26031226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/12/2024] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Bioactive molecules present in plant products determine their very valuable health-promoting properties. Among the plants, due to these properties, particular attention is paid to the seeds of common flax (Linum usitatissimum L.), which have been used for over 6000 years and are known for their benefits. A review of 117 scientific articles indexed in PubMed/MEDLINE, ScienceDirect, and Wiley Online Library, published between 1997 and 2024, was conducted. These seeds are characterized by a high content of valuable nutrients, such as essential omega-3 fatty acids, including α-linolenic acid (ALA), lignans, isoflavones, phytoestrogens, flavonoids, vitamins, and minerals that influence the digestive system function and have anti-cancer properties. The presence of these bioactive compounds in flaxseeds provide anti-cancer properties.
Collapse
Affiliation(s)
- Agnieszka Ewa Stepień
- Institute of Health Sciences, Medical College of Rzeszów University, University of Rzeszow, 35-959 Rzeszów, Poland;
| | - Julia Trojniak
- Student’s Scientific Club of Immunology, Institute of Medical Sciences, Medical College of Rzeszów University, University of Rzeszow, 35-959 Rzeszów, Poland;
| | - Jacek Tabarkiewicz
- Department of Human Immunology, Institute of Medical Sciences, Medical College of Rzeszów University, University of Rzeszow, 35-959 Rzeszów, Poland
| |
Collapse
|
3
|
Micek A, Jagielski P, Bolesławska I, Witkowska AM, Waśkiewicz A, Wajda Z, Kamińska A, Cebula A, Godos J. Negative Association of Lignan and Phytosterol Intake with Stress Perception during the COVID-19 Pandemic-A Polish Study on Young Adults. Nutrients 2024; 16:445. [PMID: 38337729 PMCID: PMC10857242 DOI: 10.3390/nu16030445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND There has been an increasing global prevalence of depression and other psychiatric diseases in recent years. Perceived stress has been proven to be associated with psychiatric and somatic symptoms. Some animal and human studies have suggested that consuming foods abundant in lignans and phytosterols may be associated with lower levels of stress, depression, and anxiety. Still, the evidence is not yet strong enough to draw firm conclusions. Thus, we investigated the association between dietary intake of these phytochemicals and the level of stress experienced by adult individuals. METHODS Diet was assessed using self-reported 7-day dietary records. The intakes of lignans and phytosterols were estimated using databases with their content in various food products. The Perceived Stress Scale (PSS) was implemented to measure the level of perceived stress. A logistic regression analysis was used to test for associations. RESULTS The odds of elevated PSS were negatively associated with dietary intake of total phytosterols, stigmasterol, and β-sitosterol, with evidence of a decreasing trend across tertiles of phytochemicals. The analysis for doubling the intake reinforced the aforementioned relationships and found protective effects against PSS for total lignans, pinoresinol, and campesterol. CONCLUSIONS Habitual inclusion of lignans and phytosterols in the diet may play a role in psychological health. To address the global outbreak of depression and other mental health issues triggered by stress, it is important to take a holistic approach. There is a need to develop effective strategies for prevention and treatment, among which certain dietary interventions such as consumption of products abundant in lignans and phytosterols may play a substantial role.
Collapse
Affiliation(s)
- Agnieszka Micek
- Statistical Laboratory, Jagiellonian University Medical College, 31-126 Kraków, Poland
| | - Paweł Jagielski
- Department of Nutrition and Drug Research, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University Medical College, 31-066 Kraków, Poland;
| | - Izabela Bolesławska
- Department of Bromatology, Poznan University of Medical Sciences, 60-806 Poznań, Poland;
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, 15-295 Bialystok, Poland;
| | - Anna Waśkiewicz
- Department of Epidemiology, Cardiovascular Disease Prevention and Health Promotion, National Institute of Cardiology, 04-628 Warszawa, Poland;
| | - Zbigniew Wajda
- Faculty of Management and Social Communication, Institute of Applied Psychology, Jagiellonian University, 30-348 Kraków, Poland;
| | - Anna Kamińska
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 31-121 Kraków, Poland; (A.K.); (A.C.)
| | - Aneta Cebula
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 31-121 Kraków, Poland; (A.K.); (A.C.)
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
4
|
Xia H, Shi X, Zhou B, Sui J, Yang C, Liu H, Yang L, Wang S, Sun G. Milled flaxseed-added diets ameliorated hepatic inflammation by reducing gene expression of TLR4/NF-κB pathway and altered gut microbiota in STZ-induced type 1 diabetic mice. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Rahmati-Ahmadabad S, Azarbayjani MA, Broom D, Nasehi M. Effects of high-intensity interval training and flaxseed oil supplement on learning, memory and immobility: relationship with BDNF and TrkB genes. COMPARATIVE EXERCISE PHYSIOLOGY 2021; 17:273-284. [DOI: 10.3920/cep200046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
This study examined the independent and combined effects of high-intensity interval training (HIIT) and flaxseed oil supplementation on cognitive/executive functions in middle-aged rats. Hippocampal neurotropic brain factor (BDNF) and tyrosine kinase receptor B (TrkB) gene expression were also measured. Animals were randomly divided into groups including no exercise control and saline (CS), no exercise control and flaxseed oil supplement (CF), exercise training-and saline (TS) and exercise training and flaxseed oil supplement (TF). The training groups undertook a program of HIIT (10 weeks, five sessions per week) and the supplement groups received flaxseed oil supplement (300 mg/kg). The results showed that HIIT and flaxseed oil supplementation independently had positive effects on memory and learning (P<0.05). HIIT and flaxseed oil independently decreased immobility behaviour and increased hippocampal BDNF and TrkB genes expression (P<0.05). HIIT and flaxseed oil combination had a greater effect on some variables (hippocampal TrkB gene expression, memory and immobility) compared to each intervention alone (P<0.05). In conclusion, HIIT and flaxseed oil can independently improve cognitive/executive functions. In addition, HIIT had a greater positive effect than flaxseed oil supplementation on memory and immobility. The combination of HIIT and flaxseed oil supplement had a more positive effect compared to each intervention alone on memory, and immobility. Hippocampal BDNF gene expression did not significantly differ in the combination or independent groups. Thus, future work is needed on several other genes in different segments of the brain to find the additive-mechanisms involved in memory and immobility regulation and younger and older species of rat should be examined.
Collapse
Affiliation(s)
- S. Rahmati-Ahmadabad
- Department of Physical Education, Pardis Branch, Islamic Azad University, Pardis 1658174583, Iran
| | - M.-A. Azarbayjani
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, P.O. Box 1955847781, Tehran, Iran
| | - D.R. Broom
- Centre for Sport, Exercise and Life Sciences, Coventry University, Alison Gingell Building, 20 Whitefriars Street, Coventry, CV1 2DS, United Kingdom
| | - M. Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran 193951495, Iran
| |
Collapse
|
6
|
Reyes-Corral M, Sola-Idígora N, de la Puerta R, Montaner J, Ybot-González P. Nutraceuticals in the Prevention of Neonatal Hypoxia-Ischemia: A Comprehensive Review of their Neuroprotective Properties, Mechanisms of Action and Future Directions. Int J Mol Sci 2021; 22:2524. [PMID: 33802413 PMCID: PMC7959318 DOI: 10.3390/ijms22052524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/22/2022] Open
Abstract
Neonatal hypoxia-ischemia (HI) is a brain injury caused by oxygen deprivation to the brain due to birth asphyxia or reduced cerebral blood perfusion, and it often leads to lifelong limiting sequelae such as cerebral palsy, seizures, or mental retardation. HI remains one of the leading causes of neonatal mortality and morbidity worldwide, and current therapies are limited. Hypothermia has been successful in reducing mortality and some disabilities, but it is only applied to a subset of newborns that meet strict inclusion criteria. Given the unpredictable nature of the obstetric complications that contribute to neonatal HI, prophylactic treatments that prevent, rather than rescue, HI brain injury are emerging as a therapeutic alternative. Nutraceuticals are natural compounds present in the diet or used as dietary supplements that have antioxidant, anti-inflammatory, or antiapoptotic properties. This review summarizes the preclinical in vivo studies, mostly conducted on rodent models, that have investigated the neuroprotective properties of nutraceuticals in preventing and reducing HI-induced brain damage and cognitive impairments. The natural products reviewed include polyphenols, omega-3 fatty acids, vitamins, plant-derived compounds (tanshinones, sulforaphane, and capsaicin), and endogenous compounds (melatonin, carnitine, creatine, and lactate). These nutraceuticals were administered before the damage occurred, either to the mothers as a dietary supplement during pregnancy and/or lactation or to the pups prior to HI induction. To date, very few of these nutritional interventions have been investigated in humans, but we refer to those that have been successful in reducing ischemic stroke in adults. Overall, there is a robust body of preclinical evidence that supports the neuroprotective properties of nutraceuticals, and these may represent a safe and inexpensive nutritional strategy for the prevention of neonatal HI encephalopathy.
Collapse
Affiliation(s)
- Marta Reyes-Corral
- Neurodevelopment Research Group, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain; (M.R.-C.); (N.S.-I.); (P.Y.-G.)
| | - Noelia Sola-Idígora
- Neurodevelopment Research Group, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain; (M.R.-C.); (N.S.-I.); (P.Y.-G.)
| | - Rocío de la Puerta
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Joan Montaner
- Neurovascular Research Lab, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain
- Department of Neurology and Neurophysiology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain
| | - Patricia Ybot-González
- Neurodevelopment Research Group, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain; (M.R.-C.); (N.S.-I.); (P.Y.-G.)
- Department of Neurology and Neurophysiology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain
| |
Collapse
|
7
|
Parikh M, Maddaford TG, Austria JA, Aliani M, Netticadan T, Pierce GN. Dietary Flaxseed as a Strategy for Improving Human Health. Nutrients 2019; 11:E1171. [PMID: 31130604 PMCID: PMC6567199 DOI: 10.3390/nu11051171] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022] Open
Abstract
Flaxseed is a rich source of the omega-3 fatty acid, alpha linolenic acid, the lignan secoisolariciresinol diglucoside and fiber. These compounds provide bioactivity of value to the health of animals and humans through their anti-inflammatory action, anti-oxidative capacity and lipid modulating properties. The characteristics of ingesting flaxseed or its bioactive components are discussed in this article. The benefits of administering flaxseed or the individual bioactive components on health and disease are also discussed in this review. Specifically, the current evidence on the benefits or limitations of dietary flaxseed in a variety of cardiovascular diseases, cancer, gastro-intestinal health and brain development and function, as well as hormonal status in menopausal women, are comprehensive topics for discussion.
Collapse
Affiliation(s)
- Mihir Parikh
- Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W3, Canada.
- Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St Boniface Hospital, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
| | - Thane G Maddaford
- Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W3, Canada.
- Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St Boniface Hospital, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
| | - J Alejandro Austria
- Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W3, Canada.
- Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St Boniface Hospital, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
| | - Michel Aliani
- Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St Boniface Hospital, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
- Department of Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Thomas Netticadan
- Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W3, Canada.
- Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St Boniface Hospital, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| | - Grant N Pierce
- Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W3, Canada.
- Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St Boniface Hospital, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
| |
Collapse
|
8
|
Queiroz MP, Lima MDS, Barbosa MQ, de Melo MFFT, Bertozzo CCDMS, de Oliveira MEG, Bessa RJB, Alves SPA, Souza MIA, Queiroga RDCRDE, Soares JKB. Effect of Conjugated Linoleic Acid on Memory and Reflex Maturation in Rats Treated During Early Life. Front Neurosci 2019; 13:370. [PMID: 31068778 PMCID: PMC6491851 DOI: 10.3389/fnins.2019.00370] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 04/01/2019] [Indexed: 01/04/2023] Open
Abstract
In the critical period of neurodevelopment (gestation and lactation), maternal consumption of essential fatty acids (FAs) can alter the offspring cognitive function permanently causing damage. Lipids can regulate neurotrophin and compose brain tissue. However, the effects of maternal consumption of a mixture of conjugated linoleic acid (CLA) on an offspring nervous system are not completely clear. We aimed to investigate the impacts of different CLA concentrations mixed into the maternal diet during early life on neonatal reflex maturation and cognitive functions of the offspring. Three groups were formed: control (CG): receiving a standard diet; CLA1: receiving a diet containing 1% of CLA, and CLA3: receiving a diet containing 3% of CLA, offered during gestation and lactation. After birth, the reflex responses of the offspring were observed from the 1st to the 21st day. After weaning, the animals' anxiety and memory were assessed using open field (OF) and novel object recognition tests. Fatty acids in the breast milk and the offspring's brain were also quantified. The data were analyzed using one-way ANOVA and the Kruskal-Wallis test. CLA1 presented accelerated palmar grasp disappearance versus CLA3 and negative-geotaxis versus CG; and the CLA3 presented increases for most reflexes (cliff-avoidance, vibrissa-placing, negative-geotaxis, and auditory-startle response), and decrease in reflexes palmar grasp and free-fall righting versus CG (p < 0.05). CLA3 group explored less of the OF in the second exposure. CLA1 and CLA3 presented an increased exploration ratio for new objects, which indicates memory improvement. The milk tested from CLA3 demonstrated an increase in polyunsaturated fatty acids (PUFAs), and a decrease in monounsaturated fatty acids. The amount of CLA in milk was greater in CLA1 and CLA3 and in the brain offspring both presented moderated amounts of CLA. Maternal treatment with the CLA mixture induced anticipated reflex maturation and improved memory in the offspring. Even though CLA was detected in the brains in only trace amounts, offspring's brain PUFA and SFA levels were increased. Further studies aimed to delineate the effect of maternal CLA supplementation on offspring's brain lipid metabolism and long-term neurologic outcome are needed to confirm these findings.
Collapse
Affiliation(s)
- Michelly Pires Queiroz
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, Brazil
| | - Martiniano da Silva Lima
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Campina Grande, Brazil
| | - Mayara Queiroga Barbosa
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Campina Grande, Brazil
| | | | | | - Maria Elieidy Gomes de Oliveira
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, Brazil
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Campina Grande, Brazil
| | - Rui José Branquinho Bessa
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Susana Paula Almeida Alves
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Maria Izabel Amaral Souza
- Program in Animal Science, School of Veterinary and Animal Science, Federal University of Goiás, Goiânia, Brazil
| | - Rita de Cassia Ramos do Egypto Queiroga
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, Brazil
- Laboratory of Bromatology, Department of Nutrition, Federal University of Paraíba, João Pessoa, Brazil
| | - Juliana Késsia Barbosa Soares
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, Brazil
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Campina Grande, Brazil
| |
Collapse
|
9
|
Anti-Oxidative and Neuroprotective Effects of Supplementary Flaxseed on Oxidative Damage in the Hippocampus Area of a Rat Model of Hypoxia. ARCHIVES OF NEUROSCIENCE 2018. [DOI: 10.5812/ans.60193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Netto CA, Sanches EF, Odorcyk F, Duran-Carabali LE, Sizonenko SV. Pregnancy as a valuable period for preventing hypoxia-ischemia brain damage. Int J Dev Neurosci 2018; 70:12-24. [PMID: 29920306 DOI: 10.1016/j.ijdevneu.2018.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 12/16/2022] Open
Abstract
Neonatal brain Hypoxia-Ischemia (HI) is one of the major causes of infant mortality and lifelong neurological disabilities. The knowledge about the physiopathological mechanisms involved in HI lesion have increased in recent years, however these findings have not been translated into clinical practice. Current therapeutic approaches remain limited; hypothermia, used only in term or near-term infants, is the golden standard. Epidemiological evidence shows a link between adverse prenatal conditions and increased risk for diseases, health problems, and psychological outcomes later in life, what makes pregnancy a relevant period for preventing future brain injury. Here, we review experimental literature regarding preventive interventions used during pregnancy, i.e., previous to the HI injury, encompassing pharmacological, nutritional and/or behavioral strategies. Literature review used PubMed database. A total of forty one studies reported protective properties of maternal treatments preventing perinatal hypoxia-ischemia injury in rodents. Pharmacological agents and dietary supplementation showed mainly anti-excitotoxicity, anti-oxidant or anti-apoptotic properties. Interestingly, maternal preconditioning, physical exercise and environmental enrichment seem to engage the same referred mechanisms in order to protect neonatal brain against injury. This construct must be challenged by further studies to clearly define the main mechanisms responsible for neuroprotection to be explored in experimental context, as well as to test their potential in clinical settings.
Collapse
Affiliation(s)
- C A Netto
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.
| | - E F Sanches
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - F Odorcyk
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - L E Duran-Carabali
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - S V Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Correia-Santos AM, Vicente GC, Boaventura GT. Functional implications of maternal intake of flaxseed and its by-products during pregnancy and lactation on offspring. ACTA ACUST UNITED AC 2017. [DOI: 10.1108/nfs-03-2017-0041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
The purpose of this review of the literature is to provide data about flaxseed intake during pregnancy and/or lactation and its effects in the offspring from birth to adulthood.
Design/methodology/approach
This review includes up-to-date information from evidence-based sources on flaxseed intake and its by-products, during pregnancy and lactation and its effects on male and female offspring, from post-weaning until adulthood. Topics included are effects on body mass; glycaemic metabolism; lipid profile; blood pressure and aortic structure; reproductive system and brain tissue.
Findings
The main effects of flaxseed or its by-products were observed in the cardiovascular system, where a lipid profile improvement and minor aortic remodelling were noticed, and in the cerebral development, where greater n-3 PUFA incorporation in the brain was detected.
Originality/value
The research done in this study, to understand the offspring response that were early exposed to the flaxseed components during pregnancy and lactation, may be the first step toward guiding future strategies for recommending the use of this seed during the offspring’s perinatal period.
Collapse
|
12
|
de Melo MFFT, Pereira DE, Sousa MM, Medeiros DMF, Lemos LTM, Madruga MS, Santos NM, de Oliveira MEG, de Menezes CC, Soares JKB. Maternal intake of cashew nuts accelerates reflex maturation and facilitates memory in the offspring. Int J Dev Neurosci 2017; 61:58-67. [PMID: 28663041 DOI: 10.1016/j.ijdevneu.2017.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 06/24/2017] [Indexed: 12/19/2022] Open
Abstract
Essential fatty acids, being indispensable during the stages of pregnancy, lactation and infancy influence the transmission of nerve impulses and brain function, and cashew nuts are a good source of these fatty acids. The objective of this study was to evaluate the effects of cashew nut consumption on reflex development, memory and profile of fatty acids of rat offspring treated during pregnancy and lactation. The animals were divided into three groups: Control (CONT), treated with 7% lipid derived from soybean oil; Normolipidic (NL) treated with 7% lipids derived from cashew nuts; and Hyperlipidic (HL) treated with 20% lipids derived from cashew nuts. Reflex ontogeny, Open-field habituation test and the Object Recognition Test (ORT) were assessed. The profile of fatty acids in the brain was carried out when the animals were zero, 21 and 60days old. Accelerated reflex maturation was observed in animals treated with cashew nuts (p<0.05). NL presented better memory in the Open-field habituation test; the NL and HL showed improvement of short-term memory in the ORT, but long term damage in HL (p<0.05). The results of the lipid profile of the brain at the end of the experiment showed an increase in levels of saturated fatty acids and less Docosahexaenoic acid (DHA) in animals of the HL. The data showed that maternal consumption of cashew nuts can accelerate reflex maturation and facilitate memory in offspring when offered in adequate quantities.
Collapse
Affiliation(s)
| | - Diego Elias Pereira
- Laboratory of Experimental Nutrition, Federal University of Campina Grande, Paraíba, Brazil.
| | - Morgana Moura Sousa
- Laboratory of Experimental Nutrition, Federal University of Campina Grande, Paraíba, Brazil.
| | | | | | - Marta Suely Madruga
- Department of Food Engineering, Federal University of Paraíba, Paraíba, Brazil.
| | - Nayane Medeiros Santos
- Laboratory of Experimental Nutrition, Federal University of Campina Grande, Paraíba, Brazil.
| | | | | | | |
Collapse
|
13
|
Diaz J, Abiola S, Kim N, Avaritt O, Flock D, Yu J, Northington FJ, Chavez-Valdez R. Therapeutic Hypothermia Provides Variable Protection against Behavioral Deficits after Neonatal Hypoxia-Ischemia: A Potential Role for Brain-Derived Neurotrophic Factor. Dev Neurosci 2017; 39:257-272. [PMID: 28196356 DOI: 10.1159/000454949] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Despite treatment with therapeutic hypothermia (TH), infants who survive hypoxic ischemic (HI) encephalopathy (HIE) have persistent neurological abnormalities at school age. Protection by TH against HI brain injury is variable in both humans and animal models. Our current preclinical model of hypoxia-ischemia (HI) and TH displays this variability of outcomes in neuropathological and neuroimaging end points with some sexual dimorphism. The detailed behavioral phenotype of this model is unknown. Whether there is sexual dimorphism in certain behavioral domains is also not known. Brain-derived neurotrophic factor (BDNF) supports neuronal cell survival and repair but may also be a marker of injury. Here, we characterize the behavioral deficits after HI and TH stratified by sex, as well as late changes in BDNF and its correlation with memory impairment. METHODS HI was induced in C57BL6 mice on postnatal day 10 (p10) (modified Vannucci model). Mice were randomized to TH (31°C) or normothermia (NT, 36°C) for 4 h after HI. Controls were anesthesia-exposed, age- and sex-matched littermates. Between p16 and p39, growth was followed, and behavioral testing was performed including reflexes (air righting, forelimb grasp and negative geotaxis) and sensorimotor, learning, and memory skills (open field, balance beam, adhesive removal, Y-maze tests, and object location task [OLT]). Correlations between mature BDNF levels in the forebrain and p42 memory outcomes were studied. RESULTS Both male and female HI mice had an approximately 8-12% lower growth rate (g/day) than shams (p ≤ 0.01) by p39. TH ameliorated this growth failure in females but not in males. In female mice, HI injury prolonged the time spent at the periphery (open field) at p36 (p = 0.004), regardless of treatment. TH prevented motor impairments in the balance beam and adhesive removal tests in male and female mice, respectively (p ≤ 0.05). Male and female HI mice visited the new arm of the Y-maze 12.5% (p = 0.05) and 10% (p = 0.03) less often than shams, respectively. Male HI mice also had 35% lower exploratory preference score than sham (p ≤ 0.001) in the OLT. TH did not prevent memory impairments found with Y-maze testing or OLT in either sex (p ≤ 0.01) at p26. At p42, BDNF levels in the forebrain ipsilateral to the HI insult were 1.7- to 2-fold higher than BDNF levels in the sham forebrain, and TH did not prevent this increase. Higher BDNF levels in the forebrain ipsilateral to the insult correlated with worse performance in the Y-maze in both sexes and in OLT in male mice (p = 0.01). CONCLUSIONS TH provides benefit in specific domains of behavior following neonatal HI. In general, these benefits accrued to both males and females, but not in all areas. In some domains, such as memory, no benefit of TH was found. Late differences in individual BDNF levels may explain some of these findings.
Collapse
Affiliation(s)
- Johana Diaz
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Arteaga O, Álvarez A, Revuelta M, Santaolalla F, Urtasun A, Hilario E. Role of Antioxidants in Neonatal Hypoxic-Ischemic Brain Injury: New Therapeutic Approaches. Int J Mol Sci 2017; 18:E265. [PMID: 28134843 PMCID: PMC5343801 DOI: 10.3390/ijms18020265] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/14/2017] [Accepted: 01/19/2017] [Indexed: 01/08/2023] Open
Abstract
Hypoxic-ischemic brain damage is an alarming health and economic problem in spite of the advances in neonatal care. It can cause mortality or detrimental neurological disorders such as cerebral palsy, motor impairment and cognitive deficits in neonates. When hypoxia-ischemia occurs, a multi-faceted cascade of events starts out, which can eventually cause cell death. Lower levels of oxygen due to reduced blood supply increase the production of reactive oxygen species, which leads to oxidative stress, a higher concentration of free cytosolic calcium and impaired mitochondrial function, triggering the activation of apoptotic pathways, DNA fragmentation and cell death. The high incidence of this type of lesion in newborns can be partly attributed to the fact that the developing brain is particularly vulnerable to oxidative stress. Since antioxidants can safely interact with free radicals and terminate that chain reaction before vital molecules are damaged, exogenous antioxidant therapy may have the potential to diminish cellular damage caused by hypoxia-ischemia. In this review, we focus on the neuroprotective effects of antioxidant treatments against perinatal hypoxic-ischemic brain injury, in the light of the most recent advances.
Collapse
Affiliation(s)
- Olatz Arteaga
- Department of Cell Biology & Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
| | - Antonia Álvarez
- Department of Cell Biology & Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
| | - Miren Revuelta
- Department of Cell Biology & Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
| | - Francisco Santaolalla
- Department of Otorhinolaryngology, Basurto University Hospital, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
| | - Andoni Urtasun
- Department of Neuroscience, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
- Neurogenomiks Laboratory, Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, 48170 Zamudio, Spain.
| | - Enrique Hilario
- Department of Cell Biology & Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
| |
Collapse
|
15
|
Docosahexaenoic Acid Reduces Cerebral Damage and Ameliorates Long-Term Cognitive Impairments Caused by Neonatal Hypoxia-Ischemia in Rats. Mol Neurobiol 2016; 54:7137-7155. [PMID: 27796751 DOI: 10.1007/s12035-016-0221-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
Abstract
As the interest in the neuroprotective possibilities of docosahexaenoic acid (DHA) for brain injury has grown in the recent years, we aimed to investigate the long-term effects of this fatty acid in an experimental model of perinatal hypoxia-ischemia in rats. To this end, motor activity, aspects of learning, and memory function and anxiety, as well as corticofugal connections visualized by using tracer injections, were evaluated at adulthood. We found that in the hours immediately following the insult, DHA maintained mitochondrial inner membrane integrity and transmembrane potential, as well as the integrity of synaptic processes. Seven days later, morphological damage at the level of the middle hippocampus was reduced, since neurons and myelin were preserved and the astroglial reactive response and microglial activation were seen to be diminished. At adulthood, the behavioral tests revealed that treated animals presented better long-term working memory and less anxiety than non-treated hypoxic-ischemic animals, while no difference was found in the spontaneous locomotor activity. Interestingly, hypoxic-ischemic injury caused alterations in the anterograde corticofugal neuronal connections which were not so evident in rats treated with DHA. Thus, our results indicate that DHA treatment can lead to long-lasting neuroprotective effects in this experimental model of neonatal hypoxia-ischemic brain injury, not only by mitigating axonal changes but also by enhancing cognitive performance at adulthood.
Collapse
|
16
|
Marcelino TB, de Lemos Rodrigues PI, Klein CP, Santos BGD, Miguel PM, Netto CA, Silva LOP, Matté C. Behavioral benefits of maternal swimming are counteracted by neonatal hypoxia-ischemia in the offspring. Behav Brain Res 2016; 312:30-8. [PMID: 27283975 DOI: 10.1016/j.bbr.2016.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/01/2016] [Accepted: 06/05/2016] [Indexed: 12/22/2022]
Abstract
Hypoxia-ischemia (HI) represents one of the most common causes of neonatal encephalopathy. The central nervous system injury comprises several mechanisms, including inflammatory, excitotoxicity, and redox homeostasis unbalance leading to cell death and cognitive impairment. Exercise during pregnancy is a potential therapeutic tool due to benefits offered to mother and fetus. Swimming during pregnancy elicits a strong metabolic programming in the offspring's brain, evidenced by increased antioxidant enzymes, mitochondrial biogenesis, and neurogenesis. This article aims to evaluate whether the benefits of maternal exercise are able to prevent behavioral brain injury caused by neonatal HI. Female adult Wistar rats swam before and during pregnancy (30min/day, 5 days/week, 4 weeks). At 7(th) day after birth, the offspring was submitted to HI protocol and, in adulthood (60(th) day), it performed the behavioral tests. It was observed an increase in motor activity in the open field test in HI-rats, which was not prevented by maternal exercise. The rats subjected to maternal swimming presented an improved long-term memory in the object recognition task, which was totally reversed by neonatal HI encephalopathy. BDNF brain levels were not altered; suggesting that HI or maternal exercise effects were BDNF-independent. In summary, our data suggest a beneficial long-term effect of maternal swimming, despite not being robust enough to protect from HI injury.
Collapse
Affiliation(s)
- Thiago Beltram Marcelino
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Caroline Peres Klein
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bernardo Gindri Dos Santos
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia Maidana Miguel
- Programa de Pós-graduação em Neurociências, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos Alexandre Netto
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas de Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Neurociências, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lenir Orlandi Pereira Silva
- Programa de Pós-graduação em Neurociências, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cristiane Matté
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas de Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|