1
|
Moran-Garrido M, Camunas-Alberca SM, Sáiz J, Gradillas A, Taha AY, Barbas C. Deeper insights into the stability of oxylipins in human plasma across multiple freeze-thaw cycles and storage conditions. J Pharm Biomed Anal 2025; 255:116587. [PMID: 39647243 DOI: 10.1016/j.jpba.2024.116587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/29/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
Oxylipins are signaling lipids derived from the oxidation of polyunsaturated fatty acids (PUFAs). In lipidomic studies, human plasma may be subjected to various storage conditions and freeze-thaw cycles, which may impact the analysis of these compounds. In this study, we used liquid chromatography coupled with mass spectrometry (LC-MS) to examine the influence of up to five freeze-thaw cycles (FTCs) on free and total (mostly esterified) oxylipins in human plasma and the influence of temperature and storage duration (4 °C for up to 120 h and -20 °C and -80 °C for 1-98 days) in the presence or absence of butylated hydroxytoluene (BHT) on extracted oxylipins stored in LC-MS amber vials. In fresh plasma subjected to several FTCs, approximately 48 % of the detected free oxylipins were significantly altered by the third cycle, with increases in cytochrome P450 (CYP450) and lipoxygenase (LOX)-derived compounds and reductions in trihydroxylated oxylipins. In contrast, multiple FTCs did not significantly alter esterified oxylipins. At 4 °C, the extracted oxylipins did not change significantly for up to 120 h (5 days). Oxylipin levels remained stable for 98 days at -80 °C but decreased by 98 days at -20 °C. The antioxidant activity of butylated hydroxytoluene (BHT) did not influence oxylipin stability at 4 °C for 120 h or at -80 °C for 98 days, but it reduced oxylipin degradation at -20 °C at 98 days. Conversely, prostaglandin F2α (PGF2α) exhibited substantial increases at -20 °C and -80 °C, independent of BHT. This study demonstrates that (i) unlike free oxylipins, the esterified oxylipin pool remains stable following repeated FTCs, (ii) extracted oxylipins are stable at 4 °C for up to 120 h and at -80 °C for up to 98 days, but not at -20 °C for 98 days, and (iii) BHT may minimize oxylipin degradation of sample extracts stored at -20 °C. This study provides a framework for measuring oxylipins under various freeze-thaw and storage conditions.
Collapse
Affiliation(s)
- Maria Moran-Garrido
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain.
| | - Sandra M Camunas-Alberca
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain.
| | - Jorge Sáiz
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain.
| | - Ana Gradillas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain.
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA; West Coast Metabolomics Center, Genome Center, University of California, Davis, CA 95616, USA; Center for Neuroscience, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain.
| |
Collapse
|
2
|
Durairaj P, Liu ZL. Brain Cytochrome P450: Navigating Neurological Health and Metabolic Regulation. J Xenobiot 2025; 15:44. [PMID: 40126262 PMCID: PMC11932283 DOI: 10.3390/jox15020044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
Human cytochrome P450 (CYP) enzymes in the brain represent a crucial frontier in neuroscience, with far-reaching implications for drug detoxification, cellular metabolism, and the progression of neurodegenerative diseases. The brain's complex architecture, composed of interconnected cell types and receptors, drives unique neuronal signaling pathways, modulates enzyme functions, and leads to distinct CYP gene expression and regulation patterns compared to the liver. Despite their relatively low levels of expression, brain CYPs exert significant influence on drug responses, neurotoxin susceptibility, behavior, and neurological disease risk. These enzymes are essential for maintaining brain homeostasis, mediating cholesterol turnover, and synthesizing and metabolizing neurochemicals, neurosteroids, and neurotransmitters. Moreover, they are key participants in oxidative stress responses, neuroprotection, and the regulation of inflammation. In addition to their roles in metabolizing psychotropic drugs, substances of abuse, and endogenous compounds, brain CYPs impact drug efficacy, safety, and resistance, underscoring their importance beyond traditional drug metabolism. Their involvement in critical physiological processes also links them to neuroprotection, with significant implications for the onset and progression of neurodegenerative diseases. Understanding the roles of cerebral CYP enzymes is vital for advancing neuroprotective strategies, personalizing treatments for brain disorders, and developing CNS-targeting therapeutics. This review explores the emerging roles of CYP enzymes, particularly those within the CYP1-3 and CYP46 families, highlighting their functional diversity and the pathological consequences of their dysregulation on neurological health. It also examines the potential of cerebral CYP-based biomarkers to improve the diagnosis and treatment of neurodegenerative disorders, offering new avenues for therapeutic innovation.
Collapse
Affiliation(s)
- Pradeepraj Durairaj
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL 32310, USA
- Department of Chemical and Biomedical Engineering, Florida A&M University, Tallahassee, FL 32310, USA
| | - Zixiang Leonardo Liu
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL 32310, USA
- Department of Chemical and Biomedical Engineering, Florida A&M University, Tallahassee, FL 32310, USA
- Institute for Successful Longevity, Florida State University, Tallahassee, FL 32310, USA
| |
Collapse
|
3
|
Anita NZ, Herrmann N, Ryoo SW, Major-Orfao C, Lin WZ, Kwan F, Noor S, Rabin JS, Marzolini S, Nestor S, Ruthirakuhan MT, MacIntosh BJ, Goubran M, Yang P, Cogo-Moreira H, Rapoport M, Gallagher D, Black SE, Goldstein BI, Lanctôt KL, Oh PI, Taha AY, Swardfager W. Cytochrome P450-soluble epoxide hydrolase oxylipins, depression and cognition in type 2 diabetes. J Diabetes Complications 2024; 38:108826. [PMID: 39059187 DOI: 10.1016/j.jdiacomp.2024.108826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/11/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
AIMS This study examined serum cytochrome P450-soluble epoxide hydrolase (CYP450-sEH) oxylipins and depressive symptoms together in relation to cognitive performance in individuals with type 2 diabetes mellitus (T2DM). METHODS Clinically cognitively normal T2DM individuals were recruited (NCT04455867). Depressive symptom severity was assessed using the Beck Depression Inventory-II (BDI-II; total scores ≤13 indicated minimal depressive symptoms and ≥ 14 indicated significant depressive symptoms). Executive function and verbal memory were assessed. Fasting serum oxylipins were quantified by ultra-high-performance liquid chromatography tandem mass-spectrometry. RESULTS The study included 85 participants with minimal depressive symptoms and 27 with significant symptoms (mean age: 63.3 ± 9.8 years, 49 % women). In all participants, higher concentrations of linoleic acid derived sEH (12,13-dihydroxyoctadecamonoenoic acid; DiHOME) and CYP450 (12(13)-epoxyoctadecamonoenoic acid; EpOME) metabolites were associated with poorer executive function (F1,101 = 6.094, p = 0.015 and F1,101 = 5.598, p = 0.020, respectively). Concentrations of multiple sEH substrates interacted with depressive symptoms to predict 1) poorer executive function, including 9(10)-EpOME (F1,100 = 12.137, p < 0.001), 5(6)-epoxyeicosatrienoic acid (5(6)-EpETrE; F1,100 = 6.481, p = 0.012) and 11(12)-EpETrE (F1,100 = 4.409, p = 0.038), and 2) verbal memory, including 9(10)-EpOME (F1,100 = 4.286, p = 0.041), 5(6)-EpETrE (F1,100 = 6.845, p = 0.010), 11(12)-EpETrE (F1,100 = 3.981, p = 0.049) and 14(15)-EpETrE (F1,100 = 5.019, p = 0.027). CONCLUSIONS Associations of CYP450-sEH metabolites and depressive symptoms with cognition highlight the biomarker and therapeutic potential of the CYP450-sEH pathway in T2DM.
Collapse
Affiliation(s)
- Natasha Z Anita
- Department of Pharmacology & Toxicology, Temerty Faculty of Medicine - University of Toronto, Canada; Sunnybrook Research Institute, Toronto, Ontario, Canada; KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Canada
| | - Nathan Herrmann
- Sunnybrook Research Institute, Toronto, Ontario, Canada; Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Psychiatry - University of Toronto, Canada
| | - Si Won Ryoo
- Department of Pharmacology & Toxicology, Temerty Faculty of Medicine - University of Toronto, Canada; Sunnybrook Research Institute, Toronto, Ontario, Canada; KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Canada
| | - Chelsi Major-Orfao
- Sunnybrook Research Institute, Toronto, Ontario, Canada; KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Canada
| | - William Z Lin
- Department of Pharmacology & Toxicology, Temerty Faculty of Medicine - University of Toronto, Canada; Sunnybrook Research Institute, Toronto, Ontario, Canada; KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Canada
| | - Felicia Kwan
- Department of Pharmacology & Toxicology, Temerty Faculty of Medicine - University of Toronto, Canada; Sunnybrook Research Institute, Toronto, Ontario, Canada; KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Canada
| | - Shiropa Noor
- Department of Pharmacology & Toxicology, Temerty Faculty of Medicine - University of Toronto, Canada; Sunnybrook Research Institute, Toronto, Ontario, Canada; KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Canada
| | - Jennifer S Rabin
- Sunnybrook Research Institute, Toronto, Ontario, Canada; Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Susan Marzolini
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Canada; Department of Exercise Sciences, Faculty of Kinesiology and Physical Education, University of Toronto, Canada
| | - Sean Nestor
- Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Psychiatry - University of Toronto, Canada
| | - Myuri T Ruthirakuhan
- Department of Pharmacology & Toxicology, Temerty Faculty of Medicine - University of Toronto, Canada; Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Bradley J MacIntosh
- Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics - University of Toronto, Canada
| | - Maged Goubran
- Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics - University of Toronto, Canada
| | - Pearl Yang
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Hugo Cogo-Moreira
- Department of Education, Østfold University College, 1757 B R A Veien 4, Halden 1757, Norway
| | - Mark Rapoport
- Sunnybrook Research Institute, Toronto, Ontario, Canada; Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Psychiatry - University of Toronto, Canada
| | - Damien Gallagher
- Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Psychiatry - University of Toronto, Canada
| | - Sandra E Black
- Sunnybrook Research Institute, Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Canada
| | - Benjamin I Goldstein
- Department of Pharmacology & Toxicology, Temerty Faculty of Medicine - University of Toronto, Canada; Department of Psychiatry - University of Toronto, Canada; Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Krista L Lanctôt
- Department of Pharmacology & Toxicology, Temerty Faculty of Medicine - University of Toronto, Canada; Sunnybrook Research Institute, Toronto, Ontario, Canada; KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Canada; Department of Psychiatry - University of Toronto, Canada
| | - Paul I Oh
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Canada
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA; West Coast Metabolomics Center, Genome Center, University of California, Davis, CA, USA; Center for Neuroscience, One Shields Avenue, University of California, Davis, CA, USA
| | - Walter Swardfager
- Department of Pharmacology & Toxicology, Temerty Faculty of Medicine - University of Toronto, Canada; Sunnybrook Research Institute, Toronto, Ontario, Canada; KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Canada.
| |
Collapse
|
4
|
Liu X, Tao R, Guo F, Zhang L, Qu J, Li M, Wu X, Wang X, Zhu Y, Wen L, Wang J. Soybean oil induces neuroinflammatory response through brain-gut axis under high-fat diet. J Tradit Complement Med 2024; 14:522-533. [PMID: 39262663 PMCID: PMC11384091 DOI: 10.1016/j.jtcme.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 09/13/2024] Open
Abstract
Neuroinflammation is considered the principal pathogenic mechanism underlying neurodegenerative diseases, and the incidence of brain disorders is closely linked to dietary fat consumption and intestinal health. To investigate this relationship, 60 8-week-old C57BL/6J mice were subjected to a 20-week dietary intervention, wherein they were fed lard and soybean oil, each at 15% and 35% fat energy. At a dietary fat energy level of 35%, inflammation was observed in both the soybean oil and lard groups. Nevertheless, inflammation was more pronounced in the mice that were administered soybean oil. The process by which nerve cell structure is compromised, inflammatory factors are upregulated, brain antioxidant capacity is diminished, and the TLR4/MyD88/NF-κB p65 inflammatory pathway is activated resulting in damage to the brain-gut barrier. This, in turn, leads to a reduction in the abundance of Akkermansia and unclassified_f_Lachnospiraceae, as well as an increase in Dubosiella abundance, ultimately resulting in brain inflammation and damage. These results suggested that soybean oil induces more severe neuroinflammation compared to lard. Our study demonstrated that, at a dietary fat energy level of 35%, compared to soybean oil, lard could be the healthier option, the outcomes would help provide a reference basis for the selection of residents' daily dietary oil.
Collapse
Affiliation(s)
- Xiangyan Liu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Ran Tao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Fangrui Guo
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Linyu Zhang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jianyu Qu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Mengyao Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaoran Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Xianglin Wang
- Changsha Lvye Biotechnology Co., Ltd., Changsha, 410100, China
| | - Yuanyuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Ji Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
5
|
Dreyfuss JM, Djordjilović V, Pan H, Bussberg V, MacDonald AM, Narain NR, Kiebish MA, Blüher M, Tseng YH, Lynes MD. ScreenDMT reveals DiHOMEs are replicably inversely associated with BMI and stimulate adipocyte calcium influx. Commun Biol 2024; 7:996. [PMID: 39143411 PMCID: PMC11324735 DOI: 10.1038/s42003-024-06646-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
Activating brown adipose tissue (BAT) improves systemic metabolism, making it a promising target for metabolic syndrome. BAT is activated by 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME), which we previously identified to be inversely associated with BMI and which directly improves metabolism in multiple tissues. Here we profile plasma lipidomics from 83 people and test which lipids' association with BMI replicates in a concordant direction using our novel tool ScreenDMT, whose power and validity we demonstrate via mathematical proofs and simulations. We find that the linoleic acid diols 12,13-diHOME and 9,10-diHOME are both replicably inversely associated with BMI and mechanistically activate calcium influx in mouse brown and white adipocytes in vitro, which implicates this signaling pathway and 9,10-diHOME as candidate therapeutic targets. ScreenDMT can be applied to test directional mediation, directional replication, and qualitative interactions, such as identifying biomarkers whose association is shared (replication) or opposite (qualitative interaction) across diverse populations.
Collapse
Affiliation(s)
- Jonathan M Dreyfuss
- Bioinformatics & Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Vera Djordjilović
- Department of Economics, Ca' Foscari University of Venice, Cannaregio 873, Venice, Italy
| | - Hui Pan
- Bioinformatics & Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital, Leipzig, Germany
| | - Yu-Hua Tseng
- Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Matthew D Lynes
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA.
- Department of Medicine, MaineHealth, Portland, ME, USA.
- Roux Institute at Northeastern University, Portland, ME, USA.
| |
Collapse
|
6
|
Golovko MY, Seeger DR, Schofield B, Besch D, Kotha P, Mansouripour A, Solaymani-Mohammadi S, Golovko SA. 12-Hydroxyeicosatetraenoic acid is the only enzymatically produced HETE increased under brain ischemia. Prostaglandins Leukot Essent Fatty Acids 2024; 202:102631. [PMID: 39059107 PMCID: PMC11392603 DOI: 10.1016/j.plefa.2024.102631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
Hydroxyeicosatetraenoic acids (HETE) are dramatically increased under brain ischemia and significantly affect post-ischemic recovery. However, the exact mechanism of HETE increase and their origin under ischemia are poorly understood. HETE might be produced de novo through lipoxygenase (LOX) -dependent synthesis with possible esterification into a lipid storage pool, or non-enzymatically through free radical oxidation of esterified arachidonic acid (20:4n6). Because HETE synthesized through LOX exhibit stereospecificity, chiral analysis allows separation of enzymatic from non-enzymatic pools. In the present study, we analyzed free HETE stereoisomers at 30 sec, 2 min, and 10 min of ischemia. Consistent with previous reports, we demonstrated a significant, gradual increase in all analyzed HETE over 10 min of brain ischemia, likely attributed to release of the esterified pool. The R/S ratio for 5-HETE, 8-HETE, and 15-HETE was not different from a racemic standard mix, indicating their non-enzymatic origin, which was in opposition to the inflamed tissue used as a positive control in our study. However, 12(S)-HETE was the predominant isoform under ischemia, indicating that ∼90 % of 12-HETE are produced enzymatically. These data demonstrate, for the first time, that 12-LOX is the major LOX isoform responsible for the enzymatic formation of the inducible HETE pool under ischemia. We also confirmed the requirement for enzyme inactivation with high-energy focused microwave irradiation (MW) for accurate HETE quantification and validated its application for chiral HETE analysis. Together, our data suggest that 12-LOX and HETE-releasing enzymes are promising targets for HETE level modulation upon brain ischemia.
Collapse
Affiliation(s)
- Mikhail Y Golovko
- Department of Biomedical Sciences, School of Medicine and Health Science, University of North Dakota, Grand Forks, ND, USA.
| | - Drew R Seeger
- Department of Biomedical Sciences, School of Medicine and Health Science, University of North Dakota, Grand Forks, ND, USA
| | - Brennon Schofield
- Department of Biomedical Sciences, School of Medicine and Health Science, University of North Dakota, Grand Forks, ND, USA
| | - Derek Besch
- Department of Biomedical Sciences, School of Medicine and Health Science, University of North Dakota, Grand Forks, ND, USA
| | - Peddanna Kotha
- Department of Biomedical Sciences, School of Medicine and Health Science, University of North Dakota, Grand Forks, ND, USA
| | - Anahita Mansouripour
- Department of Biomedical Sciences, School of Medicine and Health Science, University of North Dakota, Grand Forks, ND, USA
| | - Shahram Solaymani-Mohammadi
- Department of Biomedical Sciences, School of Medicine and Health Science, University of North Dakota, Grand Forks, ND, USA
| | - Svetlana A Golovko
- Department of Biomedical Sciences, School of Medicine and Health Science, University of North Dakota, Grand Forks, ND, USA
| |
Collapse
|
7
|
Watanabe S, Souza FDC, Kusumoto I, Shen Q, Nitin N, Lein PJ, Taha AY. Intraperitoneally injected d11-11(12)-epoxyeicosatrienoic acid is rapidly incorporated and esterified within rat plasma and peripheral tissues but not the brain. Prostaglandins Leukot Essent Fatty Acids 2024; 202:102622. [PMID: 38954932 PMCID: PMC11613899 DOI: 10.1016/j.plefa.2024.102622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 07/04/2024]
Abstract
Epoxyeicosatrienoic acids (EpETrEs) are bioactive lipid mediators of arachidonic acid cytochrome P450 oxidation. In vivo, the free (unbound) form of EpETrEs regulate multiple processes including blood flow, angiogenesis and inflammation resolution. Free EpETrEs are thought to rapidly degrade via soluble epoxide hydrolase (sEH); yet, in many tissues, the majority of EpETrEs are esterified to complex lipids (e.g. phospholipids) suggesting that esterification may play a major role in regulating free, bioactive EpETrE levels. This hypothesis was tested by quantifying the metabolism of intraperitoneally injected free d11-11(12)-Epoxyeicosatrienoic acid (d11-11(12)-EpETrE) in male and female rats. Plasma and tissues (liver, adipose and brain) were obtained 3 to 4 min later and assayed for d11-11(12)-EpETrE and its sEH metabolite, d11-11,12-dihydroxyeicosatrienoic acid (d11-11,12-diHETrE) in both the free and esterified lipid fractions. In both males and females, the majority of injected tracer was recovered in liver followed by plasma and adipose. No tracer was detected in the brain, indicating that brain levels are maintained by endogenous synthesis from precursor fatty acids. In plasma, liver, and adipose, the majority (>54 %) of d11-11(12)-EpETrE was found esterified to phospholipids or neutral lipids (triglycerides and cholesteryl esters). sEH-derived d11-11,12-diHETrE was not detected in plasma or tissues, suggesting negligible conversion within the 3-4 min period post tracer injection. This study shows that esterification is the main pathway regulating free 11(12)-EpETrE levels in vivo.
Collapse
Affiliation(s)
- Sho Watanabe
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA; Food Function Analysis Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi, 9800845, Japan
| | - Felipe Da Costa Souza
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA
| | - Ibuki Kusumoto
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA; Food Function Analysis Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi, 9800845, Japan
| | - Qing Shen
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA
| | - Nitin Nitin
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA; Department of Biological and Agricultural Engineering, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA; MIND Institute, University of California-Davis, 2825 50th Street, Sacramento, CA 95817
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA; Center for Neuroscience, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA; West Coast Metabolomics Center, Genome Center, University of California-Davis, Davis, CA 95616, USA.
| |
Collapse
|
8
|
Taha AY, Gaudioso Á, Moran-Garrido M, Camunas-Alberca SM, Bachiller-Hernández J, Sáiz J, Ledesma MD, Barbas C. Neurons regulate the esterification of bioactive lipid mediators in the brain of acid sphingomyelinase deficient mice. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110896. [PMID: 37956788 DOI: 10.1016/j.pnpbp.2023.110896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/29/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023]
Abstract
Acid sphingomyelinase deficiency is a neurodegenerative lysosomal storage disorder caused by mutations in the sphingomyelin-degrading enzyme acid sphingomyelinase (ASM) gene. Upregulated neuroinflammation has been well-characterized in an ASM knockout mouse model of acid sphingomyelinase deficiency disease, but lipid mediator pathways involved in 'mediating' inflammation and inflammation-resolution have yet to be characterized. In this study, we 1) measured free (bioactive) and esterified (inactive) lipid mediators involved in inflammation and inflammation resolution in cerebellum and neuronal cultures of ASM knockout (ASMko) mice and wildtype (WT) controls, and 2) quantified the esterification of labeled pro-resolving free d11-14(15)-epoxyeicosatrienoic acid in cultured neurons from ASMko and WT mice. We found elevated concentrations of esterified pro-resolving lipid mediators and hydroxyeicosatrienoic acids typically destined for pro-resolving lipid mediator synthesis (e.g. lipoxins) in the cerebellum and neurons of ASMko mice compared to controls. Free d11-14(15)-epoxyeicosatrienoic acid esterification within neurons of ASMko mice was significantly elevated compared to WT. Our findings show evidence of increased inactivation of free pro-resolving lipid mediators through esterification in ASMko mice, suggesting impaired resolution as a new pathway underlying ASM deficiency pathogenesis.
Collapse
Affiliation(s)
- Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, 95616 Davis, CA, USA; West Coast Metabolomics Center, Genome Center, University of California, 95616 Davis, CA, USA; Center for Neuroscience, University of California, Davis, One Shields Avenue, 95616 Davis, CA, USA
| | - Ángel Gaudioso
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| | - Maria Moran-Garrido
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Sandra M Camunas-Alberca
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Jaime Bachiller-Hernández
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Jorge Sáiz
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | | | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain.
| |
Collapse
|
9
|
Kim OY, Song J. Important roles of linoleic acid and α-linolenic acid in regulating cognitive impairment and neuropsychiatric issues in metabolic-related dementia. Life Sci 2024; 337:122356. [PMID: 38123015 DOI: 10.1016/j.lfs.2023.122356] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Metabolic syndrome (MetS), which is characterized by insulin resistance, high blood glucose, obesity, and dyslipidemia, is known to increase the risk of dementia accompanied by memory loss and depression. The direct pathways and specific mechanisms in the central nervous system (CNS) for addressing fatty acid imbalances in MetS have not yet been fully elucidated. Among polyunsaturated acids, linoleic acid (LA, n6-PUFA) and α-linolenic acid (ALA, n3-PUFA), which are two essential fatty acids that should be provided by food sources (e.g., vegetable oils and seeds), have been reported to regulate various cellular mechanisms including apoptosis, inflammatory responses, mitochondrial biogenesis, and insulin signaling. Furthermore, inadequate intake of LA and ALA is reported to be involved in neuropathology and neuropsychiatric diseases as well as imbalanced metabolic conditions. Herein, we review the roles of LA and ALA on metabolic-related dementia focusing on insulin resistance, dyslipidemia, synaptic plasticity, cognitive function, and neuropsychiatric issues. This review suggests that LA and ALA are important fatty acids for concurrent treatment of both MetS and neurological problems.
Collapse
Affiliation(s)
- Oh Yoen Kim
- Department of Food Science and Nutrition, Dong A University, Busan, Republic of Korea; Department of Health Sciences, Graduate School of Dong-A University, Busan, Republic of Korea.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Liang N, Harsch BA, Zhou S, Borkowska A, Shearer GC, Kaddurah-Daouk R, Newman JW, Borkowski K. Oxylipin transport by lipoprotein particles and its functional implications for cardiometabolic and neurological disorders. Prog Lipid Res 2024; 93:101265. [PMID: 37979798 DOI: 10.1016/j.plipres.2023.101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/17/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Lipoprotein metabolism is critical to inflammation. While the periphery and central nervous system (CNS) have separate yet connected lipoprotein systems, impaired lipoprotein metabolism is implicated in both cardiometabolic and neurological disorders. Despite the substantial investigation into the composition, structure and function of lipoproteins, the lipoprotein oxylipin profiles, their influence on lipoprotein functions, and their potential biological implications are unclear. Lipoproteins carry most of the circulating oxylipins. Importantly, lipoprotein-mediated oxylipin transport allows for endocrine signaling by these lipid mediators, long considered to have only autocrine and paracrine functions. Alterations in plasma lipoprotein oxylipin composition can directly impact inflammatory responses of lipoprotein metabolizing cells. Similar investigations of CNS lipoprotein oxylipins are non-existent to date. However, as APOE4 is associated with Alzheimer's disease-related microglia dysfunction and oxylipin dysregulation, ApoE4-dependent lipoprotein oxylipin modulation in neurological pathologies is suggested. Such investigations are crucial to bridge knowledge gaps linking oxylipin- and lipoprotein-related disorders in both periphery and CNS. Here, after providing a summary of existent literatures on lipoprotein oxylipin analysis methods, we emphasize the importance of lipoproteins in oxylipin transport and argue that understanding the compartmentalization and distribution of lipoprotein oxylipins may fundamentally alter our consideration of the roles of lipoprotein in cardiometabolic and neurological disorders.
Collapse
Affiliation(s)
- Nuanyi Liang
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Brian A Harsch
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sitong Zhou
- Department of Pathology and Laboratory Medicine, University of California Davis, Davis, CA 95616, USA
| | - Alison Borkowska
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gregory C Shearer
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke Institute for Brain Sciences and Department of Medicine, Duke University, Durham, NC, 27708, USA; Duke Institute of Brain Sciences, Duke University, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA
| | - John W Newman
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA 95616, USA; Department of Nutrition, University of California - Davis, Davis, CA 95616, USA; Western Human Nutrition Research Center, United States Department of Agriculture - Agriculture Research Service, Davis, CA 95616, USA
| | - Kamil Borkowski
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
11
|
Zhang J, Yang J, Duval CN, Edin ML, Williams A, Lei L, Tu M, Pourmand E, Song R, Graves JP, DeGraff LM, Wong JJL, Wang Y, Sun Q, Sanidad KZ, Wong S, Han Y, Zhang Z, Lee KSS, Park Y, Xiao H, Liu Z, Decker EA, Cui W, Zeldin DC, Zhang G. CYP eicosanoid pathway mediates colon cancer-promoting effects of dietary linoleic acid. FASEB J 2023; 37:e23009. [PMID: 37273180 PMCID: PMC10283155 DOI: 10.1096/fj.202300786r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023]
Abstract
Human and animal studies support that consuming a high level of linoleic acid (LA, 18:2ω-6), an essential fatty acid and key component of the human diet, increases the risk of colon cancer. However, results from human studies have been inconsistent, making it challenging to establish dietary recommendations for optimal LA intake. Given the importance of LA in the human diet, it is crucial to better understand the molecular mechanisms underlying its potential colon cancer-promoting effects. Using LC-MS/MS-based targeted lipidomics, we find that the cytochrome P450 (CYP) monooxygenase pathway is a major pathway for LA metabolism in vivo. Furthermore, CYP monooxygenase is required for the colon cancer-promoting effects of LA, since the LA-rich diet fails to exacerbate colon cancer in CYP monooxygenase-deficient mice. Finally, CYP monooxygenase mediates the pro-cancer effects of LA by converting LA to epoxy octadecenoic acids (EpOMEs), which have potent effects on promoting colon tumorigenesis via gut microbiota-dependent mechanisms. Overall, these results support that CYP monooxygenase-mediated conversion of LA to EpOMEs plays a crucial role in the health effects of LA, establishing a unique mechanistic link between dietary fatty acid intake and cancer risk. These results could help in developing more effective dietary guidelines for optimal LA intake and identifying subpopulations that may be especially vulnerable to LA's negative effects.
Collapse
Affiliation(s)
- Jianan Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Jun Yang
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Caroline N. Duval
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Matthew L. Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Andrea Williams
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Lei Lei
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Maolin Tu
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Elham Pourmand
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Renhua Song
- Epigenetics and RNA Biology Program Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Joan P. Graves
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Laura M. DeGraff
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Justin J.-L. Wong
- Epigenetics and RNA Biology Program Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Yige Wang
- Department of Food Science and Technology, National University of Singapore, Singapore
| | - Quancai Sun
- Department of Food Science and Technology, National University of Singapore, Singapore
| | - Katherine Z. Sanidad
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Siu Wong
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Zhenyu Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Kin Sing Stephen Lee
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Zhenhua Liu
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
- Nutrition and Cancer Prevention Laboratory, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Eric A. Decker
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Darryl C. Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
- Department of Food Science and Technology, National University of Singapore, Singapore
| |
Collapse
|
12
|
Anita NZ, Kwan F, Ryoo SW, Major-Orfao C, Lin WZ, Noor S, Lanctôt KL, Herrmann N, Oh PI, Shah BR, Gilbert J, Assal A, Halperin IJ, Taha AY, Swardfager W. Cytochrome P450-soluble epoxide hydrolase derived linoleic acid oxylipins and cognitive performance in type 2 diabetes. J Lipid Res 2023; 64:100395. [PMID: 37245563 PMCID: PMC10394387 DOI: 10.1016/j.jlr.2023.100395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/03/2023] [Accepted: 05/21/2023] [Indexed: 05/30/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) increases the risk of cognitive decline and dementia. Disruptions in the cytochrome P450-soluble epoxide hydrolase (CYP450-sEH) pathway have been reported in T2DM, obesity and cognitive impairment. We examine linoleic acid (LA)-derived CYP450-sEH oxylipins and cognition in T2DM and explore potential differences between obese and nonobese individuals. The study included 51 obese and 57 nonobese participants (mean age 63.0 ± 9.9, 49% women) with T2DM. Executive function was assessed using the Stroop Color-Word Interference Test, FAS-Verbal Fluency Test, Digit Symbol Substitution Test, and Trails Making Test-Part B. Verbal memory was assessed using the California Verbal Learning Test, second Edition. Four LA-derived oxylipins were analyzed by ultra-high-pressure-LC/MS, and the 12,13-dihydroxyoctadecamonoenoic acid (12,13-DiHOME) considered the main species of interest. Models controlled for age, sex, BMI, glycosylated hemoglobin A1c, diabetes duration, depression, hypertension, and education. The sEH-derived 12,13-DiHOME was associated with poorer executive function scores (F1,98 = 7.513, P = 0.007). The CYP450-derived 12(13)-epoxyoctadecamonoenoic acid (12(13)-EpOME) was associated with poorer executive function and verbal memory scores (F1,98 = 7.222, P = 0.008 and F1,98 = 4.621, P = 0.034, respectively). There were interactions between obesity and the 12,13-DiHOME/12(13)-EpOME ratio (F1,97 = 5.498, P = 0.021) and between obesity and 9(10)-epoxyoctadecamonoenoic acid (9(10)-EpOME) concentrations (F1,97 = 4.126, P = 0.045), predicting executive function such that relationships were stronger in obese individuals. These findings suggest that the CYP450-sEH pathway as a potential therapeutic target for cognitive decline in T2DM. For some markers, relationships may be obesity dependent.
Collapse
Affiliation(s)
- Natasha Z Anita
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada; KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, ON, Canada
| | - Felicia Kwan
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada; KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, ON, Canada
| | - Si Won Ryoo
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada; KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, ON, Canada
| | - Chelsi Major-Orfao
- Sunnybrook Research Institute, Toronto, ON, Canada; KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, ON, Canada
| | - William Z Lin
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada; KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, ON, Canada
| | - Shiropa Noor
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada; KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, ON, Canada
| | - Krista L Lanctôt
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada; KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Nathan Herrmann
- Sunnybrook Research Institute, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Paul I Oh
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, ON, Canada
| | - Baiju R Shah
- Sunnybrook Research Institute, Toronto, ON, Canada; Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | | | - Angela Assal
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | | | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA; West Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, CA, USA; Center for Neuroscience, University of California, Davis, Davis, CA, USA
| | - Walter Swardfager
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada; KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, ON, Canada.
| |
Collapse
|
13
|
Oh YT, Yang J, Morisseau C, He Q, Hammock B, Youn JH. Effects of Individual Circulating FFAs on Plasma and Hepatic FFA Epoxides, Diols, and Epoxide-Diol Ratios as Indices of Soluble Epoxide Hydrolase Activity. Int J Mol Sci 2023; 24:10760. [PMID: 37445935 PMCID: PMC10341844 DOI: 10.3390/ijms241310760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Oxylipins, oxidation products of unsaturated free fatty acids (FFAs), are involved in various cellular signaling systems. Among these oxylipins, FFA epoxides are associated with beneficial effects in metabolic and cardiovascular health. FFA epoxides are metabolized to diols, which are usually biologically less active, by soluble epoxide hydrolase (sEH). Plasma epoxide-diol ratios have been used as indirect measures of sEH activity. This study was designed to examine the effects of acute elevation of individual plasma FFAs on a variety of oxylipins, particularly epoxides, diols, and their ratios. We tested if FFA epoxide-diol ratios are altered by circulating FFA levels (i.e., substrate availability) independent of sEH activity. Wistar rats received a constant intravenous infusion of olive (70% oleic acid (OA)), safflower seed (72% linoleic acid (LA)), and fish oils (rich in ω-3 FFAs) as emulsions to selectively raise OA, LA, and ω-3 FFAs (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), respectively. As expected, olive, safflower seed, and fish oil infusions selectively raised plasma OA (57%), LA (87%), EPA (70%), and DHA (54%), respectively (p < 0.05 for all). Raising plasma FFAs exerted substrate effects to increase hepatic and plasma epoxide and diol levels. These increases in epoxides and diols occurred to similar extents, resulting in no significant changes in epoxide-diol ratios. These data suggest that epoxide-diol ratios, often used as indices of sEH activity, are not affected by substrate availability or altered plasma FFA levels and that epoxide-diol ratios may be used to compare sEH activity between conditions of different circulating FFA levels.
Collapse
Affiliation(s)
- Young Taek Oh
- Department of Physiology and Neuroscience, University of Southern California Keck School of Medicine, 2250 Alcazar Street, CSC 214, Los Angeles, CA 90089, USA;
| | - Jun Yang
- Department of Entomology and Nematology, University of California, Davis, CA 95616, USA; (J.Y.); (C.M.); (Q.H.); (B.H.)
| | - Christophe Morisseau
- Department of Entomology and Nematology, University of California, Davis, CA 95616, USA; (J.Y.); (C.M.); (Q.H.); (B.H.)
| | - Qiyi He
- Department of Entomology and Nematology, University of California, Davis, CA 95616, USA; (J.Y.); (C.M.); (Q.H.); (B.H.)
| | - Bruce Hammock
- Department of Entomology and Nematology, University of California, Davis, CA 95616, USA; (J.Y.); (C.M.); (Q.H.); (B.H.)
| | - Jang H. Youn
- Department of Physiology and Neuroscience, University of Southern California Keck School of Medicine, 2250 Alcazar Street, CSC 214, Los Angeles, CA 90089, USA;
| |
Collapse
|
14
|
He L, Xie F, Zhou G, Chen ZH, Wang JY, Wang CG. Transcriptome and metabonomics combined analysis revealed the energy supply mechanism involved in fruiting body initiation in Chinese cordyceps. Sci Rep 2023; 13:9500. [PMID: 37308669 DOI: 10.1038/s41598-023-36261-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/31/2023] [Indexed: 06/14/2023] Open
Abstract
Chinese cordyceps was one of most valuable traditional Chinese medicine fungi. To elucidate the molecular mechanisms related to energy supply mechanism involved in the initiation and formation of primordium in Chinese cordyceps, we performed the integrated metabolomic and transcriptomic analyses of it at pre-primordium period, primordium germination period and after-primordium period, respectively. Transcriptome analysis showed that many genes related to 'starch and sucrose metabolism', 'fructose and mannose metabolism', 'linoleic acid metabolism', 'fatty acids degradation' and 'glycerophospholipid metabolism' were highly up-regulated at primordium germination period. Metabolomic analysis showed many metabolites regulated by these genes in these metabolism pathways were also markedly accumulated at this period. Consequently, we inferred that carbohydrate metabolism and β-oxidation pathway of palmitic acid and linoleic acid worked cooperatively to generate enough acyl-CoA, and then entered TCA cycle to provide energy for fruiting body initiation. Overall, our finding provided important information for further exploring the energy metabolic mechanisms of realizing the industrialization of Chinese cordyceps artificial cultivation.
Collapse
Affiliation(s)
- Li He
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, People's Republic of China.
| | - Fang Xie
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, People's Republic of China.
| | - Gang Zhou
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, People's Republic of China
| | - Zhao He Chen
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, People's Republic of China
| | - Jing Yi Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, People's Republic of China
| | - Cheng Gang Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, People's Republic of China
| |
Collapse
|
15
|
Shen Q, Yang J, Zamora D, Horowitz M, Faurot KR, MacIntosh BA, Mann JD, Hammock BD, Ramsden CE, Taha AY. Associations between Plasma Lipid Mediators and Chronic Daily Headache Outcomes in Patients Randomized to a Low Linoleic Acid Diet with or without Added Omega-3 Fatty Acids. Metabolites 2023; 13:690. [PMID: 37367848 DOI: 10.3390/metabo13060690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 06/28/2023] Open
Abstract
A previous report showed that 12-week lowering of dietary omega-6 linoleic acid (LA) coupled with increased omega-3 polyunsaturated fatty acid (PUFA) intake (H3-L6 diet) reduced headache frequency and improved quality of life in patients with chronic daily headaches (CDHs) compared to dietary LA reduction alone (L6 diet). The trial also showed that targeted dietary manipulation alters PUFA-derived lipid mediators and endocannabinoids. However, several additional classes of lipid mediators associated with pain in preclinical models were not measured. The current secondary analysis investigated whether the clinical benefits of the H3-L6 diet were related to changes in plasma unesterified PUFA-derived lipid mediators known to be involved in nociception, including prostanoids. Lipid mediators were measured by ultra-high-pressure liquid chromatography coupled with tandem mass-spectrometry. Compared to baseline, dietary LA lowering with or without added omega-3 fatty acids did not alter unesterified n-6 PUFA-derived lipid mediators, although several species derived from LA, di-homo-gamma-linolenic acid, and arachidonic acid were positively associated with headache frequency and intensity, as well as mental health burden. Alpha-linolenic acid (ALA)-derived metabolites were also associated with increased headache frequency and intensity, although they did not change from the baseline in either dietary group. Compared to baseline, docosahexaenoic acid (DHA)-derived epoxides were more elevated in the H3-L6 group compared to the L6 group. Diet-induced elevations in plasma DHA-epoxides were associated with reduced headache frequency, better physical and mental health, and improved quality of life (p < 0.05). Prostanoids were not detected, except for PGF2-alpha, which was not associated with any outcomes. This study demonstrates that diet-induced changes in DHA-epoxides were associated with pain reduction in patients with chronic headaches, whereas n-6 PUFA and ALA metabolites were associated with nociception. Lipid mediator associations with mental health and quality of life paralleled pain management outcomes in this population. The findings point to a network of multiple diet-modifiable lipid mediator targets for pain management in individuals with CDHs.
Collapse
Affiliation(s)
- Qing Shen
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Jun Yang
- Department of Entomology and Nematology & UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Daisy Zamora
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA
- Department of Psychiatry, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Physical Medicine and Rehabilitation, Program on Integrative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark Horowitz
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA
| | - Keturah R Faurot
- Department of Physical Medicine and Rehabilitation, Program on Integrative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Beth A MacIntosh
- Nutrition Research and Metabolism Core, North Carolina Translational Clinical Sciences Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - J Douglas Mann
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology & UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
- West Coast Metabolomics Center, Genome Center, University of California, Davis, CA 95616, USA
| | - Christopher E Ramsden
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA
- Department of Physical Medicine and Rehabilitation, Program on Integrative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
- West Coast Metabolomics Center, Genome Center, University of California, Davis, CA 95616, USA
- Center for Neuroscience, University of California, Davis, CA 95616, USA
| |
Collapse
|
16
|
da Costa Souza F, Grodzki ACG, Morgan RK, Zhang Z, Taha AY, Lein PJ. Oxidized linoleic acid metabolites regulate neuronal morphogenesis in vitro. Neurochem Int 2023; 164:105506. [PMID: 36758902 PMCID: PMC10495953 DOI: 10.1016/j.neuint.2023.105506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
Linoleic acid (LA, 18:2n-6) is an essential nutrient for optimal infant growth and brain development. The effects of LA in the brain are thought to be mediated by oxygenated metabolites of LA known as oxidized LA metabolites (OXLAMs), but evidence is lacking to directly support this hypothesis. This study investigated whether OXLAMs modulate key neurodevelopmental processes including axon outgrowth, dendritic arborization, cell viability and synaptic connectivity. Primary cortical neuron-glia co-cultures from postnatal day 0-1 male and female rats were exposed for 48h to the following OXLAMs: 1) 13-hydroxyoctadecadienoic acid (13-HODE); 2) 9-hydroxyoctadecadienoic acid (9-HODE); 3) 9,10-dihydroxyoctadecenoic acid (9,10-DiHOME); 4) 12(13)-epoxyoctadecenoic acid (12(13)-EpOME); 5) 9,10,13-trihydroxyoctadecenoic acid (9,10,13-TriHOME); 6) 9-oxo-octadecadienoic acid (9-OxoODE); and 7) 12,13-dihydroxyoctadecenoic acid (12,13-DiHOME). Axonal outgrowth, evaluated by Tau-1 immunostaining, was increased by 9-HODE, but decreased by 12,13-DiHOME in male but not female neurons. Dendrite arborization, evaluated by MAP2B-eGFP expression, was affected by 9-HODE, 9-OxoODE, and 12(13)-EpOME in male neurons and, by 12(13)-EpOME in female neurons. Neither cell viability nor synaptic connectivity were significantly altered by OXLAMs. Overall, this study shows select OXLAMs modulate neuron morphology in a sex-dependent manner, with male neurons being more susceptible.
Collapse
Affiliation(s)
- Felipe da Costa Souza
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | - Ana Cristina G Grodzki
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | - Rhianna K Morgan
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | - Zhichao Zhang
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA.
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA.
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
17
|
Yu D, Liang N, Zebarth J, Shen Q, Ozzoude M, Goubran M, Rabin JS, Ramirez J, Scott CJM, Gao F, Bartha R, Symons S, Haddad SMH, Berezuk C, Tan B, Kwan D, Hegele RA, Dilliott AA, Nanayakkara ND, Binns MA, Beaton D, Arnott SR, Lawrence‐Dewar JM, Hassan A, Dowlatshahi D, Mandzia J, Sahlas D, Casaubon L, Saposnik G, Otoki Y, Lanctôt KL, Masellis M, Black SE, Swartz RH, Taha AY, Swardfager W. Soluble Epoxide Hydrolase Derived Linoleic Acid Oxylipins, Small Vessel Disease Markers, and Neurodegeneration in Stroke. J Am Heart Assoc 2022; 12:e026901. [PMID: 36583428 PMCID: PMC9973594 DOI: 10.1161/jaha.122.026901] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Cerebral small vessel disease is associated with higher ratios of soluble-epoxide hydrolase derived linoleic acid diols (12,13-dihydroxyoctadecenoic acid [DiHOME] and 9,10-DiHOME) to their parent epoxides (12(13)-epoxyoctadecenoic acid [EpOME] and 9(10)-EpOME); however, the relationship has not yet been examined in stroke. Methods and Results Participants with mild to moderate small vessel stroke or large vessel stroke were selected based on clinical and imaging criteria. Metabolites were quantified by ultra-high-performance liquid chromatography-mass spectrometry. Volumes of stroke, lacunes, white matter hyperintensities, magnetic resonance imaging visible perivascular spaces, and free water diffusion were quantified from structural and diffusion magnetic resonance imaging (3 Tesla). Adjusted linear regression models were used for analysis. Compared with participants with large vessel stroke (n=30), participants with small vessel stroke (n=50) had a higher 12,13-DiHOME/12(13)-EpOME ratio (β=0.251, P=0.023). The 12,13-DiHOME/12(13)-EpOME ratio was associated with more lacunes (β=0.266, P=0.028) but not with large vessel stroke volumes. Ratios of 12,13-DiHOME/12(13)-EpOME and 9,10-DiHOME/9(10)-EpOME were associated with greater volumes of white matter hyperintensities (β=0.364, P<0.001; β=0.362, P<0.001) and white matter MRI-visible perivascular spaces (β=0.302, P=0.011; β=0.314, P=0.006). In small vessel stroke, the 12,13-DiHOME/12(13)-EpOME ratio was associated with higher white matter free water diffusion (β=0.439, P=0.016), which was specific to the temporal lobe in exploratory regional analyses. The 9,10-DiHOME/9(10)-EpOME ratio was associated with temporal lobe atrophy (β=-0.277, P=0.031). Conclusions Linoleic acid markers of cytochrome P450/soluble-epoxide hydrolase activity were associated with small versus large vessel stroke, with small vessel disease markers consistent with blood brain barrier and neurovascular-glial disruption, and temporal lobe atrophy. The findings may indicate a novel modifiable risk factor for small vessel disease and related neurodegeneration.
Collapse
Affiliation(s)
- Di Yu
- Dr. Sandra Black Center for Brain Resilience & Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoCanada,Department of Pharmacology and ToxicologyUniversity of TorontoTorontoCanada
| | - Nuanyi Liang
- Department of Food Science and TechnologyUniversity of CaliforniaDavisCA
| | - Julia Zebarth
- Dr. Sandra Black Center for Brain Resilience & Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoCanada,Department of Pharmacology and ToxicologyUniversity of TorontoTorontoCanada
| | - Qing Shen
- Department of Food Science and TechnologyUniversity of CaliforniaDavisCA
| | - Miracle Ozzoude
- Dr. Sandra Black Center for Brain Resilience & Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoCanada
| | - Maged Goubran
- Dr. Sandra Black Center for Brain Resilience & Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoCanada,Harquail Centre for Neuromodulation, Sunnybrook Health Sciences CentreTorontoCanada,Department of Medical BiophysicsUniversity of TorontoTorontoCanada
| | - Jennifer S. Rabin
- Dr. Sandra Black Center for Brain Resilience & Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoCanada,Harquail Centre for Neuromodulation, Sunnybrook Health Sciences CentreTorontoCanada,Division of Neurology, Department of MedicineSunnybrook Health Sciences CentreTorontoCanada,Rehabilitation Sciences InstituteUniversity of TorontoTorontoCanada
| | - Joel Ramirez
- Dr. Sandra Black Center for Brain Resilience & Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoCanada
| | - Christopher J. M. Scott
- Dr. Sandra Black Center for Brain Resilience & Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoCanada
| | - Fuqiang Gao
- Dr. Sandra Black Center for Brain Resilience & Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoCanada
| | - Robert Bartha
- Department of Medical BiophysicsWestern UniversityLondonCanada,Center for Functional and Metabolic Mapping, Robarts Research InstituteWestern UniversityLondonCanada
| | - Sean Symons
- Dr. Sandra Black Center for Brain Resilience & Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoCanada
| | | | - Courtney Berezuk
- Dr. Sandra Black Center for Brain Resilience & Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoCanada
| | - Brian Tan
- Rotman Research Institute, Baycrest Health Sciences CentreTorontoCanada
| | - Donna Kwan
- Centre for Neuroscience StudiesQueen’s UniversityKingstonCanada
| | | | | | | | - Malcolm A. Binns
- Rotman Research Institute, Baycrest Health Sciences CentreTorontoCanada,Dalla Lana School of Public HealthUniversity of TorontoTorontoCanada
| | - Derek Beaton
- Rotman Research Institute, Baycrest Health Sciences CentreTorontoCanada
| | - Stephen R. Arnott
- Rotman Research Institute, Baycrest Health Sciences CentreTorontoCanada
| | - Jane M. Lawrence‐Dewar
- Thunder Bay Regional Health Research InstituteNorthern Ontario School of Medicine UniversityThunder BayCanada
| | - Ayman Hassan
- Thunder Bay Regional Health Research InstituteNorthern Ontario School of Medicine UniversityThunder BayCanada
| | - Dar Dowlatshahi
- Department of Medicine (Neurology), Ottawa Hospital Research InstituteUniversity of OttawaOttawaCanada
| | - Jennifer Mandzia
- Department of Clinical Neurological Sciences, Schulich School of Medicine and DentistryWestern UniversityLondonCanada
| | - Demetrios Sahlas
- Division of Neurology, Department of Medicine, Faculty of Health SciencesMcMaster UniversityHamiltonCanada
| | - Leanne Casaubon
- Krembil Research InstituteUniversity Health NetworkTorontoCanada
| | - Gustavo Saposnik
- Stroke Outcomes and Decision Neuroscience Research Unit, Division of Neurology, St. Michael’s HospitalUniversity of TorontoTorontoCanada
| | - Yurika Otoki
- Division of Agricultural Chemistry, Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Krista L. Lanctôt
- Dr. Sandra Black Center for Brain Resilience & Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoCanada,Department of Pharmacology and ToxicologyUniversity of TorontoTorontoCanada,Department of Psychiatry, Faculty of MedicineUniversity of TorontoTorontoCanada,Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoCanada
| | - Mario Masellis
- Dr. Sandra Black Center for Brain Resilience & Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoCanada,Division of Neurology, Department of MedicineSunnybrook Health Sciences CentreTorontoCanada,Department of Neurology, Faculty of MedicineUniversity of TorontoTorontoCanada
| | - Sandra E. Black
- Dr. Sandra Black Center for Brain Resilience & Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoCanada,Division of Neurology, Department of MedicineSunnybrook Health Sciences CentreTorontoCanada,Department of Neurology, Faculty of MedicineUniversity of TorontoTorontoCanada
| | - Richard H. Swartz
- Dr. Sandra Black Center for Brain Resilience & Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoCanada,Division of Neurology, Department of MedicineSunnybrook Health Sciences CentreTorontoCanada,Department of Neurology, Faculty of MedicineUniversity of TorontoTorontoCanada
| | - Ameer Y. Taha
- Department of Food Science and TechnologyUniversity of CaliforniaDavisCA
| | - Walter Swardfager
- Dr. Sandra Black Center for Brain Resilience & Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoCanada,Department of Pharmacology and ToxicologyUniversity of TorontoTorontoCanada,Toronto Rehabilitation InstituteUniversity Health NetworkTorontoCanada
| | | |
Collapse
|
18
|
Shen Q, Otoki Y, Sobel RA, Nagra RM, Taha AY. Evidence of increased sequestration of pro-resolving lipid mediators within brain esterified lipid pools of multiple sclerosis patients. Mult Scler Relat Disord 2022; 68:104236. [PMID: 36308971 DOI: 10.1016/j.msard.2022.104236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/19/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Unresolved inflammation in multiple sclerosis (MS) is associated with progressive demyelination and symptom worsening. In the brain, both inflammation and resolution pathways are mediated by free lipid mediators (i.e., oxylipins) that can be derived from the enzymatic hydrolysis of esterified oxylipins . It is not known whether disturbances in the turnover of free lipid mediators from esterified pools exist in postmortem brain of MS patients. We hypothesized that resolution pathways are impaired in MS patients because of disturbances in the turnover of free pro-resolving lipid mediators from esterified lipids. The objective was to characterize free and esterified oxylipins in postmortem prefrontal cortex of MS and unaffected control participants. METHODS Oxylipins in free, neutral lipid and phospholipid pools were extracted from prefrontal cortex of 10 MS participants and 5 unaffected controls, separated by solid phase extraction columns, and quantified by ultra-high-pressure liquid chromatography-tandem mass spectrometry. Significant differences between the control and MS groups were determined by an unpaired t-test with Benjamini and Hochberg False Discovery Rate correction (10%) applied to oxylipins within each lipid pool. RESULTS The concentration of 7 esterified pro-resolving fatty acid epoxides within neutral lipids were significantly higher by 126%-285% in postmortem prefrontal cortex of MS compared to control participants. The concentration of esterified linoleic acid-derived 9(10)-epoxy-octadecenoic acid, a pro-inflammatory epoxide, was higher by 206% in MS compared to controls. No significant changes were observed in free or phospholipid-bound oxylipins. CONCLUSION In MS, several pro-resolving lipid mediators are trapped within prefrontal cortex neutral lipids, potentially limiting their supply and availability in the free bioactive form. This may explain why inflammation resolution is impaired in MS patients.
Collapse
Affiliation(s)
- Qing Shen
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA
| | - Yurika Otoki
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA; Food Function Analysis Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Raymond A Sobel
- Veterans Affairs Health Care System, Palo Alto, CA 94304, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rashed M Nagra
- Neurology Research, West Los Angeles VA Medical Center, Los Angeles, CA 90073, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA; Center for Neuroscience, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA; West Coast Metabolomics Center, Genome Center, University of California-Davis, Davis, CA, USA.
| |
Collapse
|
19
|
Shen Q, Patten KT, Valenzuela A, Lein PJ, Taha AY. Probing changes in brain esterified oxylipin concentrations during the early stages of pathogenesis in Alzheimer's Disease transgenic rats. Neurosci Lett 2022; 791:136921. [PMID: 36270451 PMCID: PMC9839422 DOI: 10.1016/j.neulet.2022.136921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/25/2022] [Accepted: 10/14/2022] [Indexed: 01/17/2023]
Abstract
Despite known pathological hallmarks of Alzheimer's Disease (AD) including neuronal loss, gliosis (inflammation), beta-amyloid plaque deposition and neurofibrillary tangle accumulation in the brain, little is known about inflammation resolution in early AD pathogenesis. In the brain, inflammation and resolution pathways are mediated by free oxylipins which are mostly bound (i.e. esterified), and therefore must be released (i.e. become free) to exert bioactivity. Recently, we showed reductions in brain esterified pro-resolving oxylipins in a transgenic rat model of AD (TgF344-AD rat) at 15 months of age, suggesting deficits in the source and availability of free pro-resolving oxylipins. In the present study, we tested whether these changes are discernable earlier in the disease process, i.e., at age of 10 months. We observed significant reductions in esterified pro-resolving 8(9)-epoxyeicosatrienoic acid (8(9)-EpETrE), 13-hydroxyoctadecatrienoic acid (13-HOTrE) and 15-hydroxyeicosapentaenoic acid (15-HEPE) oxylipins, and in pro-inflammatory 13-hydroxy-octadecadienoic acid (13-HODE), 20-hydroxy-eicosatetraenoic acid (20-HETE), 15-deoxy-prostaglandin J2 (15-deoxy-PGJ2) and prostaglandin E2 (PGE2) oxylipins in male and/or female transgenic AD rats compared to wildtype controls. These findings point to a deficit in esterified pro-resolving lipid mediators in the early stages of AD, concident with. changes in esterified lipid mediators involved in promoting inflammation.
Collapse
Affiliation(s)
- Qing Shen
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Kelley T Patten
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Anthony Valenzuela
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA; The MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA; Center for Neuroscience, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA; Center for Neuroscience, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA; West Coast Metabolomics Center, Genome Center, University of California-Davis, Davis, CA 95616, USA.
| |
Collapse
|
20
|
Norman JE, Nuthikattu S, Milenkovic D, Rutledge JC, Villablanca AC. A high sucrose diet modifies brain oxylipins in a sex-dependent manner. Prostaglandins Leukot Essent Fatty Acids 2022; 186:102506. [PMID: 36244214 DOI: 10.1016/j.plefa.2022.102506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/18/2022] [Accepted: 10/06/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Oxylipins have been implicated in many biological processes and diseases. Dysregulation of cerebral lipid homeostasis and altered lipid metabolites have been associated with the onset and progression of dementia. Although most dietary interventions have focused on modulation of dietary fats, the impact of a high sucrose diet on the brain oxylipin profile is unknown. METHODS Male and female C57BL/6J mice were fed a high sucrose diet (HSD, 34%) in comparison to a control low sucrose diet (LSD, 12%) for 12 weeks beginning at 20 weeks of age. The profile of 53 free oxylipins was then measured in brain by ultra-high performance liquid chromatography tandem mass spectrometry. Serum glucose and insulin were measured enzymatically. We first assessed whether there were any effects of the diet on the brain oxylipin profile, then assessed for sex differences. RESULTS There were no differences in fasting serum glucose between the sexes for mice fed a HSD or in fasting serum insulin levels for mice on either diet. The HSD altered the brain oxylipin profile in both sexes in distinctly different patterns: there was a reduction in three oxylipins (by 47-61%) and an increase in one oxylipin (16%) all downstream of lipoxygenase enzymes in males and a reduction in eight oxylipins (by 14-94%) mostly downstream of cyclooxygenase activity in females. 9-oxo-ODE and 6-trans-LTB4 were most influential in the separation of the oxylipin profiles by diet in male mice, whereas 5-HEPE and 12-HEPE were most influential in the separation by diet in female mice. Oxylipins 9‑hydroxy-eicosatetraenoic acid (HETE), 11-HETE, and 15-HETE were higher in the brains of females, regardless of diet. CONCLUSION A HSD substantially changes brain oxylipins in a distinctly sexually dimorphic manner. Results are discussed in terms of potential mechanisms and links to metabolic disease. Sex and diet effects on brain oxylipin composition may provide future targets for the management of neuroinflammatory diseases, such as dementia.
Collapse
Affiliation(s)
- Jennifer E Norman
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, The Grove 1258, One Shields Avenue, Davis, CA 95616, USA.
| | - Saivageethi Nuthikattu
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, The Grove 1258, One Shields Avenue, Davis, CA 95616, USA
| | - Dragan Milenkovic
- Department of Nutrition, University of California, Davis, Meyer Hall 3143, One Shields Avenue, Davis, CA 95616, USA
| | - John C Rutledge
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, The Grove 1258, One Shields Avenue, Davis, CA 95616, USA
| | - Amparo C Villablanca
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, The Grove 1258, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
21
|
Nguyen N, Morisseau C, Li D, Yang J, Lam E, Woodside DB, Hammock BD, Shih PAB. Soluble Epoxide Hydrolase Is Associated with Postprandial Anxiety Decrease in Healthy Adult Women. Int J Mol Sci 2022; 23:11798. [PMID: 36233100 PMCID: PMC9569757 DOI: 10.3390/ijms231911798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
The metabolism of bioactive oxylipins by soluble epoxide hydrolase (sEH) plays an important role in inflammation, and sEH may be a risk modifier in various human diseases and disorders. The relationships that sEH has with the risk factors of these diseases remain elusive. Herein, sEH protein expression and activity in white blood cells were characterized before and after a high-fat meal in healthy women (HW) and women with anorexia nervosa (AN). sEH expression and sEH activity were significantly correlated and increased in both groups two hours after consumption of the study meal. Fasting sEH expression and activity were positively associated with body mass index (BMI) in both groups, while an inverse association with age was found in AN only (p value < 0.05). sEH was not associated with anxiety or depression in either group at the fasting timepoint. While the anxiety score decreased after eating in both groups, a higher fasting sEH was associated with a lower postprandial anxiety decrease in HW (p value < 0.05). sEH characterization using direct measurements verified the relationship between the protein expression and in vivo activity of this important oxylipin modulator, while a well-controlled food challenge study design using HW and a clinical control group of women with disordered eating elucidated sEH’s role in the health of adult women.
Collapse
Affiliation(s)
- Nhien Nguyen
- Department of Psychiatry, University of California San Diego, San Diego, CA 92037, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Dongyang Li
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Jun Yang
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Eileen Lam
- Centre for Mental Health, University Health Network, Toronto, ON M5G 2C4, Canada
| | - D. Blake Woodside
- Centre for Mental Health, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Bruce D. Hammock
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Pei-an Betty Shih
- Department of Psychiatry, University of California San Diego, San Diego, CA 92037, USA
| |
Collapse
|
22
|
Amick KA, Mahapatra G, Gao Z, Dewitt A, Craft S, Jain M, Molina AJA. Plasma glycocholic acid and linoleic acid identified as potential mediators of mitochondrial bioenergetics in Alzheimer's dementia. Front Aging Neurosci 2022; 14:954090. [PMID: 36212044 PMCID: PMC9540364 DOI: 10.3389/fnagi.2022.954090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/18/2022] [Indexed: 12/02/2022] Open
Abstract
Mitochondrial bioenergetic alterations occur in the brain and peripheral cells of patients with Alzheimer's disease (AD). This study focuses on plasma circulating factors, namely lipids, as mediators of systemic bioenergetic differences in participants with normal cognition (NC), mild cognitive impairment (MCI), and dementia due to probable AD (DEM). We examined bioenergetic differences across cognitive groups by measuring the mitochondrial respiration of peripheral blood mononuclear cells (PBMCs) from 37 participants (12 NC, 12 MCI, 13 DEM). PBMC bioenergetics were lower in the DEM group compared to the NC group. To determine whether circulating factors can mediate bioenergetic differences according to cognitive status, we exposed naïve neuronal Neuro-2a (N2a) cells to plasma from each participant in vitro. N2a bioenergetics were lower following plasma exposure from DEM compared to NC group participants. Notably, PBMC Max and N2a Max positively correlated, suggesting that circulating factors modulate the bioenergetics of naïve N2a cells according to the bioenergetic capacity of donor primary PBMCs. To identify lipid metabolites that may contribute to bioenergetic differences between cognitive groups, we performed liquid chromatography-mass spectrometry to assess the abundance of individual lipid species and correlated PBMC and N2a bioenergetics. Glycocholic acid (GCA) positively correlated with PBMC and N2a bioenergetics, while linoleic acid (LA) was negatively correlated. These data suggest that GCA and LA may contribute to the stimulatory and inhibitory bioenergetics effects related to cognitive status. Post hoc analyses revealed that GCA abundance was lower by 52.9% in the DEM group compared to the NC group and that LA abundance was higher by 55.7% in the DEM group compared to the NC group. To validate these findings, we examined the abundance of GCA and LA in the larger, more diverse, parent cohort (n = 378) and found similar results; GCA abundance was lower by 29.7% in the DEM group compared to the NC group and LA abundance was higher by 17.8% in the DEM group compared to the NC group. These data demonstrate that circulating factors have a direct effect on mitochondrial bioenergetics and that individual circulating factors identified to be associated with mitochondrial function are differentially expressed in patients with dementia.
Collapse
Affiliation(s)
- K. Allison Amick
- Section on Gerontology and Geriatrics, Department of Internal Medicine, Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Department of Neuroscience, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Gargi Mahapatra
- Section on Gerontology and Geriatrics, Department of Internal Medicine, Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Zhengrong Gao
- Section on Gerontology and Geriatrics, Department of Internal Medicine, Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Amber Dewitt
- Section on Gerontology and Geriatrics, Department of Internal Medicine, Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Suzanne Craft
- Section on Gerontology and Geriatrics, Department of Internal Medicine, Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Mohit Jain
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Anthony J. A. Molina
- Section on Gerontology and Geriatrics, Department of Internal Medicine, Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Division of Geriatrics, Gerontology, and Palliative Care, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
23
|
Reemst K, Broos JY, Abbink MR, Cimetti C, Giera M, Kooij G, Korosi A. Early-life stress and dietary fatty acids impact the brain lipid/oxylipin profile into adulthood, basally and in response to LPS. Front Immunol 2022; 13:967437. [PMID: 36131915 PMCID: PMC9484596 DOI: 10.3389/fimmu.2022.967437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/04/2022] [Indexed: 01/06/2023] Open
Abstract
Brain lipid dysregulation is a hallmark of depression and Alzheimer's disease, also marked by chronic inflammation. Early-life stress (ELS) and dietary intake of polyunsaturated fatty acids (PUFAs) are risk factors for these pathologies and are known to impact inflammatory processes. However, if these early-life factors alter brain lipid homeostasis on the long-term and thereby contribute to this risk remains to be elucidated. We have recently shown that an early diet enriched in omega(ω)-3 PUFAs protected against the long-term negative effects of ELS on cognition and neuroinflammation. Here, we aim to understand if modulation of brain lipid and oxylipin profiles contributes to the detrimental effects of ELS and the protective ones of the diet. We therefore studied if and how ELS and early dietary PUFAs modulate the brain lipid and oxylipin profile, basally as well as in response to an inflammatory challenge, to unmask possible latent effects. Male mice were exposed to ELS via the limited bedding and nesting paradigm, received an early diet with high or low ω6/ω3 ratio (HRD and LRD) and were injected with saline or lipopolysaccharide (LPS) in adulthood. Twenty-four hours later plasma cytokines (Multiplex) and hypothalamic lipids and oxylipins (liquid chromatography tandem mass spectrometry) were measured. ELS exacerbated the LPS-induced increase in IL-6, CXCL1 and CCL2. Both ELS and diet affected the lipid/oxylipin profile long-term. For example, ELS increased diacylglycerol and LRD reduced triacylglycerol, free fatty acids and ceramides. Importantly, the ELS-induced alterations were strongly influenced by the early diet. For example, the ELS-induced decrease in eicosapentaenoic acid was reversed when fed LRD. Similarly, the majority of the LPS-induced alterations were distinct for control and ELS exposed mice and unique for mice fed with LRD or HRD. LPS decreased ceramides and lysophosphotidylcholine, increased hexosylceramides and prostaglandin E2, reduced triacylglycerol species and ω6-derived oxylipins only in mice fed LRD and ELS reduced the LPS-induced increase in phosphatidylcholine. These data give further insights into the alterations in brain lipids and oxylipins that might contribute to the detrimental effects of ELS, to the protective ones of LRD and the possible early-origin of brain lipid dyshomeostasis characterizing ELS-related psychopathologies.
Collapse
Affiliation(s)
- Kitty Reemst
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park, Amsterdam, Netherlands
| | - Jelle Y. Broos
- Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Multiple Sclerosis (MS) Center Amsterdam, Amsterdam, Netherlands,Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Maralinde R. Abbink
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park, Amsterdam, Netherlands
| | - Chiara Cimetti
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park, Amsterdam, Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Gijs Kooij
- Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Multiple Sclerosis (MS) Center Amsterdam, Amsterdam, Netherlands
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park, Amsterdam, Netherlands,*Correspondence: Aniko Korosi,
| |
Collapse
|
24
|
Sanders AE, Weatherspoon ED, Ehrmann BM, Soma PS, Shaikh SR, Preisser JS, Ohrbach R, Fillingim RB, Slade GD. Circulating polyunsaturated fatty acids, pressure pain thresholds, and nociplastic pain conditions. Prostaglandins Leukot Essent Fatty Acids 2022; 184:102476. [PMID: 35908377 PMCID: PMC10363286 DOI: 10.1016/j.plefa.2022.102476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Polyunsaturated fatty acids (PUFAs) play a role in pain regulation. This study sought to determine whether free PUFAs found in red blood cells also play a role in nociceptive processing. We examined associations between circulating PUFAs and nociceptive thresholds to noxious mechanical stimuli. We also determined whether nociceptive thresholds were associated with nociplastic pain conditions. METHODS This cross-sectional study used stored red bloods cells and data from 605 adult participants in the OPPERA-2 study of chronic overlapping pain conditions. In OPPERA-2 adults completed quantitative sensory testing in which pressure algometry measured deep muscular tissue sensitivity at six anatomical sites. Standardized protocols classified adults for presence or absence of five nociplastic pain conditions: temporomandibular disorder, headache, low back pain, irritable bowel syndrome and fibromyalgia. Liquid chromatography tandem mass spectroscopy quantified erythrocyte PUFAs. We conducted three sets of analyses. First, a multivariable linear regression model assessed the association between n-6/n-3 PUFA ratio and the number of overlapping nociplastic pain conditions. Second, a series of 36 multivariable linear regression models assessed covariate-adjusted associations between PUFAs and nociceptive thresholds at each of six anatomical sites. Third, a series of 30 multivariable linear regression models assessed covariate-adjusted associations between nociceptive thresholds at six anatomical sites and each of five pain conditions. RESULTS In multiple linear regression, each unit increase in n-6/n-3 PUFA ratio was associated with more pain conditions (β = 0.30, 95% confidence limits: 0.07, 0.53, p = 0.012). Omega-6 linoleic acid and arachidonic acid were negatively associated with lower nociceptive thresholds at three and at five, respectively, anatomical sites. In contrast, omega-3 alpha-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid and the n-6/n-3 PUFA ratio were not associated with nociceptive thresholds at any site. Pain cases had significantly lower nociceptive thresholds than non-case controls at all anatomical sites. CONCLUSION A higher n-6/n-3 PUFA ratio was associated with more pain conditions. Omega-6 PUFAs may promote a generalized upregulation of nociceptive processing.
Collapse
Affiliation(s)
- Anne E Sanders
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America.
| | - E Diane Weatherspoon
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Brandie M Ehrmann
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Paul S Soma
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Saame R Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - John S Preisser
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Richard Ohrbach
- Department of Oral Diagnostic Sciences, University at Buffalo, Buffalo, NY 14260, United States of America
| | - Roger B Fillingim
- Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL 32611, United States of America; Pain Research and Intervention Center of Excellence, Department of Community Dentistry and Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL 32611, United States of America
| | - Gary D Slade
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| |
Collapse
|
25
|
Johnson CM, Rosario R, Brito A, Agrawal K, Fanter R, Lietz G, Haskell M, Engle-Stone R, Newman JW, La Frano MR. Multi-assay nutritional metabolomics profiling of low vitamin A status versus adequacy is characterized by reduced plasma lipid mediators among lactating women in the Philippines: A pilot study. Nutr Res 2022; 104:118-127. [DOI: 10.1016/j.nutres.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 01/08/2023]
|
26
|
Dyall SC, Balas L, Bazan NG, Brenna JT, Chiang N, da Costa Souza F, Dalli J, Durand T, Galano JM, Lein PJ, Serhan CN, Taha AY. Polyunsaturated fatty acids and fatty acid-derived lipid mediators: Recent advances in the understanding of their biosynthesis, structures, and functions. Prog Lipid Res 2022; 86:101165. [PMID: 35508275 PMCID: PMC9346631 DOI: 10.1016/j.plipres.2022.101165] [Citation(s) in RCA: 271] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/26/2022] [Accepted: 04/27/2022] [Indexed: 12/21/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are structural components of membrane phospholipids, and influence cellular function via effects on membrane properties, and also by acting as a precursor pool for lipid mediators. These lipid mediators are formed via activation of pathways involving at least one step of dioxygen-dependent oxidation, and are consequently called oxylipins. Their biosynthesis can be either enzymatically-dependent, utilising the promiscuous cyclooxygenase, lipoxygenase, or cytochrome P450 mixed function oxidase pathways, or nonenzymatic via free radical-catalyzed pathways. The oxylipins include the classical eicosanoids, comprising prostaglandins, thromboxanes, and leukotrienes, and also more recently identified lipid mediators. With the advent of new technologies there is growing interest in identifying these different lipid mediators and characterising their roles in health and disease. This review brings together contributions from some of those at the forefront of research into lipid mediators, who provide brief introductions and summaries of current understanding of the structure and functions of the main classes of nonclassical oxylipins. The topics covered include omega-3 and omega-6 PUFA biosynthesis pathways, focusing on the roles of the different fatty acid desaturase enzymes, oxidized linoleic acid metabolites, omega-3 PUFA-derived specialized pro-resolving mediators, elovanoids, nonenzymatically oxidized PUFAs, and fatty acid esters of hydroxy fatty acids.
Collapse
|
27
|
Turovsky EA, Varlamova EG, Gudkov SV, Plotnikov EY. The Protective Mechanism of Deuterated Linoleic Acid Involves the Activation of the Ca 2+ Signaling System of Astrocytes in Ischemia In Vitro. Int J Mol Sci 2021; 22:ijms222413216. [PMID: 34948013 PMCID: PMC8706680 DOI: 10.3390/ijms222413216] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022] Open
Abstract
Ischemia-like (oxygen-glucose deprivation, OGD) conditions followed by reoxygenation (OGD/R) cause massive death of cerebral cortex cells in culture as a result of the induction of necrosis and apoptosis. Cell death occurs as a result of an OGD-induced increase in Ca2+ ions in the cytosol of neurons and astrocytes, an increase in the expression of genes encoding proapoptotic and inflammatory genes with suppression of protective genes. The deuterated form of linoleic polyunsaturated fatty acid (D4-Lnn) completely inhibits necrosis and greatly reduces apoptotic cell death with an increase in the concentration of fatty acid in the medium. It was shown for the first time that D4-Lnn, through the activation of the phosphoinositide calcium system of astrocytes, causes their reactivation, which correlates with the general cytoprotective effect on the cortical neurons and astrocytes in vitro. The mechanism of the cytoprotective action of D4-Lnn involves the inhibition of the OGD-induced calcium ions, increase in the cytosolic and reactive oxygen species (ROS) overproduction, the enhancement of the expression of protective genes, and the suppression of damaging proteins.
Collapse
Affiliation(s)
- Egor A. Turovsky
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
- Correspondence: (E.A.T.); (E.G.V.)
| | - Elena G. Varlamova
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
- Correspondence: (E.A.T.); (E.G.V.)
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove St., 119991 Moscow, Russia;
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| |
Collapse
|
28
|
Liang N, Hennebelle M, Gaul S, Johnson CD, Zhang Z, Kirpich IA, McClain CJ, Feldstein AE, Ramsden CE, Taha AY. Feeding mice a diet high in oxidized linoleic acid metabolites does not alter liver oxylipin concentrations. Prostaglandins Leukot Essent Fatty Acids 2021; 172:102316. [PMID: 34403987 PMCID: PMC9157566 DOI: 10.1016/j.plefa.2021.102316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 11/19/2022]
Abstract
The oxidation of dietary linoleic acid (LA) produces oxidized LA metabolites (OXLAMs) known to regulate multiple signaling pathways in vivo. Recently, we reported that feeding OXLAMs to mice resulted in liver inflammation and apoptosis. However, it is not known whether this is due to a direct effect of OXLAMs accumulating in the liver, or to their degradation into bioactive shorter chain molecules (e.g. aldehydes) that can provoke inflammation and related cascades. To address this question, mice were fed a low or high LA diet low in OXLAMs, or a low LA diet supplemented with OXLAMs from heated corn oil (high OXLAM diet). Unesterified oxidized fatty acids (i.e. oxylipins), including OXLAMs, were measured in liver after 8 weeks of dietary intervention using ultra-high pressure liquid chromatography coupled to tandem mass-spectrometry. The high OXLAM diet did not alter liver oxylipin concentrations compared to the low LA diet low in OXLAMs. Significant increases in several omega-6 derived oxylipins and reductions in omega-3 derived oxylipins were observed in the high LA dietary group compared to the low LA group. Our findings suggest that dietary OXLAMs do not accumulate in liver, and likely exert pro-inflammatory and pro-apoptotic effects via downstream secondary metabolites.
Collapse
Affiliation(s)
- Nuanyi Liang
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California Davis, Davis, CA, Unites States
| | - Marie Hennebelle
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California Davis, Davis, CA, Unites States
| | - Susanne Gaul
- Department of Pediatrics, University of California San Diego, La Jolla, CA, Unites States; Klinik und Poliklinik für Kardiologie, University Hospital Leipzig, Leipzig University, Germany
| | - Casey D Johnson
- Department of Pediatrics, University of California San Diego, La Jolla, CA, Unites States
| | - Zhichao Zhang
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California Davis, Davis, CA, Unites States
| | - Irina A Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville, Louisville, KY; Hepatobiology and Toxicology Program, University of Louisville, Louisville, KY; Department of Pharmacology and Toxicology and University of Louisville Alcohol Center
| | - Craig J McClain
- Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville, Louisville, KY; Hepatobiology and Toxicology Program, University of Louisville, Louisville, KY; Department of Pharmacology and Toxicology and University of Louisville Alcohol Center; Veterans Affairs San Diego Healthcare System, San Diego, CA; and Robley Rex Veterans Medical Center, Louisville, KY
| | - Ariel E Feldstein
- Department of Pediatrics, University of California San Diego, La Jolla, CA, Unites States
| | - Christopher E Ramsden
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, Unites States; National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California Davis, Davis, CA, Unites States.
| |
Collapse
|
29
|
Ramsden CE, Zamora D, Faurot KR, MacIntosh B, Horowitz M, Keyes GS, Yuan ZX, Miller V, Lynch C, Honvoh G, Park J, Levy R, Domenichiello AF, Johnston A, Majchrzak-Hong S, Hibbeln JR, Barrow DA, Loewke J, Davis JM, Mannes A, Palsson OS, Suchindran CM, Gaylord SA, Mann JD. Dietary alteration of n-3 and n-6 fatty acids for headache reduction in adults with migraine: randomized controlled trial. BMJ 2021; 374:n1448. [PMID: 34526307 PMCID: PMC8244542 DOI: 10.1136/bmj.n1448] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To determine whether dietary interventions that increase n-3 fatty acids with and without reduction in n-6 linoleic acid can alter circulating lipid mediators implicated in headache pathogenesis, and decrease headache in adults with migraine. DESIGN Three arm, parallel group, randomized, modified double blind, controlled trial. SETTING Ambulatory, academic medical center in the United States over 16 weeks. PARTICIPANTS 182 participants (88% women, mean age 38 years) with migraines on 5-20 days per month (67% met criteria for chronic migraine). INTERVENTIONS Three diets designed with eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and linoleic acid altered as controlled variables: H3 diet (n=61)-increase EPA+DHA to 1.5 g/day and maintain linoleic acid at around 7% of energy; H3-L6 diet (n=61)-increase n-3 EPA+DHA to 1.5 g/day and decrease linoleic acid to ≤1.8% of energy; control diet (n=60)-maintain EPA+DHA at <150 mg/day and linoleic acid at around 7% of energy. All participants received foods accounting for two thirds of daily food energy and continued usual care. MAIN OUTCOME MEASURES The primary endpoints (week 16) were the antinociceptive mediator 17-hydroxydocosahexaenoic acid (17-HDHA) in blood and the headache impact test (HIT-6), a six item questionnaire assessing headache impact on quality of life. Headache frequency was assessed daily with an electronic diary. RESULTS In intention-to-treat analyses (n=182), the H3-L6 and H3 diets increased circulating 17-HDHA (log ng/mL) compared with the control diet (baseline-adjusted mean difference 0.6, 95% confidence interval 0.2 to 0.9; 0.7, 0.4 to 1.1, respectively). The observed improvement in HIT-6 scores in the H3-L6 and H3 groups was not statistically significant (-1.6, -4.2 to 1.0, and -1.5, -4.2 to 1.2, respectively). Compared with the control diet, the H3-L6 and H3 diets decreased total headache hours per day (-1.7, -2.5 to -0.9, and -1.3, -2.1 to -0.5, respectively), moderate to severe headache hours per day (-0.8, -1.2 to -0.4, and -0.7, -1.1 to -0.3, respectively), and headache days per month (-4.0, -5.2 to -2.7, and -2.0, -3.3 to -0.7, respectively). The H3-L6 diet decreased headache days per month more than the H3 diet (-2.0, -3.2 to -0.8), suggesting additional benefit from lowering dietary linoleic acid. The H3-L6 and H3 diets altered n-3 and n-6 fatty acids and several of their nociceptive oxylipin derivatives in plasma, serum, erythrocytes or immune cells, but did not alter classic headache mediators calcitonin gene related peptide and prostaglandin E2. CONCLUSIONS The H3-L6 and H3 interventions altered bioactive mediators implicated in headache pathogenesis and decreased frequency and severity of headaches, but did not significantly improve quality of life. TRIAL REGISTRATION ClinicalTrials.gov NCT02012790.
Collapse
Affiliation(s)
- Christopher E Ramsden
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
- Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
- Department of Physical Medicine and Rehabilitation, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daisy Zamora
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
- Department of Psychiatry, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Keturah R Faurot
- Department of Physical Medicine and Rehabilitation, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Beth MacIntosh
- Department of Physical Medicine and Rehabilitation, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Metabolic and Nutrition Research Core, UNC Medical Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark Horowitz
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Gregory S Keyes
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Zhi-Xin Yuan
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Vanessa Miller
- Department of Physical Medicine and Rehabilitation, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chanee Lynch
- Department of Physical Medicine and Rehabilitation, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gilson Honvoh
- Department of Physical Medicine and Rehabilitation, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jinyoung Park
- Department of Physical Medicine and Rehabilitation, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Russell Levy
- Cytokine Analysis Core, UNC Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anthony F Domenichiello
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Angela Johnston
- Department of Physical Medicine and Rehabilitation, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sharon Majchrzak-Hong
- Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Joseph R Hibbeln
- Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - David A Barrow
- Cytokine Analysis Core, UNC Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - James Loewke
- Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - John M Davis
- Department of Psychiatry, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew Mannes
- Department of Perioperative Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Olafur S Palsson
- Department of Medicine, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chirayath M Suchindran
- Department of Biostatistics, Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Susan A Gaylord
- Department of Physical Medicine and Rehabilitation, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J Douglas Mann
- Department of Neurology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
30
|
Teixeira BF, Dias FFG, Vieira TMFDS, Leite Nobrega de Moura Bell JM, Taha AY. Method optimization of oxylipin hydrolysis in nonprocessed bovine milk indicates that the majority of oxylipins are esterified. J Food Sci 2021; 86:1791-1801. [PMID: 33864645 DOI: 10.1111/1750-3841.15697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022]
Abstract
The oxidation of polyunsaturated fatty acids produces bioactive primary oxidation products known as oxylipins. In many biological matrices, the majority of oxylipins are bound (i.e. esterified), and a relatively small proportion (<10%) exists in the free form. The present study tested whether this extends to bovine milk following method evaluation of various extraction and base hydrolysis protocols for measuring bound oxylipins. Free (unbound) oxylipins were also measured. Folch extraction followed by sodium carbonate hydrolysis in the presence of methanol containing 0.1% of acetic acid and 0.1% of butylated hydroxytoluene resulted in greater oxylipin concentrations and better surrogate standard recoveries compared to other methods that did not involve Folch extraction or the addition of methanol with hydrolysis base. Sodium hydroxide was better than sodium carbonate in hydrolyzing bound oxylipins under the same conditions. Milk analysis of oxylipins with mass-spectrometry following Folch extraction and sodium hydroxide hydrolysis revealed that 95% of oxylipins in bovine milk were esterified. Most of the detected oxylipins were derived from linoleic acid, which accounted for 92 and 88% of oxylipins in the free and esterified pools, respectively. These results demonstrate that the majority of bovine milk oxylipins are bound, and that linoleic-acid derived metabolites are the most abundant oxylipin species in free and bound lipid pools. Additional studies are needed to understand the role of different oxylipin pools in both calf and human nutrition. PRACTICAL APPLICATION: A method involving Folch lipid extraction and sodium hydroxide hydrolysis was validated for esterified oxylipin measurements in bovine milk. Application of the method revealed that the majority (∼95%) of oxylipins in bovine milk were bound. Linoleic-acid derived oxylipins were the most abundant species in both bound and free milk fractions (88-92%). The results highlight the presence of a new pool of oxidized lipids in milk, potentially involved in modifying its sensory and nutritional properties.
Collapse
Affiliation(s)
- Bianca Ferraz Teixeira
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, California, USA.,ESALQ Food, College of Agriculture "Luiz de Queiroz,", University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | | | - Juliana Maria Leite Nobrega de Moura Bell
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, California, USA.,Department of Biological and Agricultural Engineering, University of California, Davis, One Shields Avenue, Davis, California, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, California, USA
| |
Collapse
|
31
|
Zhang Z, Emami S, Hennebelle M, Morgan RK, Lerno LA, Slupsky CM, Lein PJ, Taha AY. Linoleic acid-derived 13-hydroxyoctadecadienoic acid is absorbed and incorporated into rat tissues. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158870. [PMID: 33340768 DOI: 10.1016/j.bbalip.2020.158870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/22/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022]
Abstract
Linoleic acid (LNA)-derived 13-hydroxyoctadecadienoic acid (13-HODE) is a bioactive lipid mediator that regulates multiple signaling processes in vivo. 13-HODE is also produced when LNA is oxidized during food processing. However, the absorption and incorporation kinetics of dietary 13-HODE into tissues is not known. The present study measured unesterified d4-13-HODE plasma bioavailability and incorporation into rat liver, adipose, heart and brain following gavage or intravenous (IV) injection (n = 3 per group). Mass spectrometry analysis revealed that d4-13-HODE was absorbed within 20 min of gavage, and continued to incorporate into plasma esterified lipid fractions throughout the 90 min monitoring period (incorporation half-life of 71 min). Following IV injection, unesterified d4-13-HODE was rapidly eliminated from plasma with a half-life of 1 min. Analysis of tracer incorporation kinetics into rat tissues following IV injection or gavage revealed that the esterified tracer preferentially incorporated into liver, adipose and heart compared to unesterified d4-13-HODE. No tracer was detected in the brain. This study demonstrates that dietary 13-HODE is absorbed, and incorporated into peripheral tissues from esterified plasma lipid pools. Understanding the chronic effects of dietary 13-HODE exposure on peripheral tissue physiology and metabolism merits future investigation.
Collapse
Affiliation(s)
- Zhichao Zhang
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Shiva Emami
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Marie Hennebelle
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Rhianna K Morgan
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Larry A Lerno
- Food Safety and Measurement Facility, University of California, Davis, CA, USA
| | - Carolyn M Slupsky
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA; Department of Nutrition, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA.
| |
Collapse
|
32
|
Sarparast M, Dattmore D, Alan J, Lee KSS. Cytochrome P450 Metabolism of Polyunsaturated Fatty Acids and Neurodegeneration. Nutrients 2020; 12:E3523. [PMID: 33207662 PMCID: PMC7696575 DOI: 10.3390/nu12113523] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
Due to the aging population in the world, neurodegenerative diseases have become a serious public health issue that greatly impacts patients' quality of life and adds a huge economic burden. Even after decades of research, there is no effective curative treatment for neurodegenerative diseases. Polyunsaturated fatty acids (PUFAs) have become an emerging dietary medical intervention for health maintenance and treatment of diseases, including neurodegenerative diseases. Recent research demonstrated that the oxidized metabolites, particularly the cytochrome P450 (CYP) metabolites, of PUFAs are beneficial to several neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease; however, their mechanism(s) remains unclear. The endogenous levels of CYP metabolites are greatly affected by our diet, endogenous synthesis, and the downstream metabolism. While the activity of omega-3 (ω-3) CYP PUFA metabolites and omega-6 (ω-6) CYP PUFA metabolites largely overlap, the ω-3 CYP PUFA metabolites are more active in general. In this review, we will briefly summarize recent findings regarding the biosynthesis and metabolism of CYP PUFA metabolites. We will also discuss the potential mechanism(s) of CYP PUFA metabolites in neurodegeneration, which will ultimately improve our understanding of how PUFAs affect neurodegeneration and may identify potential drug targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Morteza Sarparast
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA;
| | - Devon Dattmore
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| | - Jamie Alan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| | - Kin Sing Stephen Lee
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA;
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
33
|
Molecular Pathways Linking Oxylipins to Nociception in Rats. THE JOURNAL OF PAIN 2020; 22:275-299. [PMID: 33031942 DOI: 10.1016/j.jpain.2020.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/31/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022]
Abstract
Oxylipins are lipid peroxidation products that participate in nociceptive, inflammatory, and vascular responses to injury. Effects of oxylipins depend on tissue-specific differences in accumulation of precursor polyunsaturated fatty acids and the expression of specific enzymes to transform the precursors. The study of oxylipins in nociception has presented technical challenges leading to critical knowledge gaps in the way these molecules operate in nociception. We applied a systems-based approach to characterize oxylipin precursor fatty acids, and expression of genes coding for proteins involved in biosynthesis, transport, signaling and inactivation of pro- and antinociceptive oxylipins in pain circuit tissues. We further linked these pathways to nociception by demonstrating intraplantar carrageenan injection induced gene expression changes in oxylipin biosynthetic pathways. We determined functional-biochemical relevance of the proposed pathways in rat hind paw and dorsal spinal cord by measuring basal and stimulated levels of oxylipins throughout the time-course of carrageenan-induced inflammation. Finally, when oxylipins were administered by intradermal injection we observed modulation of nociceptive thermal hypersensitivity, providing a functional-behavioral link between oxylipins, their molecular biosynthetic pathways, and involvement in pain and nociception. Together, these findings advance our understanding of molecular lipidomic systems linking oxylipins and their precursors to nociceptive and inflammatory signaling pathways in rats. PERSPECTIVE: We applied a systems approach to characterize molecular pathways linking precursor lipids and oxylipins to nociceptive signaling. This systematic, quantitative evaluation of the molecular pathways linking oxylipins to nociception provides a framework for future basic and clinical research investigating the role of oxylipins in pain.
Collapse
|
34
|
Gan J, Zhang Z, Kurudimov K, German JB, Taha AY. Distribution of Free and Esterified Oxylipins in Cream, Cell, and Skim Fractions of Human Milk. Lipids 2020; 55:661-670. [PMID: 32725684 DOI: 10.1002/lipd.12268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 12/23/2022]
Abstract
Human milk contains oxylipins involved in infant development. Although oxylipins have been identified in whole or skim milk, their localization within human milk cream, cell, and skim fractions is not known. This study determined the distribution of free and esterified oxylipins in cream, cell, and skim fractions of human milk. Out of 72 oxylipins probed by mass-spectrometry, 42, 29, and 41 oxylipins (free or bound) were detected in cream, cell, and skim fractions, respectively. Over 90% of free and bound oxylipins were derived from linoleic acid in all milk fractions. Other oxylipins were derived from n-6 arachidonic acid and dihomo-gamma-linolenic acid, and n-3 alpha-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid. Free oxylipins were more abundant in skim milk (59.9% of total oxylipins) compared to cream and cell pellet, whereas esterified oxylipins were most abundant in milk cream and cell pellets (74.9-76.9%). The heterogenous distribution of oxylipins in different fractions of human milk may regulate the guided release of these bioactive signaling molecules within infants.
Collapse
Affiliation(s)
- Junai Gan
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Zhichao Zhang
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Karina Kurudimov
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - J Bruce German
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, CA, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| |
Collapse
|
35
|
Shinto L, Lahna D, Murchison CF, Dodge H, Hagen K, David J, Kaye J, Quinn JF, Wall R, Silbert LC. Oxidized Products of Omega-6 and Omega-3 Long Chain Fatty Acids Are Associated with Increased White Matter Hyperintensity and Poorer Executive Function Performance in a Cohort of Cognitively Normal Hypertensive Older Adults. J Alzheimers Dis 2020; 74:65-77. [DOI: 10.3233/jad-191197] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Lynne Shinto
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - David Lahna
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Charles F. Murchison
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hiroko Dodge
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Kirsten Hagen
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Jason David
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Jeffrey Kaye
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, USA
| | - Joseph F. Quinn
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, USA
| | - Rachel Wall
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, USA
| | - Lisa C. Silbert
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, USA
| |
Collapse
|
36
|
Norman JE, Aung HH, Otoki Y, Zhang Z, Taha AY, Rutledge JC. A single meal has the potential to alter brain oxylipin content. Prostaglandins Leukot Essent Fatty Acids 2020; 154:102062. [PMID: 32062416 PMCID: PMC7067679 DOI: 10.1016/j.plefa.2020.102062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/06/2020] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Abstract
Our objective was to determine whether consumption of a single meal has the potential to alter brain oxylipin content. We examined the cerebrum of mice fed a single high-fat/high-sucrose Western meal or a low-fat/low-sucrose control meal, as well as fasted mice. We found no changes in fatty acid composition of cerebrum across the groups. The cerebral oxylipin profile of mice fed a Western meal is distinct from the profile of mice fed a low-fat/low-sucrose meal. Cerebral gene expression of cyclooxygenase 1, cyclooxygenase 2, and epoxide hydrolase 1 were elevated in Western meal-fed mice compared to low-fat/low-sucrose meal-fed mice. Mice that consumed either meal had lower gene expression of cytochrome P450, family 2, subfamily j, polypeptide 12 than fasted mice. Our data in this hypothesis-generating study indicates that the composition of a single meal has the potential to alter brain oxylipins and the gene expression of the enzymes responsible for their production.
Collapse
Affiliation(s)
- J E Norman
- University of California, Davis, School of Medicine, Department of Internal Medicine, Division of Cardiovascular Medicine, United States.
| | - H H Aung
- University of California, Davis, School of Medicine, Department of Internal Medicine, Division of Cardiovascular Medicine, United States
| | - Y Otoki
- University of California, Davis, Department of Food Science and Technology, United States; Tohoku University, Graduate School of Agricultural Science, Food and Biodynamic Chemistry Laboratory, Japan
| | - Z Zhang
- University of California, Davis, Department of Food Science and Technology, United States
| | - A Y Taha
- University of California, Davis, Department of Food Science and Technology, United States
| | - J C Rutledge
- University of California, Davis, School of Medicine, Department of Internal Medicine, Division of Cardiovascular Medicine, United States
| |
Collapse
|
37
|
Abstract
Increased intake of omega-6 rich plant oils such as soybean and corn oil over the past few decades has inadvertently tripled the amount of n-6 linoleic acid (LA, 18:2n-6) in the diet. Although LA is nutritionally “essential”, very little is known about how it affects the brain when present in excess. This review provides an overview on the metabolism of LA by the brain and the effects of excess dietary LA intake on brain function. Pre-clinical evidence suggests that excess dietary LA increases the brain’s vulnerability to inflammation and likely acts via its oxidized metabolites. In humans, excess maternal LA intake has been linked to atypical neurodevelopment, but underlying mechanisms are unknown. It is concluded that excess dietary LA may adversely affect the brain. The potential neuroprotective role of reducing dietary LA merits clinical evaluation in future studies.
Collapse
|
38
|
Hennebelle M, Morgan RK, Sethi S, Zhang Z, Chen H, Grodzki AC, Lein PJ, Taha AY. Linoleic acid-derived metabolites constitute the majority of oxylipins in the rat pup brain and stimulate axonal growth in primary rat cortical neuron-glia co-cultures in a sex-dependent manner. J Neurochem 2020; 152:195-207. [PMID: 31283837 PMCID: PMC6949423 DOI: 10.1111/jnc.14818] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/19/2019] [Accepted: 05/31/2019] [Indexed: 12/23/2022]
Abstract
In adult rats, omega-6 linoleic acid (LA, 18:2n-6) serves as a precursor to oxidized LA metabolites (OXLAMs) known to regulate multiple signaling processes in the brain. However, little is known regarding the levels or role(s) of LA and its metabolites during brain development. To address this gap, fatty acids within various brain lipid pools, and their oxidized metabolites (oxylipins) were quantified in brains from 1-day-old male and female pups using gas chromatography and liquid chromatography coupled to tandem mass spectrometry, respectively. Primary neuron-glia co-cultures derived from postnatal day 0-1 male and female rat neocortex were exposed to vehicle (0.1% ethanol), LA, the OXLAM 13-hydroxyoctadecadienoic acid (13-HODE), or prostaglandin E2 at 10-1000 nM for 48 h to test their effects on neuronal morphology. In both male and female pups, LA accounted for 1-3% of fatty acids detected in brain phospholipids and cholesteryl esters. It was not detected in triacylglycerols, and free fatty acids. Unesterified OXLAMs constituted 47-53% of measured unesterified oxylipins in males and females (vs. ~5-7% reported in adult rat brain). Of these, 13-HODE was the most abundant, accounting for 30-33% of measured OXLAMs. Brain fatty acid and OXLAM concentrations did not differ between sexes. LA and 13-HODE significantly increased axonal outgrowth. Separate analyses of cultures derived from male versus female pups revealed that LA at 1, 50, and 1000 nM, significantly increased axonal outgrowth in female but not male cortical neurons, whereas 13-HODE at 100 nM significantly increased axonal outgrowth in male but not female cortical neurons. prostaglandin E2 did not alter neuronal outgrowth in either sex. This study demonstrates that OXLAMs constitute the majority of unesterified oxylipins in the developing rat brain despite low relative abundance of their LA precursor, and highlights a novel role of LA and 13-HODE in differentially influencing neuronal morphogenesis in the developing male and female brain.
Collapse
Affiliation(s)
- Marie Hennebelle
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Rhianna K. Morgan
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Sunjay Sethi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Zhichao Zhang
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Hao Chen
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Ana Cristina Grodzki
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Ameer Y. Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| |
Collapse
|
39
|
Otoki Y, Metherel AH, Pedersen T, Yang J, Hammock BD, Bazinet RP, Newman JW, Taha AY. Acute Hypercapnia/Ischemia Alters the Esterification of Arachidonic Acid and Docosahexaenoic Acid Epoxide Metabolites in Rat Brain Neutral Lipids. Lipids 2020; 55:7-22. [PMID: 31691988 PMCID: PMC7220815 DOI: 10.1002/lipd.12197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022]
Abstract
In the brain, approximately 90% of oxylipins are esterified to lipids. However, the significance of this esterification process is not known. In the present study, we (1) validated an aminopropyl solid phase extraction (SPE) method for separating esterified lipids using 100 and 500 mg columns and (2) applied the method to quantify the distribution of esterified oxylipins within phospholipids (PL) and neutral lipids (NL) (i.e. triacylglycerol and cholesteryl ester) in rats subjected to head-focused microwave fixation (controls) or CO2 -induced hypercapnia/ischemia. We hypothesized that oxylipin esterification into these lipid pools will be altered following CO2 -induced hypercapnia/ischemia. Lipids were extracted from control (n = 8) and CO2 -asphyxiated (n = 8) rat brains and separated on aminopropyl cartridges to yield PL and NL. The separated lipid fractions were hydrolyzed, purified with hydrophobic-lipophilic-balanced SPE columns, and analyzed with ultra-high-pressure liquid chromatography coupled to tandem mass spectrometry. Method validation showed that the 500 mg (vs 100 mg) aminopropyl columns yielded acceptable separation and recovery of esterified fatty acid epoxides but not other oxylipins. Two epoxides of arachidonic acid (ARA) were significantly increased, and three epoxides of docosahexaenoic acid (DHA) were significantly decreased in brain NL of CO2 -asphyxiated rats compared to controls subjected to head-focused microwave fixation. PL-bound fatty acid epoxides were highly variable and did not differ significantly between the groups. This study demonstrates that hypercapnia/ischemia alters the concentration of ARA and DHA epoxides within NL, reflecting an active turnover process regulating brain fatty acid epoxide concentrations.
Collapse
Affiliation(s)
- Yurika Otoki
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
- Food and Biodynamic Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Adam H. Metherel
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, ON, M5S 1A8, Canada
| | - Theresa Pedersen
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Jun Yang
- Department of Entomology and Nematology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA
- Comprehensive Cancer Center, Medical Center, University of California, Davis, CA 95616, USA
| | - Bruce D. Hammock
- Department of Entomology and Nematology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA
- Comprehensive Cancer Center, Medical Center, University of California, Davis, CA 95616, USA
- West Coast Metabolomics Center, Genome Center, University of California–Davis, Davis, CA 95616, USA
| | - Richard P. Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, ON, M5S 1A8, Canada
| | - John W. Newman
- West Coast Metabolomics Center, Genome Center, University of California–Davis, Davis, CA 95616, USA
- Department of Nutrition, University of California–Davis, Davis, CA 95616, USA
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA 95616, USA
| | - Ameer Y. Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
- West Coast Metabolomics Center, Genome Center, University of California–Davis, Davis, CA 95616, USA
| |
Collapse
|
40
|
Cytochrome P450 monooxygenase-mediated eicosanoid pathway: A potential mechanistic linkage between dietary fatty acid consumption and colon cancer risk. FOOD SCIENCE AND HUMAN WELLNESS 2019. [DOI: 10.1016/j.fshw.2019.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Joffre C, Rey C, Layé S. N-3 Polyunsaturated Fatty Acids and the Resolution of Neuroinflammation. Front Pharmacol 2019; 10:1022. [PMID: 31607902 PMCID: PMC6755339 DOI: 10.3389/fphar.2019.01022] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/12/2019] [Indexed: 12/22/2022] Open
Abstract
In the past few decades, as a result of their anti-inflammatory properties, n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFAs), have gained greater importance in the regulation of inflammation, especially in the central nervous system (in this case known as neuroinflammation). If sustained, neuroinflammation is a common denominator of neurological disorders, including Alzheimer’s disease and major depression, and of aging. Hence, limiting neuroinflammation is a real strategy for neuroinflammatory disease therapy and treatment. Recent data show that n-3 LC-PUFAs exert anti-inflammatory properties in part through the synthesis of specialized pro-resolving mediators (SPMs) such as resolvins, maresins and protectins. These SPMs are crucially involved in the resolution of inflammation. They could be good candidates to resolve brain inflammation and to contribute to neuroprotective functions and could lead to novel therapeutics for brain inflammatory diseases. This review presents an overview 1) of brain n-3 LC-PUFAs as precursors of SPMs with an emphasis on the effect of n-3 PUFAs on neuroinflammation, 2) of the formation and action of SPMs in the brain and their biological roles, and the possible regulation of their synthesis by environmental factors such as inflammation and nutrition and, in particular, PUFA consumption.
Collapse
Affiliation(s)
- Corinne Joffre
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France.,Université de Bordeaux 2, Bordeaux, France
| | - Charlotte Rey
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France.,Université de Bordeaux 2, Bordeaux, France.,ITERG, Nutrition Health and Lipid Biochemistry Department, Canéjan, France
| | - Sophie Layé
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France.,Université de Bordeaux 2, Bordeaux, France
| |
Collapse
|
42
|
Hennebelle M, Metherel AH, Kitson AP, Otoki Y, Yang J, Lee KSS, Hammock BD, Bazinet RP, Taha AY. Brain oxylipin concentrations following hypercapnia/ischemia: effects of brain dissection and dissection time. J Lipid Res 2019; 60:671-682. [PMID: 30463986 PMCID: PMC6399504 DOI: 10.1194/jlr.d084228] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 10/12/2018] [Indexed: 01/12/2023] Open
Abstract
PUFAs are precursors to bioactive oxylipin metabolites that increase in the brain following CO2-induced hypercapnia/ischemia. It is not known whether the brain-dissection process and its duration also alter these metabolites. We applied CO2 with or without head-focused microwave fixation for 2 min to evaluate the effects of CO2-induced asphyxiation, dissection, and dissection time on brain oxylipin concentrations. Compared with head-focused microwave fixation (control), CO2 followed by microwave fixation prior to dissection increased oxylipins derived from lipoxygenase (LOX), 15-hydroxyprostaglandin dehydrogenase (PGDH), cytochrome P450 (CYP), and soluble epoxide hydrolase (sEH) enzymatic pathways. This effect was enhanced when the duration of postmortem ischemia was prolonged by 6.4 min prior to microwave fixation. Brains dissected from rats subjected to CO2 without microwave fixation showed greater increases in LOX, PGDH, CYP and sEH metabolites compared with all other groups, as well as increased cyclooxygenase metabolites. In nonmicrowave-irradiated brains, sEH metabolites and one CYP metabolite correlated positively and negatively with dissection time, respectively. This study presents new evidence that the dissection process and its duration increase brain oxylipin concentrations, and that this is preventable by microwave fixation. When microwave fixation is not available, lipidomic studies should account for dissection time to reduce these artifacts.
Collapse
Affiliation(s)
- Marie Hennebelle
- Departments of Food Science and Technology University of California, Davis, Davis, CA
| | - Adam H Metherel
- Department of Nutritional Sciences Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Alex P Kitson
- Department of Nutritional Sciences Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Yurika Otoki
- Departments of Food Science and Technology University of California, Davis, Davis, CA
- Food and Biodynamic Laboratory Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Jun Yang
- Entomology and Nematology, University of California, Davis, Davis, CA
- College of Agriculture and Environmental Sciences, and Comprehensive Cancer Center University of California, Davis, Davis, CA
| | - Kin Sing Stephen Lee
- Departments of Food Science and Technology University of California, Davis, Davis, CA
- College of Agriculture and Environmental Sciences, and Comprehensive Cancer Center University of California, Davis, Davis, CA
| | - Bruce D Hammock
- Entomology and Nematology, University of California, Davis, Davis, CA
- College of Agriculture and Environmental Sciences, and Comprehensive Cancer Center University of California, Davis, Davis, CA
| | - Richard P Bazinet
- Department of Nutritional Sciences Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ameer Y Taha
- Departments of Food Science and Technology University of California, Davis, Davis, CA
| |
Collapse
|
43
|
Ferdouse A, Leng S, Winter T, Aukema HM. The Brain Oxylipin Profile Is Resistant to Modulation by Dietary n-6 and n-3 Polyunsaturated Fatty Acids in Male and Female Rats. Lipids 2019; 54:67-80. [DOI: 10.1002/lipd.12122] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Afroza Ferdouse
- Department of Food and Human Nutritional Sciences; 190 Dysart Road, University of Manitoba Winnipeg; Canada R3T 2N2
- Canadian Centre for Agri-Food Research in Health and Medicine; 351 Tache Ave, Winnipeg Canada R2H 2A6
| | - Shan Leng
- Department of Food and Human Nutritional Sciences; 190 Dysart Road, University of Manitoba Winnipeg; Canada R3T 2N2
- Canadian Centre for Agri-Food Research in Health and Medicine; 351 Tache Ave, Winnipeg Canada R2H 2A6
| | - Tanja Winter
- Department of Food and Human Nutritional Sciences; 190 Dysart Road, University of Manitoba Winnipeg; Canada R3T 2N2
- Canadian Centre for Agri-Food Research in Health and Medicine; 351 Tache Ave, Winnipeg Canada R2H 2A6
| | - Harold M. Aukema
- Department of Food and Human Nutritional Sciences; 190 Dysart Road, University of Manitoba Winnipeg; Canada R3T 2N2
- Canadian Centre for Agri-Food Research in Health and Medicine; 351 Tache Ave, Winnipeg Canada R2H 2A6
| |
Collapse
|
44
|
Ramsden CE, Hennebelle M, Schuster S, Keyes GS, Johnson CD, Kirpich IA, Dahlen JE, Horowitz MS, Zamora D, Feldstein AE, McClain CJ, Muhlhausler BS, Makrides M, Gibson RA, Taha AY. Effects of diets enriched in linoleic acid and its peroxidation products on brain fatty acids, oxylipins, and aldehydes in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1206-1213. [PMID: 30053599 PMCID: PMC6180905 DOI: 10.1016/j.bbalip.2018.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/12/2018] [Accepted: 07/21/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Linoleic acid (LA) is abundant in modern industrialized diets. Oxidized LA metabolites (OXLAMs) and reactive aldehydes, such as 4-hydroxy-2-nonenal (4-HNE), are present in heated vegetable oils and can be endogenously synthesized following consumption of dietary LA. OXLAMs have been implicated in cerebellar degeneration in chicks; 4-HNE is linked to neurodegenerative conditions in mammals. It unknown whether increasing dietary LA or OXLAMs alters the levels of oxidized fatty acids (oxylipins), precursor fatty acids, or 4-HNE in mammalian brain. OBJECTIVES To determine the effects of increases in dietary OXLAMs and dietary LA, on levels of fatty acids, oxylipins, and 4-HNE in mouse brain tissues. METHODS Mice (n = 8 per group) were fed one of three controlled diets for 8 weeks: (1) a low LA diet, (2) a high LA diet, or (3) the low LA diet with added OXLAMs. Brain fatty acids, oxylipins, and 4-HNE were quantified in mouse cerebellum and cerebral cortex by gas chromatography-flame ionization detection, liquid chromatography-tandem mass spectrometry, and immunoblot, respectively. RESULTS Increasing dietary LA significantly increased omega-6 fatty acids, decreased omega-3 fatty acids, and increased OXLAMs in brain. Dietary OXLAMs had minimal effect on oxidized lipids but did decrease both omega-6 and omega-3 fatty acids. Neither dietary LA nor OXLAMs altered 4-HNE levels. CONCLUSION Brain fatty acids are modulated by both dietary LA and OXLAMs, while brain OXLAMs are regulated by endogenous synthesis from LA, rather than incorporation of preformed OXLAMs.
Collapse
Affiliation(s)
- Christopher E Ramsden
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA; National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA; FOODplus Research Center, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia.
| | - Marie Hennebelle
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Susanne Schuster
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Gregory S Keyes
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Casey D Johnson
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Irina A Kirpich
- School of Medicine, University of Louisville, Louisville, KY, USA
| | - Jeff E Dahlen
- Neurobiology Section, Center for Neural Circuits and Behavior, Department of Neurosciences, University of California, San Diego, USA
| | - Mark S Horowitz
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Daisy Zamora
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ariel E Feldstein
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Craig J McClain
- School of Medicine, University of Louisville, Louisville, KY, USA
| | - Beverly S Muhlhausler
- FOODplus Research Center, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia
| | - Maria Makrides
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Robert A Gibson
- FOODplus Research Center, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| |
Collapse
|
45
|
Larrieu T, Layé S. Food for Mood: Relevance of Nutritional Omega-3 Fatty Acids for Depression and Anxiety. Front Physiol 2018; 9:1047. [PMID: 30127751 PMCID: PMC6087749 DOI: 10.3389/fphys.2018.01047] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/13/2018] [Indexed: 12/28/2022] Open
Abstract
The central nervous system (CNS) has the highest concentration of lipids in the organism after adipose tissue. Among these lipids, the brain is particularly enriched with polyunsaturated fatty acids (PUFAs) represented by the omega-6 (ω6) and omega-3 (ω3) series. These PUFAs include arachidonic acid (AA) and docosahexaenoic acid (DHA), respectively. PUFAs have received substantial attention as being relevant to many brain diseases, including anxiety and depression. This review addresses an important question in the area of nutritional neuroscience regarding the importance of ω3 PUFAs in the prevention and/or treatment of neuropsychiatric diseases, mainly depression and anxiety. In particular, it focuses on clinical and experimental data linking dietary intake of ω3 PUFAs and depression or anxiety. In particular, we will discuss recent experimental data highlighting how ω3 PUFAs can modulate neurobiological processes involved in the pathophysiology of anxiety and depression. Potential mechanisms involved in the neuroprotective and corrective activity of ω3 PUFAs in the brain are discussed, in particular the sensing activity of free fatty acid receptors and the activity of the PUFAs-derived endocannabinoid system and the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Thomas Larrieu
- UMR 1286, NutriNeuro: Laboratoire Nutrition et Neurobiologie Intégrée, Institut National de la Recherche Agronomique, Université de Bordeaux, Bordeaux, France
| | - Sophie Layé
- UMR 1286, NutriNeuro: Laboratoire Nutrition et Neurobiologie Intégrée, Institut National de la Recherche Agronomique, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
46
|
Jensen JR, Pitcher MH, Yuan ZX, Ramsden CE, Domenichiello AF. Concentrations of oxidized linoleic acid derived lipid mediators in the amygdala and periaqueductal grey are reduced in a mouse model of chronic inflammatory pain. Prostaglandins Leukot Essent Fatty Acids 2018; 135:128-136. [PMID: 30103924 PMCID: PMC6269101 DOI: 10.1016/j.plefa.2018.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 12/26/2022]
Abstract
Chronic pain is both a global public health concern and a serious source of personal suffering for which current treatments have limited efficacy. Recently, oxylipins derived from linoleic acid (LA), the most abundantly consumed polyunsaturated fatty acid in the modern diet, have been implicated as mediators of pain in the periphery and spinal cord. However, oxidized linoleic acid derived mediators (OXLAMs) remain understudied in the brain, particularly during pain states. In this study, we employed a mouse model of chronic inflammatory pain followed by a targeted lipidomic analysis of the animals' amygdala and periaqueductal grey (PAG) using LC-MS/MS to investigate the effect of chronic inflammatory pain on oxylipin concentrations in these two brain nuclei known to participate in pain sensation and perception. From punch biopsies of these brain nuclei, we detected twelve OXLAMs in both the PAG and amygdala and one arachidonic acid derived mediator, 15-HETE, in the amygdala only. In the amygdala, we observed an overall decrease in the concentration of the majority of OXLAMs detected, while in the PAG the concentrations of only the epoxide LA derived mediators, 9,10-EpOME and 12,13-EpOME, and one trihydroxy LA derived mediator, 9,10,11-TriHOME, were reduced. This data provides the first evidence that OXLAM concentrations in the brain are affected by chronic pain, suggesting that OXLAMs may be relevant to pain signaling and adaptation to chronic pain in pain circuits in the brain and that the current view of OXLAMs in nociception derived from studies in the periphery is incomplete.
Collapse
Affiliation(s)
- J R Jensen
- Lipid Mediators, Inflammation and Pain Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
| | - M H Pitcher
- National Center for Complementary and Integrative Health, NIH, Bethesda, MD, United States
| | - Z X Yuan
- Lipid Mediators, Inflammation and Pain Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
| | - C E Ramsden
- Lipid Mediators, Inflammation and Pain Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States; Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, United States
| | - A F Domenichiello
- Lipid Mediators, Inflammation and Pain Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States.
| |
Collapse
|
47
|
Yang J, Oh YT, Wan D, Watanabe RM, Hammock BD, Youn JH. Postprandial effect to decrease soluble epoxide hydrolase activity: roles of insulin and gut microbiota. J Nutr Biochem 2017; 49:8-14. [PMID: 28863368 DOI: 10.1016/j.jnutbio.2017.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/20/2017] [Accepted: 07/18/2017] [Indexed: 02/08/2023]
Abstract
Epoxides of free fatty acids (FFAs), especially epoxyeicosatrienoic acids (EETs), are lipid mediators with beneficial effects in metabolic and cardiovascular (CV) health. FFA epoxides are quickly metabolized to biologically less active diols by soluble epoxide hydrolase (sEH). Inhibition of sEH, which increases EET levels, improves glucose homeostasis and CV health and is proposed as an effective strategy for the treatment of diabetes and CV diseases. Here, we show evidence that sEH activity is profoundly reduced in postprandial states in rats; plasma levels of 17 sEH products (i.e., FFA diols), detected by targeted oxylipin analysis, all decreased after a meal. In addition, the ratios of sEH product to substrate (sEH P/S ratios), which may reflect sEH activity, decreased ~70% on average 2.5 h after a meal in rats (P<.01). To examine whether this effect was mediated by insulin action, a hyperinsulinemic-euglycemic clamp was performed for 2.5 h, and sEH P/S ratios were assessed before and after the clamp. The clamp resulted in small increases rather than decreases in sEH P/S ratios (P<.05), indicating that insulin cannot account for the postprandial decrease in sEH P/S ratios. Interestingly, in rats treated with antibiotics to deplete gut bacteria, the postprandial effect to decrease sEH P/S ratios was completely abolished, suggesting that a gut bacteria-derived factor(s) may be responsible for the effect. Further studies are warranted to identify such a factor(s) and elucidate the mechanism by which sEH activity (or sEH P/S ratio) is reduced in postprandial states.
Collapse
Affiliation(s)
- Jun Yang
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Young Taek Oh
- Department of Physiology and Biophysics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Debin Wan
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Richard M Watanabe
- Department of Physiology and Biophysics, Keck School of Medicine of USC, Los Angeles, CA, USA; Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Jang H Youn
- Department of Physiology and Biophysics, Keck School of Medicine of USC, Los Angeles, CA, USA.
| |
Collapse
|
48
|
Leng S, Winter T, Aukema HM. Dietary LA and sex effects on oxylipin profiles in rat kidney, liver, and serum differ from their effects on PUFAs. J Lipid Res 2017; 58:1702-1712. [PMID: 28667077 DOI: 10.1194/jlr.m078097] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/28/2017] [Indexed: 12/19/2022] Open
Abstract
A vast literature on fatty acids in mammals exists, but comparable compositional data on oxylipins is lacking. Weanling Sprague-Dawley rats were therefore provided control diets or diets with higher linoleic acid (LA) or with higher LA and α-linolenic acid (LA+ALA) for 6 weeks. Kidneys, livers, and serum were analyzed for oxylipins and fatty acids. The proportion of tissue oxylipins derived from LA was greater than the relative proportion of LA itself, whereas arachidonic acid (AA) oxylipins were overrepresented in serum. Higher dietary LA increased kidney LA and AA oxylipins, despite not altering LA or AA. In liver, both LA and AA and their oxylipins were higher, whereas in serum only LA oxylipins were higher with higher dietary LA. Higher LA resulted in a higher ratio of n-6/n-3 PUFA-derived oxylipins; adding ALA to the LA diet mitigated this and many, but not all, effects of the LA diet. Approximately 40% of oxylipins detected were influenced by sex and, unlike their PUFA precursors, most (>90%) of these were higher in males. These differences in dietary LA and sex on oxylipin and fatty acid profiles further our understanding of the effects of fatty acids and may have implications for dietary LA recommendations.
Collapse
Affiliation(s)
- Shan Leng
- Department of Human Nutritional Sciences, University of Manitoba and Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Canada
| | - Tanja Winter
- Department of Human Nutritional Sciences, University of Manitoba and Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Canada
| | - Harold M Aukema
- Department of Human Nutritional Sciences, University of Manitoba and Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Canada.
| |
Collapse
|
49
|
Hennebelle M, Zhang Z, Metherel AH, Kitson AP, Otoki Y, Richardson CE, Yang J, Lee KSS, Hammock BD, Zhang L, Bazinet RP, Taha AY. Linoleic acid participates in the response to ischemic brain injury through oxidized metabolites that regulate neurotransmission. Sci Rep 2017; 7:4342. [PMID: 28659576 PMCID: PMC5489485 DOI: 10.1038/s41598-017-02914-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/20/2017] [Indexed: 12/15/2022] Open
Abstract
Linoleic acid (LA; 18:2 n-6), the most abundant polyunsaturated fatty acid in the US diet, is a precursor to oxidized metabolites that have unknown roles in the brain. Here, we show that oxidized LA-derived metabolites accumulate in several rat brain regions during CO2-induced ischemia and that LA-derived 13-hydroxyoctadecadienoic acid, but not LA, increase somatic paired-pulse facilitation in rat hippocampus by 80%, suggesting bioactivity. This study provides new evidence that LA participates in the response to ischemia-induced brain injury through oxidized metabolites that regulate neurotransmission. Targeting this pathway may be therapeutically relevant for ischemia-related conditions such as stroke.
Collapse
Affiliation(s)
- Marie Hennebelle
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Zhichao Zhang
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Adam H Metherel
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, ON, Canada
| | - Alex P Kitson
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, ON, Canada
| | - Yurika Otoki
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
- Food and Biodynamic Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Christine E Richardson
- Department of Nutrition, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Jun Yang
- Department of Entomology and Nematology, College of Agriculture and Environmental Sciences and Comprehensive Cancer Center, Medical Center, University of California, Davis, CA, USA
| | - Kin Sing Stephen Lee
- Department of Entomology and Nematology, College of Agriculture and Environmental Sciences and Comprehensive Cancer Center, Medical Center, University of California, Davis, CA, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, College of Agriculture and Environmental Sciences and Comprehensive Cancer Center, Medical Center, University of California, Davis, CA, USA
| | - Liang Zhang
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine (Neurology), University of Toronto, ON, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, ON, Canada
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA.
| |
Collapse
|
50
|
Richardson CE, Hennebelle M, Otoki Y, Zamora D, Yang J, Hammock BD, Taha AY. Lipidomic Analysis of Oxidized Fatty Acids in Plant and Algae Oils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1941-1951. [PMID: 28157307 PMCID: PMC5581005 DOI: 10.1021/acs.jafc.6b05559] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Linoleic acid (LA) and α-linolenic acid (ALA) in plant or algae oils are precursors to oxidized fatty acid metabolites known as oxylipins. Liquid chromatography tandem mass spectrometry was used to quantify oxylipins in soybean, corn, olive, canola, and four high-oleic acid algae oils at room temperature or after heating for 10 min at 100 °C. Flaxseed oil oxylipin concentrations were determined in a follow-up experiment that compared it to soybean, canola, corn, and olive oil. Published consumption data for soybean, canola, corn, and olive oil were used to estimate daily oxylipin intake. The LA and ALA fatty acid composition of the oils was generally related to their respective oxylipin metabolites, except for olive and flaxseed oil, which had higher LA derived monohydroxy and ketone oxylipins than other oils, despite their low LA content. Algae oils had the least amount of oxylipins. The change in oxylipin concentrations was not significantly different among the oils after short-term heating. The estimated oxylipin intake from nonheated soybean, canola, corn, and olive oil was 1.1 mg per person per day. These findings suggest that oils represent a dietary source of LA and ALA derived oxylipins and that the response of oils to short-term heating does not differ among the various oils.
Collapse
Affiliation(s)
- Christine E. Richardson
- Graduate Group in Nutritional Biology, College of Agriculture and Environmental Sciences, University of California, Davis, USA
| | - Marie Hennebelle
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, USA
| | - Yurika Otoki
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, USA
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Daisy Zamora
- Department of Psychiatry, University of North Carolina-Chapel Hill, NC, USA
| | - Jun Yang
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California, Davis, USA
| | - Bruce D. Hammock
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California, Davis, USA
| | - Ameer Y. Taha
- Graduate Group in Nutritional Biology, College of Agriculture and Environmental Sciences, University of California, Davis, USA
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, USA
- Corresponding author: Ameer Y. Taha, Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, , Tel: 530-752-7096
| |
Collapse
|