1
|
Bodur M, Yilmaz B, Ağagündüz D, Ozogul Y. Immunomodulatory Effects of Omega-3 Fatty Acids: Mechanistic Insights and Health Implications. Mol Nutr Food Res 2025; 69:e202400752. [PMID: 40159804 PMCID: PMC12087734 DOI: 10.1002/mnfr.202400752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/23/2024] [Accepted: 12/05/2024] [Indexed: 04/02/2025]
Abstract
Omega-3 fatty acids play a significant role in immunomodulation, with nutrigenomic approaches highlighting their impact on gene expression related to immune responses. Research indicates that omega-3 fatty acids can modulate inflammatory pathways, potentially reducing chronic inflammation and enhancing immune function. This review discusses the intersection of nutrigenomics and nutriepigenomics, focusing on how omega-3 fatty acids influence gene expression, immune function, and overall health. The immune system is a complex network responsible for defending the body against pathogens and maintaining internal balance. Comprised of innate and adaptive immunity, the system involves various cells, tissues, and organs working together to combat infections and prevent diseases. Omega-3 polyunsaturated fatty acids (PUFAs), particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), play a significant role in modulating the immune system. These fatty acids influence immune cell function, membrane fluidity, and signaling processes, enhancing immune responses and reducing inflammation. Furthermore, EPA and DHA affect several signaling pathways, reducing the expression of proinflammatory cytokines and inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation, a critical transcription factor in the inflammatory response. Additionally, they activate PPAR-γ, further diminishing inflammatory gene expression. As precursors to specialized proresolving lipid mediators, EPA and DHA help shift the lipid mediator profile from proinflammatory to antiinflammatory derivatives, thus aiding in the resolution of inflammation.
Collapse
Affiliation(s)
- Mahmut Bodur
- Faculty of Health SciencesDepartment of Nutrition and DieteticsAnkara UniversityAnkaraTurkey
| | - Birsen Yilmaz
- Department of Biological SciencesTata Institute of Fundamental ResearchHyderabadIndia
- Faculty of Health SciencesDepartment of Nutrition and DieteticsCukurova UniversityAdanaTurkey
| | - Duygu Ağagündüz
- Faculty of Health SciencesDepartment of Nutrition and DieteticsGazi UniversityAnkaraTurkey
| | - Yeşim Ozogul
- Faculty of FisheriesDepartment of Seafood Processing TechnologyCukurova UniversityAdanaTurkey
| |
Collapse
|
2
|
He Y, Wen Z, Zhou L, Zeng W, Prathomya P, Yi T, Shi Q. Molecular Characterization and Nutritional Regulation of Two Fatty Acid Elongase ( elovl8) Genes in Chinese Perch ( Siniperca chuatsi). Biomolecules 2025; 15:567. [PMID: 40305290 PMCID: PMC12025145 DOI: 10.3390/biom15040567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025] Open
Abstract
Proteins for elongation of very long-chain fatty acids (ELOVLs) are critical for the synthesis of long-chain polyunsaturated fatty acids (LC-PUFAs), and they are one group of the rate-limiting enzymes responsible for the initial condensation reaction within the fatty acid elongation. Elovl8 is a newly identified member of the ELOVL protein family, and its evolutionary and functional characterizations are still rarely reported. Here, we identified two elovl8 paralogues (named Scelovl8 and Scelovl8b) from Chinese perch (Siniperca chuatsi), and then their molecular and evolutionary characteristics, as well as potential roles involved in LC-PUFA biosynthesis, were examined. The ORFs of both Scelovl8a and Scelovl8b genes were 810 bp and 789 bp in length, encoding proteins of 270 and 263 amino acids, respectively. Multiple protein sequence comparisons indicated that elovl8 genes were highly conserved in teleosts, showing similar structural function domains. Meanwhile, phylogenetic analysis showed that the elovl8 gene family was clustered into two subclades of elovl8a and elovl8b, and Scelovl8a and Scelovl8b shared close relationships with banded archerfish elovl8a and striped bass elovl8b, respectively. Genetic synteny and gene structure analyses further confirmed that elovl8b is more conserved in comparison to elovl8a in teleosts. In addition, Scelovl8a was found to be highly expressed in the liver, while Scelovl8b was most abundant in the gills. Long-term food deprivation and refeeding are verified to regulate the transcription of Scelovl8a and Scelovl8b, and intraperitoneal injection of fish oil (FO) and vegetable oil (VO) significantly modified their gene expression as well. In summary, our results in this study indicate that elovl8 genes were conservatively unique to teleosts, and both elovl8 genes might be involved in the endogenous biosynthesis of LC-PUFAs in Chinese perch. These findings not only expand our knowledge on the evolutionary and functional characteristics of both elovl8 genes but also lay a solid basis for investigating regulatory mechanisms of LC-PUFA biosynthesis in various teleosts.
Collapse
Affiliation(s)
- Yu He
- School of Animal Science, Yangtze University, Jingzhou 424020, China; (Y.H.); (L.Z.); (W.Z.)
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641100, China;
- College of Life Sciences, Neijiang Normal University, Neijiang 641100, China
| | - Zhengyong Wen
- School of Animal Science, Yangtze University, Jingzhou 424020, China; (Y.H.); (L.Z.); (W.Z.)
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641100, China;
- College of Life Sciences, Neijiang Normal University, Neijiang 641100, China
- Shenzhen Key Lab of Marine Genomics, BGI Academy of Marine Sciences, BGI Marine, Shenzhen 518081, China
| | - Luo Zhou
- School of Animal Science, Yangtze University, Jingzhou 424020, China; (Y.H.); (L.Z.); (W.Z.)
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641100, China;
- College of Life Sciences, Neijiang Normal University, Neijiang 641100, China
| | - Wanhong Zeng
- School of Animal Science, Yangtze University, Jingzhou 424020, China; (Y.H.); (L.Z.); (W.Z.)
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641100, China;
- College of Life Sciences, Neijiang Normal University, Neijiang 641100, China
| | - Panita Prathomya
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Tilin Yi
- School of Animal Science, Yangtze University, Jingzhou 424020, China; (Y.H.); (L.Z.); (W.Z.)
| | - Qiong Shi
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641100, China;
- College of Life Sciences, Neijiang Normal University, Neijiang 641100, China
- Shenzhen Key Lab of Marine Genomics, BGI Academy of Marine Sciences, BGI Marine, Shenzhen 518081, China
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518057, China
| |
Collapse
|
3
|
Tian A, Xu L, Szeto IMY, Wang X, Li D. Effects of Different Proportions of DHA and ARA on Cognitive Development in Infants: A Meta-Analysis. Nutrients 2025; 17:1091. [PMID: 40292560 PMCID: PMC11946645 DOI: 10.3390/nu17061091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 04/30/2025] Open
Abstract
OBJECTIVES Previous studies have assessed the effect of docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (ARA, 20:4n-6)-supplemented infant formula on brain development and cognitive function in infants. However, the results have been inconsistent. The aim of this systematic review and meta-analysis was to assess the effect of DHA and ARA supplementation on cognitive function in infants from randomized controlled trials (RCTs). METHODS We systematically searched and identified relevant literature from the PubMed, Web of Science, and Embase databases up to July 2024. Standard methods were applied to assess publication bias, sensitivity analysis, and heterogeneity among the included studies. A total of nine RCTs were included in the study, which comprised 1039 subjects. RESULTS Meta-analysis showed significantly positive effects of DHA and ARA supplementation on cognitive development in infants (Standardized Mean Difference (SMD): 0.21; 95% CI: 0.03, 0.38). No significant difference was found in Mental Development Index (MDI) score (Weighted Mean Difference (WMD): 0.20; 95% CI: -0.03, 0.43) and Psychomotor Development Index (PDI) score (WMD: 0.12; 95% CI: -0.11, 0.35) in Bayley Scales of Infant and Toddler Development compared with the control group. In subgroup analysis, when DHA/ARA was 0.5-1, PDI had a significant difference (WMD: 0.48; 95% CI: 0.03, 0.93) compared with the control group, with no significant difference between heterogeneity (I2 = 46.4%, p = 0.155). In comparison to the control group, significant differences were observed in MDI when DHA/ARA levels were between 0.5 and 1 (WMD: 0.55; 95% CI: 0.07, 1.02), with no significant difference between heterogeneity (I2 = 51.6%, p = 0.127). CONCLUSION When the DHA /ARA was 0.5-1 can significantly improve the cognitive function in infants.
Collapse
Affiliation(s)
- Ailing Tian
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao 266071, China; (A.T.); (L.X.)
| | - Lirong Xu
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao 266071, China; (A.T.); (L.X.)
| | - Ignatius Man-Yau Szeto
- National Center of Technology Innovation for Dairy, Hohhot 010110, China; (I.M.-Y.S.); (X.W.)
| | - Xuemin Wang
- National Center of Technology Innovation for Dairy, Hohhot 010110, China; (I.M.-Y.S.); (X.W.)
| | - Duo Li
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao 266071, China; (A.T.); (L.X.)
| |
Collapse
|
4
|
Guzmán-Rivas F, Quispe-Machaca M, Lazo J, Ortega JC, Mora S, Barría Martínez P, Urzúa Á. Fatty acid profiles of highly migratory resources from the Southeastern Pacific Ocean, Chile: a potential tool for biochemical and nutritional traceability. PeerJ 2025; 13:e19101. [PMID: 40124606 PMCID: PMC11930215 DOI: 10.7717/peerj.19101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/12/2025] [Indexed: 03/25/2025] Open
Abstract
The traceability of fish species and their resulting food products is essential to maintain the global supply of these goods, allowing us to distinguish and reconstruct the origin and history of their production chain. One way to trace food is through biochemical determinations, which aid in identifying their geographical origin quickly. This study analyzed the fatty acid (FA) profiles of highly migratory fishery resource species (HMRS) from the Southeastern Pacific Ocean (SEPO), and their use as potential tools to determine the geographic origin and nutritional condition of these marine resources. The fatty acids (FAs) presented in fillet or muscle tissue of 18 HMRS were measured as FA methyl esters by gas chromatography. Our results reveal that the swordfish Xiphias gladius presented the greatest variety of FAs, strongly characterized by the presence of saturated, monounsaturated, and polyunsaturated FAs. A similar trend of high diversity in all classes of FAs was observed in tuna species (i.e., Thunnus alalunga; T. albacares; T. obesus), oilfish (Ruvettus pretiosus) and escolar fish (Lepidocybium flavobrunneum). In turn, Lampris guttatus, Makaira indica, and Tetrapturus audax presented an intermediate variety of FAs and the highest amount of saturated and monounsaturated FAs of the evaluated species. Finally, Luvarus imperialis, Coryphaena hippurus and the sharks (Lamna nasus; Alopias vulpinus; Prionace glauca; Isurus oxyrinchus; Sphyrna zygaena) presented a low diversity of FAs, with only saturated FAs strongly predominating. Regarding the total concentration of FAs, the highest average values were recorded in X. gladius, L. flavobrunneum and R. pretiosus. The present study revealed notable differences in the FA compositions of the muscle of diverse HMRS from the SEPO off the coast of Chile, with the swordfish showing the healthiest FAs (i.e., mono and polyunsaturated) for human consumption. The data on FAs collected for HMRS could be used as a reference to characterize the FA profiles of other fisheries in the SEPO (e.g., coastal pelagic fishes). In an ecosystem approach, our findings help us to understand how essential nutrients (i.e., FA biomolecules) are transferred through the marine food web in the SEPO, revealing the diet type and/or feeding habits of HMRS considered as top predators. Furthermore, identifying the FA profiles of fishery resources at a spatial level provides crucial information for their management and conservation, particularly in those resources that are overexploited and also have a critical nutritional importance for human consumption.
Collapse
Affiliation(s)
- Fabián Guzmán-Rivas
- Programa de Doctorado en Ciencias con mención en Biodiversidad y Biorecursos, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Biobío, Chile
| | - Marco Quispe-Machaca
- Programa de Doctorado en Ciencias con mención en Biodiversidad y Biorecursos, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Biobío, Chile
| | - Jorge Lazo
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Biobío, Chile
| | | | - Sergio Mora
- Instituto de Fomento Pesquero (IFOP), Talcahuano, Biobío, Chile
| | | | - Ángel Urzúa
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Biobío, Chile
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Biobío, Chile
| |
Collapse
|
5
|
Quispe-Machaca M, Guzmán-Rivas F, Barría Martínez P, Ibáñez C, Urzúa Á. Fatty acid biomarkers reveal the interaction between two highly migratory species in the Southern Humboldt System: the swordfish and its prey, the jumbo squid. PeerJ 2025; 13:e19129. [PMID: 40124620 PMCID: PMC11927563 DOI: 10.7717/peerj.19129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/18/2025] [Indexed: 03/25/2025] Open
Abstract
Marine trophodynamics refer to the transfer of energy from prey to predators. In marine invertebrates and fishes, the nutrients obtained through the consumption of food and/or prey are stored as energy reserves in certain tissues and/or organs including the liver, muscle, or gonads, and that these are subsequently used as bioenergetic fuel for highly energy-demanding fundamental physiological processes. In the southern Humboldt Current System, the interaction between two highly migratory resources and top species has been observed: the swordfish (Xiphias gladius) and its prey the jumbo squid (Dosidicus gigas). Because of this trophic interaction, these species store large amounts of energy (as lipids and fatty acids) in their main organs. However, how the fatty acid profile varies in the various organs of the predator and its prey is still unknown, as is its potential use as trophic biomarkers and the ecophysiological role it plays. Our results showed a moderate similarity between the fatty acid profile of the digestive gland of D. gigas with the profiles of the liver, gonad, and muscle of X. gladius, particularly with fatty acids: palmitic (C16:0), stearic (C18:0), oleic (C18:1n9), gadoleic (C20:1), EPA (C20:5n3), and DHA (C22:6n3). Our findings on the use of fatty acids as biomarkers of the interaction between two highly migratory species in the southern Humboldt System may reveal the degree of preference swordfish have for preying on jumbo squid, particularly through the consumption of the digestive gland. In both species, a high bioenergetic fuel content characterized by a predominance of saturated, monounsaturated, and polyunsaturated fatty acids may be necessary to sustain the high energy costs involved in their migratory and reproductive processes in the Humboldt Current system.
Collapse
Affiliation(s)
- Marco Quispe-Machaca
- Programa de Doctorado en Ciencias con mención en Biodiversidad y Biorecursos, Facultad de Ciencias., Universidad Católica de la Santísima Concepción, Concepción, Biobío, Chile
| | - Fabián Guzmán-Rivas
- Programa de Doctorado en Ciencias con mención en Biodiversidad y Biorecursos, Facultad de Ciencias., Universidad Católica de la Santísima Concepción, Concepción, Biobío, Chile
| | | | - Christian Ibáñez
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Nacional Andrés Bello., Santiago, Metropolitana, Chile
| | - Ángel Urzúa
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Biobío, Chile
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Biobío, Chile
| |
Collapse
|
6
|
Brenna JT. Warming plants and cooling essential fatty acids. Am J Clin Nutr 2025; 121:193-194. [PMID: 39909704 DOI: 10.1016/j.ajcnut.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 02/07/2025] Open
Affiliation(s)
- J Thomas Brenna
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin, Austin, TX, United States; Department of Chemistry, University of Texas at Austin, Austin, TX, United States; Department of Nutrition, University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
7
|
Parrish CC. Production, Transport, Fate and Effects of Lipids in the Marine Environment. Mar Drugs 2025; 23:52. [PMID: 39997176 PMCID: PMC11857299 DOI: 10.3390/md23020052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 02/26/2025] Open
Abstract
Lipids form energy storage depots, cellular barriers and signaling molecules. They are generated and metabolized by enzymes under the influence of biotic and abiotic factors, and some-the long-chain polyunsaturated ω3 and ω6 fatty acids and cholesterol-are essential for optimal health in marine organisms. In addition, lipids have direct and indirect roles in the control of buoyancy in marine fauna ranging from copepods to whales. Phytoplankton account for about half of the planet's carbon fixation, and about half of that carbon goes into lipids. Lipids are an important component of the ocean's ability to sequester carbon away from the atmosphere through sinking and especially after transfer to zooplankton. Phytoplankton are the main suppliers of ω3 polyunsaturated fatty acids (PUFAs) in the marine environment. They also supply cholesterol and many phytosterols to ocean ecosystems; however, genomics is indicating that members of the Cnidaria, Rotifera, Annelida, and Mollusca phyla also have the endogenous capacity for the de novo synthesis of ω3 PUFAs as well as phytosterols. It has been predicted that ω3 long-chain PUFAs will decrease in marine organisms with climate change, with implications for human consumption and for carbon sequestration; however, the responses of ω3 PUFA supply to future conditions are likely to be quite diverse.
Collapse
|
8
|
Li Q, Wang C, Li A, Qi H, Wang W, Wang X, Zhang G, Li L. Genetic Variants Affecting FADS2 Enzyme Dynamics and Gene Expression in Cogenetic Oysters with Different PUFA Levels Provide New Tools to Improve Unsaturated Fatty Acids. Int J Mol Sci 2024; 25:13551. [PMID: 39769316 PMCID: PMC11677070 DOI: 10.3390/ijms252413551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/03/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Long-chain polyunsaturated fatty acids (LC-PUFAs) are crucial for human health and cannot be produced internally. Bivalves, such as oysters, serve as valuable sources of high-quality PUFAs. The enzyme fatty acid desaturase (FADS) plays a key role in the metabolism of LC-PUFAs. In this study, we conducted a thorough genome-wide analysis of the genes belong to the FADS family in Crassostrea gigas and Crassostrea angulata, with the objective of elucidating the function of the FADS2 and investigating the genetic variations that affect PUFA biosynthesis. We identified six FADS genes distributed across four chromosomes, categorized into three subfamilies. The coding region of FADS2 revealed five non-synonymous mutations that were shown to influence protein structure and stability through molecular dynamics simulations. The promoter region of FADS2 contains ten SNPs and three indels significantly correlated with PUFA content. These genetic variations may explain the differences in PUFA levels observed between the two oyster species and could have potential applications in enhancing PUFA content. This study improves the molecular understanding of PUFA metabolism in oysters and presents a potential strategy for selecting oysters with high PUFA levels.
Collapse
Affiliation(s)
- Qingyuan Li
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Q.L.); (C.W.); (A.L.); (H.Q.); (X.W.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266200, China;
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chaogang Wang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Q.L.); (C.W.); (A.L.); (H.Q.); (X.W.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266200, China;
| | - Ao Li
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Q.L.); (C.W.); (A.L.); (H.Q.); (X.W.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266200, China;
- University of Chinese Academy of Sciences, Beijing 101408, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266071, China;
| | - Haigang Qi
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Q.L.); (C.W.); (A.L.); (H.Q.); (X.W.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266200, China;
- University of Chinese Academy of Sciences, Beijing 101408, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Wei Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266071, China;
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xinxing Wang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Q.L.); (C.W.); (A.L.); (H.Q.); (X.W.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266200, China;
| | - Guofan Zhang
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266200, China;
- University of Chinese Academy of Sciences, Beijing 101408, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Li Li
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266200, China;
- University of Chinese Academy of Sciences, Beijing 101408, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266071, China;
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
9
|
Wang L, Cheng C, Yu X, Guo L, Wan X, Xu J, Xiang X, Yang J, Kang J, Deng Q. Conversion of α-linolenic acid into n-3 long-chain polyunsaturated fatty acids: bioavailability and dietary regulation. Crit Rev Food Sci Nutr 2024:1-33. [PMID: 39686568 DOI: 10.1080/10408398.2024.2442064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
N-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs) are essential for physiological requirements and disease prevention throughout life but are not adequately consumed worldwide. Dietary supplementation with plant-derived α-linolenic acid (ALA) has the potential to rebalance the fatty acid profile and enhance health benefits but faces challenges such as high β-oxidation consumption, low hepatic conversion efficiency, and high oxidative susceptibility under stress. This review focuses on the metabolic fate and potential regulatory targets of ALA-containing lipids in vivo, specifically the pathway from the gastrointestinal tract to the lymph, blood circulation, and liver. We propose a hypothesis that positively regulates the conversion of ALA into n-3 LCPUFAs based on the model of "fast" or "slow" absorption, transport, and hepatic metabolic fate. Furthermore, the potential effects of dietary nutrients on the metabolic conversion of ALA into n-3 LCPUFAs are discussed. The conversion of ALA is differentially regulated by structured lipids, phospholipids, other lipids, carbohydrates, specific proteins, amino acids, polyphenols, vitamins, and minerals. Future research should focus on designing a steady-state and precise delivery system for ALA, coupled with specific nutrients or phytochemicals, to effectively improve its metabolic conversion and ultimately achieve synergistic regulation of nutrition and health effects.
Collapse
Affiliation(s)
- Lei Wang
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Chen Cheng
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Xiao Yu
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xia Wan
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Jiqu Xu
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Xia Xiang
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Jing Yang
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Jingxuan Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Qianchun Deng
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| |
Collapse
|
10
|
Lee SY, Weingarten M, Ottenheim C. Current upstream and downstream process strategies for sustainable yeast lipid production. BIORESOURCE TECHNOLOGY 2024; 414:131601. [PMID: 39389381 DOI: 10.1016/j.biortech.2024.131601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
An increasing global population demands more lipids for food and chemicals, but the unsustainable growth of plant-derived lipid production and an unreliable supply of certain lipids due to environmental changes, require new solutions. One promising solution is the use of lipids derived from microbial biomass, particularly oleaginous yeasts. This critical review begins with a description of the most promising yeast lipid replacement targets: palm oil substitute, cocoa butter equivalent, polyunsaturated fatty acid source, and animal fat analogue, emphasizing sustainability aspects. Subsequently, the review focuses on the most recent advances in upstream methodologies, particularly fermentation strategies that promote circularity, such as waste valorisation, co-cultivation and co-product biosynthesis. Downstream processing methods for minimising energy consumption and waste generation, including bioflocculation, energy-efficient and environmentally friendly cell lysis and extraction, and integrated co-product recovery methods, are discussed. Finally, the current challenges are outlined. Integrating these strategies advances sustainable yeast lipid production for high-value applications.
Collapse
Affiliation(s)
- Sze Ying Lee
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Melanie Weingarten
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Christoph Ottenheim
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore.
| |
Collapse
|
11
|
Tan K, Ransangan J, Tan K, Cheong KL. The impact of climate change on Omega-3 long-chain polyunsaturated fatty acids in bivalves. Crit Rev Food Sci Nutr 2024; 64:11661-11671. [PMID: 37555502 DOI: 10.1080/10408398.2023.2242943] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) have many health benefits to human. Increasing evidence have shown that climate change reduces the availability of plankton n-3 LC-PUFA to primary consumers which potentially reduces the availability of n-3 LC-PUFA to human. Since marine bivalves are an important source of n-3 LC-PUFA for human beings, and bivalve aquaculture completely depends on phytoplankton in ambient water as food, it is important to understand the impact of climate change on the lipid nutritional quality of bivalves. In this study, fatty acid profile of different bivalves (mussels, oysters, clams, scallops and cockles) from different regions (tropical, subtropical and temperate) and time (before 1990, 1991-1995, 1996-2000, 2001-2005, 2006-2010, 2011-2015, 2016-2020) were extracted from published literature to calculate various lipid nutritional quality indicators. The results of this study revealed that the effects of global warming and declines in aragonite saturation state on the lipid content and lipid indices of bivalves are highly dependent on the geographical region and bivalves. In general, global warming has the largest negative impact on the lipid content and indices of temperate bivalves, including decreasing the PUFA/SFA, EPA + DHA and n-3/n-6. However, global warming has a much smaller negative impact on lipid content and lipid indices in other regions. The declines of aragonite saturation state in seawater promotes the accumulation of lipid content in tropical and subtropical bivalves, but it compromised the PUFA/SFA, EPA + DHA and n-3/n-6 of bivalves in all regions. The findings of this study not only fill the knowledge gap of the impact of climate change on the lipid nutritional quality of bivalves, but also provide guidance for the establishment of bivalve aquaculture and fisheries management plans to mitigate the impact of climate change.
Collapse
Affiliation(s)
- Karsoon Tan
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Centre, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Julian Ransangan
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Sabah, Malaysia
| | - Kianann Tan
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Centre, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
12
|
Zhu J, Li S, Chen W, Xu X, Wang X, Wang X, Han J, Jouhet J, Amato A, Maréchal E, Hu H, Allen AE, Gong Y, Jiang H. Delta-5 elongase knockout reduces docosahexaenoic acid and lipid synthesis and increases heat sensitivity in a diatom. PLANT PHYSIOLOGY 2024; 196:1356-1373. [PMID: 38796833 DOI: 10.1093/plphys/kiae297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024]
Abstract
Recent global marine lipidomic analysis reveals a strong relationship between ocean temperature and phytoplanktonic abundance of omega-3 long-chain polyunsaturated fatty acids, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are essential for human nutrition and primarily sourced from phytoplankton in marine food webs. In phytoplanktonic organisms, EPA may play a major role in regulating the phase transition temperature of membranes, while the function of DHA remains unexplored. In the oleaginous diatom Phaeodactylum tricornutum, DHA is distributed mainly on extraplastidial phospholipids, which is very different from the EPA enriched in thylakoid lipids. Here, clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9-mediated knockout of delta-5 elongase (ptELO5a), which encodes a delta-5 elongase (ELO5) catalyzing the elongation of EPA to synthesize DHA, led to a substantial interruption of DHA synthesis in P. tricornutum. The ptELO5a mutants showed some alterations in transcriptome and glycerolipidomes, including membrane lipids and triacylglycerols under normal temperature (22 °C), and were more sensitive to elevated temperature (28 °C) than wild type. We conclude that PtELO5a-mediated synthesis of small amounts of DHA has indispensable functions in regulating membrane lipids, indirectly contributing to storage lipid accumulation, and maintaining thermomorphogenesis in P. tricornutum. This study also highlights the significance of DHA synthesis and lipid composition for environmental adaptation of P. tricornutum.
Collapse
Affiliation(s)
- Junkai Zhu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Shuangqing Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Life and Ecology Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Weizhong Chen
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xinde Xu
- Department of Human Nutrition, Zhejiang Medicine Co. Ltd., Xinchang 312500, China
- Department of Human Nutrition, Zhejiang Keming Biopharmaceuticals Co. Ltd., Xinchang 312500, China
| | - Xiaoping Wang
- Department of Human Nutrition, Zhejiang Medicine Co. Ltd., Xinchang 312500, China
- Department of Human Nutrition, Zhejiang Keming Biopharmaceuticals Co. Ltd., Xinchang 312500, China
| | - Xinwei Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jichang Han
- College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, INRAE, Université Grenoble Alpes, Unité mixte de recherche 5168, IRIG, CEA Grenoble, F-38041 Grenoble, France
| | - Alberto Amato
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, INRAE, Université Grenoble Alpes, Unité mixte de recherche 5168, IRIG, CEA Grenoble, F-38041 Grenoble, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, INRAE, Université Grenoble Alpes, Unité mixte de recherche 5168, IRIG, CEA Grenoble, F-38041 Grenoble, France
| | - Hanhua Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Andrew E Allen
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Yangmin Gong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Haibo Jiang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Life and Ecology Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| |
Collapse
|
13
|
Song J, Wang Y, Huang L, Peng Y, Tan K, Tan K. The effects of bivalve aquaculture on carbon storage in the water column and sediment of aquaculture areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173538. [PMID: 38802009 DOI: 10.1016/j.scitotenv.2024.173538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Many researchers have evaluated the fishery carbon sink potential of bivalve aquaculture, with most studies focusing on the Life Cycle Assessment (LCA) of individual bivalves, and there is currently no consensus on whether bivalves are carbon sinks or carbon sources. It is worth noting that most studies have not considered the impact of bivalve aquaculture on ecosystems when evaluating its carbon sink potential. In this context, based on existing literature, this article aims to comprehensively review the effects of bivalve aquaculture on carbon storage in the water column and sediment of aquaculture areas. In general, our findings revealed that moderate and low stocking densities of bivalve aquaculture do not lead to significant changes in the abundance of phytoplankton, but it does indeed alter the phytoplankton community structure from dominated by huge diatom with lower carbon densities to dominated by small phytoplankton with higher carbon densities. Therefore, bivalve aquaculture may increase the total carbon storage in the water column. In addition, bivalve aquaculture also increases the sedimentation rate of suspended particles, increasing the rate of carbon burial, especially in low-energy environment and shallow water areas. The findings of this article fill the knowledge gap of fishery carbon sink in bivalve aquaculture from an ecosystem perspective.
Collapse
Affiliation(s)
- Jingjing Song
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Qinzhou, Guangxi, China
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Leiheng Huang
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Qinzhou, Guangxi, China
| | - Ya Peng
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Qinzhou, Guangxi, China
| | - Kianann Tan
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Qinzhou, Guangxi, China
| | - Karsoon Tan
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Qinzhou, Guangxi, China.
| |
Collapse
|
14
|
Song J, Luo C, Lim L, Cheong KL, Farhadi A, Tan K. Protein quality of commercially important edible bivalves. Crit Rev Food Sci Nutr 2024; 65:1950-1961. [PMID: 38329037 DOI: 10.1080/10408398.2024.2315446] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Bivalves are a high-quality source of animal protein for human consumption. In recent years, the demand for bivalve proteins has increased dramatically, leading to a sharp increase in global production of marine bivalves. To date, although the amino acid profiles of many bivalves have been reported, such information has not been well organized. Therefore, there is an urgent need for a comprehensive scientific review of the protein quality of bivalves, especially commercially important edible bivalves. In this context, this study was conducted to evaluate the protein quality of commercially important edible bivalves. In general, most bivalves are rich in protein (> 50% of their dry weight) and amino acids (> 30 g/100g protein). Although most species of bivalves are rich in essential amino acids (EAA) (up to 50 g/100g protein), some species of edible bivalves have very low levels of EAA (< 5 g/100g protein). Based on the AA score, almost all bivalves have at least two limiting AAs. Most bivalve proteins provides delicious flavors with unami, sweetness and a hint of bitterness. The findings of this study not only serve as a a guide for selecting appropriate bivalves based on consumer preferences for specific AAs or AA scores, but also provide information on potential bivalve species for aquaculture to produce higher protein quality to meet the growing demand for high quality animal protein.
Collapse
Affiliation(s)
- Jingjing Song
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Cong Luo
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Leongseng Lim
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Ardavan Farhadi
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, China
| | - Karsoon Tan
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Qinzhou, Guangxi, China
| |
Collapse
|
15
|
Carroll KN. Impact of Climate Change on Dietary Nutritional Quality and Implications for Asthma and Allergy. Immunol Allergy Clin North Am 2024; 44:85-96. [PMID: 37973262 PMCID: PMC11233177 DOI: 10.1016/j.iac.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Asthma and allergic disorders are common in childhood with genetic and environmental determinants of disease that include prenatal nutritional exposures such as long-chain polyunsaturated fatty acids and antioxidants. Global climate change is implicated in asthma and allergic disorder morbidity with potential mechanisms including perturbations of ecosystems. There is support that environmental and climatic changes such as increasing global temperate and carbon dioxide levels affect aquatic and agricultural ecosystems with subsequent alterations in long-chain polyunsaturated fatty acid availability and nutrient quality and antioxidant capacity of certain crops, respectively. This article discusses asthma epidemiology and the influence of global climate change.
Collapse
Affiliation(s)
- Kecia N Carroll
- Division of General Pediatrics, Departments of Pediatrics and Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1198, New York, NY 10029, USA.
| |
Collapse
|
16
|
Alak G, Kara A, Akköse A, Gelen SU, Tanas ŞT, Uçar A, Parlak V, Atamanalp M. Effect of climate change on fillet quality and shelf-life of Oncorhynchus mykiss under controlled conditions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1511-1520. [PMID: 37804144 DOI: 10.1002/jsfa.13034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/16/2023] [Accepted: 10/07/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Temperature, which affects numerous physiological processes, has been described as the 'main ecological factor' for fish. The aim of this modeling study is to explore the impact of climate-induced temperature changes on fish fillet quality and shelf life. RESULTS Temperature stress in rainbow trout affected ash and moisture, and inhibited myofibril fragmentation in the fillets. However, with the increase in temperature, there was a decrease in the total amount of saturated fatty acids (∑SFA) and there were significant increases in the total amount of omega 3 (∑n3) and 22:6n-3 (DHA). It was determined that temperature increase had a negative effect on color, texture, water-holding capacity, water activity, pH, lactic acid, and glycogen levels in fillets, and it had a positive effect by delaying microbial spoilage, especially in cold storage. CONCLUSION This study suggest that the effects of climate change on product quality and shelf life in fish requires further research. It highlights knowledge gaps to guide future research in this emerging field. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gonca Alak
- Department of Seafood Processing, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| | - Ayşe Kara
- Department of Seafood Processing, Faculty of Fisheries, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Ahmet Akköse
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, Erzurum, Turkey
| | - Sevda Urçar Gelen
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Şeyda Tacer Tanas
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| | - Arzu Uçar
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| | - Veysel Parlak
- Department of Basic Sciences, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| |
Collapse
|
17
|
Liu X, Huang L, Lim L, Fazhan H, Tan K. The impact of elevated temperature on the macro-nutrients of commercially important marine bivalves: the implication of ocean warming. Crit Rev Food Sci Nutr 2024; 65:1833-1840. [PMID: 38294719 DOI: 10.1080/10408398.2023.2301432] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Bivalves are nutritious animal protein source for humans, rich in high quality proteins, lipids, and carbohydrates. Many studies have shown that ocean warming has detrimental effects on the nutritional quality of bivalves. Although a number of studies are available on the effect of ocean warming on the nutritional value of bivalves, this information is not well organized. In this context, the current study provides a critical review of the effects of ocean warming on the nutritional quality of commercially important edible marine bivalves. In general, ocean warming has caused a reduction in the total lipid and carbohydrate content of bivalves, especially those bivalves inhabiting temperate regions. As for protein, there is no general trend in the effects of ocean warming on the protein reserves of bivalves. In addition, the specific effects of elevated temperature on the macro-nutrients of bivalves highly depend on the tissues, sex and developmental stages of bivalves, as well as seasonal factors. This review not only fills in the knowledge gap regarding the effects of elevated temperature on the macro-nutrients of commercially important marine bivalves but also provides guidance for the establishment of bivalve aquaculture and fisheries management plans to mitigate the impact of climate change.
Collapse
Affiliation(s)
- Xiaoxia Liu
- College of Economics and Management, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Leiheng Huang
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Leongseng Lim
- Borneo Marine Research Institute, University Malaysia Sabah, Sabah, Malaysia
| | - Hanafiah Fazhan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, University Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Karsoon Tan
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Qinzhou, Guangxi, China
| |
Collapse
|
18
|
Tan K, Huang L, Tan K, Lim L, Peng Y, Cheong KL. Effects of culinary treatments on the lipid nutritional quality of fish and shellfish. Food Chem X 2023; 19:100856. [PMID: 37780264 PMCID: PMC10534239 DOI: 10.1016/j.fochx.2023.100856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/06/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Coronary heart disease (CHD) is one of the leading causes of death worldwide. Seafood, especially fish and shellfish, is a healthy food that reduces the risk of CHD. In many regions, seafood is consumed cooked to eliminate potentially pathogenic microorganisms. Although there have been many reports of culinary preparations causing changes in the fatty acid profile of fish and shellfish, this information has not been well organized, and most of it is not associated to CHD. Therefore, this study was conducted to study the effect of culinary treatments of seafood on lipid nutritional quality in relation to promotion/prevention of CHD. In this study, fatty acid profiles of fish and shellfish prepared with different culinary preparations were obtained from published literature. Lipid nutritional quality indices related to promoting/preventing CHD were calculated and analyzed to reveal the effects of culinary treatment on the lipid nutritional quality of fish and shellfish in promoting/preventing of CHD. The information in this article is very useful and can fill the knowledge gap of the effects of culinary preparation on the lipid nutritional quality of fish and shellfish. Such information is very useful for guiding consumers to choose better ways to cook fish and shellfish to reduce the risk of CHD.
Collapse
Affiliation(s)
- Karsoon Tan
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Centre, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Leiheng Huang
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Centre, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Kianann Tan
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Centre, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Leongseng Lim
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Ya Peng
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Centre, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
19
|
Sato M, Ota R, Kobayashi S, Yamakawa-Kobayashi K, Miura T, Ido A, Ohhara Y. Bioproduction of n-3 polyunsaturated fatty acids by nematode fatty acid desaturases and elongase in Drosophila melanogaster. Transgenic Res 2023; 32:411-421. [PMID: 37615877 DOI: 10.1007/s11248-023-00363-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023]
Abstract
n-3 polyunsaturated fatty acids (n-3 PUFAs), including α-linolenic acid and eicosapentaenoic acid (EPA), are essential nutrients for vertebrates including humans. Vertebrates are n-3 PUFA-auxotrophic; hence, dietary intake of n-3 PUFAs is required for their normal physiology and development. Although fish meal and oil have been utilized as primary sources of n-3 PUFAs by humans and aquaculture, these traditional n-3 PUFA sources are expected to be exhausted because of the increasing consumption requirements of humans. Hence, it is necessary to establish alternative n-3 PUFA sources to reduce the gap between the supply and demand of n-3 PUFAs. Here, we investigated whether insects, which are considered as a novel source of essential nutrients, could store n-3 PUFAs by the forced expression of n-3 PUFA biosynthetic enzymes. We utilized Drosophila as an insect model to generate transgenic strains expressing Caenorhabditis elegans PUFA biosynthetic enzymes and examined their effects on the proportion of fatty acids. The ubiquitous expression of methyl-end desaturase FAT-1 prominently enhanced the proportions of α-linolenic acid, indicating that FAT-1 is useful for metabolic engineering to fortify α-linolenic acid in insect. Furthermore, the ubiquitous expression of nematode front-end desaturases (FAT-3 and FAT-4), PUFA elongase (ELO-1), and FAT-1 led to EPA bioproduction. Hence, nematode PUFA biosynthetic genes may serve as powerful genetic tools for enhancing the proportion of EPA in insects. This study represents the first step toward the establishment of n-3 PUFA-producing insects.
Collapse
Affiliation(s)
- Mai Sato
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Ryoma Ota
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, 320-8551, Japan
| | - Satoru Kobayashi
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Kimiko Yamakawa-Kobayashi
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Takeshi Miura
- Graduate School of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Atsushi Ido
- Graduate School of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Yuya Ohhara
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.
| |
Collapse
|
20
|
Harwood JL. Polyunsaturated Fatty Acids: Conversion to Lipid Mediators, Roles in Inflammatory Diseases and Dietary Sources. Int J Mol Sci 2023; 24:ijms24108838. [PMID: 37240183 DOI: 10.3390/ijms24108838] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are important components of the diet of mammals. Their role was first established when the essential fatty acids (EFAs) linoleic acid and α-linolenic acid were discovered nearly a century ago. However, most of the biochemical and physiological actions of PUFAs rely on their conversion to 20C or 22C acids and subsequent metabolism to lipid mediators. As a generalisation, lipid mediators formed from n-6 PUFAs are pro-inflammatory while those from n-3 PUFAs are anti-inflammatory or neutral. Apart from the actions of the classic eicosanoids or docosanoids, many newly discovered compounds are described as Specialised Pro-resolving Mediators (SPMs) which have been proposed to have a role in resolving inflammatory conditions such as infections and preventing them from becoming chronic. In addition, a large group of molecules, termed isoprostanes, can be generated by free radical reactions and these too have powerful properties towards inflammation. The ultimate source of n-3 and n-6 PUFAs are photosynthetic organisms which contain Δ-12 and Δ-15 desaturases, which are almost exclusively absent from animals. Moreover, the EFAs consumed from plant food are in competition with each other for conversion to lipid mediators. Thus, the relative amounts of n-3 and n-6 PUFAs in the diet are important. Furthermore, the conversion of the EFAs to 20C and 22C PUFAs in mammals is rather poor. Thus, there has been much interest recently in the use of algae, many of which make substantial quantities of long-chain PUFAs or in manipulating oil crops to make such acids. This is especially important because fish oils, which are their main source in human diets, are becoming limited. In this review, the metabolic conversion of PUFAs into different lipid mediators is described. Then, the biological roles and molecular mechanisms of such mediators in inflammatory diseases are outlined. Finally, natural sources of PUFAs (including 20 or 22 carbon compounds) are detailed, as well as recent efforts to increase their production.
Collapse
Affiliation(s)
- John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| |
Collapse
|
21
|
Stipcich P, Beca-Carretero P, Álvarez-Salgado XA, Apostolaki ET, Chartosia N, Efthymiadis PT, Jimenez CE, La Manna G, Pansini A, Principato E, Resaikos V, Stengel DB, Ceccherelli G. Effects of high temperature and marine heat waves on seagrasses: Is warming affecting the nutritional value of Posidonia oceanica? MARINE ENVIRONMENTAL RESEARCH 2023; 184:105854. [PMID: 36577310 DOI: 10.1016/j.marenvres.2022.105854] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/17/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Primary producers nutritional content affects the entire food web. Here, changes in nutritional value associated with temperature rise and the occurrence of marine heat waves (MHWs) were explored in the endemic Mediterranean seagrass Posidonia oceanica. The variability of fatty acids (FAs) composition and carbon (C) and nitrogen (N) content were examined during summer 2021 from five Mediterranean sites located at the same latitude but under different thermal environments. The results highlighted a decrease in unsaturated FAs and C/N ratio and an increase of monounsaturated FA (MUFA) and N content when a MHW occurred. By contrast, the leaf biochemical composition seems to be adapted to local water temperature since only few significant changes in MUFA were found and N and C/N had an opposite pattern compared to when a MHW occurs. The projected increase in temperature and frequency of MHW suggest future changes in the nutritional value and palatability of leaves.
Collapse
Affiliation(s)
- Patrizia Stipcich
- Dipartimento di Architettura, Design e Urbanistica, Università degli Studi di Sassari, Via Piandanna 4, 07100, Sassari, Italy.
| | - Pedro Beca-Carretero
- Department of Oceanography, Instituto de Investigacións Mariñas (IIM-CSIC), Vigo, Spain; Botany and Plant Science, School of Natural Sciences, University of Galway, Galway, Ireland
| | | | - Eugenia T Apostolaki
- Institute of Oceanography, Hellenic Centre for Marine Research, PO Box 2214, 71003, Heraklion, Crete, Greece
| | - Niki Chartosia
- Department of Biological Sciences, University of Cyprus, Nicosia, 1678, Cyprus
| | | | - Carlos E Jimenez
- Enalia Physis Environmental Research Centre (ENALIA), Acropoleos St. 2, Aglanjia 101, Nicosia, Cyprus; Energy, Environment and Water Research Center (EEWRC) of the Cyprus Institute, Nicosia, Cyprus
| | - Gabriella La Manna
- Dipartimento di Scienze Chimiche Fisiche Matematiche e Naturali, Università degli Studi di Sassari, Via Piandanna 4, 07100, Sassari, Italy; MareTerra Onlus, Environmental Research and Conservation, 07041, Alghero, SS, Italy
| | - Arianna Pansini
- Dipartimento di Architettura, Design e Urbanistica, Università degli Studi di Sassari, Via Piandanna 4, 07100, Sassari, Italy
| | - Elena Principato
- Area Marina Protetta "Isole Pelagie", Via Cameroni, s.n.c., 92031, Lampedusa, Italy
| | - Vasilis Resaikos
- Enalia Physis Environmental Research Centre (ENALIA), Acropoleos St. 2, Aglanjia 101, Nicosia, Cyprus
| | - Dagmar B Stengel
- Institute of Oceanography, Hellenic Centre for Marine Research, PO Box 2214, 71003, Heraklion, Crete, Greece
| | - Giulia Ceccherelli
- Dipartimento di Scienze Chimiche Fisiche Matematiche e Naturali, Università degli Studi di Sassari, Via Piandanna 4, 07100, Sassari, Italy
| |
Collapse
|
22
|
Mellin C, Hicks CC, Fordham DA, Golden CD, Kjellevold M, MacNeil MA, Maire E, Mangubhai S, Mouillot D, Nash KL, Omukoto JO, Robinson JPW, Stuart-Smith RD, Zamborain-Mason J, Edgar GJ, Graham NAJ. Safeguarding nutrients from coral reefs under climate change. Nat Ecol Evol 2022; 6:1808-1817. [PMID: 36192542 DOI: 10.1038/s41559-022-01878-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/14/2022] [Indexed: 12/15/2022]
Abstract
The sustainability of coral reef fisheries is jeopardized by complex and interacting socio-ecological stressors that undermine their contribution to food and nutrition security. Climate change has emerged as one of the key stressors threatening coral reefs and their fish-associated services. How fish nutrient concentrations respond to warming oceans remains unclear but these responses are probably affected by both direct (metabolism and trophodynamics) and indirect (habitat and species range shifts) effects. Climate-driven coral habitat loss can cause changes in fish abundance and biomass, revealing potential winners and losers among major fisheries targets that can be predicted using ecological indicators and biological traits. A critical next step is to extend research focused on the quantity of available food (fish biomass) to also consider its nutritional quality, which is relevant to progress in the fields of food security and malnutrition. Biological traits are robust predictors of fish nutrient content and thus potentially indicate how climate-driven changes are expected to impact nutrient availability within future food webs on coral reefs. Here, we outline future research priorities and an anticipatory framework towards sustainable reef fisheries contributing to nutrition-sensitive food systems in a warming ocean.
Collapse
Affiliation(s)
- Camille Mellin
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | | | - Damien A Fordham
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Christopher D Golden
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | - M Aaron MacNeil
- Ocean Frontier Institute, Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Eva Maire
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | | | - David Mouillot
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, MARBEC, Montpellier, France
| | - Kirsty L Nash
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
- Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania, Australia
| | - Johnstone O Omukoto
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
- Kenya Marine and Fisheries Research Institute, Mombasa, Kenya
| | | | - Rick D Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Jessica Zamborain-Mason
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Graham J Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | | |
Collapse
|
23
|
Dobrowolski A, Nawijn W, Mirończuk AM. Brown seaweed hydrolysate as a promising growth substrate for biomass and lipid synthesis of the yeast yarrowia lipolytica. Front Bioeng Biotechnol 2022; 10:944228. [PMID: 36061426 PMCID: PMC9428158 DOI: 10.3389/fbioe.2022.944228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/29/2022] [Indexed: 11/21/2022] Open
Abstract
Biomass of the brown algae Fucus vesiculosus and Saccharina latissima is a promising, renewable feedstock because of the high growth rate, accessibility and content of glucose and mannitol. Saccharification of seaweeds is a simple process due to the lack of lignocellulose in the cell wall. The high content of glucose and mannitol makes these seaweeds an attractive feedstock for lipid production in the yeast Yarrowia lipolytica. This study demonstrated that hydrolysates of brown algae biomass can be applied as a substrate for synthesis of yeast biomass and lipids without any supplementation. To increase the lipid titer in yeast biomass, we employed an engineered strain of Y. lipolytica overexpressing DGA1/DGA2. In consequence, the C/N ratio has a lower impact on lipid synthesis. Moreover, the applied substrates allowed for high synthesis of unsaturated fatty acids (UFA); the level exceeded 90% in the fatty acid pool. Oleic (C18:1) and linoleic acids (C18:2) achieved the highest content. The study showed that Y. lipolytica is able to grow on the seaweed hydrolysate and produces a high content of UFA in the biomass.
Collapse
|
24
|
Tan K, Zhang H, Zheng H. Carotenoid content and composition: A special focus on commercially important fish and shellfish. Crit Rev Food Sci Nutr 2022; 64:544-561. [PMID: 35930379 DOI: 10.1080/10408398.2022.2106937] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Carotenoids are natural pigments that provide many health benefits to living organisms. Although terrestrial plants are the major dietary source of carotenoids for humans, aquatic animals (especially fish and shellfish) are equally important because they are rich in certain important carotenoids lacking in fruits and vegetables. Although extensive research has focused on exploring the carotenoid content and composition in fish and shellfish, this information is poorly organized. This paper reviews the scientific evidence for the carotenoid content and composition in fish and shellfish. It makes serious attempts to summarize the relevant data published on specific research questions in order to improve the understanding of various evidence to clarify the research status of carotenoids in fish and shellfish and defining topics for future studies. From the analysis of published data, it is obvious that most fish and shellfish are rich in complex carotenoids (e.g. astaxanthin, fucoxanthin, fucoxanthinol, lutein). These carotenoids have stronger antioxidant effect, higher efficiency in removing the singlet oxygen and the peroxyl radicals, and have a variety of health benefits. Carotenoid levels in fish and shellfish depend on genotype, climatic conditions of the production area, storage and cooking methods. However, the information of the bioavailability of fish/shellfish carotenoids to human is very limited, which hinders the actual contributions to health. The findings of this study can be used as a guide to select appropriate fish and shellfish as dietary sources of carotenoids, and provide information about potential fish and shellfish species for aquaculture to produce carotenoids to meet part of the growing demand for natural carotenoids.
Collapse
Affiliation(s)
- Karsoon Tan
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou, China
- Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Hongkuan Zhang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou, China
- Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Huaiping Zheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou, China
- Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| |
Collapse
|