1
|
Shi S, Wei X, Peng X, Pu X, Feng S, Gao X, Yu X. An oxidized chondroitin sulfate-crosslinked and CuCDs-loaded decellularized bovine pericardium with improved anti-coagulation, pro-endothelialization and anti-calcification properties for BHVs. J Mater Chem B 2025. [PMID: 40424007 DOI: 10.1039/d5tb00827a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
With the growth of the elderly people and the development of transcatheter aortic valve replacement (TAVR) technology, bioprosthetic heart valves (BHVs) originating from the decellularized bovine pericardium (DBP) have become a favourable option for severe valvular heart disease (VHD). However, currently, available commercial bioprosthetic heart valves prepared from glutaraldehyde (GA)-crosslinked xenografts have limited durability because of various factors, including severe cytotoxicity, inflammatory response, poor pro-endothelialization ability and calcification. Therefore, the development of valve materials with better performance is urgent. In this work, we first synthesized Cu-doped carbon dots (CuCDs) with excellent biocompatibility and high stability using sodium citrate, ethylenediamine and copper chloride. Subsequently, oxidized chondroitin sulfate (OCS) was used to crosslink the decellularized bovine pericardium to obtain OCS-BP followed by loading CuCDs onto the surface of this OCS-fixed BP sample through amide bonds formed by an EDC/NHS-catalyzed reaction between the functional groups on CuCDs and OCS-BP to prepare the BHV (CuCDs-OCS-BP) with specific properties. Relevant experiments conducted both in vivo and in vitro indicate that CuCDs-OCS-BP with good stability showed improved mechanical properties, compliance and flexibility, encouraging HUVEC-cytocompatibility, excellent anti-blood cell adhesion, antithrombogenic properties, anti-inflammatory and anti-calcification properties, and a good endothelialisation ability due to the catalytic generation of endogenous nitric oxide. Overall, CuCDs-OCS-BP is a promising material for BHVs.
Collapse
Affiliation(s)
- Shubin Shi
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xu Wei
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xu Peng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, P. R. China
| | - Xinyun Pu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Shaoxiong Feng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xi Gao
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
2
|
Sun W, Zhao X, Zhao X, Meng L, Tang M, Li J, Chang Y, Xiong Y, Wang H, Chen J, Qing G. Significantly enhanced capture efficiency of cell-imprinted material for circulating tumor cells via a flexible and ultra-strong double-armed phenylboronic acid design. Biomaterials 2025; 322:123397. [PMID: 40373516 DOI: 10.1016/j.biomaterials.2025.123397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 05/17/2025]
Abstract
Circulating tumor cells (CTC) have been incontrovertibly regarded as a critically essential detection tool within the realm of cancer combat, being decidedly preferred by oncology clinicians and serving as the preponderant primary targets for single-cell analysis. However, several challenges hinder the effective capture of CTC from blood, including their rarity, heterogeneity across cancer types, the complexity of the blood environment, and potential damage to cell viability. Here we design a flexible double-armed phenylboric acid (DPBA) that targets double-branched sialylated glycans (SGs) on the surface of liver CTC. The binding affinity of DPBA (200 nM) is 33 times greater than that of typical phenylboric acid, as confirmed by glycoproteomics analysis demonstrating a strong prevalence for SGs. By copolymerization of DPBA with polyethylene glycol dimethacrylate (PEGDMA), using SMMC-7721 cells as templates, we developed a cell-imprinted hydrogel featuring compact polymeric networks interconnected by both chemical crosslinking and hydrogen bonding. This hydrogel exhibits an ultra-low swelling capacity of 5 %, effectively preserving the nano- and micro-morphologies of cell imprinting. It also demonstrates low protein adhesion, appropriate elasticity and reversibility, as well as satisfactory blood and cell compatibility. The high affinity for double-branched SGs and clear cell imprinting endow the material with precise capture efficiency for CTC, enabling accurate discrimination between liver cancer patients and healthy individuals, with an excellent area under the curve (AUC) of 0.99 and a high classification accuracy of 96 %. Importantly, the captured CTC could be released alive for genomics analysis. The material costs just 1.98 dollars per sample, which is only 1/200th of the typical medical price. This study highlights the significant potential of flexible double-armed molecular design in the development of CTC capture materials, which will promote downstream single-cell multi-proteomics analysis and facilitate early cancer diagnostics.
Collapse
Affiliation(s)
- Wenjing Sun
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China; State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Xinmiao Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, PR China
| | - Xinjia Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Lingkai Meng
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, Shanghai Tech University, Shanghai, 201210, PR China
| | - Mingliang Tang
- College of Life Sciences, Wuhan University, Wuhan, 430000, PR China
| | - Jiaqi Li
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Yongxin Chang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Yuting Xiong
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Hao Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China.
| | - Guangyan Qing
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.
| |
Collapse
|
3
|
Zheng M, Tan Y, Yuan Y, Wang H, Yang H. Regulatory Mechanisms of Cytotoxicity and Hemocompatibility Induced by Phase Transformation of Kaolinite Nanocarrier. J Phys Chem Lett 2025; 16:3945-3953. [PMID: 40211690 DOI: 10.1021/acs.jpclett.5c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Revealing the regulatory mechanism underlying the cytotoxicity and hemocompatibility of nanocarriers is crucial for their biofunctionalized design and practical application in nanotherapeutics. However, the microstructural and physicochemical properties of nanocarriers inevitably change during the modification process, and the impact of these changes on biosafety remains unclear. Herein, we investigate the effects of phase transformation of kaolinite (Kaol) nanoclay on its biosafety. Experimental results indicate that the adjoint dehydration, dehydroxylation, and disaggregation during phase transformation of Kaol could alter the mode of interaction at the cell interface and mitigate damage to cell membranes. Furthermore, the heat-treated Kaol exhibits reduced hemolysis while maintaining red blood cell adhesion and pro-coagulant functions, without affecting the structure of plasma proteins. Collectively, this study could provide a novel insight into the correlation between Kaol microstructure and biosafety.
Collapse
Affiliation(s)
- Meng Zheng
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Ya Tan
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Yiting Yuan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Hao Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Huaming Yang
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
4
|
Ji H, Yu K, Abbina S, Xu L, Xu T, Cheng S, Vappala S, Arefi SMA, Rana MM, Chafeeva I, Drayton M, Gonzalez K, Liu Y, Grecov D, Conway EM, Zhao W, Zhao C, Kizhakkedathu JN. Antithrombotic coating with sheltered positive charges prevents contact activation by controlling factor XII-biointerface binding. NATURE MATERIALS 2025; 24:626-636. [PMID: 39533064 PMCID: PMC11961369 DOI: 10.1038/s41563-024-02046-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Antithrombotic surfaces that prevent coagulation activation without interfering with haemostasis are required for blood-contacting devices. Such materials would restrain device-induced thrombogenesis and decrease the need for anticoagulant use, thereby reducing unwanted bleeding. Here, by optimizing the interactions with coagulation factor XII rather than preventing its surface adsorption, we develop a substrate-independent antithrombotic polymeric coating with sheltered positive charges. The antithrombic properties of the coating were demonstrated in vitro with human blood and in vivo using a carotid artery-jugular vein shunt model in rabbits. The coating exhibits a strong interaction with factor XII, but results in a low reciprocal activation of the contact pathway that triggers clot formation. These findings contradict the prevailing strategy of designing antithrombotic materials through protein-repelling surfaces. Overall, the polymeric coating we describe can benefit most blood-contacting devices and is a useful engineering guideline for designing surfaces with improved antithrombotic properties.
Collapse
Affiliation(s)
- Haifeng Ji
- Centre for Blood Research & Life Science Institute, University of British Columbia, Life Sciences Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kai Yu
- Centre for Blood Research & Life Science Institute, University of British Columbia, Life Sciences Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Srinivas Abbina
- Centre for Blood Research & Life Science Institute, University of British Columbia, Life Sciences Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lin Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Tao Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Shengjun Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Sreeparna Vappala
- Centre for Blood Research & Life Science Institute, University of British Columbia, Life Sciences Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - S M Amin Arefi
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Md Mohosin Rana
- Centre for Blood Research & Life Science Institute, University of British Columbia, Life Sciences Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Irina Chafeeva
- Centre for Blood Research & Life Science Institute, University of British Columbia, Life Sciences Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew Drayton
- Centre for Blood Research & Life Science Institute, University of British Columbia, Life Sciences Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Gonzalez
- Centre for Blood Research & Life Science Institute, University of British Columbia, Life Sciences Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yun Liu
- Chengdu First People's Hospital, Chengdu, People's Republic of China
| | - Dana Grecov
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edward M Conway
- Centre for Blood Research & Life Science Institute, University of British Columbia, Life Sciences Centre, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, People's Republic of China.
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research & Life Science Institute, University of British Columbia, Life Sciences Centre, Vancouver, British Columbia, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
5
|
Wang X, Yan Z, Yao M, Li X, Zhao Z, Cao C, Zhao Z, Yao F, Wei Y, Zhang H, Li J. Enzyme-Mimetic Zwitterionic Microgel Coatings for Antifouling and Enhanced Antithrombosis. ACS APPLIED BIO MATERIALS 2025; 8:2580-2591. [PMID: 40048393 DOI: 10.1021/acsabm.5c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Blood-contacting devices serve as a mainstay in clinical treatment, yet thrombosis remains a major cause of device failure and poses risks to patient health. In this study, we developed a diselenide cross-linker, N,N'-bis(methacryloyl)selenocystamine (BMASC), incorporated into poly(sulfobetaine methacrylate) (PSBMA) microgels (defined as BSM) to create an enzyme-mimetic zwitterionic microgel coating (BSMC). The superhydrophilicity of PSBMA provides outstanding antifouling performance, while the diselenide bonds mimic the catalytic action of glutathione peroxidase (GPx) in generating nitric oxide (NO). The microgels are covalently anchored to substrates pretreated with polydopamine (PDA) and polyethylenimine (PEI) through an epoxy-amine ring-opening reaction. During the drying process, the interpenetrating PSBMA chains of the microgels diffuse, forming a dense and smooth hydrogel coating. The BSMC exhibits exceptional resistance to nonspecific adhesion of proteins, cells, and bacteria, with the synergistic effects of antifouling properties and NO effectively inhibiting platelet adhesion. Furthermore, rabbit blood circulation experiments demonstrate the superior antithrombotic efficacy of the BSMC. This coating holds promise as an effective solution to address the thrombus formation challenges of blood-contacting devices.
Collapse
Affiliation(s)
- Xueyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhuojun Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Mengmeng Yao
- Biomedical Engineering Cockrell School of Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Xiuqiang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, China
| | - Zhongming Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Cheng Cao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhijie Zhao
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Yuping Wei
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, China
| | - Hong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| |
Collapse
|
6
|
Todesco M, Lezziero G, Gerosa G, Bagno A. Polymeric Heart Valves: Do They Represent a Reliable Alternative to Current Prosthetic Devices? Polymers (Basel) 2025; 17:557. [PMID: 40076051 PMCID: PMC11902043 DOI: 10.3390/polym17050557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/05/2025] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
With the increasing number of people suffering from heart valve diseases (e.g., stenosis and/or insufficiency), the attention paid to prosthetic heart valves has grown significantly. Developing a prosthetic device that fully replaces the functionality of the native valve remains a huge challenge. Polymeric heart valves (PHVs) represent an appealing option, offering the potential to combine the robustness of mechanical valves with the enhanced biocompatibility of bioprosthetic ones. Over the years, novel biomaterials (such as promising new polymers and nanocomposites) and innovative designs have been explored for possible applications in manufacturing PHVs. This work provides a comprehensive overview of PHVs' evolution in terms of materials, design, and fabrication techniques, including in vitro and in vivo studies. Moreover, it addresses the drawbacks associated with PHV implementation, such as their limited biocompatibility and propensity for sudden failure in vivo. Future directions for further development are presented. Notably, PHVs can be particularly relevant for transcatheter application, the most recent minimally invasive approach for heart valve replacement. Despite current challenges, PHVs represent a promising area of research with the potential to revolutionize the treatment of heart valve diseases, offering more durable and less invasive solutions for patients.
Collapse
Affiliation(s)
- Martina Todesco
- Department of Industrial Engineering, University of Padua, 35131 Padua, Italy; (M.T.); (G.L.)
| | - Gianluca Lezziero
- Department of Industrial Engineering, University of Padua, 35131 Padua, Italy; (M.T.); (G.L.)
| | - Gino Gerosa
- Department of Cardiac, Thoracic Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy;
| | - Andrea Bagno
- Department of Industrial Engineering, University of Padua, 35131 Padua, Italy; (M.T.); (G.L.)
| |
Collapse
|
7
|
Bahig J, Syeda H, Shoker A, Doan H, Abdelrasoul A. Impact of pH-dependent dynamics of human serum proteins on dialysis membranes: Cryptographic structure assessment, synchrotron imaging of membrane-protein adsorption, and molecular docking studies. Colloids Surf B Biointerfaces 2025; 246:114354. [PMID: 39536605 DOI: 10.1016/j.colsurfb.2024.114354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Proteins are fundamental to biochemical processes and critical in hemodialysis. This study investigates the impact of pH on human serum albumin (HSA), fibrinogen (FB), and transferrin (TRF) interactions with polyarylethersulfone (PAES) hemodialysis membranes. A multi-method approach was utilized, including protein crystallography for structural insights, hydration layer analysis to explore solvation and interaction potentials, molecular docking using AutoDock 4.0 for binding affinity simulations, and in-situ X-ray synchrotron SR-μCT imaging to observe protein deposition dynamics. Molecular docking revealed that PAES demonstrated superior binding energies and interaction patterns with FB and TRF compared to cellulose triacetate (CTA), facilitated by specific hydrogen bonding within a water shell. CTA displayed weaker, hydration-sensitive interactions varying with pH. Imaging studies indicated that FB showed higher adsorption at pH 6 than at pH 7.2, predominantly in the middle membrane regions. Similarly, HSA and TRF exhibited increased adsorption at pH 6, suggesting a stronger affinity under acidic conditions. Mixed protein solutions also indicated higher adsorption at pH 6, emphasizing an increased risk of membrane fouling. These findings highlight the crucial role of pH in modulating protein-membrane interactions and enhancing the efficacy of hemodialysis. A deeper understanding of hydration environments and their effects on protein binding affinities provides valuable insights for optimizing membrane design and performance. Clinically, this research suggests that fine-tuning pH during hemodialysis could mitigate protein fouling on membranes, thereby improving procedural efficiency and potentially leading to better patient outcomes through enhanced dialysis effectiveness.
Collapse
Affiliation(s)
- Jumanah Bahig
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan S7N 5A9, Canada; Kinesiology, University of Saskatchewan, 87 Campus Dr, Saskatoon, Saskatchewan S7N 5B, Canada
| | - Hira Syeda
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan S7N 5A9, Canada
| | - Ahmed Shoker
- Nephrology Division, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, Saskatchewan S7N 5E5, Canada; Saskatchewan Transplant Program, St. Paul's Hospital, 1702 20th Street West, Saskatoon, Saskatchewan S7M 0Z9, Canada
| | - Huu Doan
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria St., Toronto, ON M5B 2K3, Canada
| | - Amira Abdelrasoul
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan S7N 5A9, Canada; Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan S7N 5A9, Canada.
| |
Collapse
|
8
|
Hwang YH, Shepherd SJ, Kim D, Mukalel AJ, Mitchell MJ, Issadore DA, Lee D. Robust, Scalable Microfluidic Manufacturing of RNA-Lipid Nanoparticles Using Immobilized Antifouling Lubricant Coating. ACS NANO 2025; 19:1090-1102. [PMID: 39700475 DOI: 10.1021/acsnano.4c12965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Despite the numerous advantages demonstrated by microfluidic mixing for RNA-loaded lipid nanoparticle (RNA-LNP) production over bulk methods, such as precise size control, homogeneous distributions, higher encapsulation efficiencies, and improved reproducibility, their translation from research to commercial manufacturing remains elusive. A persistent challenge hindering the adoption of microfluidics for LNP production is the fouling of device surfaces during prolonged operation, which significantly diminishes performance and reliability. The complexity of LNP constituents, including lipids, cholesterol, RNA, and solvent mixtures, makes it difficult to find a single coating that can prevent fouling. To address this challenge, we propose using an immobilized liquid lubricant layer of perfluorodecalin (PFD) to create an antifouling surface that can repel the multiple LNP constituents. We apply this technology to a staggered herringbone microfluidic (SHM) mixing chip and achieve >3 h of stable operation, a >15× increase relative to gold standard approaches. We also demonstrate the compatibility of this approach with a parallelized microfluidic platform that incorporates 256 SHM mixers, with which we demonstrate scale up, stable production at L/h production rates suitable for commercial scale applications. We verify that the LNPs produced on our chip match both the physiochemical properties and performance for both in vitro and in vivo mRNA delivery as those made on chips without the coating. By suppressing surface fouling with an immobilized liquid lubricant layer, this technology not only enhances RNA-LNP production but also promises to transform the microfluidic manufacturing of diverse materials, ensuring more reliable and robust processes.
Collapse
Affiliation(s)
- Yoon-Ho Hwang
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Polymer Engineering, Pukyong National University, Nam-gu, Busan 48513, Republic of Korea
| | - Sarah J Shepherd
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Dongyoon Kim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alvin J Mukalel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David A Issadore
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
9
|
Wu Q, Guo S, Liang X, Sun W, Lei J, Pan L, Liu X, Chen H. Endothelium-Inspired Hemocompatible Silicone Surfaces: An Elegant Balance between Antifouling Properties and Endothelial Cell Selectivity. Biomacromolecules 2024; 25:7202-7215. [PMID: 39190804 DOI: 10.1021/acs.biomac.4c00890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
To address the adverse reactions caused by the implantation of blood-contacting materials, researchers have developed different strategies, of which mimicking multiple key features of endothelial cells is the most effective. However, simultaneously immobilizing multiple chemical components on a single material surface and maintaining the effects of individual components are challenging. In this work, endothelium-mimicking silicone surfaces were developed by incorporating the antifouling polymer poly(oligo(ethylene glycol) methacrylate), the glycosaminoglycan analog poly(sodium 4-vinyl-benzenesulfonate) and a nitric oxide catalyst (selenocystamine dihydrochloride). Through the rational regulation of multiple chemical components, the surfaces harmoniously resisted nonspecific protein adsorption, platelet adhesion and activation and smooth muscle cell hyperproliferation while promoting endothelial cell proliferation and migration. The coculture experiment with HUVECs and HUVSMCs showed that the optimum selectivity of HUVECs/HUVSMCs was ∼1.7. This work contributes insight into the control of antifouling properties and endothelial selectivity, providing a new avenue for the development of blood-contacting materials.
Collapse
Affiliation(s)
- Qiulian Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Shuaihang Guo
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Xinyi Liang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Wei Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Jiao Lei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Lisha Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| |
Collapse
|
10
|
Liu W, Wan Y, Wang X, Li Y, Gao B, Zhang Y, Wang K, Feng Y. "Synergistic anticoagulant and endothelial regeneration strategy" based on mussel-inspired phospholipid copolymer coating and bioactive zeolitic imidazolate frameworks-90 to maintain the patency of CoCr stent. Int J Biol Macromol 2024; 280:135842. [PMID: 39306176 DOI: 10.1016/j.ijbiomac.2024.135842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Given the risks of poor patient compliance and bleeding associated with current dual antiplatelet therapies, it is urgent to develop the next generation of cardiovascular stents with anticoagulation and rapid endothelialization capabilities. Inspired by the prominent bioactivity and bioavailability of zeolitic imidazolate framework-90 (ZIF-90) in driving endothelial cell (EC) morphogenesis, this research proposes a "synergistic anticoagulant and endothelial regeneration strategy" depending on mussel-inspired phospholipid copolymer (MIPC) and ZIF-90. Depending on the copolymerization of the catechol with dopamine (Dopa) monomers, Dopa/MIPC coating was immobilized on the surface of CoCr via a one-pot process for resisting the initial thrombosis induced by platelets and fibrinogen. Meanwhile, ZIF-90 was loaded on the coating via coordination effect, aiming to accelerate the proliferation and migration of ECs. Compared with CoCr, the well-designed CoCr-Dopa/MIPC@ZIF-90 not only reduced fibrinogen adhesion by approximately 40 % and platelet adhesion by almost 55 %, but also promoted the proliferation and migration of ECs significantly in vitro. Furthermore, the blood flow velocity of CoCr-Dopa/MIPC@ZIF-90 stent was similar to natural aorta and ECs coverage on it was greatly strengthened after 30 days in a rat aorta vascular stent implantation model. Collectively, CoCr-Dopa/MIPC@ZIF-90 exhibited obvious superiority in reducing the formation of thrombus and promoting endothelial regeneration, which might meet the high requirement for the next generation of vascular stent.
Collapse
Affiliation(s)
- Wen Liu
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Ye Wan
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 91, Tianjin 300071, China
| | - Xiaoyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China; College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Ying Li
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Bin Gao
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Yingying Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin 300222, Tianjin, China; Tianjin Laboratory of Cardiovascular, Tianjin 300222, Tianjin, China
| | - Kai Wang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 91, Tianjin 300071, China.
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Weijin Road 92, Tianjin 300072, China.
| |
Collapse
|
11
|
Fan D, Liu X, Chen H. Endothelium-Mimicking Materials: A "Rising Star" for Antithrombosis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53343-53371. [PMID: 39344055 DOI: 10.1021/acsami.4c12117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The advancement of antithrombotic materials has significantly mitigated the thrombosis issue in clinical applications involving various medical implants. Extensive research has been dedicated over the past few decades to developing blood-contacting materials with complete resistance to thrombosis. However, despite these advancements, the risk of thrombosis and other complications persists when these materials are implanted in the human body. Consequently, the modification and enhancement of antithrombotic materials remain pivotal in 21st-century hemocompatibility studies. Previous research indicates that the healthy endothelial cells (ECs) layer is uniquely compatible with blood. Inspired by bionics, scientists have initiated the development of materials that emulate the hemocompatible properties of ECs by replicating their diverse antithrombotic mechanisms. This review elucidates the antithrombotic mechanisms of ECs and examines the endothelium-mimicking materials developed through single, dual-functional and multifunctional strategies, focusing on nitric oxide release, fibrinolytic function, glycosaminoglycan modification, and surface topography modification. These materials have demonstrated outstanding antithrombotic performance. Finally, the review outlines potential future research directions in this dynamic field, aiming to advance the development of antithrombotic materials.
Collapse
Affiliation(s)
- Duanqi Fan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
12
|
Goel A, Tathireddy H, Wang SH, Vu HH, Puy C, Hinds MT, Zonies D, McCarty OJ, Shatzel JJ. Targeting the Contact Pathway of Coagulation for the Prevention and Management of Medical Device-Associated Thrombosis. Semin Thromb Hemost 2024; 50:989-997. [PMID: 37044117 PMCID: PMC11069398 DOI: 10.1055/s-0043-57011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Hemorrhage remains a major complication of anticoagulants, with bleeding leading to serious and even life-threatening outcomes in rare settings. Currently available anticoagulants target either multiple coagulation factors or specifically coagulation factor (F) Xa or thrombin; however, inhibiting these pathways universally impairs hemostasis. Bleeding complications are especially salient in the medically complex population who benefit from medical devices. Extracorporeal devices-such as extracorporeal membrane oxygenation, hemodialysis, and cardiac bypass-require anticoagulation for optimal use. Nonetheless, bleeding complications are common, and with certain devices, highly morbid. Likewise, pharmacologic prophylaxis to prevent thrombosis is not commonly used with many medical devices like central venous catheters due to high rates of bleeding. The contact pathway members FXI, FXII, and prekallikrein serve as a nexus, connecting biomaterial surface-mediated thrombin generation and inflammation, and may represent safe, druggable targets to improve medical device hemocompatibility and thrombogenicity. Recent in vivo and clinical data suggest that selectively targeting the contact pathway of coagulation through the inhibition of FXI and FXII can reduce the incidence of medical device-associated thrombotic events, and potentially systemic inflammation, without impairing hemostasis. In the following review, we will outline the current in vivo and clinical data encompassing the mechanism of action of drugs targeting the contact pathway. This new class of inhibitors has the potential to herald a new era of effective and low-risk anticoagulation for the management of patients requiring the use of medical devices.
Collapse
Affiliation(s)
- Abhishek Goel
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Harsha Tathireddy
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Si-Han Wang
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon
| | - Helen H. Vu
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon
| | - Cristina Puy
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon
| | - Monica T. Hinds
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon
| | - David Zonies
- Department of Surgery, Oregon Health and Science University, Portland, Oregon
| | - Owen J.T. McCarty
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon
| | - Joseph J. Shatzel
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
13
|
Li R, Xu J, Li Y, Yi P, Sun C, Yang Q, Wang Q, Mao Y, Mei Z, Zhou G, Ruan F, Shi S, Zhang M, Gong YK. An endothelium membrane mimetic antithrombotic coating enables safer and longer extracorporeal membrane oxygenation application. Acta Biomater 2024; 186:185-200. [PMID: 39103136 DOI: 10.1016/j.actbio.2024.07.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
Thrombosis and plasma leakage are two of the most frequent dysfunctions of polypropylene (PP) hollow fiber membrane (PPM) used in extracorporeal membrane oxygenation (ECMO) therapy. In this study, a superhydrophilic endothelial membrane mimetic coating (SEMMC) was constructed on polydopamine-polyethyleneimine pre-coated surfaces of the PPM oxygenator and its ECMO circuit to explore safer and more sustainable ECMO strategy. The SEMMC is fabricated by multi-point anchoring of a phosphorylcholine and carboxyl side chained copolymer (PMPCC) and grafting of heparin (Hep) to form PMPCC-Hep interface, which endows the membrane superior hemocompatibility and anticoagulation performances. Furthermore, the modified PPM reduces protein adsorption amount to less than 30 ng/cm2. More significantly, the PMPCC-Hep coated ECMO system extends the anti-leakage and non-clotting oxygenation period to more than 15 h in anticoagulant-free animal extracorporeal circulation, much better than the bare and conventional Hep coated ECMO systems with severe clots and plasma leakage in 4 h and 8 h, respectively. This SEMMC strategy of grafting bioactive heparin onto bioinert zwitterionic copolymer interface has great potential in developing safer and longer anticoagulant-free ECMO systems. STATEMENT OF SIGNIFICANCE: A superhydrophilic endothelial membrane mimetic coating was constructed on surfaces of polypropylene hollow fiber membrane (PPM) oxygenator and its ECMO circuit by multi-point anchoring of a phosphorylcholine and carboxyl side chain copolymer (PMPCC) and grafting of heparin (Hep). The strong antifouling nature of the PMPCC-Hep coating resists the adsorption of plasma bio-molecules, resulting in enhanced hemocompatibility and anti-leakage ability. The grafted heparin on the zwitterionic PMPCC interface exhibits superior anticoagulation property. More significantly, the PMPCC-Hep coating achieves an extracorporeal circulation in a pig model for at least 15 h without any systemic anticoagulant. This endothelial membrane mimetic anticoagulation strategy shows great potential for the development of safer and longer anticoagulant-free ECMO systems.
Collapse
Affiliation(s)
- Rong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, China
| | - Jiefeng Xu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Yin Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, China
| | - Panpan Yi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, China
| | - Chenwei Sun
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, China
| | - Qiankun Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, China
| | - Qianqian Wang
- Department of Intensive Care Unit, The First Hospital of Jiaxing, Jiaxing, China
| | - Yi Mao
- Department of Emergency Medicine, The First People's Hospital of Wenling, Taizhou, China
| | - Zhihan Mei
- Department of Emergency Medicine, Tiantai Country People's Hospital, Taizhou, China
| | - Guangju Zhou
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Feng Ruan
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Suqing Shi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, China.
| | - Mao Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China.
| | - Yong-Kuan Gong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, China; Institute of Materials Science and New Technology, Northwest University, Xian 710127, Shaanxi, China.
| |
Collapse
|
14
|
Chen H, Xiang Z, Zhang T, Wang H, Li X, Chen H, Shi Q. Heparinized self-healing polymer coating with inflammation modulation for blood-contacting biomedical devices. Acta Biomater 2024; 186:201-214. [PMID: 39089350 DOI: 10.1016/j.actbio.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 08/03/2024]
Abstract
The current techniques for antithrombotic coating on blood-contacting biomedical materials and devices are usually complex and lack practical feasibility with weak coating stability and low heparin immobilization. Here, a heparinized self-healing polymer coating with inflammation modulation is introduced through thermal-initiated radical copolymerization of methacrylate esterified heparin (MA-heparin) with methyl methacrylate (MMA) and n-butyl acrylate (nBA), followed by the anchoring of reactive oxygen species (ROS)-responsive polyoxalate containing vanillyl alcohol (PVAX) onto the coating through esterification. The aspirin, which is readily dissolved in the solution of MMA and nBA, is encapsulated within the coating after copolymerization. The copolymerization of MA-heparin with MMA and nBA significantly increases the heparin content of the coating, effectively inhibiting thrombosis and rendering the coating self-healing to help maintain long-term stability. ROS-responsive PVAX and aspirin released in a temperature-dependent manner resist acute and chronic inflammation, respectively. The heparinized self-healing and inflammation-modulated polymer coating exhibits the ability to confer long-term stability and hemocompatibility to blood-contacting biomedical materials and devices. STATEMENT OF SIGNIFICANCE: Surface engineering for blood-contacting biomedical devices paves a successful way to reduce thrombotic and inflammatory complications. However, lack of effectiveness, long-term stability and practical feasibility hinders the development and clinical application of existing strategies. Here we design a heparinized self-healing and inflammation-modulated polymer coating, which possesses high heparin level and self-healing capability to maintain long-term stability. The polymer coating is practically feasible to varied substrates and demonstrated to manipulate inflammation and prevent thrombosis both in vitro and in vivo. Our work provides a new method to develop coatings for blood-contacting biomedical materials and devices with long-term stability and hemocompatibility.
Collapse
Affiliation(s)
- Honghong Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zehong Xiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tianci Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haozheng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Xian Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Hao Chen
- Department of Neurovascular Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
15
|
Shome A, Martinez I, Pinon VD, Moses JC, Garren M, Sapkota A, Crutchfield N, Francis DJ, Brisbois E, Handa H. "Reactive" Chemical Strategy to Attain Substrate Independent " Liquid-Like" Omniphobic Solid Anti-Biofouling Coatings. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2401387. [PMID: 39678671 PMCID: PMC11636641 DOI: 10.1002/adfm.202401387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Indexed: 12/17/2024]
Abstract
Covalent and defect-free surface-grafted solid lubricating chains that can impart 'liquid-like' slippery behavior have proven advantageous over lubricant infused and textured anti-wetting surfaces. Herein, the co-hydrolysis and co-condensation of a mixture of organosilanes followed by the epoxy-amine ring opening reaction at the interface results in a highly robust, transparent and 'liquid-like' solid slippery omniphobic coating (LL-OSC). The presence of the epoxy-terminated organosilane a) acts as a molecular spacer in between the low-surface energy, rigid fluorine terminated silane and b) provides 'reactive' epoxy groups for covalent binding to a pre-functionalized amine surface for potential applicability in droplet transport and manipulation, diagnostics etc. LL-OSC exhibits resistance to both solid and liquid abrasions such as sandpaper abrasions, prolonged UV irradiation, DI water and high temperature (30 days), submersion in chemically contaminated aqueous solutions. This is the first report of a hemocompatible solid slippery coating for inhibiting platelet adhesion, thus, paving way for blood-contacting medical device applications. Our LL-OSC exhibits remarkable cytocompatibility, repellence to plasma protein, cells and prevents biofilm formation. Additionally, the substrate independent LL-OSC can be applied onto metals and polymers. We envision that the reported durable, solid slippery coating will find widespread applicability in hospital settings, electronic devices etc.
Collapse
Affiliation(s)
- Arpita Shome
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, 30602, United States of America
| | - Isabel Martinez
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, 30602, United States of America
| | - Vicente D Pinon
- Pharmaceutical and Biomedical Science Department, College of Pharmacy, University of Georgia, Athens, GA 30602, United States
| | - Joseph C Moses
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, 30602, United States of America
| | - Mark Garren
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, 30602, United States of America
| | - Aasma Sapkota
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, 30602, United States of America
| | - Natalie Crutchfield
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, 30602, United States of America
| | - Divine J Francis
- Department of Chemistry, University of Georgia, Athens, GA 30602, United States
| | - Elizabeth Brisbois
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, 30602, United States of America
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, 30602, United States of America
- Pharmaceutical and Biomedical Science Department, College of Pharmacy, University of Georgia, Athens, GA 30602, United States
| |
Collapse
|
16
|
Ashcraft M, Garren M, Lautner-Csorba O, Pinon V, Wu Y, Crowley D, Hill J, Morales Y, Bartlett R, Brisbois EJ, Handa H. Surface Engineering for Endothelium-Mimicking Functions to Combat Infection and Thrombosis in Extracorporeal Life Support Technologies. Adv Healthc Mater 2024; 13:e2400492. [PMID: 38924661 PMCID: PMC11468007 DOI: 10.1002/adhm.202400492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Blood-contacting medical devices routinely fail from the cascading effects of biofouling toward infection and thrombosis. Nitric oxide (NO) is an integral part of endothelial homeostasis, maintaining platelet quiescence and facilitating oxidative/nitrosative stress against pathogens. Recently, it is shown that the surface evolution of NO can mediate cell-surface interactions. However, this technique alone cannot prevent the biofouling inherent in device failure with dynamic blood-contacting applications. This work proposes an endothelium-mimicking surface design pairing controlled NO release with an inherently antifouling polyethylene glycol interface (NO+PEG). This simple, robust, and scalable platform develops surface-localized NO availability with surface hydration, leading to a significant reduction in protein adsorption as well as bacteria/platelet adhesion. Further in vivo thrombogenicity studies show a decrease in thrombus formation on NO+PEG interfaces, with preservation of circulating platelet and white blood cell counts, maintenance of activated clotting time, and reduced coagulation cascade activation. It is anticipated that this bio-inspired surface design will enable a facile alternative to existing surface technologies to address clinical manifestations of infection and thrombosis in dynamic blood-contacting environments.
Collapse
Affiliation(s)
- Morgan Ashcraft
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Mark Garren
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Orsolya Lautner-Csorba
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Vicente Pinon
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Yi Wu
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Dagney Crowley
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Joseph Hill
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Yeniselis Morales
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Robert Bartlett
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Elizabeth J. Brisbois
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
17
|
Liu S, Huang J, Luo J, Bian Q, Weng Y, Li L, Chen J. Therapeutic biomaterials with liver X receptor agonists based on the horizon of material biology to regulate atherosclerotic plaque regression in situ for devices surface engineering. Regen Biomater 2024; 11:rbae089. [PMID: 39165884 PMCID: PMC11335375 DOI: 10.1093/rb/rbae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/22/2024] Open
Abstract
Percutaneous coronary interventional is the main treatment for coronary atherosclerosis. At present, most studies focus on blood components and smooth muscle cells to achieve anticoagulation or anti-proliferation effects, while the mediated effects of materials on macrophages are also the focus of attention. Macrophage foam cells loaded with elevated cholesterol is a prominent feature of atherosclerotic plaque. Activation of liver X receptor (LXR) to regulate cholesterol efflux and efferocytosis and reduce the number of macrophage foam cells in plaque is feasible for the regression of atherosclerosis. However, cholesterol efflux promotion remains confined to targeted therapies. Herein, LXR agonists (GW3965) were introduced on the surface of the material and delivered in situ to atherogenic macrophages to improve drug utilization for anti-atherogenic therapy and plaque regression. LXR agonists act as plaque inhibition mediated by multichannel regulation macrophages, including lipid metabolism (ABCA1, ABCG1 and low-density lipoprotein receptor), macrophage migration (CCR7) and efferocytosis (MerTK). Material loaded with LXR agonists significantly reduced plaque burden in atherosclerotic model rats, most importantly, it did not cause hepatotoxicity and adverse reactions such as restenosis and thrombosis after material implantation. Both in vivo and in vitro evaluations confirmed its anti-atherosclerotic capability and safety. Overall, multi-functional LXR agonist-loaded materials with pathological microenvironment regulation effect are expected to be promising candidates for anti-atherosclerosis and have potential applications in cardiovascular devices surface engineering.
Collapse
Affiliation(s)
- Sainan Liu
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jinquan Huang
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiayan Luo
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qihao Bian
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yajun Weng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Li Li
- School of Health Management, West China University, Chengdu 610039, China
| | - Junying Chen
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
18
|
Wu Y, Xu LC, Yeager E, Beita KG, Crutchfield N, Wilson SN, Maffe P, Schmiedt C, Siedlecki CA, Handa H. In vivo assessment of dual-function submicron textured nitric oxide releasing catheters in a 7-day rabbit model. Acta Biomater 2024; 180:372-382. [PMID: 38614415 PMCID: PMC11146291 DOI: 10.1016/j.actbio.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
Catheter-induced thrombosis is a major contributor to infectious and mechanical complications of biomaterials that lead to device failure. Herein, a dualfunction submicron textured nitric oxide (NO)-releasing catheter was developed. The hemocompatibility and antithrombotic activity of vascular catheters were evaluated in both 20 h in vitro blood loop and 7 d in vivo rabbit model. Surface characterization assessments via atomic force microscopy show the durability of the submicron pattern after incorporation of NO donor S-nitroso-N-acetylpenicillamine (SNAP). The SNAP-doped catheters exhibited prolonged and controlled NO release mimicking the levels released by endothelium. Fabricated catheters showed cytocompatibility when evaluated against BJ human fibroblast cell lines. After 20h in vitro evaluation of catheters in a blood loop, textured-NO catheters exhibited a 13-times reduction in surface thrombus formation compared to the control catheters, which had 83% of the total area covered by clots. After the 7 d in vivo rabbit model, analysis on the catheter surface was examined via scanning electron microscopy, where significant reduction of platelet adhesion, fibrin mesh, and thrombi can be observed on the NO-releasing textured surfaces. Moreover, compared to relative controls, a 63% reduction in the degree of thrombus formation within the jugular vein was observed. Decreased levels of fibrotic tissue decomposition on the jugular vein and reduced platelet adhesion and thrombus formation on the texture of the NO-releasing catheter surface are indications of mitigated foreign body response. This study demonstrated a biocompatible and robust dual-functioning textured NO PU catheter in limiting fouling-induced complications for longer-term blood-contacting device applications. STATEMENT OF SIGNIFICANCE: Catheter-induced thrombosis is a major contributor to infectious and mechanical complications of biomaterials that lead to device failure. This study demonstrated a robust, biocompatible, dual-functioning textured nitric oxide (NO) polyurethane catheter in limiting fouling-induced complications for longer-term blood-contacting device applications. The fabricated catheters exhibited prolonged and controlled NO release that mimics endothelium levels. After the 7 d in vivo model, a significant reduction in platelet adhesion, fibrin mesh, and thrombi was observed on the NO-releasing textured catheters, along with decreased levels of fibrotic tissue decomposition on the jugular vein. Results illustrate that NO-textured catheter surface mitigates foreign body response.
Collapse
Affiliation(s)
- Yi Wu
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Li-Chong Xu
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States
| | - Eric Yeager
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States
| | - Keren Gabriela Beita
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States
| | - Natalie Crutchfield
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Sarah N Wilson
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Patrick Maffe
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Chad Schmiedt
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States
| | - Christopher A Siedlecki
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States; Department of Biomedical Engineering, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States.
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States; Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
19
|
Crago M, Lee A, Hoang TP, Talebian S, Naficy S. Protein adsorption on blood-contacting surfaces: A thermodynamic perspective to guide the design of antithrombogenic polymer coatings. Acta Biomater 2024; 180:46-60. [PMID: 38615811 DOI: 10.1016/j.actbio.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Blood-contacting medical devices often succumb to thrombosis, limiting their durability and safety in clinical applications. Thrombosis is fundamentally initiated by the nonspecific adsorption of proteins to the material surface, which is strongly governed by thermodynamic factors established by the nature of the interaction between the material surface, surrounding water molecules, and the protein itself. Along these lines, different surface materials (such as polymeric, metallic, ceramic, or composite) induce different entropic and enthalpic changes at the surface-protein interface, with material wettability significantly impacting this behavior. Consequently, protein adsorption on medical devices can be modulated by altering their wettability and surface energy. A plethora of polymeric coating modifications have been utilized for this purpose; hydrophobic modifications may promote or inhibit protein adsorption determined by van der Waals forces, while hydrophilic materials achieve this by mainly relying on hydrogen bonding, or unbalanced/balanced electrostatic interactions. This review offers a cohesive understanding of the thermodynamics governing these phenomena, to specifically aid in the design and selection of hemocompatible polymeric coatings for biomedical applications. STATEMENT OF SIGNIFICANCE: Blood-contacting medical devices often succumb to thrombosis, limiting their durability and safety in clinical applications. A plethora of polymeric coating modifications have been utilized for addressing this issue. This review offers a cohesive understanding of the thermodynamics governing these phenomena, to specifically aid in the design and selection of hemocompatible polymeric coatings for biomedical applications.
Collapse
Affiliation(s)
- Matthew Crago
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW 2008, Australia
| | - Aeryne Lee
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW 2008, Australia
| | - Thanh Phuong Hoang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW 2008, Australia
| | - Sepehr Talebian
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW 2008, Australia.
| | - Sina Naficy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW 2008, Australia.
| |
Collapse
|
20
|
Liu X, Yu L, Wei J, Huang Y, Yang L, Ning J, Su Q, Li H, Xin J, Jia K. Mussel-Inspired Antimicrobial and Antifouling Coating Constructed by the Combination of Zwitterionic Copolymers and Silver Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8654-8664. [PMID: 38588599 DOI: 10.1021/acs.langmuir.4c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Biofouling and bacterial infections are significant challenges in biomedical devices. In this study, a biocompatible dual-functional coating with antimicrobial and antifouling properties is developed by co-depositing the zwitterionic copolymer and silver nanoparticles via a dopamine-assisted strategy. Inspired by mussel adhesion, the coating exhibits substrate-independent adhesion as a result of the formation of irreversible covalent bonds. The zwitterionic copolymer in the dual coating plays a crucial role in improving surface wettability and reducing protein adsorption and platelet and bacterial adhesion, thereby improving its antifouling property significantly. The silver nanoparticles reduced by self-polymerized polydopamine without the addition of any chemical reductants can effectively improve the antimicrobial activity. Furthermore, as the zwitterion content in the zwitterion polymer increases, the antibacterial and antifouling properties of the coating can be further advanced. The simple and effective approach presented here provides a promising pathway for constructing potent antibacterial and antifouling surfaces, demonstrating great potential for clinical applications in implanted materials.
Collapse
Affiliation(s)
- Xingxing Liu
- Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510000, People's Republic of China
| | - Longfei Yu
- Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510000, People's Republic of China
| | - Jiafeng Wei
- Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510000, People's Republic of China
| | - Yinyin Huang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, People's Republic of China
| | - Lan Yang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, People's Republic of China
| | - Junhua Ning
- Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510000, People's Republic of China
| | - Qiuping Su
- Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510000, People's Republic of China
| | - Huanling Li
- Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510000, People's Republic of China
| | - Jinlan Xin
- Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510000, People's Republic of China
| | - Kangle Jia
- Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510000, People's Republic of China
| |
Collapse
|
21
|
Li Y, Jiao H, Zhang H, Wang X, Fu Y, Wang Q, Liu H, Yong YC, Guo J, Liu J. Biosafety consideration of nanocellulose in biomedical applications: A review. Int J Biol Macromol 2024; 265:130900. [PMID: 38499126 DOI: 10.1016/j.ijbiomac.2024.130900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Nanocellulose-based biomaterials have gained significant attention in various fields, especially in medical and pharmaceutical areas, due to their unique properties, including non-toxicity, high specific surface area, biodegradability, biocompatibility, and abundant feasible and sophisticated strategies for functional modification. The biosafety of nanocellulose itself is a prerequisite to ensure the safe and effective application of biomaterials as they interact with living cells, tissues, and organs at the nanoscale. Potential residual endogenous impurities and exogenous contaminants could lead to the failure of the intended functionalities or even serious health complications if they are not adequately removed and assessed before use. This review summarizes the sources of impurities in nanocellulose that may pose potential hazards to their biosafety, including endogenous impurities that co-exist in the cellulosic raw materials themselves and exogenous contaminants caused by external exposure. Strategies to reduce or completely remove these impurities are outlined and classified as chemical, physical, biological, and combined methods. Additionally, key points that require careful consideration in the interpretation of the biosafety evaluation outcomes were discussed to ensure the safety and effectiveness of the nanocellulose-based biomaterials in medical applications.
Collapse
Affiliation(s)
- Yan Li
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Haixin Jiao
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Hongxing Zhang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Xiangyu Wang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yinyi Fu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Qianqian Wang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Huan Liu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jun Liu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
22
|
Reuvekamp H, Hekman E, van der Heide E, Matthews D. Strategies in surface engineering for the regulation of microclimates in skin-medical product interactions. Heliyon 2024; 10:e25395. [PMID: 38370189 PMCID: PMC10869805 DOI: 10.1016/j.heliyon.2024.e25395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/17/2023] [Accepted: 01/25/2024] [Indexed: 02/20/2024] Open
Abstract
There is a growing number of personal healthcare devices that are in prolonged contact with the skin. The functionality of these products is linked to the interface formed by the contact between the medical apparatus and the skin. The interface can be characterised by its topology, compliance, and moisture and thermal regulating capabilities. Many devices are, however, described to have suboptimal and occlusive contacts, resulting in physiological unfavourable microclimates at the interface. The resulting poor management of moisture and temperature can impact the functionality and utility of the device and, in severe cases, lead to physical harm to the user. Being able to control the microclimate is therefore expected to limit medical-device related injuries and prevent associated skin complications. Surface engineering can modify and potentially enhance the regulation of the microclimate factors surrounding the interface between a product's surface and the skin. This review provides an overview of potential engineering solutions considering the needs for, and influences on, regulation of temperature and moisture by considering the skin-medical device interface as a system. These findings serve as a platform for the anticipated progress in the role of surface engineering for skin-device microclimate regulation.
Collapse
Affiliation(s)
- H. Reuvekamp
- Laboratory for Surface Technology and Tribology, Department of Mechanics of Solids, Surfaces and Systems (MS3), Faculty of Engineering Technology, University of Twente, Postbox 217, 7500 AE Enschede, the Netherlands
| | - E.E.G. Hekman
- Biomedical Device Design and Production Lab, Department of Biomechanical Engineering (BE), Faculty of Engineering Technology, University of Twente, Postbox 217, 7500 AE Enschede, the Netherlands
| | - E. van der Heide
- Laboratory for Surface Technology and Tribology, Department of Mechanics of Solids, Surfaces and Systems (MS3), Faculty of Engineering Technology, University of Twente, Postbox 217, 7500 AE Enschede, the Netherlands
| | - D.T.A. Matthews
- Laboratory for Surface Technology and Tribology, Department of Mechanics of Solids, Surfaces and Systems (MS3), Faculty of Engineering Technology, University of Twente, Postbox 217, 7500 AE Enschede, the Netherlands
| |
Collapse
|
23
|
Wang B, Ye X, Chen G, Zhang Y, Zeng Z, Liu C, Tan Z, Jie X. Fabrication and properties of PLA/β-TCP scaffolds using liquid crystal display (LCD) photocuring 3D printing for bone tissue engineering. Front Bioeng Biotechnol 2024; 12:1273541. [PMID: 38440328 PMCID: PMC10910430 DOI: 10.3389/fbioe.2024.1273541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/08/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction: Bone defects remain a thorny challenge that clinicians have to face. At present, scaffolds prepared by 3D printing are increasingly used in the field of bone tissue repair. Polylactic acid (PLA) has good thermoplasticity, processability, biocompatibility, and biodegradability, but the PLA is brittle and has poor osteogenic performance. Beta-tricalcium phosphate (β-TCP) has good mechanical properties and osteogenic induction properties, which can make up for the drawbacks of PLA. Methods: In this study, photocurable biodegradable polylactic acid (bio-PLA) was utilized as the raw material to prepare PLA/β-TCP slurries with varying β-TCP contents (β-TCP dosage at 0%, 10%, 20%, 30%, 35% of the PLA dosage, respectively). The PLA/β-TCP scaffolds were fabricated using liquid crystal display (LCD) light-curing 3D printing technology. The characterization of the scaffolds was assessed, and the biological activity of the scaffold with the optimal compressive strength was evaluated. The biocompatibility of the scaffold was assessed through CCK-8 assays, hemocompatibility assay and live-dead staining experiments. The osteogenic differentiation capacity of the scaffold on MC3T3-E1 cells was evaluated through alizarin red staining, alkaline phosphatase (ALP) detection, immunofluorescence experiments, and RT-qPCR assays. Results: The prepared scaffold possesses a three-dimensional network structure, and with an increase in the quantity of β-TCP, more β-TCP particles adhere to the scaffold surface. The compressive strength of PLA/β-TCP scaffolds exhibits a trend of initial increase followed by decrease with an increasing amount of β-TCP, reaching a maximum value of 52.1 MPa at a 10% β-TCP content. Degradation rate curve results indicate that with the passage of time, the degradation rate of the scaffold gradually increases, and the pH of the scaffold during degradation shows an alkaline tendency. Additionally, Live/dead staining and blood compatibility experiments suggest that the prepared PLA/β-TCP scaffold demonstrates excellent biocompatibility. CCK-8 experiments indicate that the PLA/β-TCP group promotes cell proliferation, and the prepared PLA/β-TCP scaffold exhibits a significant ability to enhance the osteogenic differentiation of MC3T3-E1 cells in vitro. Discussion: 3D printed LCD photocuring PLA/β-TCP scaffolds could improve surface bioactivity and lead to better osteogenesis, which may provide a unique strategy for developing bioactive implants in orthopedic applications.
Collapse
Affiliation(s)
- Boqun Wang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, China
- School of Intelligent Manufacturing, Dongguan Polytechnic, Dongguan, Guangdong, China
| | - Xiangling Ye
- Dongguan Hospital, Guangzhou University of Chinese Medicine, Dongguan, Guangdong, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Guocai Chen
- Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yongqiang Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhikui Zeng
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Cansen Liu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Zhichao Tan
- Dongguan Hospital, Guangzhou University of Chinese Medicine, Dongguan, Guangdong, China
| | - Xiaohua Jie
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
24
|
Maffe P, Devine R, Garren M, Handa H. Varying material thickness of silicone rubber for tunable nitric oxide release. J Biomed Mater Res B Appl Biomater 2024; 112:e35377. [PMID: 38359174 DOI: 10.1002/jbm.b.35377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/05/2023] [Accepted: 01/07/2024] [Indexed: 02/17/2024]
Abstract
Silicone rubber (SR), a common medical-grade polymer used in medical devices, has previously been modified for nitric oxide (NO) releasing capabilities. However, the effects of material properties such as film thickness on NO release kinetics are not well explored. In this study, SR is used in the first analysis of how a polymer's thickness affects the storage and uptake of an NO donor and subsequent release properties. Observed NO release trends show that a polymer's thickness results in tunable NO release. These results indicate how crucial a polymer's thickness is to optimize the NO release in an efficient and effective method.
Collapse
Affiliation(s)
- Patrick Maffe
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia, USA
| | - Ryan Devine
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia, USA
| | - Mark Garren
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia, USA
| | - Hitesh Handa
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia, USA
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
25
|
Li R, Li Y, Bai Y, Yi P, Sun C, Shi S, Gong YK. Achieving superior anticoagulation of endothelial membrane mimetic coating by heparin grafting at zwitterionic biocompatible interfaces. Int J Biol Macromol 2024; 257:128574. [PMID: 38052281 DOI: 10.1016/j.ijbiomac.2023.128574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/16/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023]
Abstract
Thrombosis and bleeding are common complications of blood-contacting medical device therapies. In this work, an endothelium membrane mimetic coating (PMPCC/Hep) has been created to address these challenges. The coating is fabricated by multi-point anchoring of a phosphorylcholine copolymer (poly-MPC-co-MSA, PMPCC) with carboxylic side chains and end-group grafting of unfractionated heparin (Hep) onto polydopamine precoated blood-contacting material surfaces. The PMPCC coating forms an ultrathin cell outer membrane mimetic layer to resist protein adsorption and platelet adhesion. The tiny defects/pores of the PMPCC layer provide entrances for heparin end-group to be inserted and grafted onto the sub-layer amino groups. The combination of the PMPCC cell membrane mimetic anti-fouling nature with the grafted heparin bioactivity further enhances the anticoagulation performance of the formed endothelium membrane mimetic PMPCC/Hep coating. Compared to conventional Hep coating, the PMPCC/Hep coating further decreases protein adsorption and platelet adhesion by 50 % and 90 %, respectively. More significantly, the PMPCC/Hep coating shows a superior anticoagulation activity, even significantly higher than that of an end-point-attached heparin coating. Furthermore, the blood coagulation function is well preserved in the PMPCC/Hep coating anticoagulation strategy. All the results support that the PMPCC/Hep coating strategy has great potential in developing more efficient and safer blood-contacting medical devices.
Collapse
Affiliation(s)
- Rong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Yin Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Yunjie Bai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Panpan Yi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Chenwei Sun
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Suqing Shi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China; Institute of Materials Science and New Technology, Northwest University, Xian 710127, Shaanxi, China
| | - Yong-Kuan Gong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China; Institute of Materials Science and New Technology, Northwest University, Xian 710127, Shaanxi, China.
| |
Collapse
|
26
|
Zhu G, Zhang R, Xie Q, Li P, Wang F, Wang L, Li C. Shish-kebab structure fiber with nano and micro diameter regulate macrophage polarization for anti-inflammatory and bone differentiation. Mater Today Bio 2023; 23:100880. [PMID: 38149017 PMCID: PMC10750111 DOI: 10.1016/j.mtbio.2023.100880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023] Open
Abstract
Biopolymer grafts often have limited biocompatibility, triggering excessive inflammatory responses similar to foreign bodies. Macrophage phenotype shifts are pivotal in the inflammatory response and graft success. The effects of the morphology and physical attributes of the material itself on macrophage polarization should be the focus. In this study, we prepared electrospun fibers with diverse diameters and formed a shish-kebab (SK) structure on the material surface by solution-induced crystallization, forming electrospun fiber scaffolds with diverse pore sizes and roughness. In vitro cell culture experiments demonstrated that SK structure fibers could regulate macrophage differentiation toward M2 phenotype, and the results of in vitro simulation of in vivo tissue reconstruction by the microenvironment demonstrated that the paracrine role of M2 phenotype macrophages could promote bone marrow mesenchymal stem cells (BMSCs) to differentiate into osteoblasts. In rats implanted with a subcutaneous SK-structured fiber scaffold, the large-pore size and low-stiffness SK fiber scaffolds demonstrated superior immune performance, less macrophage aggregation, and easier differentiation to the anti-inflammatory M2 phenotype. Large pore sizes and low-stiffness SK fiber scaffolds guide the morphological design of biological scaffolds implanted in vivo, which is expected to be an effective strategy for reducing inflammation when applied to graft materials in clinical settings.
Collapse
Affiliation(s)
- Gaowei Zhu
- Key Laboratory of Textile Science & Technology Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Rongyan Zhang
- Key Laboratory of Textile Science & Technology Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Qianyang Xie
- Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, and Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, No. 639, Zhizaoju Rd., Shanghai, 200011, China
| | - Peilun Li
- Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, and Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, No. 639, Zhizaoju Rd., Shanghai, 200011, China
| | - Fujun Wang
- Key Laboratory of Textile Science & Technology Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Chaojing Li
- Key Laboratory of Textile Science & Technology Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
27
|
Khan MUA, Stojanović GM, Rehman RA, Moradi AR, Rizwan M, Ashammakhi N, Hasan A. Graphene Oxide-Functionalized Bacterial Cellulose-Gelatin Hydrogel with Curcumin Release and Kinetics: In Vitro Biological Evaluation. ACS OMEGA 2023; 8:40024-40035. [PMID: 37929099 PMCID: PMC10620874 DOI: 10.1021/acsomega.2c06825] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 05/05/2023] [Indexed: 11/07/2023]
Abstract
Biopolymer-based bioactive hydrogels are excellent wound dressing materials for wound healing applications. They have excellent properties, including hydrophilicity, tunable mechanical and morphological properties, controllable functionality, biodegradability, and desirable biocompatibility. The bioactive hydrogels were fabricated from bacterial cellulose (BC), gelatin, and graphene oxide (GO). The GO-functionalized-BC (GO-f-BC) was synthesized by a hydrothermal method and chemically crosslinked with bacterial cellulose and gelatin using tetraethyl orthosilicate (TEOS) as a crosslinker. The structural, morphological, and wettability properties were studied using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and a universal testing machine (UTM), respectively. The swelling analysis was conducted in different media, and aqueous medium exhibited maximum hydrogel swelling compared to other media. The Franz diffusion method was used to study curcumin (Cur) release (Max = 69.32%, Min = 49.32%), and Cur release kinetics followed the Hixson-Crowell model. Fibroblast (3T3) cell lines were employed to determine the cell viability and proliferation to bioactive hydrogels. Antibacterial activities of bioactive hydrogels were evaluated against infection-causing bacterial strains. Bioactive hydrogels are hemocompatible due to their less than 0.5% hemolysis against fresh human blood. The results show that bioactive hydrogels can be potential wound dressing materials for wound healing applications.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department
of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical
Research Center, Qatar University, Doha 2713, Qatar
| | - Goran M. Stojanović
- Department
of Electronics, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Roselinda Ab Rehman
- Oral
and Maxillofacial Surgery Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ali-Reza Moradi
- Department
of Physics, Institute for Advanced Studies
in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Muhammad Rizwan
- Department
of Chemistry, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nureddin Ashammakhi
- Department
of Biomedical Engineering and the Institute for Quantitative Health
Science & Engineering, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Anwarul Hasan
- Department
of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical
Research Center, Qatar University, Doha 2713, Qatar
| |
Collapse
|
28
|
Wu H, Huang K, Hu M, Chen N, Qin Y, Wang J, Luo R, Yang L, Wang Y. Postfunctionalization of biological valve leaflets with a polyphenol network and anticoagulant recombinant humanized type III collagen for improved anticoagulation and endothelialization. J Mater Chem B 2023; 11:9260-9275. [PMID: 37724634 DOI: 10.1039/d3tb01145c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Almost all commercial bioprosthetic heart valves (BHVs) are crosslinked with glutaraldehyde (GLUT); however, issues such as immune responses, calcification, delayed endothelialization, and especially severe thrombosis threaten the service lifespan of BHVs. Surface modification is expected to impart GLUT-crosslinked BHVs with versatility to optimize service performance. Here, a postfunctionalization strategy was established for GLUT-crosslinked BHVs, which were firstly modified with metal-phenolic networks (MPNs) to shield the exposed calcification site, and then anticoagulant recombinant humanized type III collagen (rhCOLIII) was immobilized to endow them with long-term antithrombogenicity and enhanced endothelialization properties. The postfunctionalization coating exhibited promising mechanical properties and resistance to enzymatic degradation capability resembling that of GLUT-crosslinked porcine pericardium (GLUT-PP). With the introduction of meticulously tailored rhCOLIII, the anti-coagulation and re-endothelialization properties of TA/Fe-rhCOLIII were significantly improved. Furthermore, the mild inflammatory response and reduced calcification were evidenced in TA/Fe-rhCOLIII by subcutaneous implantation. In conclusion, the efficacy of the proposed strategy combining anti-inflammatory MPNs and multifunctional rhCOLIII to improve anticoagulation, reduce the inflammatory response, and ultimately achieve rapid reendothelialization was supported by both ex vivo and in vivo experiments. Altogether, the current findings may provide a simple strategy for enhancing the service function of BHVs after implantation and show great potential in clinical applications.
Collapse
Affiliation(s)
- Haoshuang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China.
| | - Kaiyang Huang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China.
| | - Mengyue Hu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Nuoya Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China.
| | - Yumei Qin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China.
| | - Jian Wang
- Shanxi Jinbo Bio-Pharmaceutical Co., Ltd, Taiyuan 030001, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China.
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
29
|
Bai S, Zhang J, Gao Y, Chen X, Wang K, Yuan X. Surface Functionalization of Electrospun Scaffolds by QK-AG73 Peptide for Enhanced Interaction with Vascular Endothelial Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14162-14172. [PMID: 37722015 DOI: 10.1021/acs.langmuir.3c02174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Rapid endothelialization still remains challenging for blood-contacting biomaterials, especially for long-term, functional, small-diameter vascular grafts. The vascular endothelial growth factor (VEGF)-mimicking QK peptide holds great promise in promoting vascular endothelial cellular activities such as adhesion, spreading, proliferation, and migration. Syndecans are transmembrane proteoglycans that are highly expressed on cell surfaces, including vascular endothelial cells, which can act as docking receptors to provide binding sites for a variety of cellular growth and signaling molecules. Herein, a novel peptide QK-AG73 that coupled the QK domain with the syndecan binding peptide AG73 was proposed, aiming to synergistically enhance the interaction with vascular endothelial cells. In addition, mechanically matched bioactive scaffolds based on poly(l-lactide-co-ε-caprolactone) were successfully prepared by surface functionalization of the covalently combined QK-AG73 peptide. The result showed that the adhesion of human umbilical vein endothelial cells (HUVECs) was increased by approximately 2-fold on QK-AG73-modified surface compared with those modified with a single QK or AG73 peptide. Moreover, surface functionalization of electrospun scaffolds by this QK-AG73 peptide was more efficient in specifically promoting the proliferation of HUVECs and allowing them to grow with an elongated cobblestone-like cell morphology. It was hypothesized that both VEGF receptors and transmembrane syndecan receptors were involved in cellular regulation by the QK-AG73 peptide, which resulted in synergistic improvement of the interactions with vascular endothelial cells and provided a promising strategy to promote endothelialization of small-diameter vascular grafts.
Collapse
Affiliation(s)
- Shan Bai
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jingai Zhang
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yong Gao
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xiaoqi Chen
- Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang 050081, China
| | - Kai Wang
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaoyan Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
30
|
Snyder Y, Jana S. Strategies for Development of Synthetic Heart Valve Tissue Engineering Scaffolds. PROGRESS IN MATERIALS SCIENCE 2023; 139:101173. [PMID: 37981978 PMCID: PMC10655624 DOI: 10.1016/j.pmatsci.2023.101173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The current clinical solutions, including mechanical and bioprosthetic valves for valvular heart diseases, are plagued by coagulation, calcification, nondurability, and the inability to grow with patients. The tissue engineering approach attempts to resolve these shortcomings by producing heart valve scaffolds that may deliver patients a life-long solution. Heart valve scaffolds serve as a three-dimensional support structure made of biocompatible materials that provide adequate porosity for cell infiltration, and nutrient and waste transport, sponsor cell adhesion, proliferation, and differentiation, and allow for extracellular matrix production that together contributes to the generation of functional neotissue. The foundation of successful heart valve tissue engineering is replicating native heart valve architecture, mechanics, and cellular attributes through appropriate biomaterials and scaffold designs. This article reviews biomaterials, the fabrication of heart valve scaffolds, and their in-vitro and in-vivo evaluations applied for heart valve tissue engineering.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
31
|
Xu T, Ji H, Xu L, Cheng S, Liu X, Li Y, Zhong R, Zhao W, Kizhakkedathu JN, Zhao C. Self-anticoagulant sponge for whole blood auto-transfusion and its mechanism of coagulation factor inactivation. Nat Commun 2023; 14:4875. [PMID: 37573353 PMCID: PMC10423252 DOI: 10.1038/s41467-023-40646-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 08/04/2023] [Indexed: 08/14/2023] Open
Abstract
Clinical use of intraoperative auto-transfusion requires the removal of platelets and plasma proteins due to pump-based suction and water-soluble anticoagulant administration, which causes dilutional coagulopathy. Herein, we develop a carboxylated and sulfonated heparin-mimetic polymer-modified sponge with spontaneous blood adsorption and instantaneous anticoagulation. We find that intrinsic coagulation factors, especially XI, are inactivated by adsorption to the sponge surface, while inactivation of thrombin in the sponge-treated plasma effectively inhibits the common coagulation pathway. We show whole blood auto-transfusion in trauma-induced hemorrhage, benefiting from the multiple inhibitory effects of the sponge on coagulation enzymes and calcium depletion. We demonstrate that the transfusion of collected blood favors faster recovery of hemostasis compared to traditional heparinized blood in a rabbit model. Our work not only develops a safe and convenient approach for whole blood auto-transfusion, but also provides the mechanism of action of self-anticoagulant heparin-mimetic polymer-modified surfaces.
Collapse
Affiliation(s)
- Tao Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Haifeng Ji
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
- Department of Pathology and Lab Medicine & Centre for Blood Research & Life Science Institute, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, V6T 1Z3, BC, Canada.
| | - Lin Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Shengjun Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Xianda Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yupei Li
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Zhong
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu, 610052, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Jayachandran N Kizhakkedathu
- Department of Pathology and Lab Medicine & Centre for Blood Research & Life Science Institute, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, V6T 1Z3, BC, Canada
- School of Biomedical Engineering, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, V6T 1Z3, BC, Canada
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| |
Collapse
|
32
|
Nikolova S, Milusheva M, Gledacheva V, Feizi-Dehnayebi M, Kaynarova L, Georgieva D, Delchev V, Stefanova I, Tumbarski Y, Mihaylova R, Cherneva E, Stoencheva S, Todorova M. Drug-Delivery Silver Nanoparticles: A New Perspective for Phenindione as an Anticoagulant. Biomedicines 2023; 11:2201. [PMID: 37626698 PMCID: PMC10452578 DOI: 10.3390/biomedicines11082201] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Anticoagulants prevent the blood from developing the coagulation process, which is the primary cause of death in thromboembolic illnesses. Phenindione (PID) is a well-known anticoagulant that is rarely employed because it totally prevents coagulation, which can be a life-threatening complication. The goal of the current study is to synthesize drug-loaded Ag NPs to slow down the coagulation process. Methods: A rapid synthesis and stabilization of silver nanoparticles as drug-delivery systems for phenindione (PID) were applied for the first time. Results: Several methods are used to determine the size of the resulting Ag NPs. Additionally, the drug-release capabilities of Ag NPs were established. Density functional theory (DFT) calculations were performed for the first time to indicate the nature of the interaction between PID and nanostructures. DFT findings supported that galactose-loaded nanostructure could be a proper delivery system for phenindione. The drug-loaded Ag NPs were characterized in vitro for their antimicrobial, cytotoxic, and anticoagulant activities, and ex vivo for spasmolytic activity. The obtained data confirmed the drug-release experiments. Drug-loaded Ag NPs showed that prothrombin time (PT, sec) and activated partial thromboplastin time (APTT, sec) are approximately 1.5 times longer than the normal values, while PID itself stopped coagulation at all. This can make the PID-loaded Ag NPs better therapeutic anticoagulants. PID was compared to PID-loaded Ag NPs in antimicrobial, spasmolytic activity, and cytotoxicity. All the experiments confirmed the drug-release results.
Collapse
Affiliation(s)
- Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.T.)
| | - Miglena Milusheva
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.T.)
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Vera Gledacheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.)
| | - Mehran Feizi-Dehnayebi
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan P.O. Box 98135-674, Iran;
| | - Lidia Kaynarova
- Department of Analytical Chemistry and Computer Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (L.K.); (D.G.)
| | - Deyana Georgieva
- Department of Analytical Chemistry and Computer Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (L.K.); (D.G.)
| | - Vassil Delchev
- Department of Physical Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Iliyana Stefanova
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.)
| | - Yulian Tumbarski
- Department of Microbiology, Technological Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria;
| | - Rositsa Mihaylova
- Laboratory of Experimental Chemotherapy, Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University, 1431 Sofia, Bulgaria;
| | - Emiliya Cherneva
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria;
- Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., BI 9, 1113 Sofia, Bulgaria
| | - Snezhana Stoencheva
- University Hospital “Sveti Georgi” EAD, 4002 Plovdiv, Bulgaria
- Department of Clinical Laboratory, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Mina Todorova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.T.)
| |
Collapse
|
33
|
Garren M, Ashcraft M, Crowley D, Brisbois EJ, Handa H. Derivatization of graphene oxide nanosheets with tunable nitric oxide release for antibacterial biomaterials. J Biomed Mater Res A 2023; 111:451-464. [PMID: 36594584 PMCID: PMC9936865 DOI: 10.1002/jbm.a.37493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023]
Abstract
Graphene oxide (GO) nanosheets are a promising class of carbon-based materials suitable for application in the construction of medical devices. These materials have inherent antimicrobial properties based on sheet size, but these effects must be carefully traded off to maintain biocompatibility. Chemical modification of functional groups to the lattice structure of GO nanosheets enables unique opportunities to introduce new surface properties to bolster biological effects. Herein, we have developed nitric oxide (NO)-releasing GO nanosheets via immobilization of S-nitrosothiol (RSNO) moieties to GO nanosheets (GO-[NH]x -SNO). These novel RSNO-based GO nanosheets were characterized for chemical functionality via Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, and colorimetric assays for functional group quantification. Stoichiometric control of the available RSNO groups functionalized onto the nanosheets was studied using chemiluminescence-based NO detection methods, showing highly tunable NO release kinetics. Studies of electrical stimulation and subsequent electrochemical reduction of the nanosheets demonstrated further tunability of the NO release based on stimuli. Finally, nanosheets were evaluated for cytotoxicity and antibacterial effects, showing strong cytocompatibility with human fibroblasts in parallel to broad antibacterial and anti-biofilm effects against both Gram-positive and Gram-negative strains. In summary, derivatized GO-(NH)x -SNO nanosheets were shown to have tunable NO release properties, enabling application-specific tailoring for diverse biomedical applications such as antimicrobial coatings and composite fillers for stents, sensors, and other medical devices.
Collapse
Affiliation(s)
- Mark Garren
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia, USA
| | - Morgan Ashcraft
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| | - Dagney Crowley
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia, USA
| | - Elizabeth J. Brisbois
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia, USA
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia, USA
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
34
|
Marmo AC, Grunlan MA. Biomedical Silicones: Leveraging Additive Strategies to Propel Modern Utility. ACS Macro Lett 2023; 12:172-182. [PMID: 36669481 PMCID: PMC10848296 DOI: 10.1021/acsmacrolett.2c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
Silicones have a long history of use in biomedical devices, with unique properties stemming from the siloxane (Si-O-Si) backbone that feature a high degree of flexibility and chemical stability. However, surface, rheological, mechanical, and electrical properties of silicones can limit their utility. Successful modification of silicones to address these limitations could lead to superior and new biomedical devices. Toward improving such properties, recent additive strategies have been leveraged to modify biomedical silicones and are highlighted herein.
Collapse
Affiliation(s)
- Alec C. Marmo
- Department
of Materials Science and Engineering Texas
A&M University, College
Station, Texas 77843-3003, United States
| | - Melissa A. Grunlan
- Department
of Biomedical Engineering, Department of Materials Science and Engineering,
Department of Chemistry Texas A&M University, College Station, Texas 77843-3003, United
States
| |
Collapse
|
35
|
Rezvova MA, Klyshnikov KY, Gritskevich AA, Ovcharenko EA. Polymeric Heart Valves Will Displace Mechanical and Tissue Heart Valves: A New Era for the Medical Devices. Int J Mol Sci 2023; 24:3963. [PMID: 36835389 PMCID: PMC9967268 DOI: 10.3390/ijms24043963] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The development of a novel artificial heart valve with outstanding durability and safety has remained a challenge since the first mechanical heart valve entered the market 65 years ago. Recent progress in high-molecular compounds opened new horizons in overcoming major drawbacks of mechanical and tissue heart valves (dysfunction and failure, tissue degradation, calcification, high immunogenic potential, and high risk of thrombosis), providing new insights into the development of an ideal artificial heart valve. Polymeric heart valves can best mimic the tissue-level mechanical behavior of the native valves. This review summarizes the evolution of polymeric heart valves and the state-of-the-art approaches to their development, fabrication, and manufacturing. The review discusses the biocompatibility and durability testing of previously investigated polymeric materials and presents the most recent developments, including the first human clinical trials of LifePolymer. New promising functional polymers, nanocomposite biomaterials, and valve designs are discussed in terms of their potential application in the development of an ideal polymeric heart valve. The superiority and inferiority of nanocomposite and hybrid materials to non-modified polymers are reported. The review proposes several concepts potentially suitable to address the above-mentioned challenges arising in the R&D of polymeric heart valves from the properties, structure, and surface of polymeric materials. Additive manufacturing, nanotechnology, anisotropy control, machine learning, and advanced modeling tools have given the green light to set new directions for polymeric heart valves.
Collapse
Affiliation(s)
- Maria A. Rezvova
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia
| | - Kirill Y. Klyshnikov
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia
| | | | - Evgeny A. Ovcharenko
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia
| |
Collapse
|
36
|
Wang S, Liu Q, Cheng L, Wang L, Xu F, Yao C. Targeting biophysical cues to address platelet storage lesions. Acta Biomater 2022; 151:118-133. [PMID: 36028196 DOI: 10.1016/j.actbio.2022.08.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022]
Abstract
Platelets play vital roles in vascular repair, especially in primary hemostasis, and have been widely used in transfusion to prevent bleeding or manage active bleeding. Recently, platelets have been used in tissue repair (e.g., bone, skin, and dental alveolar tissue) and cell engineering as drug delivery carriers. However, the biomedical applications of platelets have been associated with platelet storage lesions (PSLs), resulting in poor clinical outcomes with reduced recovery, survival, and hemostatic function after transfusion. Accumulating evidence has shown that biophysical cues play important roles in platelet lesions, such as granule secretion caused by shear stress, adhesion affected by substrate stiffness, and apoptosis caused by low temperature. This review summarizes four major biophysical cues (i.e., shear stress, substrate stiffness, hydrostatic pressure, and thermal microenvironment) involved in the platelet preparation and storage processes, and discusses how they may synergistically induce PSLs such as platelet shape change, activation, apoptosis and clearance. We also review emerging methods for studying these biophysical cues in vitro and existing strategies targeting biophysical cues for mitigating PSLs. We conclude with a perspective on the future direction of biophysics-based strategies for inhibiting PSLs. STATEMENT OF SIGNIFICANCE: Platelet storage lesions (PSLs) involve a series of structural and functional changes. It has long been accepted that PSLs are initiated by biochemical cues. Our manuscript is the first to propose four major biophysical cues (shear stress, substrate stiffness, hydrostatic pressure, and thermal microenvironment) that platelets experience in each operation step during platelet preparation and storage processes in vitro, which may synergistically contribute to PSLs. We first clarify these biophysical cues and how they induce PSLs. Strategies targeting each biophysical cue to improve PSLs are also summarized. Our review is designed to draw the attention from a broad range of audience, including clinical doctors, biologists, physical scientists, engineers and materials scientists, and immunologist, who study on platelets physiology and pathology.
Collapse
Affiliation(s)
- Shichun Wang
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Qi Liu
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Lihan Cheng
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Lu Wang
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Chunyan Yao
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China; State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|